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Abstract

In this paper, we prove ex(n,C2k) 6 (16
√
5
√
k log k+o(1))·n1+1/k. This improves

on a result of Bukh and Jiang from 2017, thereby reducing the best known upper
bound by a factor of

√
5 log k.

Mathematics Subject Classifications: 05C35, 05C38, 05D99

Introduction

In the field of extremal graph theory, Turán’s Problem, introduced by Turán [8] in 1941,
asks the following question: Given a graph F , what is the maximum number of edges
that a graph on n vertices can have while not containing F as a subgraph? This number,
denoted ex(n, F ), is now referred to as the Turán number or the extremal number of F .
Similarly, for a family of graphs F , ex(n, F ) requires that no element of F is present.

The first result, known as Mantel’s Theorem, was proven by Mantel [5] in 1907. Since
then, extensive amount of works have been established, among which is the celebrated
Erdős–Stone–Simonovits Theorem [3]: ex(n, F ) = (1− 1

χ(F )−1
+o(1))

(
n
2

)
, where χ(F ) is the

chromatic number of F . This result, proven in 1946, essentially solved Turán’s Problem
for all graphs F with χ(F ) > 2. However, the case for bipartite graphs is left open. For
the two most studied families of bipartite graphs, complete bipartite graphs Ks,t and even
cycles C2k, the magnitude of ex(n, F ) is not known for general s, t, and k. In particular, it
has been known for decades that ex(n,C2k) = Ok(n

1+1/k), while a matching lower bound
has not been established.
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To discuss methods that lead to upper bounds on ex(n,C2k), we first show a simple
derivation of ex(n, {C3, C4, · · · , C2k}) 6 cn1+1/k for some constant c. Consider a graph
containing Θ(n1+1/k) edges with girth at least 2k + 1, and reduce it to a graph with
minimum degree Θ(n1/k). Fix arbitrary vertex v, we start a Breadth-First Search (BFS)
at v and observe that for the first k levels of the breadth-fist search tree, every level
must expand by a factor of Θ(n1/k) compared to the previous level. In particular, no two
vertices with depth less than k can have common neighbors with greater depth. Since the
kth level cannot have more than n vertices, the bound follows. We present this derivation
since the best upper bounds on ex(n,C2k) are, in essence, all established using this same
approach. As we will see shortly, employing this method imposes fundamental limitations
to the results derivable.

The first important upper bound on ex(n,C2k) was proved by Bondy and Simonovits [1]
in 1974, where they showed ex(n,C2k) 6 20kn1+1/k. This result is subsequently improved
through a line of researches, most recently by Pikhurko [7] to ex(n,C2k) 6 (k−1)n1+1/k+
Ok(n) in 2010 and by Bukh and Jiang [2] to ex(n,C2k) 6 80

√
k loge kn

1+1/k + Ok(n) in
2017. Our main contribution in this paper is the following theorem.

Theorem 1. Fix k, let G be a n-vertex graph where n > (20k)4k3+2k2. If

|E(G)| > 16
√

5
√
k loge k · n1+1/k + 8000k4n1+(2k−1)/(2k2),

then G contains a copy of C2k.

For the rest of this paper, we will abbreviate loge as log. Our approach is an improved
version of Bukh–Jiang’s approach, and therefore suffers the same limitation as all BFS
arguments. More specifically, consider a bipartite graph G with bipartition V1, V2 such
that |V1| = n, |V2| = n/(k−1). The BFS argument for the girth problem can be exploited
to show that e(G) 6 c(k− 1)−1/2n1+1/k if G has girth at least 2k+ 1 (For a more detailed
argument, see [6]). Now if we duplicate each vertex in V2 into k − 1 copies, we obtain
a graph on 2n vertices and c

√
k − 1n1+1/k edges with no C2k. Therefore, the best upper

bound on ex(n,C2k) derivable from the BFS argument is c
√
kn1+1/k for fixed constant c.

To break the O(
√
kn1+1/k) threshold would require a different approach.

Our result improves the best known bound for ex(n,C2k) by a factor of
√

5 log k,
taking us one step closer to the limitation of the method. Before discussing the proof,
we would like to point out the following facts about this paper. This paper is modified
from Bukh–Jiang’s manuscript. While we had made global modifications to Bukh–Jiang’s
methods, most improvements made are local. In particular, it is highly similar to their
paper mathematically, with a few statements and minor proofs largely unmodified. The
author’s intentions in writing this paper this way are to give a more intuitive delivery of
Bukh–Jiang’s methods, to present simplifications and improvements that lead to a better
result, and to avoid confusing readers with different notations and proof structures that
demonstrate the same ideas. Therefore, this paper adopted the same notation with some
unmodified definitions from Bukh–Jiang’s paper, and reshaped the delivery structure and
language to uncover the underlying ideas and intuition.
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To begin our proof, in Section 1 we describe the graph structures used in this paper.
For a detailed discussion of how our methods relate and differ from Pikhurko’s and Bukh–
Jiang’s work, please see Section 2.

1 Graph Reduction and Exploration

To employ the breadth-first search approach, we first process our graph to gain control
over the degrees of vertices. Classically, the graph is reduced to have minimum degree
Ok(n

1/k) at the expense of half of the edges. However, in Bukh–Jiang’s approach and in
our approach, control over maximum degree is also required. Bukh and Jiang modified
the BFS process to avoid vertices of high degrees, while we make use of the following
reduction lemma.

Reduction Lemma. Fix α ∈ (0, 1), let γ = (20/α)−2/α. Let dmin(G), dmax(G) denote the
minimum and maximum degree of a graph G, respectively. If a graph G on n vertices
has at least cn1+α edges, then it contains a subgraph G′ such that |V (G′)| > cγnα/2,
|E(G)| > (c/4)v(G′)1+α, dmin(G′) > (c/2)v(G′)α, and dmax(G′)/dmin(G′) 6 1/γ.

An initial version of this lemma was first proved by Erdős and Simonovits [4], and
various forms of this lemma occur in other works. Bukh and Jiang proved a slightly
different version of this lemma in their addendum. By slightly modifying their proof, we
obtain the above lemma. This proof is included in the Appendix for completeness.

With this structure in mind, our real result in this paper is the following theorem.

Theorem 2. Fix k > 4, let ∆ =
√
k(20k)2k, and let

d > max(2
√

5
√
k log kn1/k, (20k)4k2+2k).

If G is a graph on n vertices such that dmin(G) > 2d + 5k2 and dmax(G) 6 ∆d, then G
contains a copy of C2k.

Theorem 1 then follows from Reduction Lemma and Theorem 2.

Proof of Theorem 1. Assume a graph H on m vertices has more than 16
√

10
√
k log k ·

n1+1/k + 8000k4n1+(2k−1)/(2k2) edges, then we can find a bipartite subgraph H ′ with at
least half of its edges. Using the Reduction Lemma, we find a subgraph G on n >
4
√

10
√
k log kγm1/(2k) vertices and at least 2

√
10
√
k log kn1+1/k edges, where γ = (20k)−2k.

Now we compute the minimum degree in G.
Let c = e(H)/m1+1/k, we have that c > 8

√
10
√
k log k+4000k4/m1/(2k2), which implies

that

dmin(G) >
c

2
n1/k > 4

√
10
√
k log kn1/k +

2000k4(γm1/(2k))1/k

m1/(2k2)
> 4
√

10
√
k log kn1/k + 5k2.

Now from Pikhurko’s Result [7], we know that if dmin(G) > kn1/k, then G contains a C2k.
Therefore, Reduction Lemma implies dmax(G) 6 (20k)2kkn1/k. Let d = 2

√
10
√
k log kn1/k,

∆ =
√
k(20k)2k. Theorem 2 completes the proof.
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To prove Theorem 2, we elaborate further on the graph structures. Let G be a graph as
in the statement of Theorem 2. Fix arbitrary vertex v of G and start a breadth-first search
process at v. Let Vi be the set of vertices at minimum distance i from v for i ∈ [k]. We
recall the following definition of a tri-layered graph, which is the basis of our discussions
in Section 3, from Bukh–Jiang.

Definition 3 (Bukh–Jiang [2]). A graph G is called trilayered if its vertex set can be
partitioned into V1, V2, V3 such that all edges in G are between V1, V2 or between V2, V3.
For arbitrary G, we use G[V1, V2, V3] to denote the induced trilayered graph of G on
V1, V2 and V3. For A,B,C,D ∈ R, we say that a trilayered graph has minimum degree
[A : B,C : D] if the minimum degree from V1 to V2, V2 to V1, V2 to V3 and V3 to V2 are
at least A,B,C,D, respectively.

The last ingredient we need is the following definition of a Θ-graph, which is at the
core of all our future discussions.

Definition 4. A Θ-graph is a cycle of length at least 2k with a chord. That is, an edge
outside of the cycle connecting two vertices of the cycle.

The rest of the paper is organized as follows: In Section 2, we recall several important
results from Pikhurko and Bukh–Jiang, which prove the non-existence of Θ-graphs in the
trilayered subgraphs formed by our breadth-first search exploration. In Section 3, which
contains our main improvements in this paper, we argue that if certain conditions hold,
then a trilayered graph satisfies certain minimum degree condition must be present. We
then embed a Θ-graph in such subgraphs, contradicting our result from Section 2. In
Section 4, we show that either the aforementioned conditions hold, or the levels from
exploration expand exponentially. Final computations then prove Theorem 2.

2 Results on Θ-Graphs

To argue for non-existence of Θ-graphs in our exploration, we recall results of Pikhurko.

Lemma 5 (Lemma 2.2 in [7]). Let k > 3. Any bipartite graph H of minimum degree at
least k contains a Θ-graph.

Corollary 6. Let k > 3. Any bipartite graph H of average degree at least 2k contains a
Θ-graph.

Lemma 7 (Claim 3.1 in [7]). Suppose G contains no C2k. For 1 6 i 6 k − 1, neither of
G[Vi] and G[Vi, Vi+1] contains a bipartite Θ-graph.

Using these results, Pikhurko showed that every level must expand by a factor of
roughly d/k compared to the previous level. The bound ex(n,C2k) 6 O(kn1+1/k) then
followed. Bukh and Jiang improved on his method by analyzing three consecutive levels,
proving a better expansion ratio among them. They employed the following technical
definition, which generalized Θ-graphs to three levels, and proved the next lemma in
conjunction.
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Definition 8. Let G be a trilayered graph with layers V1, V2, V3. A Θ-graph T in G is
well-placed if every vertex of T in V2 is adjacent to some vertex of V1 not in T .

Lemma 9 (Lemma 10 in [2]). Suppose G contains no C2k. For 1 6 i 6 k − 1, the graph
G[Vi−1, Vi, Vi+1] contains no well-placed Θ-graphs.

Note that Lemma 9 is analogous to Lemma 7. To prove statements equivalent to
Lemma 5 in trilayered graphs, Bukh and Jiang analyzed trilayered subgraphs with specific
minimum degree structures. They first determined sufficient conditions for the existence
of such trilayered graphs, then showed that if such subgraphs exist, a (well-placed) Θ-
graph could be embedded inside. Finally, they argued that either the preceding conditions
hold, or the levels must expand by an average factor of O( d√

k log k
). Their result followed.

In this paper, we follow the same proof structure. We improve on Bukh–Jiang’s
result by weakening the conditions required for minimum degree trilayered subgraphs
to be present, and presenting a better method to embed well-placed Θ-graphs in such
subgraphs. These changes, presented in the following sections, lead to our O(

√
log k)

improvement on the best-known upper bound for ex(n,C2k).

3 Search for Θ-graphs

In this section, we present the central arguments of this paper. Our results are summarized
in the following lemma, which states sufficient conditions for the existence of (well-placed)
Θ-graphs.

Lemma 10. Let G be a trilayered graph with layers V1, V2, V3, such that dmin(G) >
2d+ 5k2 and dmax(G) 6 ∆d. If the following conditions hold:

d · e(V1, V2) > 40k log k|V3|, (1)

e(V1, V2) > 6k(log k + 1)2(2∆k)2k−1|V1|, (2)

e(V1, V2) > 20(log k + 1)|V2| (3)

then there is either a Θ-graph in G[V1, V2], or a well-placed Θ-graph in G[V1, V2, V3].

This lemma is an improvement over Lemma 6 in Bukh–Jiang. We removed two of the
conditions and improved the last condition by a factor of (log k + 1).

To prove Lemma 10, the rest of this section is organized as follows: In Lemma 11, we
show that given a trilayered graph formed by three consecutive levels in our BFS process,
either we can find a trilayered subgraph with desired minimum degree structure, or we
can find a trilayered subgraph with stronger constraints on its edges. This process can
then be iterated — In Lemma 12, we prove that under the conditions stated in Lemma 10,
Lemma 11 can be iterated to show the existence of a desired trilayered subgraphs. Finally,
in Lemma 16, we show that a (well-placed) Θ-graph can be embedded in such subgraphs,
which completes the proof.

Without further delay, we now quote the following result, which is Lemma 7 in Bukh–
Jiang.
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Lemma 11. Let a,A,B,C,D be positive real numbers. Suppose G is a trilayered graph
with layers V1, V2, V3 and the degree of every vertex in V2 is at least d+ 4k2 +C. Assume
also that

a · e(V1, V2) > (A+ k + 1)|V1|+B|V2|. (4)

Then one of the following holds:

I) There is a Θ-graph in G[V1, V2].

II) There exist non-empty subsets V ′1 ⊂ V1, V ′2 ⊂ V2, V ′3 ⊂ V3 such that the induced
trilayered subgraph G[V ′1 , V

′
2 , V

′
3 ] has minimum degree at least [A : B,C : D].

III) There is a subset Ṽ2 ⊂ V2 such that e(V1, Ṽ2) > (1−a)e(V1, V2), and |Ṽ2| 6 D|V3|/d.

A proof of this lemma, as presented in Bukh–Jiang, is included in the Appendix for
completeness. Here the parameter a can be interpreted as the edge loss ratio. More
specifically, in case (I) the proof of Lemma 10 is complete, and similarly in case (II) we

are done by Lemma 16. In case (III), we found Ṽ2 that shrinks proportionally compared to
V2, while being adjacent to most edges between V1 and V2. We can then apply Lemma 11
in G[V1, Ṽ2, V3], thereby iterating this process. In the end, we will either obtain a subset
of vertices of V2 with an overly high average degree, or lands in case (I) or (II). This
procedure is done precisely in the following lemma, which is Lemma 8 in Bukh–Jiang.

Lemma 12. Let G be a trilayered graph with layers V1, V2, V3 satisfying conditions (1),
(2) and (3). Let C be a positive real number, such that the minimum degree from V2 to
V3 is at least d+ 4k2 + C. Then one of the following holds:

I) There is a Θ-graph in G[V1, V2].

II) There are non-empty subsets V ′1 ⊂ V1, V ′2 ⊂ V2, and V ′3 ⊂ V3 such that the induced
trilayered subgraph G[V ′1 , V

′
2 , V

′
3 ] has minimum degree at least [A : B,C : D], where

B > 5, and

A > 2k(∆D)D−1, (5)

(B − 4)D > 2k. (6)

The following proof is an improved version of Bukh–Jiang’s proof.

Proof. Assume for the sake of contradiction that neither of the conclusions are true. We
will first show that the conditions of Lemma 11 hold for a tuple of well defined A,B and
D. Due to our assumptions, the only probable conclusion of Lemma 11 would be (III),

which gives us Ṽ2 ⊆ V2. We then iterate this procedure for t = log k steps on Ṽ2 and
subsequent subsets of V2. This process will generate a chain of sets V

(t)
2 ⊆ V

(t−1)
2 ⊆ · · · ⊆

V
(1)

2 ⊆ V
(0)

2 = V2. Finally, we will show a contradiction in V
(t)

2 to conclude the proof.
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Let ai = 1
t−i+1

, where i ranges from 0 to t − 1. Let V
(0)

2 = V2. For V
(i)

2 that is well
defined, set

di = e(V1, V
(i)

2 )/|V (i)
2 |,

Ai = aie(V1, V
(i)

2 )/2|V1| − k − 1,

Bi = aidi/4 + 5,

Di = bmin(2k, 10k/aidi)c.

Here di is the average degree from V
(i)

2 to V1. We prove the following simple claim.

Claim 13. For all i = 0, · · · , t− 1, we have di < 2k.

Proof of Claim 13. If we have |V (i)
2 | 6 |V1|, then

2e(V1, V
(i)

2 )

|V1|+ |V (i)
2 |
>
e(V1, V

(i)
2 )

|V1|
>

1

t+ 1

e(V1, V2)

|V1|
> 2k,

which then implies outcome (I) by Corollary 6. On the other hand, if |V (i)
2 | > |V1| and

di > 2k, then

2e(V1, V
(i)

2 )

|V1|+ |V (i)
2 |
>
e(V1, V

(i)
2 )

|V (i)
2 |

= di > 2k,

which again leads to outcome (I). Therefore di < 2k. �

Now note that Ai, Bi, Di satisfy constraints (5) and (6). Indeed, (6) follows as long as
di < 2k, and for (5), we have by (2)

Ai = aie(V1, V
(i)

2 )/2|V1| − k − 1 >
1

2(t+ 1)2

e(V1, V2)

|V2|
− k − 1

(2)

> 3k(2∆k)2k−1 − k − 1 > 2k(∆Di)
Di−1.

Therefore, if we apply Lemma 11, the only possible outcome is (III). The following claim
is the key to our iteration process.

Claim 14. For V
(i)

2 that is well-defined, condition (4) of Lemma 11 hold with respect

to the above defined ai, Ai, Bi, C,Di. Moreover, let V
(i+1)

2 ⊆ V
(i)

2 be the set derived from
Lemma 11. We have the following invariants:

e(V1, V
(i+1)

2 ) > (1− ai)e(V1, V
(i)

2 ), (7)

di+1 > aidi
t− i
t+ 1

d · e(V1, V2)

10k|V3|
. (8)
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Proof of Claim 14. This proof will proceed by induction. We first show that condition (4)
holds for i = 0.

(A0 + k + 1)|V1|+Bi|V2| =
3

4
a0e(V1, V2) + 5|V2|

(3)

6
3

4
a0e(V1, V2) +

1

4(t+ 1)
e(V1, V2) = a0e(V1, V2).

Therefore, we can apply Lemma 11 to obtain Ṽ2 ⊆ V2 as in outcome (III). Set V
(1)

2 = Ṽ2.
Invariant (7) then follows directly from the conclusions of Lemma 11. For (8), since

|V (1)
2 | 6 D0|V3|/d, we have

d1 =
e(V1, V

(1)
2 )

|V (1)
2 |

>
(1− a0)e(V1, V2)

D0|V3|/d
> (1− a0)a0d0

d · e(V1, V2)

10k|V3|
.

This completes the proof for the base case. For induction, note that iterative application
of (7) gives

e(V1, V
(i)

2 ) > e(V1, V2)
i−1∏
j=0

(1− aj) =
t− i+ 1

t+ 1
e(V1, V2). (9)

This inequality helps us show condition (4) again. Indeed,

(Ai + k + 1)|V1|+Bi|V (i)
2 | =

3

4
aie(V1, V

(i)
2 ) + 5|V (i)

2 | 6
3

4
aie(V1, V

(i)
2 ) + 5|V2|

(3)

6
3

4
aie(V1, V

(i)
2 ) +

1

4(t+ 1)
e(V1, V2)

(9)

6
3

4
aie(V1, V

(i)
2 ) +

t+ 1

4(t+ 1)(t− i+ 1)
e(V1, V

(i)
2 )

=
3

4
aie(V1, V

(i)
2 ) +

1

4
aie(V1, V

(i)
2 ) = aie(V1, V

(i)
2 ).

Therefore, by Lemma 11 again, there is a subset V
(i+1)

2 ⊂ V
(i)

2 satisfying (7), and

|V (i+1)
2 | 6 Di|V3|/d

This implies

di+1 =
e(V1, V

(i+1)
2 )

|V (i+1)
2 |

>
(1− ai)e(V1, V

(i)
2 )

Di|V3|/d
> (1− ai)aidi

d

10k|V3|
e(V1, V

(i)
2 )

> (1− ai)aidi
de(V1, V2)

10k|V3|

i−1∏
j=0

(1− aj) = aidi
t− i
t+ 1

de(V1, V2)

10k|V3|
.

Therefore invariant (8) holds. This complete the proof of this claim. �
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Through iterative application of this claim, we obtain our desired chain of subsets
V

(t)
2 ⊆ · · · ⊆ V

(1)
2 ⊆ V

(0)
2 . For simplicity of notation, let F = d·e(V1,V2)

10k|V3| . By (8), we have

di > d0 · F i

i−1∏
j=0

aj
t− j
t+ 1

= d0 · F i

i−1∏
j=0

t− j
t− j + 1

1

t+ 1

= d0 ·
( F

t+ 1

)i t− i+ 1

t+ 1

(1)

> d0 · 4i
( t

t+ 1

)t t− i+ 1

t+ 1

> d0 · 4ie−1 t− i+ 1

t+ 1
.

Therefore we have
d0

di
6

e · (t+ 1)

4i(t− i+ 1)
. (10)

We now analyze the end results of our iteration, V
(t)

2 and dt. Observe that V
(t)

2 preserves
a good portion of the edges from V2 to V1 (invariant (7)), while having exponentially large
average degree (equation (10)). Similar to Claim 13, we have dt < 2k, which then implies

d0 6 dte · (t+ 1)/4t < 2ke · (t+ 1)/4t < 20(t+ 1).

This contradicts condition (3). Therefore we conclude that the iteration must stop before
t steps, resulting in either outcome (I) or outcome (II).

Remark 15. The contraction rate of V
(i)

2 could be shown explicitly in the above proof.
Specifically,

|V (i+1)
2 | 6 Di|V3|/d 6

1

aidi

10k|V3|
d

=
d0

Faidi
|V2|

(1)

6
e · (t+ 1)

4i+1t
|V2|.

This bound confirms our intuition that V
(i)

2 shrinks exponentially.

We now come to the last piece of the puzzle: proving the existence of a Θ-graph.
The following lemma, while following the same scheme as in Lemma 9 of Bukh–Jiang,
presents a different method to embed an arbitrarily long path under the assumption that
no (well-placed) Θ-graphs exist. More details on such distinctions are discussed after the
proof.

Lemma 16. Let G be a trilayered graph with layers V1, V2, V3 and minimum degree at
least [A : B, d+ k : D], where A,B are real numbers and D is an integer. Suppose B > 5,
and

A > 2k(∆D)D−1, (B − 4)D > 2k. (11)

Assume that every vertex in V2 has at most ∆d neighbors in V3. Then there is a Θ-graph
in G[V2, V3], or there is a well-placed Θ-graph in G.
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Proof. Assume that neither of the conclusions are true. In this proof, we will utilize this
assumption to embed an arbitrarily long path P in G, contradicting the finiteness of the
graph. P will have the form v0 ! v1 ! · · ·! vl, where v1, · · · , vl ∈ V1 and each pair
vi, vi+1 is connected by a path of length 2D alternating between V2 and V3.

To utilize the assumption of no well-placed Θ-graph, we strengthen the statement by
maintaining the following property while building the path:

Definition 17. A path P is called good if every vertex in V2∩P has at least one neighbor
in V1 \ P .

This property enables us to make arguments of the form “either the path could be
extended, or we can find a well-placed Θ-graph”, as we will see later in the proof.

We start our construction with a random vertex v0 from V1. Inductively, assume that
a good path P = v0 ! v1 ! · · ·! vl−1 has been constructed, we wish to extend it to
v0 ! · · ·! vl. We make the following observations.

Claim 18. For all i = 0, · · · , l − 1, vi cannot have k or more neighbors in V2 ∩ P .

Proof of Claim 18. If vi has at least k neighbors in V2 ∩ P , then we can follow the path
and build a Θ-graph with a chord through vi. This Θ-graph is well-placed since P is a
good path. �

Claim 19. Given a good path Q, let u ∈ V2∩Q be a vertex adjacent to the last vertex of Q
(note that this last vertex can belong to either V1 or V3). Then u has less than t = dB/2e
neighbors in V1 ∩Q.

Proof of Claim 19. If u has neighbors vk1 , · · · , vkt , where k1 < k2 < · · · < kt, then the
path vk2 ! u and the edge uvk2 form a cycle of length at least

2D(t− 2) + 2 > 2D(B/2− 2) + 2 = D(B − 4) + 2 > 2k.

This cycle, together with the chord uvk3 , forms a Θ-graph spanning over V1, V2, V3. More-
over, this Θ-graph is well-placed since Q is a good path, and u is adjacent to vk1 which is
not part of the Θ-graph. This contradicts our assumption. �

Note that by Claim 18, there are at least A − k ways to extend vl−1 to another
vertex in V2 \ P , and Claim 19 ensures that all of these extensions are good. Denote
U0 = N(vl−1) \ P , where N(·) is the usual notation for neighborhood. The following
claim, which is the heart of our embedding scheme, states that a large portion of these
good extensions in U0 can be extended further inductively in a vertex-disjoint manner.

Claim 20. For i = 0, 1, · · · , D − 1, there exist sets Ui ⊂ V2 such that for each u ∈ Ui,
there exists a path Q(u) from U0 to u of length 2i that alternates between V2 and V3.
Moreover, Q(u) is a good extension of P , and for every pair u, v ∈ Ui, Q(u) and Q(v) are
vertex disjoint. Furthermore,

|Ui| > −3k + A

(
1

8(2k + 1)∆

)i D−1∏
i=1

D − i
i+ 1

.
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Proof of Claim 20. We prove this claim by induction, where the base case with i = 0 is
true as stated. Assume the claim is true for i, we want to find Ui+1 by extending paths
from Ui.

For arbitrary u ∈ Ui, let Pu denote the concatenation of paths P and Q(u). By similar
argument as in Claim 18, we see that u cannot have more than k neighbors in Pu ∩ V3.
Therefore, u has at least d neighbors in V3 that does not land on Pu. These neighbors
are our candidates for extending Pu, and we filter these candidates with the following
procedure. Define three sets S1, F1 and T , where S1, F1 ⊂ Ui and T ⊂ V3. Intuitively, we
want S1 to be the set of vertices with successful extensions to V3, F1 to be Ui \ S1, and
T to be the set of potential extensions from S1 to V3. Set them to be empty initually,
consider the following procedure.

Procedure 1
1: Pick a vertex u randomly from Ui \ (S1 ∪ F1).
2: Let Mu = (N(u) ∩ V3) \ (T ∪ Pu). If |Mu| > d

2k+1
, then randomly select d

2k+1
vertices

in Mu to put into T , and denote these vertices as Tu. Put u into S1.
3: Otherwise, put u ∈ F1 and move on to the next itration. Terminate this procedure if
S1 ∪ F1 = Ui.

We claim that when this procedure terminates, |S1| > |Ui|/2. Indeed, if |F1| > |Ui|/2,

then |T | < |S1| d
2k+1

< |Ui|
2

d
2k+1

. Moreover, every vertex u in F1 has at least d neighbors in

V3 \ Pu, which means at least 2kd
2k+1

edges adjacent to u land in T . Therefore,

e(F1, T ) > |F1|
2kd

2k + 1
>

2kd

2k + 1

|Ui|
2
,

which implies e(F1, T )/|T | > 2k. By Lemma 5, there exists a Θ-graph in G[V2, V3], which
is a contradiction. Thus |S1| > |Ui|/2.

We extend the previous notations to vertices in T . For v ∈ Tu (as defined in Pro-
cedure 1), let Q(v) be the path Q(u)v, and Pv = Puv. Note that the paths {Q(v)}v∈T
are not necessarily pairwise vertex disjoint, since v could be on the path Q(w) for some
w ∈ Ui, w 6= u. This issue will be resolved later. For now, we make the following obser-
vation concerning extending vertices in T back to V2.

Observation 21. For an arbitrary vertex v ∈ T , it has at least D− i neighbors in V2 \Pv
or in the last 2k vertices of P . To see that, suppose we call an edge vw where w ∈ Pv ∩V2

long if the distance between v, w is at least 2k through the path Pv and short otherwise. If
v has a long edge vw, then v cannot have any other neighbors in Pv ∩ V2, for otherwise
there would be a well-placed Θ-graph. Moreover, since |Q(v) ∩ V2| = i, we see that v has
at most i neighbors on Q(v). Our claim then follows.

Utilizing this observation, we will extend every vertex in S1 greedily, while maintaining
that all extensions land in different vertices in V2. As in procedure 1, we define sets
S2, F2 ⊂ S1, D ⊂ V2, where S2 denotes the set of vertices with successful 2-step extensions,
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Procedure 2
1: Pick a vertex u arbitrarily from S1 \ (S2 ∪ F2).
2: If there exists v ∈ N(u)∩T and w ∈ N(v)\ (Pv ∪D), then we can successfully extend
Pu to Puvw. Put u into S2 and put w into D.

3: If such vertices do not exist, put u into F2 and move on to the next itration. Terminate
this procedure if S2 ∪ F2 = S1.

and F2 = S1 \ S2. D denotes the set of endpoints of successful extensions. We set them
to be empty initially, and consider the following procedure.

Let ε = D−i
4(2k+1)∆

. We claim that when this procedure terminates, |S2| > ε|S1|−2k. To
see that, we know every vertex u ∈ F2 cannot be extended, which means all of its possible
extensions land in D or the last 2k vertices of P . If |F2| > (1− ε)S1 + 2k > (1− ε)S1, by
Procedure 1 and Observation 21, the number of failed extension must be at least

|F2| ·
d

2k + 1
· (D − i) > (D − i)(1− ε)d

2(2k + 1)
|Ui|.

Since |D| = |S2|, all these failed extensions must land in a set of size less than ε|S1|. The
average degree on this set would then be at least

(D − i)(1− ε)d
2(2k + 1)

|Ui| ·
1

ε|Ui|
> 2(1− ε)∆d > ∆d,

which is a contradiction to the assumption that no vertices in V2 has more than ∆d
neighbors in V3. Therefore we have at least |S2| > ε|Ui| − 2k successful extensions.

The next step is to filter these extensions such that they are pairwise vertex disjoint.
What we have constructed so far is a set Q of length 2i+ 2 paths from U0 to D such that
if we choose any two paths p1, p2 from Q, their first 2i vertices would be disjoint, and their
last two vertices would also be disjoint. Therefore every path could only overlap with at
most 2i + 2 other paths in Q, which implies there exists a set of pairwise disjoint paths
Q′ such that |Q′| > |Q|/(2i+ 2). Let Ui+1 ⊂ D be the set of endpoints of these paths, we
have

|Ui+1| = |Q′| > |Q|/(2i+ 2) = |S2|/(2i+ 2)

>
ε

2(i+ 1)
|Ui| − 2k >

D − i
i+ 1

1

8(2k + 1)∆
|Ui| − 2k,

which satisfies the stated bound. All of these extensions are good by Claim 19. �

Now from condition (11), we see that UD−1 is non-empty. Let Q = v0 ! · · · !
vl−1 ! u be an arbitrary extension with u ∈ UD−1. By Claim 19, (N(u) ∩ V1) \ Q is
non-empty. Let vl be chosen arbitrarily from this set, and let the new path be Qvl. We
prove one last claim to finish the proof.
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Claim 22. The path Qvl is good.

Proof of Claim 22. We show that for any w ∈ V2 ∩Q, w has at most 2t− 2 neighbors in
V1 ∩Qvl. By Claim 19, w has fewer than t neighbors in Q ∩ V1 that precede w in Q. We
want to apply the same argument to the reverseal of Qvl.

Consider the sub-path Q′ = vl ! w of Q. Since Q is a good path, w can’t have t
or more neighbors in V1 ∩ Q. Therefore, assume w has neighbors vk1 , · · · , vkt ∈ V1 ∩ Q′,
where vkt = vl and k1 < k2 < · · · < kt. Then the path vkt−1 ! w, together with the
edges wvkt−1 forms a cycle of length at least 2k, with chords through v. This Θ-graph is
well-placed since the path Q is good, and vkt−1 ! w does not go through vkt = vl, which
means vertices of this Θ-graph in V2 can use vl to satisfy the well-placed condition. We
conclude that w must have less than t neighbors in Q′ ∩ V1. Since 2t − 2 < B, the path
Qvl is good. �

Therefore, we can construct an arbitrarily long path in G, which is a contradiction.
We conclude that a (well-placed) Θ-graph must exist.

Remark 23. This result is stronger than Lemma 9 in Bukh–Jiang, in the sense that Bukh
and Jiang showed how to embed one extension inductively, while we presented a method
to embed multiple vertex-disjoint extensions simultaneously. We also note that |Ui| can be
made arbitrarily large by increasing A, which only affects the magnitude of n. Therefore,
our methods embed many “parallel” paths concurrently.

Utilizing Lemma 11, 12 and 16, we now prove Lemma 10.

Proof of Lemma 10. Given a graph G satisfying the conditions in Lemma 10, we first
apply Lemm 12 with C = d + k. If the lemma results in outcome (I), then our claim
holds. If the lemma results in outcome (II), then we apply Lemma 16 on the resulting
trilayered subgraph and our claim holds. This proves Lemma 10.

We now proceed to prove Theorem 2.

4 Proof of Theorem 2

In this section, we prove that under the conditions of Theorem 2, we have for all i

|Vi+1| > (d2/20k log k)|Vi−1|. (12)

We introduce the following auxiliary conditions, which will be proved by induction on i.

e(Vi, Vi+1) > 2d|Vi|, (13)

e(Vi, Vi+1) 6 2k|Vi+1|, (14)

|Vi+1| > k−1d|Vi|, (15)

the electronic journal of combinatorics 28(2) (2021), #P2.41 13



These inequalities hold for i = 0. Assuming the inductive hypothesis, we know that the
minimum degree in the graph is at least 2d+ 5k2. Therefore

e(Vi, Vi+1) > (2d+ 5k2)|Vi| − e(Vi−1, Vi)
(14)

> (2d+ 5k2 − 2k)|Vi| > 2d|Vi|

This inequality implies that Vi has average degree at least 2d in G[Vi, Vi+1]. Moreover, if
(14) is false, then Vi+1 has average degree at least 2k in G[Vi, Vi+1]. By Corollary 6, this
leads to a contradiction. Therefore (14) is true, and (15) is a consequence of (13) and
(14). This completes the proof for the auxiliary claims.

We now move on to prove (12). Assume for the sake of contradiction that (12) is false,
we will show that the conditions of Lemma 10 hold, which then leads to a contradiction.

Assume (1) is false. We have

2d2|Vi−1|
(13)

6 de(Vi−1, Vi) 6 40k log k|Vi+1|,

|Vi+1| >
d2

20k log k
|Vi−1|.

This contradicts with the assumption that (12) is false.
(2) follows from the fact that d > (20k)4k2+2k. We have

6k(log k + 1)2(2∆k)2k−1, 6 6k3(2k3/2(20k)2k))2k−1

6 (20k)4k2−2k · 6k3 · (2k)3k 6 2d 6 e(Vi, Vi+1)/|Vi|.

Finally, if (3) is false, we have

2d|Vi−1|
(13)

6 e(Vi−1, Vi) 6 20(log k + 1)|Vi|
(15)

6 40 log k
k

d
|Vi+1|,

|Vi+1| >
d2

20k log k
|Vi−1|.

This again implies (12). Therefore (12) hold for all i.
We now conclude the proof of Theorem 2. If k is even, applying (12) k/2 times results

in

|Vk| >
dk

(20k log k)k/2
.

If k is odd, applying (12) (k − 1)/2 times results in

|Vk| >
dk−1

(20k log k)(k−1)/2
|V1| >

dk

(20k log k)k/2
.

Since |Vk| < n, we must have d <
√

20k log kn1/k.
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5 Potential Improvements

This section is dedicated to devoted readers who intend to improve Theorem 2 using our
methods.

The idea of using Θ-graphs in the BFS approach originated from Pikhurko’s work [7].
The most critical component of this combination is the embedding scheme of a Θ-graph
in specific graph structures. For reference, Pikhurko utilized Lemma 5, while Bukh and
Jiang and the author utilized different versions of Lemma 16. In essence, all three proofs
are driven by their respective embedding methods. Therefore, if one intends to improve
the upper bound on ex(n,C2k) following this approach, one shall investigate potential
structures and schemes to embed Θ-graphs.

We investigated the following structure in particular.

Definition 24. For A,B,C,D ∈ R, we say that a trilayered graph G on vertex sets
V1, V2, V3 has degree [A : B,C : (2 : D)] if there exists a partition of V2 into V B

2 and V C
2 ,

such that the minimum degree from V1 to V2, V B
2 to V1, V2 to V3, V3 to V C

2 , and V3 to V B
2

are at least A,B,C, 2, D, respectively.

This definition is inspired by two observations. First of all, the proof of Lemma 11
found that if an [A : B,C : D] structure cannot be found, then V2 can be partitioned into

two sets Ṽ2 and V2 \ Ṽ2, such that the former has high density with V3 and the latter has

high density with V1 (see Appendix). Let VC = Ṽ2 and VB = V2 \ Ṽ2, the existence of a
[A : B,C : (2, D)] structure is likely with respect to such graph partitions. Second, using
the ideas in our proof of Lemma 16 and Bukh and Jiang’s proof of their Lemma 9, we
can prove the following result.

Lemma 25. Under the same constraints on A,B,D as in Lemma 16, if G is a trylayered
graph on V1, V2 = VB ∪ VC , V3 with minimum degree at least [A : B,C : (2, D)], then there
is a Θ-graph in G[V2, V3] or there is a well-placed Θ-graph in G.

Therefore, if one is able to show, under weaker conditions in comparison to Lemma 10,
that either an [A : B,C : D] structure exists or an [A : B,C : (2 : D)] structure exists,
then one could improve our bound. We were able to prove an analog of Lemma 11 for
the [A : B,C : (2 : D)] structure, but was unable to derive an analog of Lemma 12.

It is also worth pointing out that the constant factor of the upper bound proved by
this paper is not fully optimized. In particular, we believe that the bound can be further
improved by constant factors if instead of using the Reduction Lemma, we employ a mod-
ified breadth-first search algorithm (see Bukh–Jiang Section 1) to bound the maximum
degree in our graph. In this paper, we decided not to present the proof with a modified
BFS since we believe the current proof using the Reduction Lemma is cleaner and more
applicable to further problems.
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Appendix

Bukh–Jiang’s Proof of Reduction Lemma (slightly modified) Let H be a sub-
graph of G that maximizes the ratio e(H)/v(H)1+α/2. By the assumption on e(G), this
ratio is at least cnα/2. Since e(H) 6 v(H)2/2, it then follows that v(H)1−α/2 > 2cnα/2.
Let S be subset of V (H) consisting of γv(H) vertices of largest degrees. We consider two
cases.

Suppose at least e(H)/4 edges of H are incident to vertices in S. Set η = 2γ/α. By
averaging, we can find a set T ⊂ V (H) \ S of ηv(H) elements that is incident to at least
fraction η/(1 − γ) of edges leaving S. Hence, e(S ∪ T ) > ( η

1−γ )e(H)/4 > ηe(H)/4. Let
H ′ be the subgraph of H induced by S ∪ T . Since

(γ + η)1+α/2 = γ1+α/2(1 + 2/α)1+α/2 6 (3/α)1+α/2γ1+α/2

6 (33/2/α1+α/2)γ1+α/2 6 (10/α)γ1+α/2 6 γ/2,

we have
e(H ′)

v(H ′)1+α/2
>

ηe(H)

2γv(H)1+α/2
=

e(H)

αv(H)1+α/2
>

e(H)

v(H)1+α/2
,
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contradictory to the choice of H.
Therefore, we may assume that S is incident to fewer than e(H)/4 edges of H. Thus

the minimum degree of a vertex in S is at most e(H)
2|S| = e(H)

2γv(H)
. Removing edges incident to

S from H then leaves a graph H ′ with maximum degree at most e(H)
2γv(H)

(since S consists

of vertices of highest degrees in H) and at least 3e(H)/4 edges. In particular, average
degree of H ′ is at least 3e(H)/(2v(H)).

Now we remove vertices of degree less than e(H)/(2v(H)) repeatedly to obtain G′.
Since the number of edges removed is less than e(H)/2, G′ would have at least γv(H)
vertices and e(H)/4 edges. Each vertex in this graph has degree between e(H)/2v(H)
and e(H)/2γv(H), and we have e(G′) > e(H)/4 > (c/4)nα/2v(H)1+α/2 > (c/4)v(G)1+α/2.
Finally, since e(H)/v(H) > cnα/2v(H)α > cv(G′)α, we are done.

Bukh–Jiang’s Proof of Lemma 11 We suppose that alternative (I) does not hold.
Then, by Corollary 6, the average degree of every subgraph of G[V1, V2] is at most 2k.

Consider the process that aims to construct a subgraph satisfying (II). The process
starts with V ′1 = V1, V ′2 = V2 and V ′3 = V3, and at each step removes one of the vertices that
violate the minimum degree condition on G[V ′1 , V

′
2 , V

′
3 ]. The process stops when either no

vertices are left, or the minimum degree of G[V ′1 , V
′

2 , V
′

3 ] is at least [A : B,C : D]. Since in
the latter case we are done, we assume that this process eventually removes every vertex
of G.

Let R be the vertices of V2 that were removed because at the time of removal they
had fewer than C neighbors in V ′3 . Put

E ′
def
= {uv ∈ E(G) : u ∈ V2, v ∈ V3, and v was removed before u},

S
def
= {v ∈ V2 : v has at least 4k2 neighbors in V1}.

Note that |E ′| 6 D|V3|. We cannot have |S| > |V1|/k, for otherwise the average degree of
the bipartite graph G[V1, S] would be at least 4k

1+1/k
> 2k. So |S| 6 |V1|/k.

The average degree condition on G[V1, S] implies that

e(V1, S) 6 k(|V1|+ |S|) 6 (k + 1)|V1|.

Let u be any vertex in R\S. Since it is connected to at least (d+4k2+C)−4k2 = d+C
vertices of V3, it must be adjacent to at least d edges of E ′. Thus,

|R \ S| 6 |E ′|/d 6 D|V3|/d.

Assume that the conclusion (III) does not hold with Ṽ2 = R \ S. Then e(V1, R \ S) <
(1 − a)e(V1, V2). Since the total number of edges between V1 and V2 that were removed
due to the minimal degree conditions on V1 and V2 is at most A|V1| and B|V2| respectively,
we conclude that

e(V1, V2) 6 e(V1, S) + e(V1, R \ S) + A|V1|+B|V2|
< (k + 1)|V1|+ (1− a)e(V1, V2) + A|V1|+B|V2|,
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implying that
a · e(V1, V2) < (A+ k + 1)|V1|+B|V2|.

The contradiction with (4) completes the proof.
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