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Institut de Recherche Mathématique Avancée UMR 7501

Université de Strasbourg et CNRS
Strasbourg, France

combe@irif.fr

Submitted: Oct 7, 2020; Accepted: Apr 22, 2021; Published: Jun 18, 2021

c©Camille Combe.

Abstract

Hochschild lattices are specific intervals in the dexter meet-semilattices recently
introduced by Chapoton. A natural geometric realization of these lattices leads to
some cell complexes introduced by Saneblidze, called the Hochschild polytopes. We
obtain several geometrical properties of the Hochschild lattices, namely we give cubic
realizations, establish that these lattices are EL-shellable, and show that they are
constructible by interval doubling. We also prove several combinatorial properties
as the enumeration of their k-chains and compute their degree polynomials.

Mathematics Subject Classifications: 06A07, 05A99

1 Introduction

In [Cha20], Chapoton introduces new meet-semilattices called dexter posets, defined on
the set of Dyck paths, endowed with the dexter order. An interesting and surprising link
is found in this article: a connection between some specific intervals of dexter posets and
cell complexes introduced by Saneblidze [San09,San11] in the area of algebraic topology.
These cell complexes are called Hochschild polytopes by Saneblidze. They provide, in the
context of algebraic topology, combinatorial cellular models of free loops spaces. There
are several ways to build Hochschild polytopes. For instance, they can be obtained by a
sequence of truncations of the n-simplex, where n is the dimension of the polytopes [RS18].

It is shown in [Cha20] that the set of Dyck paths in these specific intervals in dexter
posets is in bijection with a set of words defined on the alphabet {0, 1, 2} satisfying some
conditions. Better than that, by considering the poset on this set of words endowed with
the componentwise order, Chapoton shows that a covering relation on Dyck paths for the
dexter order implies by this bijection a covering relation on the corresponding words.
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As a first contribution of the present work, we show the reverse implication. This
implies that the two posets are isomorphic. Moreover, we show that these posets are
lattices. Because of their links with cell complexes of Saneblidze, we call these lattices
Hochschild lattices. Our goal is to present a geometric and combinatorial exploration of
Hochschild lattices, revealing several interesting features. To this aim, we shall mainly
work with the word version of the lattice previously mentioned, whose elements are called
triwords.

In the first section, we recall several definitions by starting with the one of the dexter
semilattices and the bijection between Dyck paths of the specific intervals and triwords.
We divide our study of the posets into two strands: a geometric one and a combinatorial
one. Section 3 is devoted to the geometric properties. First, we provide a natural geomet-
ric realization for Hochschild lattices, by placing triwords of size n in the space Rn and by
linking by an edge triwords which are in a covering relation. Thanks to this realization,
called cubic realization, we are able to show that Hochschild lattices are EL-shellable and
constructible by interval doubling (or equivalently congruence uniform [Müh19]). Sec-
tion 4 is about enumerative and combinatorial results. We give here for instance the
degree polynomial of the Hochschild lattices that enumerates the triwords with respect to
their coverings and the elements they cover. We also provide a formula to compute the
number of intervals of these lattices, as well as a method to compute the number of k-
chains. Section 4 ends with the introduction of an interesting subposet of the Hochschild
poset, which seems to have similar nice properties. An appendix on Coxeter polynomials
written by Chapoton is added at the end of this article.

General notations and conventions

Throughout this article, for all words u, we denote by ui the i-th letter of u. For any word
a and integer k, ak is the word a repeated k times. For all integers i and j, [i, j] denotes
the set {i, i + 1, . . . , j}. For any integer i, [i] denotes the set [1, i]. Graded sets are sets
decomposing as a disjoint union S =

⊔
n>0 S(n). For any x ∈ S, the unique n > 0 such

that x ∈ S(n) is the size |x| of x. The empty word is denoted by ε. For all matrices M ,
we denote by M(i, j) the entry at the i-th line and the j-th column. All sets considered
in this article are finite.

2 Definitions and first properties

2.1 Hochschild polytopes and triwords

Let n > 0 and w = a1a2 . . . an be a word of size n. The prefixes of w are the n+ 1 words
ε, a1 . . . ai, and the suffixes of w are the n+ 1 words ε, ai . . . an, with i ∈ [n]. A word x is
a factor of w if there is a prefix p and a suffix s such that w = pxs. A word y is a subword
of w if y can be obtained by deleting letters in w. For instance, radar is a subword of
abracadabra.
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To describe our objects in the sequel, we use regular languages and regular expres-
sions [Sak09]. Recall that if A is an alphabet and L and L′ are two languages of words
on A, then L.L′ is the language of the words of the form uu′ where u ∈ L and u′ ∈ L′.
Moreover, L∗ (resp. L+) is the language of the words of the form u(1) . . . u(k) where all
u(i) ∈ L and k ∈ N (resp. k ∈ N\{0}). Observe that ε ∈ L∗. To denote languages, we use
regular expressions: for any a ∈ A∪{ε}, a is the regular expression denoting the language
{a}, and if E and E ′ are two regular expressions denoting respectively the languages L
and L′, then E+E ′ (resp. E.E ′, E∗, E+) is the regular expression denoting the language
L ∪ L′ (resp. L.L′, L∗, L+).

For any n > 0, a Dyck path of size n is a lattice path from (0, 0) to (2n, 0) which
stays above the horizontal line, and which consists only of north-east steps and south-east
steps. The graded set of Dyck paths is denoted by Dy where the size of a Dyck path
is its number of north-east steps. To simplify, we see a Dyck path of size n as a binary
sequence of length 2n where the letter 1 encodes a north-east step and the letter 0 encodes
a south-east step. In this section, we recall several definitions, concepts, and notations
given in [Cha20].

Let d ∈ Dy(n). The Dyck path d is primitive if for all Dyck paths x and y such that
d = xy, one has x = ε or y = ε. A factor x is a subpath of d if x is a Dyck path. A
subpath x of d is movable if x is primitive and if there is a prefix p and a suffix s such
that d = p10mxs, where m > 0, and either s = ε or the first letter of s is 1. Figure 1 gives
two examples of movable subpaths.

(a) (b)

Figure 1: A Dyck path 1100101100 with two movable paths, in blue (dark).

Recall the definition of the dexter order, introduced in [Cha20]. For any n > 0, let
d := p10mxs be a Dyck path of size n, where x is movable. Let dα,β be the Dyck path of
size n such that dα,β := p10αx0βs, where α + β = m and β > 0. We set that dldex d

′ if
and only if d′ = dα,β, for any x movable subpath of d. The dexter order, denoted by 4dex,
is the reflexive and transitive closure of ldex, which is the covering relation. Figure 2
depicts the three covering Dyck paths of the Dyck path 1100101100 seen in Figure 1 for
the dexter order. Note that the chosen movable subpath x is no longer movable in dα,β.

(a) (b)
(c)

Figure 2: The three Dyck paths covering the Dyck path 1100101100 for the dexter order.
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The set Dy(n) endowed with the dexter order is a meet-semilattice with many prop-
erties highlighted in the article of Chapoton. In this article, we restrict ourselves to a
particular interval of this semilattice.

In any Dyck path d, a factor 01 is called a valley. The height of a valley is the ordinate
of its corresponding middle point in the path.

For any n > 1, let F(n) be the interval in Dy(n+ 2) between 1100(10)n and 11n0n100.
In particular, any d in the interval F(n) satisfies the three following assertions:

? the sequence of heights of the valleys in d is weakly decreasing from left to right,

? the Dyck path d ends either with 010 or 0100,

? the Dyck path d starts with 11 and has only valleys of height 0 or 1.

For any n > 1, let us recall the bijection ρ between F(n) and the set of words of length
n in the alphabet {0, 1, 2} satisfying some conditions. Let d ∈ F(n) and N2 be an integer
initially set to 0. By reading from left to right the word d, let us build the word u, initially
the empty word, by following the two conditions,

(i) when two consecutive 1 are read in d, except the first two letters of d, then 1 is
added to N2,

(ii) when a valley of height h is read in d, the word h2N2 is added at the end of the
building word u, and N2 is then set back to 01.

The result ρ(d) is the word u obtained after reading all d. The length of u is n because,
except the two initial letters 1, every letter 1 in d contributes a letter in u.

For instance, the image by ρ of the two Dyck paths 1101001010 and 1110010010, both
in F(3), are respectively 100 and 120.

Since we are going to work in this article on the set ρ(F(n)), we need to give a de-
scription of this set which is independent of the construction induced by ρ.

For any n > 1, a word u of size n is a triword of the same size if u satisfies, for all
i ∈ [n],

(i) ui ∈ {0, 1, 2},

(ii) u1 6= 2,

(iii) if ui = 0 then uj 6= 1 for all j > i.

The graded set of triwords is denoted by Tr, where the size of a triword is its number of
letters.

1The word 2N2 means that the letter 2 is repeated N2 times.
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For instance,

Tr(1) = {0, 1}, Tr(2) = {00, 02, 10, 11, 12},
Tr(3) = {000, 020, 002, 100, 022, 110, 102, 120, 111, 121, 112, 122}.

(1)

Note that the condition (iii) means that there is no subword 01 in any triword.

Lemma 1. The set of triwords is specified by the formal grammar

A = ε+ 0A+ 2A, (2)

B = ε+ 0A+ 1B + 2B, (3)

Tr = ε+ 0A+ 1B. (4)

Proof. First, A is the set of all words on 0, 2. By induction on the length of the words,
one can prove that B is the set of all words on {0, 1, 2} avoiding the subword 01. Finally,
since a triword beginning by 0 has no occurrences of 1, and a triword beginning by 1
writes as 1u′ where u′ ∈ B, (4) holds.

From Lemma 1 one obtains the generating series

GA(z) = 1 + 2zGA(z), (5)

GB(z) = 1 + zGA(z) + 2zGB(z), (6)

GTr(z) = 1 + zGA(z) + zGB(z) (7)

of A, B, and Tr. We deduce that Tr admits

GTr(z) =
(1− z)2

(1− 2z)2
(8)

as generating function. Therefore, for any n > 1, the number of triwords is

#Tr(n) = 2n−2(n+ 3). (9)

Lemma 2. For any n > 1, the image ρ(F(n)) coincides with Tr(n).

Proof. Let d ∈ F(n) such that ρ(d) := u. Then the first letter of u is either 0 or 1. Besides,
a letter 0 cannot be follows by a letter 1 because the height of the valleys in d is weakly
decreasing from left to right. Thus, one has u ∈ Tr(n).

Moreover, we know from [Cha20] that the number of elements in F(n) is (9).

2.2 Isomorphism of posets

We endow the set of triwords with the componentwise order and show that the bijection ρ
is an isomorphism of posets. Then, we describe the meet and join of the poset so defined.

For any n > 1, let 4 be the partial order on Tr(n) satisfying u 4 v for any u, v ∈ Tr(n)
such that ui 6 vi for all i ∈ [n]. The set Tr(n) endowed with 4 is the Hochschild poset of
order n.
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We set that ul v if and only if u 4 v and there is only one index i such that ui < vi,
and if there is w ∈ Tr(n) such that u 4 w 4 v, then either w = u or w = v. Obviously,
the binary relation l is contained in the covering relation of (Tr(n),4).

Note that the minimal element of Tr(n) is 0n and the maximal element is 12n−1.

Proposition 3. For any n > 1, the binary relation l is the covering relation of the
Hochschild poset Tr(n).

Proof. Let u, v ∈ Tr(n) such that v covers u. The case n = 1 is clear. Let n > 1 and let i
be the minimal index such that ui 6= vi, and let w := u1 . . . ui−1viui+1 . . . un be the word
with the same letters as u, except for the i-th letter. Since vi > ui, either w is obtained
by replacing in u the i-th letter 0 by 1 or by 2, or by replacing in u the i-th letter 1 by
2. In both cases, vi is not 0. Moreover, since i is the minimal index such that ui 6= vi, if
there is a letter 0 before ui in u, then this letter exist also in v, and so vi cannot be 1.
Therefore, the subword 01 cannot be generated in w. Thus, the word w is a triword. It
follows that there is a triword w′ 4 w such that u is covered by w′. One can conclude
that between two triwords in covering relation, there is exactly one different letter.

For any Dyck path d = p10mxs with m > 0, p a prefix, s a suffix, and x a movable
subpath, let N(d, x) be the number of consecutive 0 letters that appear before x in d.

Proposition 4. For any n > 1, the map ρ is an isomorphism of posets from F(n) to
Tr(n).

Proof. Let d, b ∈ F(n). We know (Lemma 9.9 from [Cha20]) that if d covers b in F(n)
then the words ρ(b) and ρ(d) differ by exactly one letter, which increases. This implies
that ρ(b) 4 ρ(d).

Let u, v ∈ Tr(n) such that ul v, and let b and d be the respective images of u and v
by ρ−1. Since ul v, there is only one index i such that ui < vi. Then, there are three
cases: either 0 becomes 1 or 0 becomes 2, or 1 becomes 2.

? Suppose that ui = 0 and vi = 1. Then, in the path b, there is a movable subpath x
(in blue (dark) in (10)) starting at the height 0 such that N(b, x) > 2. The height of
the starting point of x gives the value of ui in u by the map ρ. In the path d, since
only one letter changes between u and v, the same subpath x starts at the height 1
and N(d, x) = N(b, x)− 1. Because of this move, we have to add one 0 after x.

→ (10)

? Suppose that ui = 0 and vi = 2. Then, in the path b, there is a movable subpath
x (in blue (dark) in (11)) starting at the height 0, followed by an other subpath
y also starting at the height 0. This is the height of the starting point of y which
gives ui in u by the map ρ. In the path d, there is a subpath z starting at the
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height 0 followed by the subpath y which is unchanged, such that N(d, x) = 0 and
N(d, y) = N(b, x) +N(b, y).

→ (11)

? Suppose that ui = 1 and vi = 2. This case is very similar to the previous case, by
changing the height of the starting point 0 of x, y and z by 1.

In all cases, one has b 4dex d.

Let us describe the join and the meet between two triwords u and v.

Let u, v ∈ Tr(n), and let r := max(u1, v1) . . .max(un, vn). Since u1 and v1 are both
none 2, r1 6= 2. Besides, if ri = 0 for i ∈ [n], then necessarily ui and vi have to be equal
to 0. In this case, for all j > i, neither uj nor vj can take the value 1. Therefore, if there
is an index i ∈ [n] such that ri = 0, then rj 6= 1 for all j > i. Thus r is a triword.

The triword r is the join between u and v. Indeed, r is by definition the smallest
element such that for all i ∈ [n], ri > ui and ri > vi. Moreover, since the join between
u and v is unique, by Proposition 4, the Hochschild poset is a join-semilattice. One can
conclude that Hochschild poset is a lattice since there is a unique minimal triword [Sta11]2.

Let s := min(u1, v1) . . .min(un, vn). The word s is not necessarily a triword. For
instance, if we consider u = 11112 and v = 10022, two triwords of size 5, then s = 10012
which contains a subword 01.

Let t := u∧ v be the word obtained from s by changing all subwords 01 by 00 in s.

Proposition 5. Let n > 1 and u, v ∈ Tr(n), then t := u∧ v is the meet between u and v.

Proof. If s := min(u1, v1) . . .min(un, vn) is a triword, then t = s. Suppose that s is not a
triword. Since we replace in s all subwords 01 by 00, t is a triword. Moreover, if there is
a subword 01 in s, then either u or v has a letter 0 following by letters 0 or 2. Necessary,
the word s inherits this letter 0, and then t is a triword if all letters after this letter 0 are
0 or 2. Therefore, the triword t is the greatest element such that t 6 u and t 6 v.

For example, in order to compute 11112∧ 10222, first we compute s = 10112, which
is not a triword. We replace the subword s2s3 and s2s4 by the subword 00. One has
11112∧ 10222 = 10002.

2This fact is already known since the Hochschild poset is an interval of the dexter meet-
semilattice [Cha20].
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3 Geometric properties

Through triwords, it is possible to give a cubic realization of the Hochschild lattice by
placing in the space Rn all triwords of size n. This lattice thus joins the family of posets
having a cubic realisation [Com19,CG20]. This realization allows us to show two geomet-
rical results: on the one hand that the Hochschild lattice is EL-shellable and on the other
hand that this lattice is constructible by interval doubling.

3.1 Cubic realizations

The Hochschild poset Tr(n) can be seen as a geometric object in the space Rn by placing for
each u ∈ Tr(n) a vertex of coordinates (u1, . . . , un), and by forming for each u, v ∈ Tr(n)
such that ul v an edge between u and v. We call cubic realization of Tr(n) the geometric
object C (Tr(n)) just defined. Figure 3 shows the cubic realization of the poset Tr(2) and
the poset Tr(3).

00

10

11 02

12

(a) C (Tr(2)).

000

100

002

022

110

111

020

120

121

122

112

102

(b) C (Tr(3)).

Figure 3: Cubic realizations of some Hochschild posets.

The first thought that comes to mind, is that for any n > 1, any k-face of the realization
C (Tr(n)) is contained in a n− 1-face of the hypercube of dimension n, for k ∈ [0, n− 1].
Indeed, between the minimal triword 0n := u and the maximal triword 12n−1 := v, there
is no triword w of size n such that ui < wi < vi for all i ∈ [n] since u1 = 0 and v1 = 1.

Therefore, we can see this realization as one empty cell of dimension n. Thus, it is
clear that the volume of C (Tr(n)) is 2n−1.

3.2 EL-shellability

In [BW96] and [BW97], Björner and Wachs generalized the method of labellings of the
cover relations of graded posets to the case of non-graded posets. In particular, they
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showed the EL-shellability of the Tamari poset [BW97]. In this section, we show that the
Hochschild lattice is EL-shellable.

A poset P is bounded if it has a unique maximal element and a unique minimal element
for 4P . A chain in P is a tuple(

x(1), x(2), . . . , x(r−1), x(r)
)
, (12)

where x(1), x(2), . . . , x(r−1), x(r) are r elements of P such that

x(1) 4P x
(2) 4P . . . 4P x

(r−1) 4P x
(r). (13)

Let lP be the covering relation of P . If xilP xi+1 for all i ∈ [r − 1], then the chain (12)
is saturated.

By a slight abuse of notation, the set of elements (x, y) such that xlP y is also denoted
by lP . Let P be a bounded poset and Λ be a poset, and λ : lP → Λ be a map. For any
saturated chain

(
x(1), . . . , x(k)

)
of P , we set

λ
(
x(1), . . . , x(k)

)
:=
(
λ
(
x(1), x(2)

)
, . . . , λ

(
x(k−1), x(k)

))
. (14)

We say that a saturated chain of P is λ-increasing (resp. λ-weakly decreasing) if its
image by λ is an increasing (resp. weakly decreasing) word for the order relation 4Λ.
We say also that a saturated chain

(
x(1), . . . , x(k)

)
of P is λ-smaller than a saturated

chain
(
y(1), . . . , y(k)

)
of P if λ

(
x(1), . . . , x(k)

)
is smaller than λ

(
y(1), . . . , y(k)

)
for the lex-

icographic order induced by 4Λ. The map λ is called EL-labeling (edge lexicographic
labeling) of P if for any x, y ∈ P satisfying x 4P y, there is exactly one λ-increasing sat-
urated chain from x to y, and this chain is λ-minimal among all saturated chains from x
to y. Any bounded poset that admits an EL-labeling is EL-shellable (see [BW96,BW97]).

The EL-shellability of a poset P implies several topological and order theoretical
properties of the associated order complex ∆(P) built from P . Recall that the faces of
this simplicial complex are all the chains of P . For instance, if P has at most one λ-weakly
decreasing chain between any pair of elements then the Möbius function of P takes values
in {−1, 0, 1}. In this case, the simplicial complex associated with each open interval of P
is either contractible or has the homotopy type of a sphere [BW97].

In order to show the EL-shellability of Tr(n) for n > 1, we set Λ as the poset Z2

ordered lexicographically. Then we introduce the map λ : l → Z2 defined for any u, v
such that ul v by

λ(u, v) := (i, ui) (15)

where i is the unique index such that ui 6= vi. Observe that because of the covering
relation l defined in Proposition 3, the image by λ of any saturated chain in Tr(n) is
well-defined.

For any u, v ∈ Tr(n), let

D(u, v) := {d : ud 6= vd} (16)

be the set of all indices of different letters between u and v.
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Theorem 6. For any n > 1, the map λ is an EL-labelling of the Hochschild lattice Tr(n).
Moreover, there is at most one λ-weakly decreasing chain between any pair of comparable
elements of Tr(n).

Proof. Let u, v ∈ Tr(n) such that u 4 v and

D(u, v) := {d1, d2, . . . , ds}, (17)

with d1 < d2 < · · · < ds. For k ∈ [s], let u(k) be the word of size n defined by replacing
the k letters ud1 , ud2 , . . . , udk in u by the k letters vd1 , vd2 , . . . , vdk of v.

Thus, for any k ∈ [s], either u
(k)
i = ui or u

(k)
i = vi for all i ∈ [n]. Since the letters are

increased from the triword u from left to right, the word u(k) is not a triword if and only if
there is a letter u

(k)
i = 0 and a letter u

(k)
j = 1 with i 6 dk and j > i. However, if there is a

letter u
(k)
i = 0 in u(k) with i 6 dk, then vi = 0 since u

(k)
i = vi by construction of u(k). And

so ui = 0 since by hypothesis ui 6 vi. Thus, ui = 0 and vi = 0 imply respectively that
uj 6= 1 and vj 6= 1 in the triwords u and v for all j > i. In particular, one has u

(k)
j 6= 1 for

all j > i. It follows that the subword 01 cannot occur in u(k), and then u(k) is a triword.
Let us consider the chain (

u, u(1), u(2), . . . , u(s−1), u(s) = v
)

(18)

which is not necessarily saturated. For instance, if u = 00 and v = u(2) = 12, then
u(1) = 10, and (00, 11, 12) is not a saturated chain. Indeed, between 10 and 12, there
is the triword 11. Then, by concatenating the unique saturated chain in each interval
[u(k−1), u(k)] for all k ∈ [s], we obtain a saturated chain between u and v. Since each
word u(k) of this saturated chain is obtained from u by replacing letters from left to right,
this chain is clearly weakly increasing for the partial order 4. Furthermore, between two
consecutive triwords u(k−1) and u(k) in this saturated chain, u(k−1) lu(k). Therefore, the
image of the chain by λ is increasing for 4. Thus this chain is λ-increasing.

Moreover, since between any two consecutive triwords of this chain only one letter is
different, if we consider another saturated chain from u to v, then at some point, this
chain passes through a word obtained by increasing a letter which has not the smallest
possible index. It lead us to choose later in this chain the letter with a smallest index to
increase it. For this reason, the saturated chain obtained is not λ-increasing.

If a λ-weakly decreasing chain exists in [u, v], then it must have the sequence of edge-
labels (

(ds, uds), (ds−1, uds−1), . . . , (d2, ud2), (d1, ud1)
)
. (19)

Indeed, suppose that between u and v, there is an index d ∈ D(u, v) such that ud = 0 and
vd = 2, and there is a triword w such that u 4 w 4 v with wd = 1. Then, for this index
d, the sequence of edge-labels passing through w is ((d, 0), (d, 1)), and so the saturated
chain passing through w in [u, v] cannot be λ-weakly decreasing. Therefore, to obtain a
λ-weakly decreasing chain in [u, v], each index d of D(u, v) can only appear once in the
sequence of edge-labels.
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Assume that there is a λ-weakly decreasing chain. For the same reason as previously,
this chain is unique.

For instance, for Tr(3), the λ-increasing chain between 000 and 122 is

(000, 100, 110, 120, 121, 122) , (20)

and
λ (000, . . . , 122) = ((1, 0), (2, 0), (2, 1), (3, 0), (3, 1)) . (21)

For the same interval, the λ-weakly decreasing chain is

(000, 002, 022, 122) , (22)

and
λ (000, . . . , 122) = ((3, 0), (2, 0), (1, 0)) . (23)

3.3 Construction by interval doubling

Let 2 be the poset {0, 1} where 0 4 1. Let P be a poset and I one of its intervals. The
interval doubling of I in P is the poset

P [I] := (P \ I) ∪ (I × 2), (24)

having 4′P as order relation, which is defined as follows. For any x, y ∈ P [I], one has
x 4′P y if one of the following assertions is satisfied:

(i) x ∈ P \ I, y ∈ P \ I, and x 4P y,

(ii) x ∈ P \ I, y = (y′, b) ∈ I × 2, and x 4P y′,

(iii) x = (x′, a) ∈ I × 2, y ∈ P \ I, and x′ 4P y,

(iv) x = (x′, a) ∈ I × 2, y = (y′, b) ∈ I × 2, and x′ 4P y′ and a 4P b.

This operation has been introduced by Alan Day as an operation on posets preserving
the property of being lattices. A lattice L is constructible by interval doubling (bounded
in the original article) if L is isomorphic as a poset to a poset obtained by performing a
sequence of interval doubling from the singleton lattice.

For all n > 1, let us build Tr(n+ 1) from Tr(n) by following these three steps.

(i) Let T0(n+ 1) be the poset on the set of all words u0 such that u ∈ Tr(n).

(ii) We build the set T2(n + 1) from T0(n + 1) by changing for all u ∈ T0(n + 1) the
letter un+1 to 2. Let T0,2(n+ 1) be the union T0(n+ 1) ∪ T2(n+ 1).

(iii) Let I0 be the set of words of shape 1(1 + 2)∗0. We build the set I1 from I0 by
changing for all u ∈ I0 the letter 0 to 1. Let T (n+ 1) be the union T0,2(n+ 1) ∪ I1.
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Lemma 7. For any n > 1, the Hochschild poset Tr(n+ 1) is the poset (T (n+ 1),4) built
from Tr(n).

Proof. Let u ∈ T (n + 1), u is written either v0, or v2 with v ∈ Tr, or is a word of form
1(1 + 2)∗1. It is clear that, for any v ∈ Tr(n), adding a letter 0 or a letter 2 at the end of
v give a triword of size n+ 1. Likewise, a word of form 1(1 + 2)∗1 is also a triword.

Now, let u ∈ Tr(n+1). Suppose that un+1 = 1. Since the subword 01 is forbidden, one
has ui ∈ {1, 2} for all i ∈ [n]. Therefore, u belongs to T (n + 1). Suppose that un+1 = 0
or that un+1 = 2. Since u belongs to Tr(n+ 1), the conditions of triwords remain on the
prefix v of size n of u. Thus, one has v ∈ Tr(n).

Theorem 8. For any n > 1, the Hochschild poset Tr(n) is constructible by interval
doubling.

Proof. We proceed by induction on n > 1. If n = 1, we have the poset 2, namely the
poset with two elements, which is a lattice constructible by interval doubling. Assume
now that n > 2. We have to show that Tr(n+1) can be obtained from Tr(n) by a sequence
of interval doublings. By Lemma 7, one has that Tr(n + 1) is the poset T (n + 1). Since
T (n+ 1) is obtain from Tr(n) by performing the three steps (i), (ii), and (iii), by showing
that these two last steps are two operations of interval doubling, the intended result will
follow.

Let us consider T0(n + 1). By changing for all u ∈ T0(n + 1) the last letter 0 to 2, a
copy T2(n+ 1) of T0(n+ 1) is obtained. Since any u ∈ T0(n+ 1) have a copy v ∈ T2(n+ 1)
such that ui = vi for all i ∈ [n] and un+1 6 vn+1, one has that u 4 v. Therefore, the
step (ii) is the doubling of the interval T0(n+ 1).

In the step (iii) one builds I1 from I0 by changing for all u ∈ I0 the letter 0 to 1. Since
for all u, v ∈ I0 such that u 4 v, any word w such that u 4 w 4 v is by definition of
4 a word of shape 1(1 + 2)∗0, one has that I0 is the interval [1n0, 12n−10]. For the same
reason, I1 is the interval [1n+1, 12n−11].

Since any u ∈ I0 has a copy v ∈ I1 such that ui = vi for all i ∈ [n] and un+1 6 vn+1, one
has that u 4 v. Meanwhile, any u ∈ I0 has a copy w ∈ T2(n+ 1), included in the interval
[1n2, 12n], such that ui = wi for all i ∈ [n] and un+1 6 wn+1. However, by construction,
one has un+1 = 0, vn+1 = 1, and wn+1 = 2, for all u ∈ I0, v ∈ I1 and w ∈ [1n2, 12n]. It
follows that u 4 v 4 w for all u ∈ I0, v ∈ I1 and w ∈ [1n2, 12n] such that ui = vi = wi for
i ∈ [n]. Therefore, the step (iii) is the doubling of the interval I0.

Note that for n = 0, Tr(0) = {ε} is constructible by interval doubling. Note also that,
for any n > 1, only two steps are necessary to built Tr(n+ 1) from Tr(n), by starting with
the doubling of T0(n+ 1) built from Tr(n),

Tr(n) ' T0(n+ 1)→ T0(n+ 1)× 2→ Tr(n+ 1). (25)

For instance, Figure 4 depicts the sequence of interval doublings from Tr(2) to Tr(3).
To obtain Tr(3) from T0(3), we have first to double the interval T0(3), then we have to
double the interval [110, 120].
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Figure 4: A sequence of interval doublings from Tr(2) to Tr(3).

4 Combinatorial properties

In this section, several combinatorial and enumerative properties of the Hochschild lattice
are proved. We obtain results such as the enumeration of intervals, the enumeration of
k-chains, and the description of the degree polynomial of the Hochschild lattice.

4.1 Irreducible elements and maximal chains

Here we give some general properties of the Hochschild lattice, such as its degree polyno-
mial and a description of join-irreducible and meet-irreducible elements.

Recall that an element x of a lattice L is join-irreducible (resp. meet-irreducible) if x
covers (resp. is covered by) exactly one element in L. We denote by J(L) (resp. M(L))
the set of join-irreducible (resp. meet-irreducible) elements of L. Moreover, let(

x(1), x(2), . . . , x(r−1), x(r)
)

(26)

be a saturated chain of L. The length of the saturated chain (26) is r − 13. A longest
saturated chain between the minimal element and the maximal element of L is a maximal
saturated chain.

Let us describe the set of join-irreducible and meet-irreducible elements of Tr(n) by
using the regular expression notation [Sak09] recalled in Section 2.1.

The two possibilities of having a join-irreducible triword are either to change a letter
ui = 1 to 0 such that all letters on the left of ui are letters 1 and letters on the right of ui
are 0, or to change a letter ui = 2 to 0 such that all other letters are 0. Indeed, suppose
that we change in a triword u a letter ui = 2 to 1. Since u should cover just one triword,
all other letters in u have to be 0. However, since the first letter in u is different from 2,
there is a letter ui−1 such that ui−1 6= 0. Thus, ui−1 can be also decreased. This implies
that u covers more than just one triword. Since the subword 01 is not allowed, the set of

3In Section 4.3, we deal with k-chains, where k refers not to the length of the chain but to the number
of elements forming that chain.
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triwords which covers a unique triword is described by

J(Tr(n)) = {u ∈ Tr(n) : u ∈ 1+0∗ + 0+20∗}. (27)

For instance, 1110000 and 000200 are two join-irreducible triwords.

Likewise, the three possibilities of having a meet-irreducible triword are either to
change a letter 1 to 2 or to change a letter 0 to 1, or to change a letter 0 to 2. Moreover,
for all cases, the other letters which are unchanged should be as large as possible. Thus,
the set of triwords covered by a unique triword is described by

M(Tr(n)) = {u ∈ Tr(n) : u ∈ 12∗12∗ + 12∗02∗ + 02∗}. (28)

For example, 12212, 120222 and 0222 are three meet-irreducible triwords.

Note that both regular expressions (27) and (28) have as generating function

GJ(Tr)(z) = GM(Tr)(z) =
z + z2

(1− z)2
. (29)

From (29), one can deduce that, for n > 1,

#J(Tr(n)) = #M(Tr(n)) = 2n− 1. (30)

Recall that a lattice L is join-semidistributive if for all x, y, z ∈ L, x∨ y = x∨ z implies
x∨ y = x∨(y ∧ z). Likewise, a lattice L is meet-semidistributive if for all x, y, z ∈ L,
x∧ y = x∧ z implies x∧ y = x∧(y ∨ z). A lattice L is semidistributive if L is both
join-semidistributive and meet-semidistributive. A lattice L is distributive if x∧(y ∨ z) =
(x∧ y)∨(x∧ z) (or in an equivalent way x∨(y ∧ z) = (x∨ y)∧(x∨ z)).

In Section 3, we have shown that the Hochschild lattice is constructible by interval
doubling. However, it is known from [Day79] that lattices constructible by interval dou-
bling are in particular semidistributive. Moreover, a finite lattice L is constructible by
interval doubling if and only if it is congruence uniform [Day79]. In particular, the num-
ber of join-irreducible elements J(L) is equal to the number of doubling steps needed to
build L [Müh19].

Therefore, there are two consequences of Theorem 8. The first one is that for any
n > 1, the Hochschild poset Tr(n) is semidistributive. Another consequence is that the
difference of numbers of join-irreducible elements between Tr(n − 1) and Tr(n) is always
2. Indeed, Tr(n) is constructible by interval doubling from Tr(n− 1) with only two steps.

Lemma 9. For any n > 1, the length of any maximal saturated chain in the Hochschild
poset Tr(n) is 2n − 1. Moreover, a triword belongs to a maximal saturated chain if and
only if all letters following a letter 0 are also 0.

Proof. If n = 1, then the length of the saturated chain [0, 1] is 1. Suppose that n > 1.
Since all letters 0, except the first one, can be increased to 1, then to 2, the length of a
maximal saturated chain in Tr(n) between 0n and 12n−1 is at most 2n− 1. Therefore, to
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obtain a maximal saturated chain between 0n and 12n−1, all letters 0 in 0n must become 1
before becoming 2, except for the first 0. Considering that, the letters have to be increased
from left to right, in order to avoid the forbidden subword 01. This way, each letter of
0n, except the first one, contributes 2 in the length of the saturated chain between the
minimal triword and the maximal triword. Since the first 0 contributes 1, the length of
such a saturated chain is 2n− 1.

Furthermore, since the letters have to be increased from left to right, this implies that
a triword u belongs to a maximal saturated chain if and only if for any letter ui = 0 then
uj = 0 for all j > i.

Let L be a lattice such that the length of a maximal saturated chain is k. If #J(L) =
#M(L) = k then L is an extremal lattice [Mar92]. By Lemma 9 and the generating
function (29), one has the following result.

Proposition 10. For any n > 1, the Hochschild lattice Tr(n) is extremal.

Let us recall two definitions. An element x of a lattice L is left modular [BS97] if for
any y 4L z,

(y ∨x)∧ z = y ∨(x∧ z). (31)

A lattice is left modular if there is a maximal saturated chain of left modular elements.
A lattice is trim [Tho06] if it is an extremal left modular lattice.

It is shown in [TW19] that if a lattice is extremal and semidistributive, then it is also
left modular, and therefore trim. By Theorem 8, one has that Tr(n) is semidistributive,
thus Tr(n) is trim.

Let L be an extremal lattice. The union of maximal saturated chains of L is known
as the spine of L. It is known from [Tho06] that the spine of an extremal lattice is a
distributive sublattice of L. The spine of L is denoted by S(L). Figure 5 shows the spine
of S(Tr(2)) and S(Tr(3)).

Let P be a poset. Recall that an order ideal in P is a subset S of P such that if x ∈ S
and y 4P x then y ∈ S. The Fundamental theorem for finite distributive lattices4 due to
Birkhoff states that any finite distributive lattice L is isomorphic to the lattice J(P) of
the order ideals of the subposet P of L restricted to its join-irreducible elements, ordered
by inclusion [Bir37,Sta11].

Let us consider the subposet J(S(Tr(n))) of S(Tr(n)). Since the spine of Tr(n) is a
distributive sublattice of Tr(n), then by the FTFDL one has that S(Tr(n)) is isomorphic
to J (J(S(Tr(n)))).

For instance, Figure 6 depicts the construction of J (J(S(Tr(3)))), which is a distribu-
tive lattice isomorphic to S(Tr(3)) (see Figure 5).

Our aim is to give a description of triwords belonging to the spine of the Hochschild
lattice. Then, in this set, we give a description of join-irreducible triwords.

4FTFDL for short.
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Figure 5: Cubic realizations of some spines of Hochschild posets.

By Lemma 9 we know that a triword u belongs to a maximal saturated chain if and
only if for any letter ui = 0 then uj = 0 for all j > i. Therefore, the regular expression of
these triwords is

S(Tr(n)) = {u ∈ Tr(n) : u ∈ 0∗ + 1(1 + 2)∗0∗}. (32)

Therefore, the generating function is

GS(Tr) =
1

1− 2z
, (33)

and thus
#S(Tr(n)) = 2n. (34)

Let u ∈ S(Tr(n)). The two possibilities for u to be a join-irreducible triword are either
to have one unique letter 1 which can be changed to 0 or to have one unique letter 2
which can be changed to 1. To summarize,

J(S(Tr(n))) = {u ∈ S(Tr(n)) : u ∈ 1+0∗ + 1+20∗}. (35)

One can deduce the generating function

GJ(S(Tr)) =
z + z2

(1− z)2
, (36)

and thus
#J(S(Tr(n))) = 2n− 1. (37)

From (35) one can also deduce that the shape of J(S(Tr(n))) is as depicted in Figure 7.
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Figure 6: Construction of J (J(S(Tr(3)))) from the poset J(S(Tr(3))).

4.2 Degree polynomial

For any poset P , the degree polynomial of P is the polynomial dP(x, y) ∈ K [x, y] defined
by

dP(x, y) :=
∑
u∈P

xinP (u) youtP (u), (38)

where for any u ∈ P , inP(u) (resp. outP(u)) is the number of elements covered by (resp.
covering) u in P . The specialization dP(1, y) is the h-polynomial of P .

Besides, for any letter ui of u with i ∈ [n], the number of letters u′i such that the word
u′ defined by u′j := uj for all j 6= i is in covering relation with u is the degree of the letter
ui. The sum of the degrees of all letters of u is the number of elements covered by u or
covering u, namely inP(u) + outP(u).

Proposition 11. For any n > 1, the h-polynomial of Tr(n) is

dTr(n)(1, y) = (y + 1)n−2 (y2 + (n+ 1)y + 1
)
. (39)

Proof. Let us compute the generating series

PTr(y, z) :=
∑
n>0

dTr(n)(1, y)zn (40)

of all degree polynomials of Tr(n) for all n > 0.

Let us consider the grammar of Tr given by Lemma 1. By the map u 7→ z|u|youtTr(u)

one obtains the system of formal series

PA(y, z) = 1 + yzPA(y, z) + zPA(y, z),

PB(y, z) = 1 + yzPA(y, z) + yzPB(y, z) + zPB(y, z),

PTr(y, z) = 1 + yzPA(y, z) + zPB(y, z).

(41)
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Figure 7: Shape of the poset J(S(Tr(n))).

Indeed, in (2) of the grammar, 0A becomes yzPA(y, z) because the letter 0 can always be
increased to 2. Note that the letter 0 in 0A cannot be increased to 1 because in (4), this
expression 0A comes after a first letter 0, and the subword 01 is prohibited by definition of
triwords. However, 2A becomes zPA(y, z) since the letter 2 cannot be increased. Likewise,
in (3), 0A becomes yzPA(y, z) because the letter 0 can be increased to 1, and 1B becomes
yzPB(y, z) because the letter 1 can be increased to 2, unlike the letter 2 in 2B which
becomes zPB(y, z).

Thus,

PA(y, z) =
1

1− z − yz
,

PB(y, z) =
1− z

(1− z − yz)2
,

PTr(y, z) =
1− z

1− (z + yz)
+

z − z2

(1− (z + yz))2 .

(42)

From this expression of PTr(y, z) in partial fraction decomposition, we deduce by a straight-
forward computation the given expression for dTr(n)(1, y).

Lemma 12. For any n > 1 and u ∈ Tr(n), inTr(u) + outTr(u) = n.

Proof. Suppose that the first letter of u is 0, then all letters of u are either 0 or 2. The
letter u1 can be increased to 1, but since we cannot have a letter 0 followed by 1, all other
letters 0 can only be increased to 2, and all letters 2 can only be decreased to 0. And so
for the case where u1 = 0, all letters of u have degree 1.

Suppose now that the first letter of u is 1. Either u1 is the only letter 1 in u or there
is another letter ui = 1 such that all letters after ui are not 1. In the first case, u1 can
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be decreased to 0, thus all letters of u have degree 1. In the second case, since there is
at least one other letter 1 in u, u1 cannot be decreased to 0. Then the degree of u1 is 0.
However, this degree is compensated by the degree of the letter ui. Indeed, the last letter
1 is the only one which can be decreased to 0 or increased to 2. Hence the degree of ui is
2, and since all other letters of u have degree 1, the sum is equal to n.

By Proposition 11 and Lemma 12, one can deduce the degree polynomial of (Tr(n),4 )
by replacing yk in the h-polynomial by xn−kyk, with k ∈ [0, n]. Thus, the degree polyno-
mial of (Tr(n),4) is

dTr(n)(x, y) = (x+ y)n−2
(
x2 + (n+ 1)xy + y2

)
. (43)

4.3 Intervals and k-chains

This section also provides enumerative results about the Hochschild lattice. We have
already computed the length of any maximal chain for this lattice in Section 3. Here we
give a method to find formulas for the number of k-chains of this lattice.

We use for a letter a and a word u the notation a ∈ u if there is a letter ui = a.
Conversely, a /∈ u if all letters ui of u are different from a. Thereafter, we denote by
Zi(n, k) the set of k-chains of Tr(n) that contains exactly i words u such that 0 /∈ u. We
denote by zi(n, k) the cardinality of Zi(n, k). Note that for n = 1, zi(1, k) = 1 for all
i ∈ [0, k].

First, we need to define a classification for all k-chains of size n.

For any n > 1 and k > 1, let u(1), u(2), . . . , u(k−1), u(k) be k triwords of size n such
that u(1) 4 u(2) 4 . . . 4 u(k). It is always possible to classify k-chains according to the
presence or absence of the letter 0 in u(j) with j ∈ [k] by setting, for all i ∈ [0, k],

Zi(n, k) := {[u(1), u(2), . . . , u(k)] : 0 ∈ u(r), 0 /∈ u(s) for all r ∈ [k − i], s ∈ [k − i+ 1, k]}.
(44)

This classification is called the Z-classification for k-chains. Note that the union of all
these sets is disjoint and give a description of all k-chains.

For any n > 2, k > 1, i ∈ [0, k], and j > i, let

φ
(n,k)
i : Zi(n, k)→ N×Zj(n− 1, k) (45)

such that, for γ a k-chain in Zi(n, k),

φ
(n,k)
i (γ) := (t, γ′) (46)

where γ′ is the k-chain obtained by forgetting the last letter of each word of γ, and t is
the number of words ending by 2 in γ.

Let γ ∈ Zi(n, k). Clearly, φ
(n,k)
i (γ) is a k-chain γ′ which belongs to Zj(n− 1, k) with

j ∈ [i, k], since the k-chain γ′ has at the most the same number of triwords with a letter
0 than the k-chain γ.
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Therefore, by setting γ := [v(1)a(1), v(2)a(2), . . . , v(k)a(k)] with v(r) ∈ Tr(n − 1) and

a(r) ∈ [0, 2] for all r ∈ [k], and (t, γ′) := φ
(n,k)
i (γ), there are two cases.

? Suppose that γ′ belongs to Zi(n− 1, k). Then one has k+ 1 possibilities to place or
not the letter 2. Indeed, for r ∈ [k − i], a(r) = 0 or a(r) = 2 because by hypothesis
0 ∈ v(r). For s ∈ [k− i+ 1, k], because γ′ is already in Zi(n− 1, k), one has a(s) = 1
or a(s) = 2. To summarize, one has k+ 1 possibilities to place the letter 2, knowing
that all letters before the first ending letter 2 have to be smaller than 2, and all
letters after have to be 2.

? Suppose now that γ′ belongs to Zj(n− 1, k) with j ∈ [i+ 1, k]. Then one has i+ 1
possibilities to place or not the letter 2. Indeed, in this case we must set a(s) = 0
for all s ∈ [k− j, k− i] in order to obtain a k-chain in Zi(n, k). This implies that all
ending letters before a(k−j) have to be also 0. It follows that for all r ∈ [k− i+ 1, k],
a(r) = 1 or a(r) = 2.

In the two cases, the position of the first letter 2 depends on the integer t.

Thus, for γ a k-chain in Zi(n, k), it follows that

φ
(n,k)
i (γ) ∈ [k + 1]×Zi(n− 1, k)

⊔
[i+ 1]×

⊔
j∈[i+1,k]

Zj(n− 1, k). (47)

For instance, by setting

γ := [00200, 02200, 02202, 12222] (48)

a 4-chain of Z1(5, 4), one has φ
(5,4)
1 (γ) = (t, γ′) with

γ′ = [0020, 0220, 0220, 1222], (49)

and t = 2.

Lemma 13. For any n > 2, k > 1, and i ∈ [0, k], the map φ
(n,k)
i is a bijection.

Proof. Let δ′ := [v(1), v(2), . . . , v(k)] be a k-chain of Tr(n− 1), and t ∈ [0, k].

? Suppose that δ′ ∈ Zi(n− 1, k). Let δ := [v(1)a(1), v(2)a(2), . . . , v(k)a(k)] such that for
all r ∈ [k − t] we set a(r) = 0 if 0 ∈ v(r), and a(r) = 1 otherwise, and a(s) = 2 for all
s ∈ [k − t + 1, k]. The resulting k-chain is a k-chain of Tr(n) because a(1) 6 a(2) 6
· · · 6 a(k) by construction. Furthermore, since no 0 is added at the end of a word
that does not contain a letter 0 in δ′, the k-chain δ belongs to Zi(n, k).

? Suppose that δ′ ∈ Zj(n−1, k) with j ∈ [i+1, k]. Let δ := [v(1)a(1), v(2)a(2), . . . , v(k)a(k)]
such that a(r) = 0 for all r ∈ [k− i], a(s) = 1 for all s ∈ [k− i+ 1, k− t], and a(q) = 2
for all q ∈ [k − t + 1, k]. By construction, one has a(1) 6 a(2) 6 · · · 6 a(k). This
implies that this k-chain is a k-chain of Tr(n). Moreover, since the letter 0 is added
at the end of v(r) for r ∈ [k − i], the k-chain δ belongs to Zi(n, k).
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In both cases, since δ belongs to Zi(n, k), this implies that the map φ
(n,k)
i is surjective.

Let (t1, γ
′) and (t2, δ

′) be two pairs with t1, t2 ∈ [0, k], and γ′ ∈ Zj1(n − 1, k) and
δ′ ∈ Zj2(n − 1, k) with j1, j2 ∈ [i, k]. Let γ be the image of (t1, γ

′) and δ be the image

of (t2, δ
′) by φ

(n,k)
i

−1
. Suppose that (t1, γ

′) 6= (t2, δ
′). This implies that either t1 6= t2 or

γ′ 6= δ′. In the first case, if t1 > t2 then there are more words ending by 2 in γ than in
δ. Thus one has γ 6= δ. In the second case, there is at least one word in γ such that the
prefix of this word is different from the word with the same index in δ. Here again, one
has γ 6= δ. Hence, the map φ

(n,k)
i is injective.

For instance, for the 4-chain (48), γ′ belongs to Z1(4, 4) and t is 2. We can rebuild
γ by adding the letter 2 on the two last words of γ′, since by definition of triwords,
the greater triwords of a k-chain must have greater or equal letters compare to smaller
triwords. Besides, since the two first words of γ′ have the letter 0, we can only add the
letter 0 at its end.

Let us consider another example with

γ := [00000, 00200, 12210, 12211, 12212] (50)

a 5-chain of Z2(5, 5). One has φ
(5,5)
2 (γ) = (t, γ′) with t = 1 and

γ′ = [0000, 0020, 1221, 1221, 1221]. (51)

Here γ′ belongs to Z3(4, 5). Since γ ∈ Z2(5, 5), to rebuild γ from γ′, we have to add 0 at
the end of the third word of γ′. Moreover, since t = 1, the letter 2 is added to the last
word and the letter 1 is added to the penultimate word of γ′.

For any Zi(n, k) of this classification, one obtains by denoting by zi(n, k) the cardinality
of Zi(n, k) with i ∈ [0, k], the following result.

Proposition 14. Let n > 2 and k > 1. For all i ∈ [0, k], each zi(n, k) satisfies

zi(n, k) = (k + 1)zi(n− 1, k) + (i+ 1)
k∑

j=i+1

zj(n− 1, k). (52)

Proof. This is a direct consequence of Lemma 13.

For example, for

Z1(2, 3) ={[00, 00, 11], [00, 00, 12], [00, 02, 12], [02, 02, 12],

[00, 10, 11], [00, 10, 12], [10, 10, 11], [10, 10, 12]},
(53)

the first four 3-chains came from Z1(1, 3) = {[0, 0, 1]}, the next two came from Z2(1, 3) =
{[0, 1, 1]}, and the last two came from Z3(1, 3) = {[1, 1, 1]}.
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The system

z0(n, k) = (k + 1)z0(n− 1, k) + z1(n− 1, k) + · · ·+ zk−1(n− 1, k) + zk(n− 1, k),

z1(n, k) = (k + 1)z1(n− 1, k) + 2z2(n− 1, k) + · · ·+ 2zk−1(n− 1, k) + 2zk(n− 1, k),

...

zk−1(n, k) = (k + 1)zk−1(n− 1, k) + kzk(n− 1, k),

zk(n, k) = (k + 1)zk(n− 1, k),

(54)

is called z-system.

Proposition 15. For any n > 2 and k > 1, the k-chains of the Hochschild poset Tr(n)
are enumerated by

k∑
i=0

zi(n, k) = (k + 1)n−(k+1)Pk(n), (55)

where Pk(n) is a monic polynomial of degree k determined by the z-system.

Proof. Since for n = 1, all zi(1, k) = 1 with i ∈ [0, k], one can rewrite the z-system with
matrices 

z0(n, k)
z1(n, k)

...
zk−1(n, k)
zk(n, k)

 =


k + 1 1 1 . . . 1

0 k + 1 2 . . . 2
...

. . .
...

0 . . . 0 k + 1 k
0 . . . 0 0 k + 1


n−1

1
1
...
1
1

 . (56)

Let us denote by M this upper triangular matrix, I the identity matrix of dimension
k + 1, and N := M − (k + 1)I. Since I and N commute, one has

Mn−1 = ((k + 1)I +N)n−1

=
k∑
i=0

(
n− 1

i

)
(k + 1)n−1−iN i

= (k + 1)n−(k+1)

(
(k + 1)kI + (n− 1)(k + 1)k−1N + · · ·+ (n− 1)!

(n− k − 1)!k!
Nk

)
= (k + 1)n−(k+1)Qk(n),

(57)

where Qk(n) is clearly polynomial in n. It only remains to deduce the polynomial Pk(n)
from the matrix Qk(n), as the sum of all entries of Qk(n).

Furthermore, Pk(n) is a polynomial of degree k since nk appears in
(n− 1)!

(n− k − 1)!k!
.
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Moreover, a particular case from Lemma 16 gives that Nk(1, k + 1) = k!. Since N
is a strictly upper triangular matrix, Nk(1, k + 1) is the only nonzero entry of Nk. This
implies that Pk(n) is a monic polynomial.

Lemma 16. For any n > 2 and k > 1, let M be the upper triangular matrix in (56), I
be the identity matrix of dimension k + 1, and N := M − (k + 1)I. For any l ∈ [k] and
i ∈ [k + 1] such that i+ l 6 k + 1, one has

N l(i, i+ l) =
(i+ l − 1)!

(i− 1)!
. (58)

Proof. We proceed by induction on l. Since N(i, i + 1) = i for all i ∈ [k + 1], one has
that (58) follows for l = 1. Suppose that (58) is true for l− 1 and let us consider N l. For
any i ∈ [k+ 1], one obtains N l(i, i+ l) with the i-th line of N l−1 and the (i+ l)-th column
of N . Since N is a strictly upper triangular matrix, all left entries before N l−1(i, i+ l−1)
are zeros, and all below entries after N(i+ l − 1, i+ l) are also zeros. Therefore,

N l(i, i+l) = N l−1(i, i+l−1) N(i+l−1, i+l) =
(i+ l − 2)!

(i− 1)!
(i+l−1) =

(i+ l − 1)!

(i− 1)!
, (59)

and then (58) holds for all l ∈ [k].

Note that since for n = 1, all zi(1, k) = 1 with i ∈ [0, k], the number of k-chains is k+1
for all k > 1. Using Proposition 15, one can therefore deduce that Pk(1) = (k + 1)k+1.

Recall that the triwords of size n are enumerated by

2n−2(n+ 3). (60)

A demonstration of this result is given in Section 2.1, involving generating series. By
Proposition 15, one has(

z0(n, 1)
z1(n, 1)

)
=

(
2 1
0 2

)n−1(
1
1

)
=

(
2n−1 (n− 1)2n−2

0 2n−1

)(
1
1

)
, (61)

which leads to the formula already known, for n > 1,

z0(n, 1) + z1(n, 1) = 2n−2(n+ 3). (62)

Likewise, to enumerate the intervals of the Hochschild lattice, or in other words their
2-chains, one hasz0(n, 2)

z1(n, 2)
z2(n, 2)

 =

3 1 1
0 3 2
0 0 3

n−11
1
1


=

3n−1 3n−2(n− 1) 3n−2(n− 3) + 3n−3(n2 − 3n+ 8)
0 3n−1 3n−2(2n− 2)
0 0 3n−1

1
1
1

 .

(63)
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The number of intervals of Tr(n) is therefore given by

z0(n, 2) + z1(n, 2) + z2(n, 2) = 3n−3
(
n2 + 9n+ 17

)
. (64)

In the same way, the number of 3-chains is

4n−4
(
n3 + 20n2 + 93n+ 142

)
, (65)

the number of 4-chains is

5n−5

(
n4 +

110

3
n3 + 355n2 +

3490

3
n+ 1569

)
, (66)

and the number of 5-chains is

6n−6

(
n5 +

119

2
n4 + 1026n3 +

13261

2
n2 + 17363n+ 21576

)
. (67)

The sequence of constant terms of the polynomials Pk(n) for k 6 5 is

3, 17, 142, 1569, 21576. (68)

This sequence coincides with the one of numbers of connected functions on n labeled
nodes A001865 of [Slo]. Recall that a connected function is a function f : [n] → [n]
such that the graph G := (V,E) is connected, where V := [n] is the set of vertices and
E := {(i, f(i))} with i ∈ [n] is the set of edges. We conjecture that this is true for all
k > 1.

4.4 Subposets of the Hochschild posets

An interesting subposet of the poset Tr(n) appears by considering the set of triwords
restricted to words beginning by the letter 1. Here, some results are given for this subposet.

Let u ∈ Tr(n) such that u1 = 1, then u is called a µ-triword, and the graded set of
µ-triwords is denoted by Trµ.

From Lemma 1, one has
Trµ = ε+ 1B, (69)

where B is the set of all words on {0, 1, 2} avoiding the subword 01.

It follows that the generating series of Trµ is

GTrµ(z) = 1 + zGB(z). (70)

By reminding the two generating series (5) and (6), one can deduce, for any n > 1,

#Trµ(n) = 2n−2(n+ 1). (71)

The subposet (Trµ(n),4) is called mini-Hochschild poset. As for Hochschild posets,
we can give the Z-classification for k-chains of mini-Hochschild posets. This classification
is identical to the classification (44). For any n > 2, k > 1, and i ∈ [0, k], let us show

that the map φ
(n,k)
i defined by (46) is also a bijection for the set of µ-triwords.
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First, the reverse image of the map φ
(n,k)
i adds one letter on the end of each triwords

of the k-chains. It means that if all triwords of a k-chain γ in Zj(n − 1, k) for j ∈ [i, k]
are µ-triwords, then the reverse image of γ is also a k-chain of µ-triwords. Likewise, for
a k-chain of µ-triwords such that γ ∈ Zi(n, k), φ

(n,k)
i (γ) remains a k-chain of µ-triwords

since the first letter of each µ-triword remains 1. Second, all arguments in the proof of
Lemma 13 hold in the case of µ-triwords because at no point the first letter of triwords
which constitutes k-chains intervenes.

The z-system for the mini-Hochschild poset holds, and one has for any n > 2, k > 1,
and for all i ∈ [0, k],

zi(n, k) = (k + 1)zi(n− 1, k) + (i+ 1)
k∑

j=i+1

zj(n− 1, k). (72)

Since zk(1, k) = 1 and zj(1, k) = 0 for all j ∈ [0, k− 1], it follows that the z-system for the
mini-Hochschild poset can be rewritten

z0(n, k)
z1(n, k)

...
zk−1(n, k)
zk(n, k)

 =


k + 1 1 1 . . . 1

0 k + 1 2 . . . 2
...

. . .
...

0 . . . 0 k + 1 k
0 . . . 0 0 k + 1


n−1

0
0
...
0
1

 . (73)

Thus, for any n > 2 and k > 1, the number of k-chains in the poset Trµ(n) is given by
the sum of the last column of Mn−1, where M is the upper triangular matrix. One can
conclude that Proposition 15 holds for the mini-Hochschild poset.

For instance, one deduce from (61) that the number of µ-triwords of size n is

2n−1 + (n− 1)2n−2 = 2n−2(n+ 1), (74)

as shown through generating series (71).

In the same way, from (63) one deduce that the number of intervals of Trµ(n) is

3n−3
(
n2 + 6n+ 2

)
, (75)

the number of 3-chains is

4n−4
(
n3 + 16n2 + 41n+ 6

)
, (76)

the number of 4-chains is

5n−5

(
n4 +

95

3
n3 +

445

2
n2 +

2075

2
n+ 24

)
, (77)

and the number of 5-chains is

6n−6

(
n5 +

107

2
n4 + 750n3 +

6505

2
n2 + 3599n+ 120

)
. (78)
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Similarly to the sequence of constant terms (68), the sequence of constant terms of
these polynomials for k 6 5 is

1, 2, 6, 24, 120. (79)

This sequence coincides with the one of factorial numbers. As before, we conjecture that
this is true for all k > 1.

Several other properties verified by the Hochschild poset seem to hold for the mini-
Hochschild poset. It may be interesting to proceed to a complete study of this subposet
as well.

Appendix on Coxeter polynomials by Frédéric Chapoton

This short section describes a conjectural property of the Hochschild lattices, more pre-
cisely of their Coxeter polynomials.

Let us start by a few general words on the Coxeter polynomial as an interesting
invariant of posets, and its theoretical context.

Given any finite poset P , let MP be the triangular matrix with rows and columns
indexed by P and entries MP(x, y) = 1 if x 4P y and 0 otherwise. The Coxeter matrix
of P is the matrix CP defined by the formula −MP(M−1

P )t, where the second factor
is the transpose of the inverse. This definition may look strange, but is very natural
from a representation-theoretic point of view, where it comes from the Auslander-Reiten
translation functor τ on the derived category DP of modules over the incidence algebra
of P . To keep it short, let us just say that the Coxeter matrix CP , up to change of basis
over Z, is an invariant of P that depends only on the derived category DP . It is known
that non-isomorphic posets can have equivalent derived categories, in which case they will
share the same Coxeter matrix up to change of basis.

The Coxeter polynomial of P , defined as the characteristic polynomial of the Coxeter
matrix CP , is therefore also an invariant of P depending only on the derived category DP .
This invariant is very easily computed on examples and sometimes turns out to have nice
properties.

In the case of Hochschild posets, computer experiments suggests the following conjec-
ture.

Conjecture 17. The Coxeter polynomial cn(x) of the Hochschild poset Tr(n) is a product
of cyclotomic polynomials.

One can note that the Coxeter matrices for Tr(4) and Tr(5) are not diagonalizable over
the complex numbers and do not have finite multiplicative order.

Moreover, one can propose a guess for the factorization, as follows. Let fn be the
Coxeter polynomial cn(x) of the Hochschild poset Tr(n) if n is odd and (−1)deg cncn(−x)
if n is even.

the electronic journal of combinatorics 28(2) (2021), #P2.38 26



Conjecture 18. The modified Coxeter polynomial fn can be written as

fn(x) =
∏
i>1

(xi − 1)dn(i), (80)

where the integers dn(i) have the description given below.

Note that the description is to be taken as a first approximation only, as there are still
ambiguities in the proposal for some exponents.

Let us define integers dn(i) in two steps. Unless defined below, dn(i) = 0.

First one easy step:

? for i = 1, dn(1) = (−1)n,

? for i = 3, dn(3) = 1− 2n−1 + (−1)n

3
,

? for i a multiple of 3 with 3 < i 6 n+ 2, dn(i) =
(
n−1
i−3

)
.

Then comes the second step, which is more complicated. For every integer k with
1 6 k 6 (n+ 1)/3, let

Ik := (3k + 2)n− 3k + 1 and Dk :=

(
n− 1

3k − 2

)
/(3k − 1). (81)

Thus,

? if Dk is an integer, then one sets dn(Ik) := Dk,

? otherwise, one sets dn(Ik) := bDkc and dn(Ik(Dk − bDkc)) = 1.

This finishes the proposed description for the exponents dn(i). The last case is the
ambiguous place, as the known values were not sufficient to make a better guess for
splitting Ik(Dk − bDkc) into the product of an index and an exponent.

Table 1 depicts the known values for the modified Coxeter polynomials fn(x), where
we abbreviate (xn − 1)k as nk. In each case, one can check that the proposed description
for the exponents does work.
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n #Tr(n) fn

1 2
3

1

2 5
1 · 8

4

3 12
13

1

4 28
1 · 6 · 9 · 18

32

5 64
64 · 7 · 232

1 · 34

6 144
1 · 610 · 283 · 43

310 · 14

7 320
620 · 9 · 333 · 513

1 · 320

8 704
1 · 635 · 97 · 19 · 20 · 383 · 597

342 · 10

9 1536
656 · 928 · 434 · 6714 · 91

1 · 384

10 3328
1 · 684 · 984 · 12 · 15 · 485 · 7525 · 1025

3170 · 24 · 51

Table 1: Some values for the modified Coxeter polynomials fn(x).
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[BS97] A. Blass and B. Sagan. Möbius functions of lattices. Adv. in Math., 127:94–123,
1997.

[BW96] A. Björner and M. L. Wachs. Shellable nonpure complexes and posets. I. Trans.
Amer. Math. Soc., 348(4):1299–1327, 1996.

[BW97] A. Björner and M. L. Wachs. Shellable nonpure complexes and posets. II. Trans.
Amer. Math. Soc., 349(10):3945–3975, 1997.

[CG20] C. Combe and S. Giraudo. Three interacting families of Fuss-Catalan posets.
Sém. Lothar. Combin., 84B:Art. 22, 12, 2020.

[Cha20] F. Chapoton. Some properties of a new partial order on Dyck paths. Algebraic
Combinatorics, 3:433–463, 2020.

[Com19] C. Combe. Cubic realizations of Tamari interval lattices. Sém. Lothar. Combin.,
82B:Article #23, 2019.

[Day79] A. Day. Characterizations of finite lattices that are bounded-homomorphic im-
ages of sublattices of free lattices. Canadian J. Math., 31(1):69–78, 1979.

the electronic journal of combinatorics 28(2) (2021), #P2.38 28



[Mar92] G. Markowsky. Primes, irreducibles and extremal lattices. Order, 9(3):265–290,
1992.

[Müh19] H. Mühle. The core label order of a congruence-uniform lattice. Algebra Uni-
versalis, 80(1):Art. 10, 22, 2019.

[RS18] M. Rivera and S. Saneblidze. A combinatorial model for the free loop fibration.
Bull. Lond. Math. Soc., 50(6):1085–1101, 2018.

[Sak09] J. Sakarovitch. Elements of automata theory. Cambridge University Press,
Cambridge, 2009. Translated from the 2003 French original by Reuben Thomas.

[San09] S. Saneblidze. The bitwisted Cartesian model for the free loop fibration. Topology
Appl., 156(5):897–910, 2009.

[San11] S. Saneblidze. On the homology theory of the closed geodesic problem. Rep.
Enlarged Sess. Semin. I. Vekua Appl. Math., 25:113–116, 2011.

[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://

oeis.org/.

[Sta11] R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University
Press, second edition, 2011.

[Tho06] H. Thomas. An analogue of distributivity for ungraded lattices. Order, 23(2-
3):249–269, 2006.

[TW19] H. Thomas and N. Williams. Rowmotion in slow motion. Proc. Lond. Math.
Soc. (3), 119(5):1149–1178, 2019.

the electronic journal of combinatorics 28(2) (2021), #P2.38 29

https://oeis.org/
https://oeis.org/

	Introduction
	Definitions and first properties
	Hochschild polytopes and triwords
	Isomorphism of posets

	Geometric properties
	Cubic realizations
	EL-shellability
	Construction by interval doubling

	Combinatorial properties
	Irreducible elements and maximal chains
	Degree polynomial
	Intervals and k-chains
	Subposets of the Hochschild posets


