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Abstract

It follows by Bixby’s Lemma that if e is an element of a 3-connected matroid M ,
then either co(M\e), the cosimplification of M\e, or si(M/e), the simplification of
M/e, is 3-connected. A natural question to ask is whether M has an element e such
that both co(M\e) and si(M/e) are 3-connected. Calling such an element “elastic”,
in this paper we show that if |E(M)| > 4, then M has at least four elastic elements
provided M has no 4-element fans.

Mathematics Subject Classifications: 05B35

1 Introduction

A result widely used in the study of 3-connected matroids is due to Bixby [1]: if e is
an element of a 3-connected matroid M , then either M\e or M/e has no non-minimal
2-separations, in which case, co(M\e), the cosimplification of M , or si(M/e), the sim-
plification of M , is 3-connected. A 2-separation (X, Y ) is minimal if min{|X|, |Y |} = 2.
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This result is commonly referred to as Bixby’s Lemma. Thus, although an element e of a
3-connected matroid M may have the property that neither M\e nor M/e is 3-connected,
Bixby’s Lemma says that at least one of M\e and M/e is close to being 3-connected in
a very natural way. In this paper, we are interested in whether or not there are elements
e in M such that both co(M\e) and si(M/e) are 3-connected, in which case, we say e
is elastic. In general, a 3-connected matroid M need not have any elastic elements. For
example, all wheels and whirls of rank at least four have no elastic elements. The reason
for this is that every element of such a matroid is in a 4-element fan and the way, geo-
metrically, every 4-element fan is positioned in relation to the rest of the elements of the
matroid. However, as signalled by the next theorem, 4-element fans are the only possible
obstacles to M having elastic elements.

A 3-separation (A,B) of a matroid is vertical if min{r(A), r(B)} > 3. Now, let M be a
matroid and let (X, {e}, Y ) be a partition of E(M). We say that (X, {e}, Y ) is a vertical
3-separation of M if (X ∪ {e}, Y ) and (X, Y ∪ {e}) are both vertical 3-separations and
e ∈ cl(X) ∩ cl(Y ). Furthermore, Y ∪ {e} is maximal in this separation if there exists no
vertical 3-separation (X ′, {e′}, Y ′) of M such that Y ∪{e} is a proper subset of Y ′ ∪{e′}.
Essentially, all of the work in the paper goes into establishing the following theorem.

Theorem 1. Let M be a 3-connected matroid with a vertical 3-separation (X, {e}, Y )
such that Y ∪{e} is maximal. If X ∪{e} is not a 4-element fan, then X contains at least
two elastic elements.

Note that, in the context of Theorem 1, if X∪{e} is a 4-element fan, then it is possible
that X contains two elastic elements. For example, consider the rank-4 matroids M1 and
M2 for which geometric representations are shown in Fig. 1. For each ∈ {1, 2}, the tuple
F = (e1, e2, e3, e4) is a 4-element fan of Mi and (F − {e1}, {e1}, E(Mi)− F ) is a vertical
3-separation of Mi. In M1, none of e2, e3, and e4 is elastic, while in M2, both e2 and e3 are
elastic. However, provided X ∪ {e} is a maximal fan, the instance illustrated in Fig. 1(i)
is essentially the only way in which X does not contain two elastic elements. This is made
more precise in Section 3.

An almost immediate consequence of Theorem 1 is the following corollary.

Corollary 2. Let M be a 3-connected matroid. If |E(M)| > 7, then M contains at least
four elastic elements provided M has no 4-element fans. Moreover, if |E(M)| 6 6, then
every element of M is elastic.

Like Bixby’s Lemma, Corollary 2 is an inductive tool for handling the removal of
elements of 3-connected matroids while preserving connectivity. The most well-known
examples of such tools are Tutte’s Wheels-and-Whirls Theorem [8] and Seymour’s Splitter
Theorem [7]. In both theorems, this removal preserves 3-connectivity. More recently,
there have been analogues of these theorems in which the removal of elements preserves
3-connectivity up to simplification and cosimplification. These analogues have additional
conditions on the elements being removed. Let B be a basis of a 3-connected matroid
M , and suppose that M has no 4-element fans. Say M is representable over some field F
and that we are given a standard representation of M over F. To keep the information
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Figure 1: For each i ∈ {1, 2}, the tuple (e1, e2, e3, e4) is a 4-element fan and the parti-
tion ({e2, e3, e4}, {e1}, E(Mi) − {e1, e2, e3, e4}) of E(Mi) is a vertical 3-separation of Mi.
Furthermore, in M1, none of e2, e3, and e4 are elastic, while in M2, both e2 and e3 are
elastic.

displayed by the representation in an F-representation of a single-element deletion or a
single element contraction of M , we need to avoid pivoting. To do this, we want to either
contract an element in B or delete an element in E(M)− B. Whittle and Williams [10]
showed that if |E(M)| > 4, then M has at least four elements e such that either si(M/e) is
3-connected if e ∈ B or co(M\e) is 3-connected if e ∈ E(M)−B. Brettell and Semple [2]
establish a Splitter Theorem counterpart to this last result where, again, 3-connectivity is
preserved up to simplification and cosimplification. These last two results are related to
an earlier result of Oxley et al. [5]. Indeed, the starting point for the proof of Theorem 1
is [5].

The paper is organised as follows. The next section contains some necessary pre-
liminaries on connectivity, while Section 3 considers fans and determines exactly which
elements of a fan are elastic. Section 4 establishes several results concerning when an
element in a rank-2 restriction of a 3-connected matroid is deletable or contractible. Sec-
tion 5 consists of the proofs of Theorem 1 and Corollary 2. Throughout the paper, the
notation and terminology follows [3].

2 Preliminaries

Connectivity

Let M be a matroid with ground set E and rank function r. The connectivity function
λM of M is defined on all subsets X of E by

λM(X) = r(X) + r(E −X)− r(M).
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A subset X of E or a partition (X,E −X) is k-separating if λM(X) 6 k − 1 and exactly
k-separating if λM(X) = k − 1. A k-separating partition (X,E −X) is a k-separation if
min{|X|, |E −X|} > k. A matroid is n-connected if it has no k-separations for all k < n.

Let e be an element of a 3-connected matroid M . We say e is deletable if co(M\e) is
3-connected, and e is contractible if si(M/e) is 3-connected. Thus, e is elastic if it is both
deletable and contractible.

Two k-separations (X1, Y1) and (X2, Y2) cross if each of the intersections X1 ∩ Y1,
X1∩Y2, X2∩Y1, X2∩Y2 are non-empty. The next lemma is a standard tool for dealing with
crossing separations. It is a straightforward consequence of the fact that the connectivity
function λ of a matroid M is submodular, that is,

λ(X) + λ(Y ) > λ(X ∩ Y ) + λ(X ∪ Y )

for all X, Y ⊆ E(M). An application of this lemma will be referred to as by uncrossing.

Lemma 3. Let M be a k-connected matroid, and let X and Y be k-separating subsets of
E(M).

(i) If |X ∩ Y | > k − 1, then X ∪ Y is k-separating.

(ii) If |E(M)− (X ∪ Y )| > k − 1, then X ∩ Y is k-separating.

The next five lemmas are used frequently throughout the paper. The first follows from
orthogonality, while the second follows from the first. The third follows from the first and
second. A proof of the fourth and fifth can be found in [9] and [2], respectively.

Lemma 4. Let e be an element of a matroid M , and let X and Y be disjoint sets whose
union is E(M)− {e}. Then e ∈ cl(X) if and only if e 6∈ cl∗(Y ).

Lemma 5. Let X be an exactly 3-separating set in a 3-connected matroid M , and suppose
that e ∈ E(M)−X. Then X ∪ {e} is 3-separating if and only if e ∈ cl(X) ∪ cl∗(X).

Lemma 6. Let (X, Y ) be an exactly 3-separating partition of a 3-connected matroid M ,
and suppose that |X| > 3 and e ∈ X. Then (X − {e}, Y ∪ {e}) is exactly 3-separating if
and only if e is in exactly one of cl(X − {e}) ∩ cl(Y ) and cl∗(X − {e}) ∩ cl∗(Y ).

Lemma 7. Let C∗ be a rank-3 cocircuit of a 3-connected matroid M . If e ∈ C∗ has the
property that cl(C∗)− {e} contains a triangle of M/e, then si(M/e) is 3-connected.

Lemma 8. Let (X, Y ) be a 3-separation of a 3-connected matroid M . If X ∩ cl(Y ) 6= ∅
and X ∩ cl∗(Y ) 6= ∅, then |X ∩ cl(Y )| = |X ∩ cl∗(Y )| = 1.

Vertical connectivity

A k-separation (X, Y ) of a matroid M is vertical if min{r(X), r(Y )} > k. As noted in
the introduction, we say a partition (X, {e}, Y ) of E(M) is a vertical 3-separation of M if
(X ∪{e}, Y ) and (X, Y ∪{e}) are both vertical 3-separations of M and e ∈ cl(X)∩ cl(Y ).
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Furthermore, Y ∪ {e} is maximal if there is no vertical 3-separation (X ′, {e′}, Y ′) of M
such that Y ∪ {e} is a proper subset of Y ′ ∪ {e′}. A k-separation (X, Y ) of M is cyclic if
both X and Y contain circuits. The next lemma gives a duality link between the cyclic
k-separations and vertical k-separations of a k-connected matroid.

Lemma 9. Let (X, Y ) be a partition of the ground set of a k-connected matroid M . Then
(X, Y ) is a cyclic k-separation of M if and only if (X, Y ) is a vertical k-separation of
M∗.

Proof. Suppose that (X, Y ) is a cyclic k-separation of M . Then (X, Y ) is a k-separation
of M∗. Since (X, Y ) is a k-separation of a k-connected matroid, (X, Y ) is exactly k-
separating, and so r(X)+r(Y )−r(M) = k−1. Therefore, as r∗(X) = r(Y )+ |X|−r(M),
it follows that

r∗(X) = ((k − 1)− r(X) + r(M)) + |X| − r(M) = (k − 1) + |X| − r(X).

As X contains a circuit, X is dependent, so |X| − r(M) > 1. Hence r∗(X) > k. By
symmetry, r∗(Y ) > k, and so (X, Y ) is a vertical k-separation of M∗. A similar argument
establishes the converse.

Following Lemma 9, we say a partition (X, {e}, Y ) of the ground set of a 3-connected
matroid M is a cyclic 3-separation if (X, {e}, Y ) is a vertical 3-separation of M∗.

Of the next two results, the first combines Lemma 9 with a straightforward strength-
ening of [5, Lemma 3.1] and, in combination with Lemma 9, the second follows easily
from Lemma 6.

Lemma 10. Let M be a 3-connected matroid, and suppose that e ∈ E(M). Then si(M/e)
is not 3-connected if and only if M has a vertical 3-separation (X, {e}, Y ). Dually,
co(M\e) is not 3-connected if and only if M has a cyclic 3-separation (X, {e}, Y ).

Lemma 11. Let M be a 3-connected matroid. If (X, {e}, Y ) is a vertical 3-separation
of M , then (X − cl(Y ), {e}, cl(Y ) − e) is also a vertical 3-separation of M . Dually, if
(X, {e}, Y ) is a cyclic 3-separation of M , then (X − cl∗(Y ), {e}, cl∗(Y ) − {e}) is also a
cyclic 3-separation of M .

Note that an immediate consequence of Lemma 11 is that if (X, {e}, Y ) is a vertical 3-
separation such that Y ∪ {e} is maximal, then Y ∪ {e} must be closed. We will make
repeated use of this fact.

3 Fans

Let M be a 3-connected matroid. A subset F of E(M) with at least three elements is a
fan if there is an ordering (f1, f2, . . . , fk) of F such that

(i) for all i ∈ {1, 2, . . . , k − 2}, the triple {fi, fi+1, fi+2} is either a triangle or a triad,
and
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(ii) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then {fi+1, fi+2, fi+3} is a
triad, while if {fi, fi+1, fi+2} is a triad, then {fi+1, fi+2, fi+3} is a triangle.

If k > 4, then the elements f1 and fk are the ends of F . Furthermore, if {f1, f2, f3}
is a triangle, then f1 is a spoke-end; otherwise, f1 is a rim-end. Observe that if F is a
4-element fan (f1, f2, f3, f4), then either f1 or f4 is the unique spoke-end of F depending
on whether {f1, f2, f3} or {f2, f3, f4} is a triangle, respectively. The proof of the next
lemma is straightforward and omitted.

Lemma 12. Let M be a 3-connected matroid, and suppose that F = (f1, f2, f3, f4) is a
4-element fan of M with spoke-end f1. Then ({f2, f3, f4}, {f1}, E(M) − F ) is a vertical
3-separation of M provided r(M) > 4, in which case, E(M)− {f2, f3, f4} is maximal.

We end this section by determining when an element in a fan of size at least four
is elastic. For subsets X and Y of a matroid, the local connectivity between X and Y ,
denoted u(X, Y ), is defined by

u(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).

Let M be a 3-connected matroid and let k be a positive integer. A flower Φ of M
is an (ordered) partition (P1, P2, . . . , Pk) of E(M) such that each Pi has at least two
elements and is 3-separating, and each Pi ∪ Pi+1 is 3-separating, where all subscripts are
interpreted modulo k. If k > 4, we say Φ is swirl-like if

⋃
i∈I Pi is exactly 3-separating for

all proper subsets I of {1, 2, . . . , k} whose members form a consecutive set in the cyclic
order (1, 2, . . . , k), and

u(Pi, Pj) =

{
1, if Pi and Pj are consecutive;

0, if Pi and Pj are not consecutive

for all distinct i, j ∈ {1, 2, . . . , k}. For further details of swirl-like flowers and, more
generally flowers, we refer the reader to [4].

Lemma 13. Let M be a 3-connected matroid such that r(M), r∗(M) > 4, and let F =
(f1, f2, . . . , fn) be a maximal fan of M .

(i) If n > 6, then F contains no elastic elements of M .

(ii) If n = 5, then F contains either exactly one elastic element, namely f3, or no elastic
elements of M .

(iii) If n = 4, then F contains either exactly two elastic elements, namely f2 and f3, or
no elastic elements of M .

Moreover, if n ∈ {4, 5} and F contains no elastic elements, then M has a swirl-like flower
(A, {f1, f2}, F − {f1, f2}, B) as shown geometrically in Fig. 2.
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Proof. It follows by Lemma 12 that the ends of a 4-element fan in M are not elastic.
Thus, if n > 6, then, as every element of F is the end of a 4-element fan, F contains
no elastic elements, and if n = 5, then, as every element of F , except f3, is the end of a
4-element fan, F contains no elastic elements except possibly f3. Thus (i) and (ii) hold.
We next prove the lemma for when n = 4. The remaining part of the lemma for when
n = 5 is proved similarly.

Suppose that n = 4 and either f2 or f3 is not elastic. Since (f1, f3, f2, f4) is also a fan
ordering for F , we may assume that f3 is not elastic. Up to duality, we may also assume
that si(M/f3) is not 3-connected. Then, by Lemma 10,

(A ∪ {f1, f2}, {f3}, B ∪ {f4})

is a vertical 3-separation of M , where |A| > 1 and |B| > 2. Say |A| = 1, where A = {f0}.
Then A∪ {f1, f2} is a triad, and so (f0, f1, f2, f3, f4) is a 5-element fan, contradicting the
maximality of F . Thus |A| > 2. Since A ∪ B and B ∪ {f4} are 3-separating in M , it
follows by uncrossing that B is 3-separating in M . Similarly, A is 3-separating in M .
Hence,

(A, {f1, f2}, {f3, f4}, B)

is a flower Φ. Since u({f1, f2}, {f3, f4}) = 1, it follows by [4, Theorem 4.1] that

u(A, {f1, f2}) = u({f3, f4}, B) = u(A,B) = 1.

To show that Φ is a swirl-like flower, it remains to show that

u({A, {f3, f4}) = u(B, {f1, f2}) = 0.

If f1 6∈ cl(A), then, as f2 6∈ cl(A ∪ {f1}), it follows that r(A ∪ {f1, f2}) = r(A) + 2.
But then u(A, {f1, f2}) = 0, a contradiction. Thus f1 ∈ cl(A). Furthermore, f3 6∈ cl(A).
Assume that f4 ∈ cl(A ∪ {f3}). Then, as u({f3, f4}, B) = 1,

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)

= rM/f3(A ∪ {f1, f2, f4}) + rM/f3(B)− r(M/f3)

= r(A ∪ F )− 1 + r(B)− (r(M)− 1)

= r(A ∪ F ) + r(B)− r(M),

and so B is 2-separating in M , a contradiction. Thus f4 6∈ cl(A ∪ {f3}), and so
u(A, {f3, f4}) = 0. To see that u(B, {f1, f2}) = 0, first assume that f1 ∈ cl(B). Then, as
f1 ∈ cl(A),

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)

= rM/f3(A) + rM/f3(B ∪ {f1, f2, f4})− r(M/f3)

= r(A) + r(B ∪ F )− 1− (r(M)− 1)

= r(A) + r(B ∪ F )− r(M),
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and so A is 2-separating in M . This contradiction implies that f1 6∈ cl(B). It fol-
lows that r(B ∪ {f1, f2}) = r(B) + 2, that is u(B, {f1, f2}) = 0. We deduce that
(A, {f1, f2}, {f3, f4}, B) is a swirl-like flower.

To complete the proof for when n = 4, since f2 is contained in the triangle {f1, f2, f3}
and F is maximal, it is easily seen that f2 is contained in exactly one triad. There-
fore co(M\f2) ∼= M/f3\f2, and so, as si(M/f3) is not 3-connected, co(M\f2) is not
3-connected. Hence, if f3 is not elastic, f2 is not elastic. In particular, if F contains an
elastic element, then it contains exactly two elastic elements.

f1

f3

f2

f4

A B

Figure 2: The swirl-like flower (A, {f1, f2}, F − {f1, f2}, B) of Lemma 13.

4 Elastic Elements in Segments

Let M be a matroid. A subset L of E(M) of size at least two is a segment if M |L is
isomorphic to a rank-2 uniform matroid. In this section we consider when an element in
a segment is deletable or contractible. We begin with the following elementary lemma.

Lemma 14. Let L be a segment of a 3-connected matroid M . If L has at least four
elements, then M\` is 3-connected for all ` ∈ L.

In particular, Lemma 14 implies that, in a 3-connected matroid, every element of a seg-
ment with at least four elements is deletable. We next establish a sufficient condition for
when almost every element of a segment in a 3-connected matroid is contractible.

Lemma 15. Let M be a 3-connected matroid, and suppose that L ∪ {w} is a rank-3
cocircuit of M , where L is a segment. Then at least |L|−1 elements of L are contractible.

Proof. Suppose that the lemma does not hold, and let y1 and y2 be distinct elements of
L that are not contractible. For each i ∈ {1, 2}, it follows by Lemma 10 that there exists
a vertical 3-separation (Xi, {yi}, Yi) of M such that yj ∈ Yi, where {i, j} = {1, 2}. By
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Lemma 11, we may assume Yi∪{yi} is closed, in which case, L− yi ⊆ Yi. If w ∈ Yi, then,
as L ∪ {w} is a cocircuit, Xi is contained in the hyperplane E(M) − (L ∪ {w}), and so
yi 6∈ cl(Xi). This contradiction implies that w ∈ Xi. Thus, for each i ∈ {1, 2}, we deduce
that M has a vertical 3-separation

(Ui ∪ {w}, {yi}, Vi ∪ (L− yi)),

where Ui, Vi ⊆ E(M)− (L ∪ {w}). Next we show the following.

15.1. For each i ∈ {1, 2}, we have w ∈ clM(Ui ∪ {yi})− clM(Ui).

Since L ∪ {w} is a cocircuit, the elements yi, w 6∈ clM(Ui). But yi ∈ clM(Ui ∪ {w}),
and so yi ∈ clM(Ui ∪ {w})− clM(Ui). Thus, by the MacLane-Steinitz exchange property,
w ∈ clM(Ui ∪ {yi})− clM(Ui).

15.2. For each i ∈ {1, 2}, we have yi 6∈ clM(Uj ∪ {w}), where {i, j} = {1, 2}.
By Lemma 11,

(cl(Uj ∪ {w})− {yj}, {yj}, (Vj ∪ (L− yj))− cl(Uj ∪ {w}))

is a vertical 3-separation of M . If yi ∈ cl(Uj ∪ {w}), then, as yj ∈ cl(Uj ∪ {w}), the
segment L is contained in cl(Uj ∪ {w}). Therefore L ∪ {w} ⊆ cl(Uj ∪ {w}), and so
(Vj ∪ (L−{yi))− cl(Uj ∪{w}) = Vj− cl(Uj ∪{w}). Since Vj− cl(Uj ∪{w}) is contained in
the hyperplane E(M)− (L∪{w}), it follows that yj 6∈ Vj − cl(Uj ∪{w}), a contradiction.
Thus (15.2) holds.

Since M is 3-connected and (Ui ∪ {w}, {yi}, Vi ∪ (L− yi)) is a vertical 3-separation, it
follows by (15.1) that

r(Ui) + r(Vi ∪ L)− r(M\w) = r(Ui ∪ {w})− 1 + r(Vi ∪ L)− r(M) = 1.

Thus (Ui, Vi ∪ L) is a 2-separation of M\w for each i ∈ {1, 2}.
15.3. Either U1 ⊆ U2 or U2 ⊆ U1.

Consider the 2-connected matroid M\w, and suppose that U1 * U2. Then |(U1 ∩
(V2 ∪L)| > 1, and so, by uncrossing the two 2-separating sets U1 and U2, we deduce that
U1∪V2∪L is 2-separating inM\w. But, by (15.1), w ∈ clM(U1∪L) and so U1∪V2∪(L∪{w})
is 2-separating in M . Since M is 3-connected, it follows that |U2 ∩ (V1 ∪ L)| = 0, that is,
U2 ⊆ U1.

By (15.3), we may assume without loss of generality that U1 ⊆ U2. Thus

y1 ∈ cl(U1 ∪ {w}) ⊆ cl(U2 ∪ {w}),

contradicting (15.2). This completes the proof of the lemma.

Corollary 16. Let L be a segment in a 3-connected matroid M , and suppose that L is
not coclosed. Then at least |L| − 2 elements of L are contractible.
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Proof. Let E denote the ground set of M . The lemma certainly holds if r(M) = 2, so we
may assume r(M) > 3. Since L is not coclosed, there exists an element w ∈ cl∗(L) − L.
Since r(M) > 3 and M is 3-connected, w 6∈ cl(L) − L. Observing that (L,E − (L ∪
{w})) is a partition of E − {w}, it follows by Lemma 4 that w 6∈ cl(E − (L ∪ {w})). If
|cl(L) − L| > 2, then L is contained in cl(E − (L ∪ {w})) and so, as M is 3-connected,
w ∈ cl(E−(L∪{w})), a contradiction. Thus |cl(L)−L| 6 1. Furthermore, if ` ∈ cl(L)−L,
then ` ∈ cl(E − (cl(L) ∪ {w})). To see this, observe that r(cl(L) ∪ w) = 3 and so, as
M is 3-connected, r(E − (cl(L) ∪ w)) = r(M) − 1. If ` 6∈ cl(E − (cl(L) ∪ {w})), then
cl((E − (cl(L) ∪ {w})) ∪ {`}) = r(M), and so w ∈ cl(E − (L ∪ {w})), a contradiction. It
now follows that either

|L ∩ cl(E(M)− (L ∪ {w}))| = 0,

in which case L ∪ {w} is a cocircuit, or

|L ∩ cl(E(M)− (L ∪ {w}))| = 1,

in which case (L− {`})∪ {w} is a cocircuit for some ` ∈ L. Note that, in the latter case,
|L| > 3; otherwise, M has a series pair consisting of the unique element in L − {`} and
w. The corollary now follows from Lemma 15.

Combining Corollary 16 with Lemma 14 gives the following result.

Corollary 17. Let L be a segment with at least four elements in a 3-connected matroid
M . If L is not coclosed, then at least |L| − 2 elements of L are elastic.

5 Proofs of Theorem 1 and Corollary 2

In this section, we prove Theorem 1 and Corollary 2. However, almost all of the section
consists of the proof of Theorem 1. The proof of this theorem is essentially partitioned
into two lemmas, Lemmas 19 and 20. Let M be a 3-connected matroid with a vertical
3-separation (X, {e}, Y ) such that Y ∪ {e} is maximal, and suppose that X ∪ {e} is not
a 4-element fan. Lemma 19 establishes Theorem 1 for when X contains at least one non-
contractible element, while Lemma 20 establishes the theorem for when every element in
X is contractible.

To prove Lemma 19, we will make use of the following technical result which is ex-
tracted from the proof of Lemma 3.2 in [5].

Lemma 18. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1 ∪ {e1} is maximal. Suppose that (X2, {e2}, Y2) is a vertical 3-separation of
M such that e2 ∈ X1, e1 ∈ Y2, and Y2 ∪ {e2} is closed. Then each of the following holds:

(i) None of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 are empty.

(ii) r((X1 ∩X2) ∪ {e2}) = 2.

(iii) If |Y1 ∩X2| = 1, then X2 is a rank-3 cocircuit.
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(iv) If |Y1 ∩X2| > 2, then r((X1 ∩ Y2) ∪ {e1, e2}) = 2.

Lemma 19. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1 ∪ {e1} is maximal, and suppose that X1 ∪ {e1} is not a 4-element fan. If at
least one element of X1 is not contractible, then X1 contains at least two elastic elements.

Proof. Let e2 be an element of X1 that is not contractible. Then, by Lemma 10, there
exists a vertical 3-separation (X2, {e2}, Y2) of M . Without loss of generality, we may
assume e1 ∈ Y2. Furthermore, by Lemma 11, we may also assume that Y2∪{e2} is closed.
By Lemma 18, each of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 is non-empty. The proof is
partitioned into two cases depending on the size of Y1 ∩X2. Both cases use the following:

19.1. If X1∩X2 contains two contractible elements, then either X1 has at least two elastic
elements, or |X1 ∩ X2| = 2 and there exists a triangle {x, y1, y2}, where x ∈ X1 ∩ X2,
y1 ∈ Y1 ∩X2, and y2 ∈ X1 ∩ Y2.

By Lemma 18(ii), r((X1 ∩ X2) ∪ {e2}) = 2. Let x1 and x2 be distinct contractible
elements of X1 ∩X2. If |X1 ∩X2| > 3, then, by Lemma 14 each of x1 and x2 is elastic.
Thus we may assume that |X1∩X2| = 2 and that either x1 or x2, say x1, is not deletable.
Let (W,Z) be a 2-separation of M\x1 such that neither r∗(W ) = 1 nor r∗(Z) = 1. Since
x1 is not deletable, such a separation exists. Observe that |W |, |Z| > 3; otherwise, either
W or Z is a series pair. If x1 ∈ cl(W ) or x1 ∈ cl(Z), then either (W ∪ {x1}, Z) or
(W,Z ∪ {x1}), respectively, is a 2-separation of M , a contradiction. So {x2, e2} 6⊆ W and
{x2, e2} 6⊆ Z. Therefore, without loss of generality, we may assume x2 ∈ W − cl(Z) and
e2 ∈ Z − cl(W ). Since (W,Z) is a 2-separation of M\x1 and x2 6∈ cl(Z), we deduce that
(W − {x2}, Z ∪ {x1}) is a 2-separation of M/x2. Thus, as x2 is contractible, si(M/x2) is
3-connected, and so r(W ) = 2. In turn, as Y1 ∪ {e1} and Y2 ∪ {e2} are both closed, this
implies that |W ∩ (Y1∪{e1})| 6 1 and |W ∩ (Y2∪{e2})| 6 1; otherwise, W ⊆ Y1∪{e1} or
W ⊆ Y2 ∪ {e2}. Thus |W | = 3 and, in particular, W is the desired triangle. Hence 19.1
holds.

We now distinguish two cases depending on the size of Y1 ∩X2:

(I) |Y1 ∩X2| = 1; and

(II) |Y1 ∩X2| > 2.

Consider (I). Let w be the unique element in Y1∩X2. By Lemma 18, (X1∩X2)∪{e2}
is a segment and (X1 ∩ X2) ∪ {w} is a rank-3 cocircuit. Let L1 = (X1 ∩ X2) ∪ {e2}.
If |L1| > 4, then, as w ∈ cl∗(L1) and e2 is not elastic, it follows by Corollary 17 that
X1 contains at least two elastic elements. Thus, as |Y1 ∩X2| = 1, we may assume L1 is
closed and |L1| = 3, and so (L1 − {e2}) ∪ {w} is a triad. Let L1 = {x1, x2, e2} and let
{i, j} = {1, 2}.
19.2. For each i ∈ {1, 2}, the element xi is contractible.

If xi is not contractible, then, by Lemma 10, M has a vertical 3-separation
(Ui, {xi}, Vi), where e1 ∈ Vi. By Lemma 11, we may assume that Vi ∪ xi is closed. By
Lemma 18, Y1∩Ui is non-empty and r((X1∩Ui)∪{xi}) = 2. First assume that |Y1∩Ui| = 1.
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Then |(X1 ∩ Ui) ∪ {xi}| > 3, and so xi is contained in a triangle T ⊆ (X1 ∩ Ui) ∪ {xi}.
If xj ∈ Vi, then, as Vi ∪ {xi} is closed, e2 ∈ Vi. Thus xj, e2 6∈ T and so, by orthogo-
nality, as {xi, xj, w} is a triad, w ∈ T . This contradicts w ∈ Y1. It now follows that
xj ∈ X1 ∩ Ui and so e2 ∈ X1 ∩ Ui. Thus, as L1 is closed and L1 ⊆ (X1 ∩ Ui) ∪ {xi}, we
have |(X1∩Ui)∪{xi}| = 3, and therefore T = {x1, x2, e2}. Let z be the unique element in
Y1∩Ui. Then, by Lemma 18 again, {xj, e2, z} is a triad, and so z ∈ cl∗(X1). Furthermore,
w ∈ cl∗(X1) and e1 ∈ cl(X1), and so, by Lemma 8, we deduce that z = w. This implies
that Y2 = Vi. But then cl(Y2 ∪ {e2}) contains xi, contradicting that Y2 ∪ {e2} is closed.

Now assume that |Y1 ∩ Ui| > 2. By Lemma 18, r((X1 ∩ Vi) ∪ {xi, e1}) = 2. If xj ∈ Vi,
then, as Vi∪{xi} is closed, e2 ∈ X1∩Vi, and so {xj, e1, e2} is a triangle. Since {x1, x2, w}
is a triad, this contradicts orthogonality. Thus xj ∈ Ui. Also, e2 ∈ Ui; otherwise, as
Vi ∪ {xi} is closed, xj ∈ Vi, a contradiction. By Lemma 18, X1 ∩ Vi is non-empty, and
so M has a triangle T ′ = {xi, e1, y}, where y ∈ X1 ∩ Vi. As {xi, xj, w} is a triad, T ′

contradicts orthogonality unless y = w. But w ∈ Y1 and therefore cannot be in X1 ∩ Vi.
Hence xi is contractible, and so (19.2) holds.

Since x1 and x2 are both contractible, it follows by (19.1) that either X1 contains two
elastic elements or w is in a triangle with two elements of X1. If the latter holds, then
w ∈ cl(X1). As {x1, x2, w} is a triad and (Y1 ∪ {e1}) − {w} is contained in Y2 ∪ e2, it
follows that w 6∈ cl((Y1 ∪ {e1})− {w}). Therefore

(X1 ∪ {w}, (Y1 ∪ {e1})− {w})

is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements. This
concludes (I).

Now consider (II). Let L1 = (X1 ∩X2)∪ {e2} and L2 = (X1 ∩ Y2)∪ {e1, e2}. By parts
(ii) and (iv) of Lemma 18, L1 and L2 are both segments. Since M is 3-connected, X1 is
3-separating, and Y1 ∪ {e1} is closed, it follows that X1 is a rank-3 cocircuit of M . Say
|L2| > 4. If |L1| > 3, then, by Lemma 7, each element of L2 − {e1, e2} is contractible.
Moreover, as |L2| > 4, Lemma 14 implies that each element of L2 − {e1, e2} is deletable,
and so each element of L2 − {e1, e2} is elastic. Since |L2| > 4, it follows that X1 has at
least two elastic elements. Thus we may assume that |L1| = 2, that is |X1 ∩ X2| = 1.
Then, as cl(Y1∪{e1})∩(X1∩X2) is empty, it follows by Lemma 4 that the unique element
in L1−{e2} is contained in cl∗(L2), and so L2 is not coclosed. Thus, as |L2| > 4 and e1 is
not elastic, we deduce by Corollary 17 that X1 has at least two elastic elements. Hence,
as X1 ∩ Y2 is non-empty, we may now assume that |L2| = 3.

Let L2 = {e2, a, e1}. If |X1 ∩ X2| = 1, then |X1| = 3, and so X1 is a triad. In turn,
this implies that X1 ∪ {e1} is a 4-element fan, a contradiction. Thus |X1 ∩ X2| > 2.
Let x1 and x2 be distinct elements in X1 ∩ X2. Since {e1, a, e2} is a triangle in M/xi
for each i ∈ {1, 2}, it follows by Lemma 7 that xi is contractible for each i ∈ {1, 2}.
Thus, by (19.1), either X1 contains two elastic elements, or X1 ∩ X2 = {x1, x2} and a
is in a triangle with two elements of X2. The latter implies that a ∈ cl(X2 ∪ {e2}). As
a 6∈ cl(Y1 ∪ {e1}) and Y2 − {a} is contained in Y1 ∪ {e1}, it follows that a 6∈ cl(Y2 − {a}).
Hence

(X2 ∪ {a, e2}, Y2 − {a})
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is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements. This
concludes (II) and the proof of the lemma.

Lemma 20. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1 ∪ {e1} is maximal, and suppose that X1 ∪ {e1} is not a 4-element fan. If
every element of X1 is contractible, then X1 contains at least two elastic elements.

Proof. First suppose that X1 is independent. Then, as r(X1) = |X1| and λ(X1) = r(X1)+
r∗(X1) − |X1|, we have r∗(X1) = 2. That is, X1 is a segment in M∗. Therefore, as
e1 ∈ cl(X1), it follows by the dual of Corollary 17 that, if |X1| > 4, then X1 has at least
two elastic elements. Furthermore, if |X1| = 3, then, as X1 ∪ {e1} is not a 4-element fan,
X1∪{e1} is a circuit. Thus, X1∪{e1} is a rank-3 cocircuit of M∗

1 , where X1 is a segment.
Therefore, by Lemma 15, at least two elements of X1 are contractible in M∗. In turn,
this implies that at least two elements of X1 are deletable in M . Hence, again, X1 has at
least two elastic elements.

Now suppose that X1 is dependent, and let C be a circuit in X1. As M is 3-connected,
|C| > 3. If every element in C is deletable, then X1 contains at least two elastic ele-
ments. Thus we may assume that there is an element, say g, in C that is not deletable.
By Lemma 10, there exists a cyclic 3-separation (U, {g}, V ) in M , where e1 ∈ V . By
Lemma 11, we may also assume that V ∪ {g} is coclosed. Note that, as (U, {g}, V ) is a
cyclic 3-separation, r∗(U) > 3, and so |U | > 3.

We next show that

20.1. |X1 ∩ U |, |X1 ∩ V | > 2.

If either C − {g} ⊆ U or C − {g} ⊆ V , then g ∈ cl(U) or g ∈ cl(V ), respectively, in
which case either (U ∪ {g}, V ) or (U, V ∪ {g}) is a 2-separation of M , a contradiction.
Thus C ∩ (X1 ∩U) and C ∩ (X1 ∩ V ) are both non-empty, and so |X1 ∩U |, |X1 ∩ V | > 1.
Say X1 ∩ U = {g′}, where g′ ∈ C. Since C is a circuit, g ∈ clM/g′(V ). Therefore, as
Y1 ∪ {e1} is closed and so g′ 6∈ cl(Y1), and (U, V ) is a 2-separation of M\g, we have

λM/g′(U ∩ Y1) = rM/g′(U ∩ Y1) + rM/g′(V ∪ {g})− r(M/g′)

= rM(U ∩ Y1) + rM(V )− (r(M)− 1)

= rM(U ∩ Y1) + rM(V )− r(M\g) + 1

= rM(U)− 1 + rM(V )− r(M\g) + 1

= rM(U) + rM(V )− r(M\g)

= 1.

Thus (U∩Y1, V ∪{g}) is a 2-separation of M/g′. Since every element in X1 is contractible,
g′ is contractible, and so r(U) = 2. Since |U | > 3, it follows that |U ∩ Y1| > 2, and so
g′ ∈ cl(Y1∪{e1}), a contradiction as Y1∪{e1} is closed. Hence |X1∩U | > 2. An identical
argument interchanging the roles of U and V establishes that |X1 ∩ V | > 2, thereby
establishing (20.1).

20.2. If |Y1 ∩ U | > 2, then X1 has at least two elastic elements.
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Say |Y1 ∩ U | > 2. It follows by two applications of uncrossing that each of X1 ∩ V
and (X1 ∩ V ) ∪ {e1} is 3-separating. Since |X1 ∩ V | > 2 and M is 3-connected, X1 ∩ V
and (X1 ∩ V ) ∪ {e1} are exactly 3-separating. Therefore, by Lemma 5, e1 ∈ cl(X1 ∩ V )
or e1 ∈ cl∗(X1 ∩ V ). Since e1 ∈ cl(Y1), it follows that e1 ∈ cl(E − ((X1 ∩ V ) ∪ {e1})) and
so, by Lemma 4, e1 6∈ cl∗(X1 ∩ V ). So e1 ∈ cl(X1 ∩ V ). Thus, if r(X1 ∩ V ) > 3, then
(X1∩V, {e1}, Y1∪U) is a vertical 3-separation, contradicting the maximality of Y1∪{e1}.
Therefore r(X1 ∩V ) = r((X1 ∩V )∪{e1}) = 2. If |(X1 ∩V )∪{e1}| > 4, then, as e1 is not
contractible, it follows by Corollary 17 that X1∩V , and therefore X1, contains at least two
elastic elements. Thus we may assume that |(X1∩V )∪{e1}| = 3. Again, as |Y1∩U | > 2,
an application of uncrossing implies (X1∩V )∪{g} is 3-separating. Since X1∩V is exactly
3-separating and g 6∈ cl(X1 ∩ V ), it follows by Lemma 5 that g ∈ cl∗(X1 ∩ V ). Therefore
(X1 ∩ V ) ∪ {g} is a triad, and so (X1 ∩ V ) ∪ {e1, g} is a 4-element fan with spoke-end
e1. But then, by Lemma 12, ((X1 ∩ V ) ∪ {g}, {e1}, E − ((X1 ∩ V ) ∪ {e1, g})) is a vertical
3-separation that contradicts the maximality of Y1 ∪ {e1}. Hence (20.2) holds.

By (20.2), we may assume that |Y1 ∩ U | 6 1. Say Y1 ∩ U is empty. Then U ⊆ X1.
Let (U ′, {h}, V ′) be a cyclic 3-separation of M such that V ∪ {g} ⊆ V ′ ∪ {h} with the
property that there is no other cyclic 3-separation (U ′′, {h′}, V ′′) in which V ′ ∪ {h} is
a proper subset of V ′′ ∪ {h′}. Observe that such a cyclic 3-separation exists as we can
choose (U, {g}, V ) if necessary. If every element in U ′ is deletable, then, as U ′ ⊆ X1 and
|U ′| > 3, it follows that X1 has at least two elastic elements. Thus we may assume that
there is an element in U ′ that is not deletable. By the dual of Lemma 19, either U ′, and
thus X1, contains at least two elastic elements or U ′∪{h} is a 4-element fan. If the latter
holds, then, by Lemma 12,

((U ′ ∪ {h})− {f}, {f}, E − (U ′ ∪ {h}))

is a vertical 3-separation, where f is the spoke-end of the 4-element fan U ′∪{h}. But then,
as X1 ∩ V is non-empty, Y1 ∪ {e1} is properly contained in E − (U ′ ∪ {h}), contradicting
maximality. Hence we may assume that |Y1 ∩ U | = 1.

Let Y1∩U = {y}. Since |Y1∩U | = 1, we have |Y1∩V | > 2 and so, by two applications
of uncrossing, X1 ∩ U and (X1 ∩ U) ∪ {g} are both 3-separating. Since M is 3-connected
and |X1 ∩ U | > 2, these sets are exactly 3-separating. If y 6∈ cl(X1 ∩ U), then, by
Lemma 4, y ∈ cl∗(V ∪ {g}). But then V ∪ {g} is not coclosed, a contradiction. Thus
y ∈ cl(X1 ∩ U), and so y ∈ cl((X1 ∩ U) ∪ {g}). Now y 6∈ cl∗(V ∪ {g}), and so y 6∈ cl∗(V ).
Hence as (X1∩U)∪{g} and, therefore, the complement V ∪{y} is 3-separating, Lemma 5
implies that y ∈ cl(V ). Therefore, as (X1 ∩ U) ∪ {g} and V each have rank at least
three, it follows that ((X1 ∩ U) ∪ {g}, {y}, V ) is a vertical 3-separation of M . Note that
r(V ) > 3; otherwise, (X1 ∩ V ) ⊆ cl({y, e1}), in which case, Y1 ∪ {e1} is not closed. But
(X1 ∩ U) ∪ {g} is a proper subset of X1, a contradiction to the maximality of Y1 ∪ {e1}.
This last contradiction completes the proof of the lemma.

We now combine Lemmas 19 and 20 to prove Theorem 1.

Proof of Theorem 1. Let (X, {e}, Y ) be a vertical 3-separation of M , where Y ∪ {e} is
maximal, and suppose that X ∪ {e} is not a 4-element fan. If at least one element in X
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is not contractible, then, by Lemma 19, X contains at least two elastic elements. On the
other hand, if every element in X is contractible, then, by Lemma 20 X again contains
at least two elastic elements, thereby completing the proof of the theorem.

We end the paper by establishing Corollary 2.

Proof of Corollary 2. Let M be a 3-connected matroid. If every element of M is elastic,
then the corollary holds. Therefore suppose that M has at least one non-elastic element, e
say. Up to duality, we may assume that si(M/e) is not 3-connected. Then, by Lemma 10,
M has a vertical 3-separation (X, {e}, Y ). As r(X), r(Y ) > 3, this implies that |E(M)| >
7, and so we deduce that every element in a 3-connected matroid with at most six elements
is elastic. Now let (X ′, {e′}, Y ′) be a vertical 3-separation such that Y ′ ∪ {e′} is maximal
and contains Y ∪ {e}. Then it follows by Theorem 1 that X ′, and hence X, contains at
least two elastic elements. But an identical argument, interchanging the roles of X and
Y , gives us that Y also contains at least two elastic elements. Thus, M contains at least
four elastic elements.
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Corrigendum – Added December 3, 2021

Theorem 1 and Corollary 2 are incorrect. In particular, as well as 4-element fans, there
is a family of matroids which provide obstacles to having elastic elements. The error lies
in the proof of Lemma 15; this lemma is not true. A corrected version of the paper is
available on the arXiv:

arXiv:2010.01797

For the purposes of clarification, Theorem 1 and Corollary 2 should be replaced with their
namesakes below.

Let n > 3, and let Z = {z1, z2, . . . , zn} be a basis of PG(n− 1,R). Suppose that L is
a line that is freely placed relative to Z. For each i ∈ {1, 2, . . . , n}, let wi be the unique
point of L contained in the hyperplane spanned by Z − {zi}. Let W = {w1, w2, . . . , wn},
and let Θn denote the restriction of PG(n− 1,R) to W ∪Z. Note that Θn is 3-connected
and Z is a corank-2 subset of Θn. For all i ∈ {1, 2, . . . , n}, we denote the matroid Θn\wi

by Θ−n . The matroid Θ−n is well defined as, up to isomorphism, Θn\wi
∼= Θn\wj for all

i, j ∈ {1, 2, . . . , n}. A more formal definition of Θn is given in the corrected version of the
paper. If n = 3, then Θ3 is isomorphic to M(K4). However, for all n > 4, the matroid
Θn has no 4-element fans and no elastic elements.

Let M be a 3-connected matroid, and let A and B be rank-2 and corank-2 subsets of
E(M). We say that A ∪B is a Θ-separator of M if r(M) > 4 and r∗(M) > 4, and either
M |(A∪B) or M∗|(A∪B) is isomorphic to one of the matroids Θn and Θ−n for some n > 3.

Theorem 1. Let M be a 3-connected matroid with a vertical 3-separation (X, {e}, Y )
such that Y ∪ {e} is maximal. Then at least one of the following holds:

(i) X contains at least two elastic elements;

(ii) X ∪ {e} is a 4-element fan; or

(iii) X is contained in a Θ-separator.

Corollary 2. Let M be a 3-connected matroid. If |E(M)| > 7, then M contains at least
four elastic elements provided M has no 4-element fans and no Θ-separators. Moreover,
if |E(M)| 6 6, then every element of M is elastic.
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