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Abstract

The intersection distribution of a polynomial f over a finite field Fq was recently
proposed by Li and Pott [Finite Fields and Their Applications, 66 (2020)], which
concerns the collective behaviour of a collection of polynomials {f(x) + cx | c ∈
Fq}. The intersection distribution has an underlying geometric interpretation, which
indicates the intersection pattern between the graph of f and the lines in the affine
plane AG(2, q). When q is even, the long-standing open problem of classifying o-
polynomials can be rephrased in a simple way, namely, classifying all polynomials
which have the same intersection distribution as x2. Inspired by this connection, we
proceed to consider the next simplest case and derive the intersection distribution
for all degree three polynomials over Fq with q both odd and even. Moreover, we

∗Research supported by the Alexander von Humboldt Foundation and the Pacific Institute for the
Mathematical Sciences.
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initiate to classify all monomials having the same intersection distribution as x3,
where some characterizations of such monomials are obtained and a conjecture is
proposed. In addition, two applications of the intersection distributions of degree
three polynomials are presented. The first one is the construction of nonisomorphic
Steiner triple systems and the second one produces infinite families of Kakeya sets
in affine planes with previously unknown sizes.

Mathematics Subject Classifications: 11T06, 51E15, 51E10, 05B07

1 Introduction

Throughout this paper, let Fq = Fpm be a finite field with characteristic p and f a
polynomial over Fq. The intersection distribution of f originates from an elementary
problem concerning the interaction between the graph {(x, f(x)) | x ∈ Fq} of f and the
lines in the classical affine plane AG(2, q). More precisely, for 0 6 i 6 q, we ask about the
number of affine lines intersecting the graph of f in exactly i points. Note that there are
q vertical affine lines of the form {(x, y) | y ∈ Fq}, where x ranges over Fq. Since each of
these vertical lines intersects Gf in exactly one point, we shall omit them and restrict to
the remaining q2 non-vertical lines. As an attempt to answer this question, the following
concept of intersection distribution was proposed in [22, Definition 1.1(1)].

Definition 1.1 (Intersection distribution). For 0 6 i 6 q, define

vi(f) = |{(b, c) ∈ F2
q | f(x)− bx− c = 0 has i solutions in Fq}|.

The sequence (vi(f))qi=0 is the intersection distribution of f . The integer v0(f) is the
non-hitting index of f .

We remark that for 0 6 i 6 q, there are exactly vi(f) non-vertical lines, which intersect
the graph {(x, f(x)) | x ∈ Fq} in exactly i points. In particular, the non-hitting index
v0(f) is the number of affine lines which does not hit the graph of f . The intersection
distribution of a polynomial f conveys considerable information of f . For instance, the
non-hitting index v0(f) measures the distance from f to linear functions, and to the so
called o-polynomial (when q is even) or to x2 (when q is odd) [22, Result 1.7]. Thus,
intersection distribution serves as a new viewpoint to distinguish polynomials, which is
different from the usual extended-affine equivalence ([5, p. 1142]) and the Carlet-Charpin-
Zinoviev equivalence [5, Definition 1], [6, Proposition 3]. Moreover, the aforementioned
geometric interpretation indicates that for the point set in the classical projective plane
PG(2, q) arising from a polynomial f , detailed information follows from the intersection
distribution f (see for instance [22, Proposition 3.2]).

Having explained the reason why the intersection distribution is interesting, we proceed
to consider its computation. First, we have the following basic equations, which essentially
have been stated in [22, Proposition 2.1] (see also [18, Lemma 12.1]).
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Proposition 1.2. Let f be a polynomial over Fq. The following equations hold.

q∑
i=0

vi(f) = q2,

q∑
i=1

ivi(f) = q2,

q∑
i=2

i(i− 1)vi(f) = q(q − 1).

Secondly, to facilitate the computation of the intersection distribution, the following
definition was proposed in [22, Definition 1.1(2)].

Definition 1.3 (Multiplicity distribution). Let f be a polynomial over Fq. For b ∈ Fq
and 0 6 i 6 q, define

Mi(f, b) = |{c ∈ Fq | f(x)− bx− c = 0 has i solutions in Fq}|.

The sequence (Mi(f, b))
q
i=0 is the multiplicity distribution of f at b. The multiset of

sequences {(Mi(f, b))
q
i=0 | b ∈ Fq} is the multiplicity distribution of f .

By definition, for 0 6 i 6 q, there are exactly Mi(f, b) lines among the parallel class
of q affine lines {y = bx + c | c ∈ Fq}, which intersect the graph of f in i points. From
now on, we use F∗q to denote the set of nonzero elements in Fq.
Remark 1.4.

(1) By definition, for a polynomial f over Fq and 0 6 i 6 q, we have

vi(f) =
∑
b∈Fq

Mi(f, b).

Hence, the multiplicity distribution of f implies its intersection distribution.

(2) Let f(x) =
∑n

i=0 aix
i, where n > 2 and an 6= 0. Note that for each 0 6 i 6 q, we

have Mi(f, b) = Mi(a
−1
n (f − a1x− a0), a−1n (b− a1)). Hence, in order to compute the

intersection distribution of f , one can assume without generality that a1 = a0 = 0
and an = 1.

(3) Let f be a permutation polynomial and f−1 be its inverse. Clearly, M1(f, 0) =
M1(f

−1, 0) = q. Moreover, note that for b ∈ F∗q, the two equations f(x)− bx− c = 0
and f−1(x)− 1

b
x+ c

b
= 0 have the same number of solutions. Hence, f and f−1 have

the same multiplicity distribution and therefore, the same intersection distribution.

We remark that in general, computing the intersection and multiplicity distributions
is a nontrivial problem. In [22, Appendix B], the multiplicity distributions of monomials
xd over Fq, where d ∈ {pi, pi + 1, q−1

2
, q+1

2
, q − 2, q − 1}, have been determined. Indeed,
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combining [22, Propositions B.1, B.9] and Remark 1.4(1)(2), we have the following propo-
sition. For the sake of simplicity, from now on, we only list the first few values of the
intersection distribution vi(f) and multiplicity distribution Mi(f, b) with i at most 4, and
the unmentioned values are all zeros.

Proposition 1.5. Let x2 be a monomial over Fq.

(1) If p = 2, then{
M0(x

2, 0) = 0, M1(x
2, 0) = q, M2(x

2, 0) = 0,

M0(x
2, b) = q

2
, M1(x

2, b) = 0, M2(x
2, b) = q

2
, if b 6= 0.

(2) If p is odd, then for each b ∈ Fq,

M0(x
2, b) =

q − 1

2
, M1(x

2, b) = 1, M2(x
2, b) =

q − 1

2
.

In particular, for each polynomial f over Fq with degree two, we have

v0(f) =
q(q − 1)

2
, v1(f) = q, v2(f) =

q(q − 1)

2
. (1.1)

Consequently, the intersection distribution of polynomials with degree two is clear. We
remark that f having degree two forces vi(f) = 0 for each i > 2, so that the intersection
distribution (1.1) follows from Proposition 1.2. A natural question is, if we drop the
degree two condition, is there any other polynomial which has intersection distribution
(1.1)? Historically, this problem has been intensively studied in terms of classifying ovals
or hyperovals in the classical projective planes (see [18, Chapter 8] for instance). When
q is odd, a famous result due to Segre [25] indicates each polynomial f satisfying (1.1) is
in some sense equivalent to x2. On the other hand, when q is even, the situation is much
more subtle. In this case, a polynomial f with the same intersection distribution as x2

is called an o-polynomial. The classification of o-polynomials, especially o-monomials, is
a long-standing problem which has attracted much attention (see [7, 8, 18, 27] and the
references therein).

In this paper, we pursue a result analogous to the one stated above. More precisely, we
take one step forward to consider the intersection distribution of degree three polynomials.
This is the next simplest case as the degree three condition ensures that vi(f) = 0 for each
i > 3. Together with Proposition 1.2, the intersection distribution of each degree three
polynomial f can be determined by exactly one of vi(f), 0 6 i 6 3. By Remark 1.4(2),
it suffices to determine the intersection distribution of x3 − ax2 for each a ∈ Fq, and we
have the following complete description.

Theorem 1.6. Let f(x) = x3 − ax2 be a polynomial over Fq. If p 6= 3, then we have

v0(f) =
q2 − 1

3
, v1(f) =

q2 − q + 2

2
, v2(f) = q − 1, v3(f) =

q2 − 3q + 2

6
. (1.2)
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If p = 3 and a = 0, then we have

v0(f) =
q(q − 1)

3
, v1(f) =

q(q + 1)

2
, v2(f) = 0, v3(f) =

q(q − 1)

6
. (1.3)

If p = 3 and a 6= 0, then we have

v0(f) =
q2

3
, v1(f) =

q(q − 1)

2
, v2(f) = q, v3(f) =

q(q − 3)

6
.

In order to derive the above theorem, we present a detailed computation determining
the multiplicity distribution of degree three polynomial x3−ax2 in Section 2. To achieve
this, we consider the number of Fq-solutions to

x3 − βx− c = 0, if p 6= 3, or x3 − x2 − c = 0, if p = 3,

where c ∈ Fq and β is either 1 or a primitive element of Fq. When the equation has
at least one solution x0 ∈ Fq, we give a characterization of the number of Fq-solutions
in terms of x0. In Section 3, we proceed to consider a much more challenging problem,
namely, determining all monomials which have the same intersection distribution as x3.
Although a complete answer is by far elusive, we make some detailed analysis and present
strong restrictions to these monomials. Moreover, based on the numerical experiment, we
propose a conjecture classifying all monomials having the same intersection distribution as
x3. As an application, in Section 4, we observe that polynomials over F3m with intersection
distribution (1.3) produces Steiner triples systems. Interestingly, some numerical results
indicate that certain distinct monomials satisfying (1.3) generate nonisomorphic Steiner
triple systems. In Section 5, applying the multiplicity distribution of x3−ax2, we construct
several infinite families of Kakeya sets in affine planes, whose sizes are different from the
known ones. Section 6 concludes the paper and proposes a few open problems.

2 The multiplicity and intersection distributions of degree three
polynomials

In this section, we consider the multiplicity distribution of degree three polynomial. In
view of Remark 1.4(2), we only need to consider a degree three polynomial of the form
x3 − ax2, where a ∈ Fq.

From now on, we always denote a primitive element of finite field Fq by α. Given a

finite field Fq and a positive integer N | q−1, we use C
(N,q)
0 to denote the set consisting of

nonzero N -th powers in Fq. Suppose α is a primitive element of Fq, then for 0 6 i 6 N−1,

define C
(N,q)
i = αiC

(N,q)
0 = {αix | x ∈ C(N,q)

0 }. Hence, when q is odd, we know that C
(2,q)
0

is the set of nonzero squares and C
(2,q)
1 is the set of nonsquares in Fq.

The following proposition says, roughly speaking, in order to determine the multiplicity
distribution of x3 − ax2, it suffices to compute Mi(x

3, 0), Mi(x
3, 1), Mi(x

3, α) and when
p = 3, also Mi(x

3 − x2, 0).
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Lemma 2.1.

(1) When p = 2, we have

Mi(x
3, b) =

{
Mi(x

3, 0), if b = 0,

Mi(x
3, 1), if b 6= 0,

and

Mi(x
3 − ax2, b) = Mi(x

3,
b

a2
+ 1) =

{
Mi(x

3, 0), if b
a2

= 1,

Mi(x
3, 1), if b

a2
6= 1,

where a 6= 0 and b ∈ Fq.

(2) When p = 3, we have

Mi(x
3, b) =


Mi(x

3, 0), if b = 0,

Mi(x
3, 1), if b ∈ C(2,q)

0 ,

Mi(x
3, α), if b ∈ C(2,q)

1 .

For a 6= 0 and b ∈ Fq, we have Mi(x
3 − ax2, b) = Mi(x

3 − x2, 0).

(3) When p > 3, we have

Mi(x
3, b) =


Mi(x

3, 0), if b = 0,

Mi(x
3, 1), if b ∈ C(2,q)

0 ,

Mi(x
3, α), if b ∈ C(2,q)

1 ,

and

Mi(x
3 − ax2, b) = Mi(x

3,
b

a2
+

1

3
) =


Mi(x

3, 0), if b
a2

= −1
3
,

Mi(x
3, 1), if b

a2
+ 1

3
∈ C(2,q)

0 ,

Mi(x
3, α), if b

a2
+ 1

3
∈ C(2,q)

1 ,

where a 6= 0 and b ∈ Fq.

Proof. In all the three cases, the expression of Mi(x
3, b) is clear. So we only need to

consider Mi(x
3−ax2, b) with a 6= 0. For this purpose, we consider the number of solutions

in Fq to the equation x3 − ax2 − bx− c = 0.
If p = 2 or p > 3, namely, gcd(3, q) = 1, dividing a3 on both sides and replacing x

a

with x, we have x3 − x2 − b
a2
x − c

a3
= 0. Replacing x with x + 1

3
in the latter equation

leads to x3 − ( b
a2

+ 1
3
)x − ( c

a3
+ b

3a2
+ 2

27
) = 0. Note that fixing a and b, when c ranges

over Fq, so does c
a3

+ b
3a2

+ 2
27

. Hence, Mi(x
3 − ax2, b) = Mi(x

3, b
a2

+ 1
3
). Note that when

p = 2, Mi(x
3, b

a2
+ 1) = Mi(x

3, b
a2

+ 1
3
). The rest follows easily.

If p = 3, namely, gcd(3, q) = 3, dividing a3 on both sides and replacing x
a

with x, we

have x3−x2− b
a2
x− c

a3
= 0. Replacing x with x− b

2a2
, we have x3−x2− ( c

a3
− b2

4a4
+ b3

8a6
) =

0. Note that fixing a and b, when c ranges over Fq, so does c
a3
− b2

4a4
+ b3

8a6
. Hence,

Mi(x
3 − ax2, b) = Mi(x

3 − x2, 0).

the electronic journal of combinatorics 28(2) (2021), #P2.46 6



Note that Mi(x
3, 0) is easy to compute. Moreover, when p = 3, Mi(x

3, 1) and Mi(x
3, α)

are also straightforward.

Lemma 2.2. (1) When p 6= 3, we have
M0(x

3, 0) = 2(q−1)
3

,M1(x
3, 0) = 1,M2(x

3, 0) = 0,M3(x
3, 0) = q−1

3
,

if q ≡ 1 (mod 3),

M0(x
3, 0) = 0,M1(x

3, 0) = q,M2(x
3, 0) = 0,M3(x

3, 0) = 0,

if q ≡ 2 (mod 3).

(2) When p = 3, we have

M0(x
3, 0) = 0, M1(x

3, 0) = q, M2(x
3, 0) = 0, M3(x

3, 0) = 0,

M0(x
3, 1) =

2q

3
, M1(x

3, 1) = 0, M2(x
3, 1) = 0, M3(x

3, 1) =
q

3
,

M0(x
3, α) = 0, M1(x

3, α) = q, M2(x
3, α) = 0, M3(x

3, α) = 0.

Now we introduce the concept of cyclotomic number, which will be used later. For
0 6 i, j 6 1, define the cyclotomic numbers of order 2 as

(i, j)q = |(1 + C
(2,q)
i ) ∩ C(2,q)

j |.

The cyclotomic numbers of order 2 are well known, see for instance [26].

Lemma 2.3. Let q be an odd prime power. If q ≡ 1 (mod 4), we have

(0, 0)q =
q − 5

4
, (0, 1)q = (1, 0)q = (1, 1)q =

q − 1

4
.

If q ≡ 3 (mod 4), we have

(0, 1)q =
q + 1

4
, (0, 0)q = (1, 0)q = (1, 1)q =

q − 3

4
.

Employing the cyclotomic numbers of order 2, we proceed to prove the following
preparatory lemma.

Lemma 2.4. Let Tr be the absolute trace defined on Fq. For the equations x3−x− c = 0
or x3 − αx− c = 0, assume that x0 ∈ Fq is a solution.

(1) When p = 2, we have

|{x ∈ Fq | x3 − x− c = 0}| =


1 if Tr( 1

x0
) = Tr(1

c
) = Tr(1) + 1,

2 if x0 ∈ {0, 1}, or equivalently, c = 0,

3 if Tr( 1
x0

) = Tr(1
c
) = Tr(1), x0 6= 1.

Consequently,{
M0(x

3, 1) = q+1
3
,M1(x

3, 1) = q
2
− 1,M2(x

3, 1) = 1,M3(x
3, 1) = q−2

6
, if m odd,

M0(x
3, 1) = q−1

3
,M1(x

3, 1) = q
2
,M2(x

3, 1) = 1,M3(x
3, 1) = q−4

6
, if m even.
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(2) When p = 3, we have

|{x ∈ Fq | x3 − x2 − c = 0}| =


1 if 2x0 + 1 ∈ C(2,q)

1 ,

2 if x0 ∈ {0, 1}, or equivalently, c = 0,

3 if 2x0 + 1 ∈ C(2,q)
0 and x0 6= 0.

Consequently, we have

M0(x
3 − x2, 0) =

q

3
, M1(x

3 − x2, 0) =
q − 1

2
,

M2(x
3 − x2, 0) = 1, M3(x

3 − x2, 0) =
q − 3

6
.

(3) When p > 3, for β ∈ {1, α} and

j =

{
1 if β = 1,

−1 if β = α,

we have

|{x ∈ Fq | x3 − βx− c = 0}| =


1 if 1− 3x20

4β
∈ βC(2,q)

1 ,

2 if 3 ∈ βC(2,q)
0 and x20 ∈ {

β
3
, 4β

3
},

3 if 1− 3x20
4β
∈ βC(2,q)

0

and x20 6=
β
3

whenever 3 ∈ βC(2,q)
0 .

Consequently, we have

M0(x
3, β) = q−1

3
,M1(x

3, β) = q−j
2
,M2(x

3, β) = 1 + j,M3(x
3, β) = q−4−3j

6
,

if p ≡ 1 (mod 12) or m even,

M0(x
3, β) = q−1

3
,M1(x

3, β) = q+j
2
,M2(x

3, β) = 1− j,M3(x
3, β) = q−4+3j

6
,

if p ≡ 7 (mod 12) and m odd,

M0(x
3, β) = q+1

3
,M1(x

3, β) = q−2+j
2

,M2(x
3, β) = 1− j,M3(x

3, β) = q−2+3j
6

,

if p ≡ 5 (mod 12) and m odd,

M0(x
3, β) = q+1

3
,M1(x

3, β) = q−2−j
2

,M2(x
3, β) = 1 + j,M3(x

3, β) = q−2−3j
6

,

if p ≡ 11 (mod 12) and m odd.

Proof. We first prove (1). Suppose x3 − x− c = 0 has exactly two solutions in Fq. Then
x3−x−c = (x−x1)(x−x2)2 for some distinct x1, x2 ∈ Fq. Comparing the coefficients, we
have x1 = 0, x2 = 1, and c = 0. Therefore, M2(x

3, 1) = 1 as x3−x−c = 0 has exactly two
solutions in Fq if and only if c = 0 and the two solutions are 0 and 1. Next, we proceed to
consider when x3 − x− c = 0 has exactly one or three solutions. Suppose x3 − x− c = 0
has one solution x0 ∈ Fq, then we can factor x3 − x − c = (x − x0)(x2 + x0x + x20 − 1),
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where c = x30 + x0. We need to check if x2 + x0x + x20 − 1 = 0 has solutions in Fq,
where x0 6∈ {0, 1}. Note that x2 + x0x + x20 − 1 = 0 is equivalent to 1 + 1

x20
= ( x

x0
)2 + x

x0
.

Hence, x2 + x0x + x20 − 1 = 0 has no solution if and only if Tr( 1
x0

) = Tr(1) + 1, and

two solutions if and only if Tr( 1
x0

) = Tr(1). Note that Tr(1
c
) = Tr( 1

x0+1
( 1
x0

+ 1
x0+1

)) =

Tr( 1
x0

+ 1
x0+1

+ 1
(x0+1)2

) = Tr( 1
x0

). If m is odd, then there are q
2
−1 choices of x0 ∈ Fq\{0, 1},

such that Tr( 1
x0

) = Tr(1) + 1 = 0. Thus, M1(x
3, 1) = q

2
− 1. Moreover, there are q

2
− 1

choices of x0 ∈ Fq\{0, 1}, such that Tr( 1
x0

) = Tr(1) = 1. Thus, M3(x
3, 1) = 1

3
( q
2
−1) = q−2

6

and therefore, the value of M0(x
3, 1) follows immediately. Similar arguments lead to the

values of Mi(x
3, 1) when m is even.

The proofs of (2) and (3) are very similar to each other. Below, we only prove (3)
with β = α. Suppose x3−αx− c = 0 has exactly two solutions in Fq. Then x3−αx− c =
(x − x1)(x − x2)

2 for some distinct x1, x2 ∈ Fq. Comparing the coefficients, we have
x21 = 4α

3
, x22 = α

3
, and x1 + 2x2 = 0. Hence, x3 − αx − c = 0 has two solutions in Fq

if and only if 3 ∈ αC(2,q)
0 and c = ±2α

3

√
α
3
. In this case, we have M2(x

3, α) = 2, where

{2
√

α
3
,−
√

α
3
} and {−2

√
α
3
,
√

α
3
} are two sets of solutions. Next, we proceed to consider

when x3 − αx − c = 0 has exactly one or three solutions. Since x3 − αx − c = 0 has
one solution x0 ∈ Fq, we can factor x3 − αx − c = (x − x0)(x2 + x0x + x20 − α), where
c = x30 − αx0. We need to check if x2 + x0x + x20 − α = 0 has solutions in Fq, where

x20 6∈ {α3 ,
4α
3
}. Since x2 + x0x + x20 − α = 0 is equivalent to (x + x0

2
)2 = α − 3x20

4
, it

has zero or two solutions if and only if 1 − 3x20
4α
∈ C

(2,q)
0 or 1 − 3x20

4α
∈ C

(2,q)
1 . We first

consider the case of q ≡ 1 (mod 4). If 3 ∈ C
(2,q)
0 , then the number of nonzero square

x20 ∈ C
(2,q)
0 , such that 1 − 3x20

4α
∈ C(2,q)

0 , is equal to (1, 0)q = q−1
4

. Note that when x0 = 0,

we have 1 − 3x20
4α

= 1 ∈ C
(2,q)
0 . Thus, M1(x

3, α) = 2 · q−1
4

+ 1 = q+1
2

. Similarly, the

number of nonzero square x20 ∈ C
(2,q)
0 , such that 1− 3x20

4α
∈ C(2,q)

1 , is equal to (1, 1)q = q−1
4

.

Hence, M3(x
3, α) = 2 · q−1

4
· 1
3

= q−1
6

. If 3 ∈ C(2,q)
1 , then the number of nonzero square

x20 ∈ C
(2,q)
0 \ {α

3
, 4α

3
}, such that 1 − 3x20

4α
∈ C

(2,q)
0 , is equal to (0, 0)q = q−5

4
. Note that

when x0 = 0, we have 1 − 3x20
4α

= 1 ∈ C
(2,q)
0 . Thus, M1(x

3, α) = 2 · q−5
4

+ 1 = q−3
2

.

Similarly, the number of nonzero square x20 ∈ C
(2,q)
0 \ {α

3
, 4α

3
}, such that 1 − 3x20

4α
∈ C(2,q)

1 ,

is equal to (0, 1)q − 1 = q−5
4

. Note that a minus one appears in the previous equation,

as 1 − 3x20
4α
∈ C

(2,q)
1 when x20 = α

3
. Therefore, M3(x

3, α) = 2 · q−5
4
· 1
3

= q−5
6

. Note that

3 ∈ C(2,q)
0 if and only if 3 ∈ C(2,p)

0 or m is even. Consequently, we have

3 ∈

{
C

(2,q)
0 if p ≡ 1, 11 (mod 12) or m even,

C
(2,q)
1 if p ≡ 5, 7 (mod 12) and m odd.

Hence, q ≡ 1 (mod 4) and 3 ∈ C(2,q)
0 is equivalent to p ≡ 1 (mod 12) or m even. Similarly,

q ≡ 1 (mod 4) and 3 ∈ C
(2,q)
1 is equivalent to p ≡ 5 (mod 12) and m odd. Therefore,

two out of the four cases in (3) with β = α have been completed by the above argument.
Applying an analogous approach to the q ≡ 3 (mod 4) case, we complete the proof of (3)
with β = α.
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Remark 2.5. We note that for Fq = F2m , the value of Mi(x
3, 1) has been computed in [20,

Appendix]. Moreover, as a special case, the multiplicity distribution of x3 follows from
the result of Bluher [3, Theorem 5.6], see also [22, Proposition B.9].

Combining Lemmas 2.1, 2.2 and 2.4, we can completely determine the multiplicity
distribution of degree three polynomials.

Theorem 2.6. The multiplicity distribution of f(x) = x3 − ax2 over Fq = Fpm is as
follows.

(1) When p = 2, if m odd, then we have
M0(f, b) = 0,M1(f, b) = q,M2(f, b) = 0,M3(f, b) = 0,

if a = b = 0, or a 6= 0, b
a2

= 1,

M0(f, b) = q+1
3
,M1(f, b) = q

2
− 1,M2(f, b) = 1,M3(f, b) = q−2

6
,

if a = 0, b 6= 0, or a 6= 0, b
a2
6= 1,

and if m even, then we have
M0(f, b) = 2(q−1)

3
,M1(f, b) = 1,M2(f, b) = 0,M3(f, b) = q−1

3
,

if a = b = 0, or a 6= 0, b
a2

= 1,

M0(f, b) = q−1
3
,M1(f, b) = q

2
,M2(f, b) = 1,M3(f, b) = q−4

6
,

if a = 0, b 6= 0, or a 6= 0, b
a2
6= 1.

(2) When p = 3, we have{
M0(x

3, 0) = 0,M1(x
3, 0) = q,M2(x

3, 0) = 0,M3(x
3, 0) = 0, if b ∈ {0} ∪ C(2,q)

1 ,

M0(x
3, b) = 2q

3
,M1(x

3, b) = 0,M2(x
3, b) = 0,M3(x

3, b) = q
3
, if b ∈ C(2,q)

0 .

Moreover,

M0(f, b) =
q

3
, M1(f, b) =

q − 1

2
, M2(f, b) = 1, M3(f, b) =

q − 3

6
,

where a 6= 0 and b ∈ Fq.

(3) When p > 3, if p ≡ 1 (mod 12) or m even, or p ≡ 7 (mod 12) and m odd, set

j =

{
1 if p ≡ 1 (mod 12) or m even,

−1 if p ≡ 7 (mod 12) and m odd.

Then we have

M0(f, b) = 2(q−1)
3

,M1(f, b) = 1,M2(f, b) = 0,M3(f, b) = q−1
3
,

if a = b = 0, or a 6= 0, b
a2

= −1
3
,

M0(f, b) = q−1
3
,M1(f, b) = q−j

2
,M2(f, b) = 1 + j,M3(f, b) = q−4−3j

6
,

if a = 0, b ∈ C(2,q)
0 , or a 6= 0, b

a2
+ 1

3
∈ C(2,q)

0 ,

M0(f, b) = q−1
3
,M1(f, b) = q+j

2
,M2(f, b) = 1− j,M3(f, b) = q−4+3j

6
,

if a = 0, b ∈ C(2,q)
1 , or a 6= 0, b

a2
+ 1

3
∈ C(2,q)

1 .
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If p ≡ 5 (mod 12) and m odd, or p ≡ 11 (mod 12) and m odd, set

k =

{
1 if p ≡ 5 (mod 12) and m odd,

−1 if p ≡ 11 (mod 12) and m odd.

Then we have

M0(f, b) = 0,M1(f, b) = q,M2(f, b) = 0,M3(f, b) = 0,

if a = b = 0, or a 6= 0, b
a2

= −1
3
,

M0(f, b) = q+1
3
,M1(f, b) = q−2+k

2
,M2(f, b) = 1− k,M3(f, b) = q−2+3k

6
,

if a = 0, b ∈ C(2,q)
0 , or a 6= 0, b

a2
+ 1

3
∈ C(2,q)

0 ,

M0(f, b) = q+1
3
,M1(f, b) = q−2−k

2
,M2(f, b) = 1 + k,M3(f, b) = q−2−3k

6
,

if a = 0, b ∈ C(2,q)
1 , or a 6= 0, b

a2
+ 1

3
∈ C(2,q)

1 .

According to Remark 1.4(1), Theorem 1.6 immediately follows from Theorem 2.6.

Remark 2.7. Let f ∈ Fq[x] be a polynomial of degree 2 6 d 6 q − 1. Define

Nf = {c ∈ Fq | f(x) + cx is a permutation over Fq}.

Lower and upper bounds on the non-hitting index v0(f) involving q, d and |Nf | were
derived in [22, Proposition 3.4]. More precisely, we have

dq − 1

d
e(q − |Nf |) 6 v0(f) 6 (q − dq

d
e)(q − |Nf |). (2.1)

Since the size of Nf is in general difficult to compute, the tightness of the bounds in (2.1)
remains unclear. On the other hand, Theorem 1.6 provides some instances where the
bounds are actually tight, which can be achieved by polynomials of the form x3− ax2. In
fact, the lower bound in (2.1) is tight, when p = 2, m odd, or p ≡ 5, 11 (mod 12), m odd,
or p = 3, a 6= 0. The upper bound in (2.1) is tight, when p = 3 and a = 0.

Let f be a polynomial over Fq. For b ∈ Fq and 0 6 i 6 q, define

M∗
i (f, b) = |{c ∈ Fq | f(x)− bx− c = 0 has i nonzero solutions in Fq}|.

Employing Theorem 2.6, we can derive the intersection distribution of some other mono-
mials closely related to degree three polynomials.

Theorem 2.8. Let f(x) = xd be a polynomial over Fq. Then the following holds.

(1) If p = 2, m odd and d ∈ { q+1
3
, q − 3}, then

v0(f) =
q2 − 1

3
, v1(f) =

q2 − q + 2

2
,

v2(f) = q − 1, v3(f) =
(q − 1)(q − 2)

6
.
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(2) If p = 2, m even and d = q − 3, then

v0(f) =
(q − 1)2

3
, v1(f) =

3q2 + 7q − 4

6
, v2(f) = 0,

v3(f) =
(q − 1)(q − 4)

6
, v4(f) =

q − 1

3
.

(3) If p = 3 and d ∈ {2q
3
, q − 3}, then

v0(f) =
(2q + 3)(q − 1)

6
, v1(f) =

q2 − 2q + 3

2
,

v2(f) =
3(q − 1)

2
, v3(f) =

(q − 1)(q − 3)

6
.

(4) If p > 3, q ≡ 1 (mod 3) and d = q − 3, then

v0(f) =
(2q + 1)(q − 1)

6
, v1(f) =

3q2 − 2q + 5

6
, v2(f) =

3(q − 1)

2
,

v3(f) =
(q − 1)(q − 7)

6
, v4(f) =

q − 1

3
.

(5) If p > 3, q ≡ 2 (mod 3) and d ∈ { q+1
3
, q − 3}, then

v0(f) =
(2q + 5)(q − 1)

6
, v1(f) =

q2 − 4q + 5

2
,

v2(f) =
5(q − 1)

2
, v3(f) =

(q − 1)(q − 5)

6
.

Proof. We only prove (4), since the other cases are similar. For b, c ∈ Fq, consider the
number of solutions to the equation xq−3 − bx − c = 0. Note that 0 is a solution if and
only if c = 0. Clearly,

|{x ∈ Fq | xq−3 − bx = 0}| =

{
1 if b /∈ C(3,q)

0 ,

4 if b ∈ C(3,q)
0 .

If c 6= 0, then it is easy to see that every nonzero solution to xq−3 − bx − c = 0 is also
a nonzero solution to ( 1

x
)3 − c

x
− b = 0. Hence, we need to count the number of nonzero

solution to x3− cx− b = 0, where b ∈ Fq and c 6= 0. Note that x3− cx− b = 0 has a zero
solution if and only if b = 0. Moreover, x3−cx = 0 has 3 solutions and 2 nonzero solutions
if and only if c ∈ C(2,q)

0 , and has 1 solution and no nonzero solution if and only if c ∈ C(2,q)
1 .

Thus, it remains to compute M∗
i (x3, c), for each c ∈ F∗q. Employing Theorem 2.6(3), we

have{
M∗

0 (x3, c) = q−1
3
,M∗

1 (x3, c) = q−j
2
,M∗

2 (x3, c) = 2 + j,M∗
3 (x3, c) = q−10−3j

6
, if c ∈ C(2,q)

0 ,

M∗
0 (x3, c) = q+2

3
,M∗

1 (x3, c) = q+j−2
2

,M∗
2 (x3, c) = 1− j,M∗

3 (x3, c) = q−4+3j
6

, if c ∈ C(2,q)
1 ,
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where

j =

{
1 if p ≡ 1 (mod 12) or m even,

−1 if p ≡ 7 (mod 12) and m odd.

Combining the above observations, we derive the intersection distribution.

So far, not much is known about the non-hitting index of monomials. Employing
Theorems 1.6 and 2.8, in Table 2.1, we give an update of [22, Table 3.2], where an entry
with superscript � represents the non-hitting index derived from Theorems 1.6 and 2.8,
an entry with superscript F represents the non-hitting index which has not yet been
understood, an entry without superscript represents the non-hitting index known before.
Note that in the table, when (d, q − 1) = 1, we group d and its inverse modulo q − 1
together. As we shall see, when q 6 11, the non-hitting index of each monomial has been
explained.

Table 2.1: The non-hitting index of all power mappings in Fq, q 6 16
q (d, v0(x

d))
2 (1, 1)
3 (1, 2), (2, 3)
4 (1, 3), (2, 6), (3, 5)
5 (1, 4), (2, 10), (3, 8), (4, 7)
7 (1, 6), (2, 21), (3, 16), (4, 15), (5, 18), (6, 11)
8 (1, 7), ({2, 4}, 28), ({3, 5}, 21), (6, 28), (7, 13)
9 (1, 8), (2, 36), (3, 24), (4, 30), (5, 24), (6, 28)�, (7, 32), (8, 15)
11 (1, 10), (2, 55), ({3, 7}, 40)�, (4, 45)�, (5, 38), (6, 35), (8, 45)�, (9, 50), (10, 19)

13
(1, 12), (2, 78), (3, 56)�, (4, 57)F, (5, 60)F, (6, 58), (7, 48), (8, 69)F, (9, 56)F,
(10, 54)�, (11, 72), (12, 23)

16
(1, 15), ({2, 8}, 120), (3, 85), (4, 60), (5, 102), (6, 85)F, ({7, 13}, 75)�, (9, 85),
(10, 87)F, (11, 90)F, (12, 70)F, (14, 120), (15, 29)

3 Monomials having the same intersection distribution as x3

A polynomial f ∈ Fq[x] is called x3-like, if it has the same intersection distribution as x3

over Fq. In this section, inspired by the open problem of classifying o-monomials, which is
equivalent to finding all monomials over Fq = F2m with the same intersection distribution
as x2, we consider x3-like monomials. First of all, we display several classes of x3-like
monomials.

Theorem 3.1. (1) When p = 2 and 1 6 d 6 q − 1, the monomial xd is x3-like in the
following cases:

(1a) d = 2i + 1, gcd(i,m) = 1,

(1b) d ≡ (2i + 1)−1 (mod q − 1), gcd(i,m) = 1, m odd,
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(1c) d ≡ −2i (mod q − 1), gcd(i,m) = 1, m odd.

(2) When p = 3, the monomial xd is x3-like in the following case:

(2a) d = 3i, gcd(i,m) = 1.

(3) When p > 3, the monomial xd is x3-like in the following cases:

(3a) d = 3,

(3b) d = 2q−1
3

, p ≡ 5 (mod 6), m odd, where 2q−1
3

is the inverse of 3 modulo q − 1.

The proof of the above theorem follows from Remark 3.3 below. As we shall see, Theo-
rem 3.1 contains the obvious x3-like monomials. Besides, there are more monomials which
are conjectured to be x3-like. Below, we propose two conjectures based on a numerical
experiment done for all monomials over Fq in the following ranges:

· p = 2 and 1 6 m 6 21,

· p = 3 and 1 6 m 6 13,

· p > 3 and q 6 105.

Conjecture 3.2. (1) The following two families of monomials xd over Fq = F3m are
x3-like 1:

· d = 3(m+1)/2 + 2 and d−1, m odd,

· d = 2 · 3m−1 + 1 and d−1, m odd.

(2) The two families in Part (1), plus those in Theorem 3.1, are all the x3-like monomials.

Remark 3.3.

(1) When p = 2, Family (1a) in Theorem 3.1 contains quadratic monomials, whose
intersection distribution follows from [3, Theorem 5.6] (see also [22, Proposition
B.9]). The monomials in (1a) are permutations whenever m is odd. Their inverses
are exactly those in Family (1b). The monomials in Family (1c) are closely related
to quadratic monomials, since for each b, c ∈ Fq, the equations x−2

i − bx − c = 0

and bx2
i+1− cx2i−1 = 0 have the same nonzero solutions, and replace x by 1

y
in the

latter one, we have y2
i+1− cy− b = 0, which goes back to the quadratic monomials

case. Each monomial in Family (1c) has an inverse belonging to the same family.

(2) When p > 3, the monomial in Family (3a) of Theorem 3.1 is a permutation if and
only if p ≡ 5 (mod 6) and m being odd. Hence, Family (3b) consists of the inverses
of Family (3a) whenever they exist.

1This conjecture has been stated in a preprint version of this paper. Based on the knowledge of the
preprint, Li, Li, and Qu proved Conjecture 3.2(1) [23].
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(3) According to Parts (1) and (2), when p 6= 3, all x3-like monomials are the obvious
ones. In contrast, the p = 3 case is more interesting since some less obvious mono-
mials occur. On one hand, the Family (2a) contains linearized monomials, whose
proof is easy (see for instance [22, Table 3.1]). Moreover, each monomial in Family
(2a) has an inverse belonging to the same family. On the other hand, the two more
families in Conjecture 3.2(1) are still mysterious.

(4) It is worthy to note that the exponents in Conjecture 3.2(1) are all three-valued
decimations in regard to the cross-correlation distribution of ternary m-sequences
(see [11, Theorem 6(A)] and [17, Theorem 4.9]). We note that for 1 6 i 6 m − 1,
the decimations d and 3id have the same cross-correlation distribution. On the
other hand, we think the intersection distribution is a more subtle property, since
for 1 6 i 6 m− 1, xd and x3

id over F3m have different intersection distributions in
general.

Next, we make some progress towards Conjecture 3.2(2), by providing some restrictions
on the monomials satisfying (1.2) or (1.3). Recall that an affine line is an i-secant line to
Gf , if it intersects Gf in exactly i points. Since every pair of distinct points in Gf could

determine a 2-secant line, the largest value of v2(f) is q(q−1)
2

. In this sense, we observe
that v2(f) = q− 1 in (1.2) and v2(f) = 0 in (1.3) are both very small, which means there
are very few 2-secant lines to Gf . Next, we are going to show that this unusual geometric
property can be interpreted in an algebraic way, which gives strong restrictions on the
monomials satisfying (1.2) or (1.3).

Considering monomials with intersection distribution (1.2), we need to understand
under what conditions, there are exactly q − 1 distinct 2-secant lines to Gf . As a prepa-

ration, we have the following two lemmas. We write gd(x) = xd−1
x−1 and use Hq,d = {gd(x) |

x ∈ Fq \ {1}} to denote the image set of gd(x) over Fq \ {1}. The following lemma is easy
to see.

Lemma 3.4. Let f be a polynomial over Fq. For distinct x1, x2 ∈ Fq with x1 6= 0, write
y = x2

x1
∈ Fq \ {1}. Then we have the following.

(1) Two points (x1, f(x1)), (x2, f(x2)) ∈ Gf determine a 2-secant line to Gf if and only

if the equation f(x)−f(x1)
x−x1 = f(x2)−f(x1)

x2−x1 has exactly one solution x = x2. In particular,

if f(x) = xd, then the two points (x1, x
d
1), (x2, x

d
2) ∈ Gf determine a 2-secant line to

Gf if and only if yd−1
y−1 ∈ Hq,d has exactly one preimage y under gd. Furthermore, if

x2 6= 0 or equivalently y 6= 0, by interchanging the roles of x1 and x2, the two points

(x1, x
d
1), (x2, x

d
2) ∈ Gf determine a 2-secant line to Gf if and only if (1/y)d−1

1/y−1 ∈ Hq,d

has exactly one preimage 1/y under gd.

(2) For f(x) = xd and each y ∈ Fq \ {1} such that yd−1
y−1 has exactly one preimage y

under gd, the q− 1 pairs of distinct points {{(x1, xd1), (x2, xd2)} | x1, x2 ∈ F∗q, x2x1 = y}
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determine q − 1 distinct 2-secant lines to Gf . Moreover, suppose that

{y ∈ Fq \ {1} | y
d−1
y−1 has exactly one preimage y under gd}

={y1, y−11 , y2, y
−1
2 , · · · , ys, y−1s , y′1, y

′
2, · · · , y′t},

where no element in {y′1, y′2, · · · , y′t} is the inverse of any other element. Then there
are exactly (s+ t)(q − 1) distinct 2-secant lines to Gf .

(3) The two points (x1, f(x1)), (x2, f(x2)) ∈ Gf determine a 3-secant line to Gf if and

only if the equation f(x)−f(x1)
x−x1 = f(x2)−f(x1)

x2−x1 has exactly two solutions. In particular,

if f(x) = xd, then the two points (x1, x
d
1), (x2, x

d
2) ∈ Gf determine a 3-secant line to

Gf if and only if yd−1
y−1 ∈ Hq,d has exactly two preimages under gd.

In the case that z ∈ Hq,d has exactly one preimage under gd, we have the following
lemma providing crucial information about the images and the preimages of gd.

Lemma 3.5. Let f(x) = xd be over Fq. Suppose z ∈ Hq,d has exactly one preimage
y ∈ Fq \ {1} under gd. Then we have the following:

(1) If z = 0, then q is odd, d is even and y = −1.

(2) If y /∈ {0,−1}, then z /∈ {0, 1}, and y−d+1z /∈ {0, 1, z} also has exactly one preimage
1
y
∈ Fq \ {0,±1}.

(3) If q is even and Hq,d has exactly one element z with exactly one preiamge y under
gd, then (y, z) = (0, 1).

(4) If q is odd and Hq,d has exactly two elements z, z′ with exactly one preimage under gd,
say y, y′ respectively, then either (y, z) = (0, 1) and (y′, z′) = (−1, 0), or y /∈ {0,−1},
y′ = 1

y
and z′ = y−d+1z.

Proof. (1) If 0 ∈ Hq,d has exactly one preimage y under gd, then (d, q− 1) = 2. Thus q is
odd and d is even, which implies y = −1.

(2) Since y 6= −1, by Part (1), z 6= 0 and 1
y
6= −1. Since y 6= 0, then z 6= 1 and y−d+1 6=

1, which implies y−d+1z 6= z and y 6= 1. Since z = yd−1
y−1 , we have y−d+1z = (1/y)d−1

(1/y)−1 . By

Lemma 3.4(1), y−d+1z = (1/y)d−1
(1/y)−1 has exactly one preimage 1

y
∈ Fq \ {0,±1} under gd. As

the image of 1
y
/∈ {0,±1} under gd, the element y−d+1z /∈ {0, 1}.

(3) Since Hq,d has exactly one element z with exactly one preimage y under gd, by
Part (2), y ∈ {0,−1}. Note that q being even forces y = 0. Consequently, (y, z) = (0, 1).

(4) If y /∈ {0,−1}, then by Part (2), we have y′ = 1
y

and z′ = y−d+1z. If y ∈ {0,−1},
first, assume y = 0 and therefore z = 1. Suppose y′ /∈ {0,−1}, then by Part (2), z =
1, z′, y′−d+1z′ are distinct and all have exactly one preimage under gd, which is impossible.
Hence, y′ = −1 and z′ ∈ {0, 1}. Note that z = 1 has exactly one preimage, then z′ 6= 1
and (y′, z′) = (−1, 0).
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Now we are ready to derive some restrictions on monomials satisfying (1.2).

Theorem 3.6. Let f(x) = xd be over Fq satisfying (1.2). Then

(1) Each element in Hq,d has either one or two preimages under gd. Furthermore, the
number of elements in Hq,d having exactly one preimage under gd is either one or
two.

(2) If q is even, then there exists exactly one element z ∈ Hq,d with exactly one preimage
y under gd, where (y, z) = (0, 1).

(3) If q is odd, then there exist exactly two elements z, z′ ∈ Hq,d with exactly one preim-
age under gd, say y, y′ respectively, where y /∈ {0,−1}, y′ = 1

y
and z′ = y−d+1z.

(4)

(d, q − 1) =

{
1 if 0 /∈ Hq,d,

3 if 0 ∈ Hq,d.

Proof. (1) Since vi(f) = 0 for each i > 3, then by Lemma 3.4, each element in Hq,d has
either one or two preimages. Consider the number of elements in Hq,d, which has exactly
one preimage. By Lemmas 3.4(2), if this number is either zero or at least three, then
v2(f) = 0 or v2(f) > 2(q − 1), which contradicts (1.2). Hence, the number is either one
or two.

(2) If q is even, then the preimage set Fq \ {1} has odd size q− 1. Combining Part (1)
and the parity, there exists exactly one element z in Hq,d, which has exactly one preimage
y under gd. By Lemma 3.5(3), we have (y, z) = (0, 1).

(3) If q is odd, then the preimage set Fq \ {1} has even size q− 1. Combining Part (1)
and the parity, there exists two elements z, z′ ∈ Hq,d with exactly one preimage under gd.
Suppose z = gd(y) and z′ = gd(y

′). By Lemma 3.5(4), we have either (y, z) = (0, 1) and
(y′, z′) = (−1, 0), or y /∈ {0,−1}, y′ = 1

y
and z′ = y−d+1z. According to Lemma 3.4(2),

the former case implies v2(f) > 2(q − 1), which contradicts (1.2).
(4) If 0 /∈ Hq,d, then clearly (d, q− 1) = 1. If 0 ∈ Hq,d, then 0 has exactly either one or

two preimages under gd. If 0 has exactly one preimage under gd, then by Lemma 3.5(1),
we have q being odd and the preimage is −1. This contradicts Part (3). Hence, 0 has
exactly two preimages under gd and therefore (d, q − 1) = 3.

Consequently, we have the following necessary and sufficient condition characterizing
monomials over Fq satisfying (1.2), when q is not divisible by 3.

Theorem 3.7. Let f(x) = xd be over Fq where (3, q) = 1. Then f satisfies (1.2) if and
only if one of the following holds.

(1) If q is even, then 0 is the only preimage of 1 ∈ Hq,d under gd and gd|Fq\{0,1} is 2-to-1.

(2) If q is odd, then there exist exactly two elements z, z′ ∈ Hq,d with exactly one preim-
age under gd, say y, y′ respectively, where y /∈ {0,−1}, y′ = 1

y
and z′ = y−d+1z, and

gd|Fq\{1,y,y′} is 2-to-1.
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In both q even and odd cases, we have

(d, q − 1) =

{
1 if 0 /∈ Hq,d,

3 if 0 ∈ Hq,d.

Proof. The necessity follows from Theorem 3.6 and we only need to consider the suffi-
ciency. For Part (1), by employing Lemma 3.4 and Theorem 3.6(2), we have v2(f) = q−1
and vi(f) = 0 for each i > 3. For Part (2), by employing Lemma 3.4 and Theorem 3.6(3),
we have v2(f) = q − 1 and vi(f) = 0 for each i > 3. Together with Proposition 1.2, we
conclude that f satisfies (1.2). The greatest common divisor (d, q − 1) follows from the
2-to-1 property.

Similarly, we have the following necessary and sufficient condition characterizing mono-
mials over Fq satisfying (1.3), when q is a power of 3.

Theorem 3.8. Let f(x) be over Fq = F3m. Then f satisfies (1.3) if and only if for each

y ∈ Fq, the function f(x+y)−f(y)
x

∣∣∣
F∗q

is 2-to-1. In particular, f(x) = xd satisfies (1.3) if and

only if the following holds:

(1) gcd(d− 1, q − 1) = 2,

(2) gd|Fq\{1} is 2-to-1, which implies

(d, q − 1) =

{
1 if 0 /∈ Hq,d,

3 if 0 ∈ Hq,d.

Proof. A polynomial f has intersection distribution (1.3) if and only if every two distinct
points in Gf lead to a unique third point in Gf , which lies on the line determined by these

two points. Hence, for two distinct x1, x2 ∈ Fq, the equation f(x)−f(x1)
x−x1 = f(x2)−f(x1)

x2−x1 has a

unique solution x ∈ Fq \ {x1, x2}. Equivalently, for each y ∈ Fq, we have f(x)−f(y)
x−y

∣∣∣
Fq\{y}

is 2-to-1. Therefore, f has intersection distribution (1.3) if and only if the function
f(x+y)−f(y)

x

∣∣∣
F∗q

is 2-to-1 for each y ∈ Fq. Consider f(x) = xd. For y = 0, the mapping

f(x)
x

= xd−1
∣∣∣
F∗q

is 2-to-1 if and only if (d − 1, q − 1) = 2. For y ∈ F∗q, the mapping

f(x)−f(y)
x−y = xd−yd

x−y

∣∣∣
Fq\{y}

is 2-to-1 if and only if gd|Fq\{1} is 2-to-1. The greatest common

divisor (d, q − 1) follows from the 2-to-1 property.

Theorems 3.7 and 3.8 can be viewed as analogies of [18, Theorem 8.22, Corollary 8.24],
which give characterizations of o-polynomials and o-monomials. The strict restrictions in
these theorems indicate that monomials with intersection distribution (1.2) or (1.3) are
very rare. Actually, these two theorems help to significantly reduce the computational
complexity of verifying whether a monomial has intersection distribution (1.2) or (1.3),
which leads to Conjecture 3.2.
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4 Nonisomorphic Steiner triple systems arising from monomials

In this section, we shall observe that a polynomial over F3m with intersection distribution
(1.3) produces a Steiner triple system. More interestingly, some nonisomorphic Steiner
triple systems are obtained by employing distinct polynomials over F3m .

Recall that a Steiner triple system STS(v) is a set system (V ,B), where V is a point
set of v elements, and B is a block set consisting of distinct 3-subsets, such that every
two points are contained in exactly one block. Two Steiner triple systems (V1,B1) and
(V2,B2) are isomorphic, if there exists a bijection between V1 and V2, which also induces
a bijection between B1 and B2. For a comprehensive survey about Steiner triple systems,
please refer to [9, Section II.2]. The following is a primary example of Steiner triple
systems STS(v) with v being a power of 3.

Example 4.1. ([9, Section II.2, Theorem 2.10]) Let V = F3m and

B = {{x1, x2, x3} | x1, x2, x3 ∈ F3m distinct, x1 + x2 + x3 = 0}.

Then (V ,B) forms an STS(3m). In another word, the points and lines in the affine
geometry AG(m, 3) generate an STS(3m), which is therefore named an affine triple system.

Next, we propose a construction of STS(3m) arising from polynomials over F3m . For a
polynomial f over Fq, it is called Fp-linearized, if f(x+y) = f(x)+f(y) for each x, y ∈ Fq
and f(ax) = af(x) for each x ∈ Fq and a ∈ Fp. Note that f is Fp-linearized only if
f(0) = 0.

Theorem 4.2. Let f be a polynomial over F3m intersection distribution (1.3). Let V =
F3m and

Bf = {{x1, x2, x3} | x1, x2, x3 ∈ F3m distinct, f(x3)−f(x1)
x3−x1 = f(x2)−f(x1)

x2−x1 }.

Then (V ,Bf ) is an STS(3m). Moreover,

(1) if f ′(x) = f(x) + bx+ c, then (V ,Bf ) and (V ,Bf ′) are the same.

(2) if f is a permutation, then (V ,Bf ) and (V ,Bf−1) are isomorphic.

(3) if f(0) = 0, then (V ,Bf ) is an affine triple system if and only if f is an F3-linearized
polynomial.

Proof. By Theorem 3.8, for each pair of distinct elements x1, x2 ∈ F3m , there is a unique
x3 ∈ F3m different from x1 and x2, such that f(x3)−f(x1)

x3−x1 = f(x2)−f(x1)
x2−x1 . Hence, Bf is well-

defined. Since every pair of distinct elements x1 and x2 determines a unique x3, which
form a block {x1, x2, x3}, then (V ,Bf ) is an STS(3m) by definition.

Part (1) follows easily from the definition of Bf and Bf ′ . For Part (2), note that
{x1, x2, x3} ∈ Bf if and only if {f(x1), f(x2), f(x3)} ∈ Bf−1 . Therefore, f is a bijection of V
and induces a bijection between Bf and Bf−1 . Thus, (V ,Bf ) and (V ,Bf−1) are isomorphic.
For Part (3), we can see that assuming f(0) = 0 does not lose any generality by Part (1).
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If f is F3-linearized, then x3 = −x1 − x2 is the unique solution to f(x)−f(x1)
x−x1 = f(x2)−f(x1)

x2−x1 ,
which leads to an affine triple system. Conversely, if (V ,Bf ) is an affine triple system,
then the summation of the elements in each block is 0. Hence, for each pair of distinct
elements x1 and x2, we have x3 = −x1−x2 and f(−x1−x2)−f(x1)

x1−x2 = f(x2)−f(x1)
x2−x1 , which implies

f(−x1 − x2) = −f(x1) − f(x2). Set x2 = 0, we have f(−x1) = −f(x1) and therefore,
f(−x1 − x2) = f(−x1) + f(−x2). Hence, f is an F3-linearized polynomial over F3m .

Combining Theorems 3.1(2) and 4.2, the affine triple system STS(3m) can be derived
by using monomial f(x) = x3

i
over F3m , where (i,m) = 1. We ask if there are other

polynomials over F3m , which produces Steiner triple system nonisomorphic to the affine
ones. In view of Conjecture 3.2(1), we compare the Steiner triple systems derived from
the two families in it and the affine triple systems when m is small.

Example 4.3. For m being odd, let f1(x) = x3, f2(x) = x3
(m+1)/2+2 and f3(x) = x2·3

m−1+1

be polynomials over F3m . According to Conjecture 3.2, f1, f2 and f3 have the same
intersection distribution for 1 6 m 6 13, m odd. Let V = F3m . A numerical experiment
indicates the following.

(1) When m = 3, since the two permutations f2(x) = x11 and f3(x) = x19 are inverses of
each other, then by Theorem 4.2(1), (V ,Bf2) and (V ,Bf3) are isomorphic. Moreover,
(V ,Bf1) and (V ,Bf2) are nonisomorphic.

(2) When m = 5, (V ,Bf1), (V ,Bf2) and (V ,Bf3) are pairwise nonisomorphic.

The isomorphism test was implemented using the build-in function “IsIsomorphic” from
the Computational Algebra System MAGMA. Assuming that Conjecture 3.2(1) is true,
we believe that fi, 1 6 i 6 3, produce three pairwise nonisomorphic STS(3m) when m > 5.

5 Application to Kakeya sets in affine planes

Let ` be the line at infinity in PG(2, q). For each point P ∈ `, define `P to be a line
through P other than `. A Kakeya set in PG(2, q) is defined to be the point set

K = (
⋃
P∈`

`P ) \ `.

If we restrict to the affine plane AG(2, q) = PG(2, q) \ `, then the Kakeya set K contains
an affine line in each direction. So far, most papers concerning Kakeya sets in affine planes
focus on Kakeya sets whose sizes are close to the lower and upper bounds [1, 2, 4, 12, 13,
14, 16]. Note that the construction of Kakeya sets is easy, since for each point P ∈ `, we
can choose an arbitrary line `P through P other than `. On the other hand, computing
the size of Kakeya set is difficult. In [13], an exhaustive search determines all possible
sizes of Kakeya sets in PG(2, q) where q 6 9. Inspired by this work, the authors of [22]
proposed explicitly constructions of Kakeya sets with nice underlying algebraic structures,
which are derived from monomials over finite fields and have previously unknown sizes.
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Along this line, we present infinite families of Kakeya sets from degree three polynomials
in this section. As a major advantage of our constructions, the sizes of proposed Kakeya
sets follow directly from the multiplicity distribution of degree three polynomials, which
have been computed in Section 2. For Kakeya sets in affine spaces with higher dimension,
please refer to [15, 19, 21, 24, 28].

First of all, we remark that the concept of intersection distribution can be defined
with respect to point sets in classical projective planes PG(2, q) [22, Definition 1.3].

Definition 5.1. Let D be a point set in PG(2, q). For 0 6 i 6 q + 1, define ui(D) to
be the number of lines in PG(2, q), which intersect D in exactly i points. The sequence
(ui(D))q+1

i=0 is the intersection distribution of D. The integer u0(D) is the non-hitting
index of D.

For a (q + 2)-set D in PG(2, q), a point P ∈ D is called an internal nucleus of D, if
each line through P intersects D in exactly one more point. The following is an alternative
viewpoint to understand Kakeya sets proposed in [2].

Lemma 5.2. [22, Lemma 4.1] Let K be a Kakeya set in PG(2, q), where K = (
⋃
P∈` `P )\`.

Define the dual Kakeya set DK to be the dual of the q+ 2 lines {`P | P ∈ `} ∪ {`}. Then
DK is a (q + 2)-set in PG(2, q) with an internal nucleus, such that |K| = q2 − u0(DK).

Therefore, computing the size of K amounts to calculating the non-hitting index of
the dual Kakeya set DK. Moreover, to construct a Kakeya set, it suffices to construct
its dual, which is a (q + 2)-set in PG(2, q) with an internal nucleus. Actually, given a
polynomial f over Fq and b ∈ Fq, we construct a dual Kakeya set

DK(f, b) := {〈(x, f(x), 1)〉 | x ∈ Fq} ∪ {〈(0, 1, 0), (1, b, 0)〉},

which has an internal nucleus 〈(0, 1, 0)〉. Indeed, the non-hitting index of DK(f, b) follows
from the multiplicity distribution of f [22, Proposition 4.3]. Consequently, we have the
following proposition. Note that for a dual Kakeya set DK(f, b), we use K(f, b) to denote
the Kakeya set dual to DK(f, b).

Proposition 5.3. For a polynomial f over Fq and b ∈ Fq, we have u0(DK(f, b)) =
v0(f)−M0(f, b) and therefore, |K(f, b)| = q2 − v0(f) +M0(f, b).

Therefore, the non-hitting index v0(f) and the intersection distribution M0(f, b) imply
the size of K(f, b). Combining Theorems 1.6, 2.6 and Proposition 5.3, we can obtain the
size of some Kakeya sets derived from monomials.

Theorem 5.4.

(1) Suppose q ≡ 0 (mod 3). Then |K(x3−ax2, b)| = 2q2+q
3

if a = 0, b /∈ C(2,q)
0 , or a 6= 0,

b ∈ Fq, and |K(x3, b)| = 2q2+3q
3

if b ∈ C(2,q)
0 .

(2) Suppose q ≡ 1 (mod 3). Then |K(x3 − ax2, b)| = 2q2+2q−1
3

if a = b = 0, or a 6= 0,
b
a2

= −1
3
, and |K(x3 − ax2, b)| = 2q2+q

3
if a = 0, b 6= 0, or a 6= 0, b

a2
6= −1

3
.
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(3) Suppose q ≡ 2 (mod 3). Then |K(x3 − ax2, b)| = 2q2+1
3

if a = b = 0, or a 6= 0,
b
a2

= −1
3
, and |K(x3 − ax2, b)| = 2q2+q+2

3
if a = 0, b 6= 0, or a 6= 0, b

a2
6= −1

3
.

In Table 5.1, we list the known sizes of Kakeya sets in PG(2, q), with prime power
q 6 19. When q 6 9, all possible sizes follow from the exhaustive search in [13, Table
1]. When 11 6 q 6 19, we only list the known sizes realizable by explicit constructions.
We note that when the sizes of the Kakeya sets are close to the lower and upper bounds,
there have been a series of literature concerning their construction and characterization
[1, 2, 4, 12, 13, 14, 16]. In the table, an entry with superscript � represents the size of
Kakeya sets following from the explicit constructions in Theorem 5.4, which are unknown
before. An entry with superscript F represents the size of Kakeya sets which do not have
explicit constructions so far. An entry without superscript represents the size of Kakeya
sets with known explicit constructions before.

Table 5.1: The known sizes of Kekaya set in PG(2, q), for prime power q 6 19

q Sizes of Kekaya sets

2 3, 4

3 7, 9

4 10, 12, 13, 16

5 17, 18, 19, 21, 25

7 31, 32F, 33, 34, 35, 36F, 37, 39, 43, 49

8 36, 40, 42, 43, 44F, 45F, 46, 47F, 48, 49, 52, 57, 64

9 49, 51F, 52, 53, 54, 55, 56F, 57, 58F, 59F, 60F, 61, 62F, 63, 67, 73, 81

11 71, 75, 77, 81�, 85, 86, 87, 91, 93, 97, 103, 111, 121

13 97, 103, 112, 115, 117�, 121, 127, 129, 133, 139, 147, 157, 169

16 136, 144, 148, 150, 160, 166, 176, 181, 192, 193, 196, 201, 208, 217, 228, 241, 256

17 161, 169, 189, 193�, 199�, 200, 209, 217, 219, 223, 229, 237, 247, 259, 273, 289

19
199, 207, 209, 247�, 253�, 259, 261, 262, 271, 273, 277, 283, 291, 301,

313, 327, 343, 361

6 Conclusion

In this paper, we determined the multiplicity distribution of polynomials with the form
x3 − ax2, which gives the intersection distribution of each degree three polynomial. In-
spired by the famous open problem of classifying o-polynomials, we initiated to classify all
monomials having the same intersection distribution as x3 and made some progress along
this line. Interestingly, when p = 3, numerical experiment indicated that some monomials
with the same intersection distribution as x3 led to nonisomorphic Steiner triple systems.
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Finally, the multiplicity distribution of x3−ax2 generated several families of Kakeya sets,
whose sizes are different comparing with the known ones.

Except Conjecture 3.2, we think the following four problems deserve further investi-
gation.

(1) In Table 2.1, the non-hitting indices of certain monomials have not been well un-
derstood. Therefore, it is interesting to give a theoretical explanation for these
non-hitting indices.

(2) In Section 3, we only considered x3-like monomials. On the other hand, the restric-
tion of being monomials is technical and one may further consider x3-like polyno-
mials. In view of Theorem 1.6, there are plenty of x3-like binomials when p 6= 3. In
addition, when p = 3, consider binomials of the form xd1 + axd2 , where a ∈ F3m and
2 < d2 < d1 < 3m. Interestingly, an exhaustive search for 1 6 m 6 5 shows that all
such x3-like binomials must be linearized. More precisely, we have (d1, d2) ∈ {(9, 3)}
if m = 3, (d1, d2) ∈ {(27, 3)} if m = 4 and (d1, d2) ∈ {(27, 9), (81, 3)} if m = 5.

(3) In Example 4.3, the fact that the Steiner triple systems being nonisomorphic follows
from a numerical computation. A theoretic proof confirming the nonisomorphism,
even only for small values of m, could be very enlightening.

(4) In Table 5.1, there are a few Kakeya sets having no theoretical constructions, whose
sizes are only known by numerical experiment. We ask for explicit constructions for
these Kakeya sets.

We mention a recent work due to Ding and Tang [10], in which polynomials over
finite fields were employed to construct combinatorial t-designs. While determining the
parameters of the t-design arising from a polynomial f is difficult in general [10], we note
that the multiplicity distribution of f implies the parameters of the associated t-design.
Therefore, this design-theoretic application supplies one more motivation to study the
multiplicity distribution of polynomials over finite fields. Finally, we note that a recent
paper by Li, Li, and Qu [23] has confirmed Conjecture 3.2(1).
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