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Abstract

Gyárfas proved that every coloring of the edges of Kn with t+ 1 colors contains
a monochromatic connected component of size at least n/t. Later, Gyárfás and
Sárközy asked for which values of γ = γ(t) does the following strengthening for
almost complete graphs hold: if G is an n-vertex graph with minimum degree at
least (1 − γ)n, then every (t + 1)-edge coloring of G contains a monochromatic
component of size at least n/t. We show γ = 1/(6t3) suffices, improving a result of
DeBiasio, Krueger, and Sárközy.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction, a stability of edge colorings

Erdős and Rado observed that every 2-edge-coloring of the complete graph Kn has a
monochromatic spanning tree. Generalizing this result, Gyárfás [5] proved that every (t+
1)-edge-coloring of the edge set E(Kn) contains a monochromatic connected component
of size at least n/t. This bound is the best possible when n is divisible by t2 and an affine
plane of order t exists.

Gyárfás and Sárközy [7] proved that Gyárfás’ theorem has a remarkable stability
property, the complete graph Kn can be replaced with graphs of high minimum degree.

Question 1 (Gyárfás and Sárközy [7]). Let t > 2. Which values of γ = γ(t) guarantee
that every (t + 1)-edge-coloring of any n-vertex graph with minimum degree at least
(1− γ)n contains a monochromatic component of size at least n/t?
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Let γ(t) denote the best value we can have. The case for t = 1 is trivial, γ(1) =
0. It is observed in [6] that any non-complete graph has a 2-edge-coloring without a
monochromatic spanning tree: if xy is a non-edge, consider any edge-coloring where every
edge incident to x is red and every edge incident to y is blue. Then there does not exist
a monochromatic component containing both x and y.

The case for at least three colors (i.e., t > 2) is more interesting. Gyárfás and
Sárközy [7] showed that γ 6 1/(1000t9) suffices. This was improved to 1/(3072t5) by
DeBiasio, Krueger, and Sárközy [2].

It was also conjectured in [7] that γ(t) could be as big as t/(t+1)2. This was disproved
for t = 2 by Guggiari and Scott [4] and by Rahimi [8], and more recently for general t by
DeBiasio and Krueger [1]. The constructions of graphs in [1, 4, 8] are based on modified
affine planes. They have minimum degree at least (1 − t−1

t(t+1)
)n − 2 and a (t + 1)-edge

coloring in which each monochromatic component is of order less than n/t.
DeBiasio, Krueger, and Sárközy [2] proposed a version for bipartite graphs.

Question 2 (DeBiasio, Krueger, and Sárközy [2]). Let t > 2 and n1 6 n2. Determine for
which values of γ = γ(t, n1, n2) the following is true: let G be an X1, X2-bipartite graph
such that |Xi| = ni for i ∈ {1, 2}, for every x ∈ X1, d(x) > (1 − γ)n2, and for every
y ∈ X2, d(y) > (1 − γ)n1. Then every t-edge-coloring of G contains a monochromatic
component of order at least n/t.

They proved that γ(t, n1, n2) 6 (n1/n2)
3/(128t5) suffices. For both Questions 1 and 2

the t = 2 case is solved completely in [4, 8] and [2], respectively. They obtained γ(2) = 1/6,
γ(1, n1, n2) < 1/2, and γ(2, n1, n2) < 1/3 (independently of n), and these constants are
the best possible. So from now on, we only consider t > 3.

It was conjectured in [2] that for general t, γ(t, n1, n2) <
1
t+1

. This would be best
possible when n1 and n2 are divisible by t + 1 by the following construction. Consider
t + 1 perfect matchings of Kt+1,t+1 with partite sets X ∪ Y . Delete all the edges of the
(t+ 1)th matching. Now let G be a graph obtained by blowing up each vertex in X into
n1/(t+ 1) new vertices and each vertex in Y into n2/(t+ 1) vertices. Color an edge with
color i if its endpoints were obtained by blowing up two vertices which were matched
in the ith matching. It is easy to see the degrees of vertices are either (1 − 1

t+1
)n2 or

(1− 1
t+1

)n1, and a largest monochromatic component has size (n1 + n2)/(t+ 1).
Our main result is an improvement for the bound on γ(t, n1, n2) in Question 2 which

in turn implies a better bound for γ(t) in Question 1.

Theorem 1.1. Fix integers t > 3, n1, n2 such that n2 > n1 > 1 and let γ 6
(n1/n2)

t3
. Let

G be an X1, X2-bipartite graph such that |Xi| = ni for i ∈ {1, 2},
for every x ∈ X1, d(x) > (1− γ)n2, and for every y ∈ X2, d(y) > (1− γ)n1.

Then every t-edge-coloring of G contains a monochromatic component of order at least
n/t.

Corollary 1.2. Fix integers n, t > 3, and let γ 6 1/(6t3). Suppose G is an n-vertex graph
with minimum degree at least (1 − γ)n. Then any coloring of E(G) with t + 1 colors
contains a monochromatic connected component with at least n/t vertices.
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Our method is very similar to that in [7] or in [2]. The major difference is that we
will first collect a series of general inequalities in the next section. While these tight
inequalities are seemingly unrelated to graphs, we use them to lower bound the size of a
“typical” monochromatic component. Our results will imply that in every color class there
exists t components that are close in size to (n1 + n2)/t, and the remaining components
are very small. We prove Theorem 1.1 in Section 3 and Corollary 1.2 in Section 4.

We use standard graph theory notation. The degree of a vertex v in G is denoted by
dG(v) or simply d(v) when there is no room for ambiguity. We denote the set of integers
{1, 2, . . . , s} by [s].

2 Inequalities

In this section, we prove some inequalities for sequences of integers. While our results
hold in general, the reader should think of the sequences of integers as the sizes of each
part (determined by a bipartition) of a monochromatic component for a fixed color.

It was pointed out by the anonymous referee that the following lemma is an easy
consequence of a result called Milne’s Inequality (see [9]). We include its short proof for
completeness.

Lemma 2.1. Let a1, . . . , as, b1, . . . , bs, E,M,A,B be non-negative real numbers such that

•
∑s

i=1 aibi > E,

• for all i ∈ [s], ai + bi 6M ,

•
∑s

i=1 ai 6 A, and
∑s

i=1 bi 6 B.

Then E(A+B) 6MAB.

Proof. The case EAB = 0 is easy, so we may suppose A,B,E > 0. Apply Jensen’s
inequality for the convex function x2(∑s

i=1 biai∑s
i=1 bi

)2

6

∑s
i=1 bia

2
i∑s

i=1 bi
.

Therefore
(
∑s

i=1 aibi)
2∑s

i=1 bi
6

s∑
i=1

a2i bi,

and similarly
(
∑s
i=1 aibi)

2∑s
i=1 ai

6
∑s

i=1 aib
2
i . So we have

E
s∑
i=1

aibi

(
1

A
+

1

B

)
6

(
s∑
i=1

aibi

)2(
1∑s
i=1 ai

+
1∑s
i=1 bi

)
6

s∑
i=1

a2i bi + aib
2
i =

s∑
i=1

(aibi)(ai + bi) 6M

s∑
i=1

aibi.
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Dividing by (
∑s

i=1 aibi) and simplifying, we have E(A−1 +B−1) = E(A+B)/(AB) 6
M .

Lemma 2.2. Fix n1, n2, t, a1, . . . , as, b1, . . . , bs > 0, ε > 0. Suppose t > 1, n1, n2 > 0,

•
∑s

i=1 aibi > (1− ε)n1n2

t
,

•
∑s

i=1 ai 6 n1,
∑s

i=1 bi 6 n2, and

• ai + bi < (n1 + n2)/t for all i ∈ [s].

Then for all i ∈ [s],

ai <
n1

t
+

√
ε(t− 1)n1n2

t
and bi <

n2

t
+

√
ε(t− 1)n1n2

t
. (1)

Proof. We prove the statement only for a1, as the proofs for other ai’s and bi’s are sym-
metric.

First, we handle the case a1 = n1. Then a2 = · · · = as = 0 so the first constraint
gives a1b1 = n1b1 > (1 − ε)n1n2

t
. Hence (1 − ε)n2/t 6 b1. Combining this with the last

constraint we get

n1 + (n2/t)− (εn2)/t 6 a1 + b1 < (n1/t) + (n2/t).

Rearranging we have (t − 1)n1 < εn2. Multiplying each side by (t − 1)n1 and taking
square roots, we get (t− 1)n1 <

√
ε(t− 1)n1n2 and therefore

a1 = n1 <
n1

t
+

√
ε(t− 1)n1n2

t
,

as desired.
Second, consider the case b1 = n2. Then the last constraint implies a1 < (n1 +n2)/t−

b1 = (n1 + n2)/t − n2 < n1/t, so (1) holds. From now on, we may suppose that n1 − a1
and n2 − b1 are both positive.

Third, suppose that
∑s

i=2 aibi > (n1−a1)(n2−b1)
t−1 . Let M := max26i6s{ai + bi}, A =

n1 − a1, B = n2 − b1. Then by Lemma 2.1, we obtain

(n1 − a1)(n2 − b1)
t− 1

(n1 − a1 + n2 − b1) 6M(n1 − a1)(n2 − b1).

Simplify by the positive term (n1 − a1)(n2 − b1)

M >
n1 − a1 + n2 − b1

t− 1
>
n1 + n2 − (n1 + n2)/t

t− 1
=
n1 + n2

t
,

a contradiction.
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Therefore, in the last case we consider, we may assume

(n1 − a1)(n2 − b1)
t− 1

+ a1b1 >
s∑
i=1

aibi > (1− ε)n1n2

t
.

Rearranging, we get

(n1 − a1)(n2 − b1) + (t− 1)(a1b1) > (1− ε)(t− 1)(n1n2)

t

⇒ n1n2 − n1b1 − n2a1 + ta1b1 > n1n2 −
n1n2

t
− ε(t− 1)n1n2

t

⇒ n1n2

t
+ ε

(t− 1)n1n2

t
> n2a1 − b1(ta1 − n1).

If a1 < n1/t, then we are done. So assume a1 > n1/t (so ta1 − n1 > 0). We add the
non-positive term (a1 + b1 − (n1 + n2)/t)(ta1 − n1) to the right hand side to obtain

n1n2

t
+ ε

(t− 1)n1n2

t
> n2a1 − b1(ta1 − n1) + (a1 + b1 −

n1 + n2

t
)(ta1 − n1)

= n2a1 + ta21 − a1n1 − n1a1 +
n2
1

t
− n2a1 +

n1n2

t

⇒ 0 > ta21 − 2n1a1 +

(
n2
1

t
− ε(t− 1)n1n2

t

)
Solving for a1, we obtain

a1 <
2n1 +

√
4n2

1 − 4(n2
1 − ε(t− 1)n1n2)

2t
=
n1 +

√
ε(t− 1)n1n2

t
.

Lemma 2.3. Fix ε > 0, integers 1 6 t 6 s, and reals a1, . . . , as, b1, . . . , bs > 0 such that

• a1 > . . . > as > 0,

•
∑s

i=1 ai = n1,
∑s

i=1 bi = n2 > 0,

• for all i ∈ [s], ai + bi 6 (n1 + n2)/t,

•
∑s

i=1 aibi > (1− ε)n1n2/t.

Let a := at+1 + . . .+ as. Then

a 6 εn1
n1 + n2

n2

.

In particular, if n1 6 n2, then a 6 2εn1.

Proof. We construct a new sequence b′1, . . . , b
′
s with b′i > bi for i ∈ [t], b′j = 0 for t < j 6 s,

such that
∑t

i=1 b
′
i =

∑s
i=1 bi = n2, and ai + b′i 6 (n1 + n2)/t =: M for all i ∈ [t]. Note

that these conditions together with the fact that the ai’s are non-increasing imply that
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∑t
i=1 aib

′
i >

∑s
i=1 aibi since we are increasing the coefficients of larger ai’s by decreasing

the coefficient of smaller aj’s.
We build our sequence greedily starting with b1, . . . , bs. Define a set I ⊆ [s] as follows

I(b1, . . . , bs) := {i ∈ [t], ai + bi < M} ∪ {j : j > t, bj > 0}.
If for all j > t+ 1, bj = 0, then we let b′1, . . . , b

′
s = b1, . . . , bs and we are done. So suppose

some j > t+ 1 satisfies bj 6= 0, and hence j ∈ I(b1, . . . , bs). Then there exists i ∈ [t] with
bi + ai < M (i.e., i ∈ I(b1, . . . , bs)) because

∑t
i=1(ai + bi) 6 n1 + n2 − bj = tM − bj. If

ai + bi + bj 6 M then we update b′i = bi + bj, b
′
j = 0 and b′k = bk for all k ∈ [s] \ {i, j}.

Note that j /∈ I(b′1, . . . , b
′
s).

If ai+bi+bj > M then we update b′i = bi+M−(ai+bi) = M−ai, b′j = bj−(M−(ai+bi))
and b′k = bk for k ∈ [s] \ {i, j}. In this case, we get i /∈ I(b′1, . . . , b

′
s). Therefore in both

cases we get |I(b′1, . . . , b
′
s)| 6 |I(b1, . . . , bs)| − 1, so one can continue this process at most

s steps until we get I(b′1, . . . , b
′
s) ⊂ [t].

So suppose we have found a sequence b′1, . . . , b
′
t as desired. Apply Lemma 2.1 on the

sequences a1, . . . , at and b′1, . . . , b
′
t. We have

∑t
i=1 ai = n1 − a =: A,

∑t
i=1 b

′
i = n2 =: B,∑t

i=1 aib
′
i >

∑s
i=1 aibi > (1− ε)n1n2/t =: E, and ai + b′i 6M for all i ∈ [t]. Therefore,

(1− ε)n1n2

t
(n1 + n2 − a) 6

n1 + n2

t
(n1 − a)n2

Rearranging and solving for a, we get

a(n2 + εn1) 6 εn2
1 + εn1n2

⇒ a 6 εn1
n1 + n2

n2 + εn1

6 εn1
n1 + n2

n2

.

3 Proof of Theorem 1.1 for almost complete bipartite graphs

Proof. Let G be an X1, X2-bipartite graph with |X1| = n1, |X2| = n2, and n2 > n1 > 1.
Consider any coloring of the edges of G with colors 1, . . . , t. For a color i ∈ [t], we denote
by Gi the spanning subgraph of edges colored with i. Suppose that every monochromatic
component has less than (n1 + n2)/t vertices. We claim that |E(Gi)| < n1n2/t. Indeed,
let D1, . . . , Ds be the connected components of Gi. For j ∈ [s], let aj = |Dj ∩ X1|,
bj = |Dj ∩X2|. Then E := |E(Gi)| 6

∑s
j=1 ajbj. Apply Lemma 2.1 with A = n1, B = n2,

M = (n1 + n2 − 1)/t. We get

E 6 (n1 + n2 − 1)/t · (n1 + n2)
−1 · (n1n2) < n1n2/t,

as desired.
Let εi be such that |E(Gi)| = (1− εi)n1n2/t. By Lemma 2.2, a connected component

of color i contains at most nα
t

+

√
εi(t−1)n1n2

t
vertices from Xα, α ∈ {1, 2}. Therefore, for

any i ∈ [t], x ∈ X1 and y ∈ X2,

dGi(x) <
n2

t
+

√
εi(t− 1)n1n2

t
, dGi(y) <

n1

t
+

√
εi(t− 1)n1n2

t
. (2)
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Since |E(G)| > (1−γ)n1n2, we have
∑t

i=1 εi 6 tγ. Without loss of generality, suppose
color 1 satisfies ε1 6 γ. Let C1, . . . , Cr be the vertex sets of the connected components of
color 1, ordered so that |X1 ∩ C1| > . . . > |X1 ∩ Cr|. Define aj, bj as before. Note that
s > t + 1, since the Cj’s cover V (G) and |Cj| < (n1 + n2)/t for all j. By Lemma 2.3,
a := at+1 + . . .+ as 6 2ε1n1.

Case 1: X2 ∩ (Ct+1 ∪ . . . ∪ Cr) 6= ∅. Fix a vertex y in this set. Then dG1(y) 6 2ε1n1.
We get

(1− γ)n1 6 dG(y) < 2ε1n1 +
n1(t− 1)

t
+

t∑
i=2

√
εi(t− 1)n1n2

t

6 2γn1 + n1 −
n1

t
+

√
(t− 1)2(

∑t
i=2 εi)n1n2

t

6 2γn1 + n1 −
n1

t
+
√
γtn1n2 ·

t− 1

t
.

Here we used the fact that
∑t

i=2

√
εi

t−1 6
√∑t

i=2 εi
t−1 because

√
x is a concave function. There-

fore

n1

t
< n13γ+

√
γtn1n2 ·

t− 1

t
6 n13

(n1/n2)

t3
+

√
t
(n1/n2)

t3
n1n2 ·

t− 1

t
6
n1

t

(
3

t2
+
t− 1

t

)
,

a contradiction when t > 3.
Case 2: X2 ∩ (Ct+1 ∪ . . . ∪Cr) = ∅. Let x ∈ X1 ∩ (Ct+1 ∪ . . . ∪Cr). By the case, x is

not incident to an edge of color 1. So we instead obtain

(1− γ)n2 6 dG(x) <
n2(t− 1)

t
+

t∑
i=2

√
εi(t− 1)n1n2

t

6 n2 −
n2

t
+
√
γtn1n2 ·

t− 1

t
.

This implies that

n2

t
< n2γ +

√
γtn1n2 ·

t− 1

t
6 n2

(n1/n2)

t3
+

√
t
(n1/n2)

t3
n1n2 ·

t− 1

t
=
n1

t

(
1

t2
+
t− 1

t

)
,

a contradiction since n1 6 n2 and t > 3.

4 Proof of Corollary 1.2 for almost complete graphs

Proof. Let G be an n-vertex graph with minimum degree at least (1− γ)n, and suppose
the edges of G are colored with colors 0, 1, . . . , t such that each monochromatic connected
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component has size less than n/t. Again, we use Gi to refer to the spanning subgraph of
the edges of color i.

Let V1, . . . , Vr be the vertex sets of the connected components of G0. We will split the
vertex set into two almost equal parts X1 and X2 such that the size of each part is in the
range [n(1

2
− 1

2t
), n(1

2
+ 1

2t
)], and each set Vi is contained either entirely in X1 or entirely in

X2. To see that this is possible, arbitrarily add entire sets Vi to X1 until |X1| < n(1
2

+ 1
2t

)
but adding any additional set to X1 causes the size of X1 to be at least n(1

2
+ 1

2t
). Then

let X2 = V (G)−X1. At this point, |X1| > n(1
2
− 1

2t
), otherwise all sets Vj not contained

in X1 have size at least n/t, a contradiction.
Now let |X1| = n1, |X2| = n2, where without loss of generality, |X1| 6 |X2| < 2|X1|

(and n = n1 + n2). By construction, there are no edges of color 0 between X1 and X2.
Hence, the edges of the bipartite subgraph G[X1, X2] are colored with t colors. (Here
G[X, Y ] denotes the spanning bipartite subgraph of G in which we include only edges
with endpoints in both X and Y .)

For simplicity, set G′ = G[X1, X2]. Let x ∈ X1 and y ∈ X2. Then

dG′(x) > n2 − γn = n2 − γ(n1 + n2) > (1− 2γ)n2,

and
dG′(y) > n1 − γn = n1 − γ(n1 + n2) > n1 − γ(n1 + 2n1) = (1− 3γ)n1.

Since G′ does not have a monochromatic component of size at least n/t = (n1 +n2)/t,
Theorem 1.1 implies that

3γ >
(n1/n2)

t3
>

1/2

t3
=

1

2t3
.

We get a contradiction when γ 6 1/(6t3).
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