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Abstract

A bipartite graph G(X,Y,E) with vertex partition (X,Y ) is said to have the

Normalized Matching Property (NMP) if for any subset S ⊆ X, we have |N(S)|
|Y | >

|S|
|X| . In this paper, we prove the following results about the Normalized Matching
Property.

1. The random bipartite graph G(k, n, p) with |X| = k, |Y | = n, and k 6 n <
exp(o(k)), and each pair (x, y) ∈ X × Y being an edge in G independently
with probability p has p = logn

k as the threshold for NMP. This generalizes a

classic result of Erdős-Rényi on the logn
n threshold for the existence of a perfect

matching in G(n, n, p).

2. A bipartite graph G(X,Y ), with k = |X| 6 |Y | = n, is said to be Thomason
pseudorandom (following A. Thomason (Discrete Math., 1989)) with param-
eters (p, ε) if every x ∈ X has degree at least pn and every pair of distinct
x, x′ ∈ X has at most (1 + ε)p2n common neighbors. We show that Thoma-
son pseudorandom graphs satisfy the following: Given ε > 0 and n > k both
sufficiently large, there exist functions f, g with f(x), g(x)→ 0 as x→ 0, and
sets DelX ⊂ X, DelY ⊂ Y with |DelX | 6 f(ε)k, |DelY | 6 g(ε)n such that
G(X \DelX , Y \DelY ) has NMP. En route, we prove an “almost”vertex decom-
position theorem: Every Thomason pseudorandom bipartite graph G(X,Y )
admits - excluding a negligible portion of its vertex set - a partition of its
vertex set into graphs that are spanned by trees that have NMP, and which
arise organically through the Euclidean GCD algorithm.

Mathematics Subject Classifications: 05C80, 05C70, 06A07, 60C05
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1 Introduction

Consider the following problems:

1. Suppose k 6 n are positive integers. By a k × n star-array (or simply star-array),
we mean a k × n array whose entries are symbols from the set {0, ?}. Given a
k × n star-array, when is it possible to replace some of the ? entries of the array by
non-negative integers such that in the resulting array all the row sums equal R, and
all the column sums equal C for some integers R,C > 0?

2. Let q be a sufficiently large prime power and suppose X, Y ⊂ Fq with |Y | = 10|X|,
|X| > q/100. Is it possible to label each element of Y with some element of X such
that each element of X appears as a label exactly 10 times, and further, for each
y ∈ Y labeled x, the sum x+ y is a quadratic residue? More generally, one can ask
the same question with a subgroup H ⊂ F∗q instead of the set of quadratic residues.

In both the problems posed above, there is a natural bipartite graph G(X, Y,E) that
captures the problem in its essence: Given a star-array A, let X and Y denote the set of
rows and columns of A respectively, and a vertex x ∈ X is adjacent to y ∈ Y in G if and
only if the (x, y) entry of A corresponding to a ?. For the second problem consider the
bipartite graph G(X, Y,E) where X, Y are the given sets, and the pair (x, y) is an edge
in G if and only if x+ y ∈ H.

In the rest of the paper, G(X, Y ) shall denote a bipartite graph with vertex partition
(X, Y ); we shall drop the E in our notation for convenience. We say that G = G(X, Y )
has the Normalized Matching Property (NMP for short) if: For any S ⊆ X, if we denote

by N(S), its set of neighbors in Y , then |N(S)|
|Y | > |S|

|X| . In particular, if |X| = |Y |, then this
is the familiar Hall’s condition for the existence of a perfect matching in G.

The following theorem of Kleitman [16] gives us an equivalent formulation of NMP in
bipartite graphs:

Theorem 1. The following statements are equivalent:

• G with |X| = k, |Y | = n has NMP.

• For any independent set I in G, |IX |
k

+ |IY |
n

6 1.

• There exists a multiplicity function m : E → N0 = N∪{0} such that
∑
e3x
e∈E

m(e) (resp.

∑
e3y
e∈E

m(e)) is equal for all x ∈ X (resp. for all y ∈ Y ).

It is easy to see that the problems posed above simply ask if the associated bipartite
graphs have NMP by virtue of the third part of Theorem 1.

The Normalized Matching Property in bipartite graphs was introduced by Graham
and Harper [11] and subsequently has been a focus of study in bipartite graphs in several
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papers (for instance [16, 24]) and some monographs as well (for instance [4, 7]). The
notion also extends very naturally to finite ranked posets; for a ranked poset P , let Li
denote the set of all elements of P with rank i. Then we say that P has NMP if for
each i, the bipartite graph of poset covering relations between Li and Li+1 has NMP.
NMP posets are objects of great interest specifically in related decomposition problems
(see [12, 13, 14, 22, 23] for some decompositions results). As a concrete instance, the
Griggs conjecture which states that any unimodal NMP poset admits a nested chain
decomposition (see [14] or [25] for more details on what the definitions are) is still open -
even for posets of rank 3 - despite several attacks on the problem.

As it turns out, many interesting finite ranked posets arising from finite geometric
structures have NMP. Indeed, the Boolean poset, the poset of affine flats in a finite
projective n-dimensional space and the poset of the subgroup lattice of abelian p-groups
all have NMP (see [21, 22, 23] respectively), i.e., in each of these posets, the associated
bipartite graphs on the sets of elements of successive ranks within these posets have NMP.
As is the case with Hall’s theorem for bipartite graphs, it is clear that graphs with “high
density” are more likely to possess NMP. But in each of the instances listed above, the
associated bipartite graphs are very sparse. This raises the following natural question: At
what density does a typical bipartite graph have NMP?

To formulate the above question more precisely, we set up some asymptotic terminol-

ogy and notation. Given functions f, g, we write f � g (resp. f � g) if lim
n→∞

f(n)

g(n)
→∞

(resp. f(n)
g(n)
→ 0). We also write f = o(g) to denote that f � g. We write f = O(g)

(resp. f = Ω(g)) if there exists an absolute constant C > 0 and n0 such that for all
n > n0, |f(n)| 6 C|g(n)| (resp. if |f(n)| > C|g(n)|). If the constant C involves a related
parameter ε, then we write f = Oε(g) (resp. f = Ωε(g)) to indicate the dependence of
the implicit constant on the parameter ε.

To formalize the question posed above, we recall some standard terminology from the
theory of random graphs. For a probability space (Ω,P) we say that an event En that
depends on a parameter n occurs with high probability (abbreviated as whp) if P(En)→ 1
as n→∞. A graph property P is simply a collection of graphs, and a graph property is
called monotone if whenever G ∈ P and G ⊂ H then H ∈ P as well. The Erdős-Rényi
random graph model G(n, p) introduced in [9] is the random graph where the vertex set
is the set [n] := {1, . . . , n} and each pair {i, j} is an edge with probability p = p(n)
independently. A monotone graph property P is said to have a threshold p0 = p0(n) if
whenever p� p0 then G(n, p) has property P whp, and if p� p0 then whp G(n, p) does
not have property P . A property P is said to have a sharp threshold p0(n) if for ε > 0
and p > (1 + ε)p0, G(n, p) has property P whp and for p 6 (1 − ε)p0, G(n, p) does not
have property P whp.

The seminal paper of Erdős and Rényi [9] established sharp thresholds for several very
natural monotone graph properties. A theorem of Bollobas and Thomason [6] showed that
every monotone graph property admits a threshold. However, not all graph properties
admit sharp thresholds; for instance, the property “G(n, p) contains a cycle” admits
a threshold which is sharp on one side but not the other (see [15] for more on sharp
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thresholds). In fact, the problem of determining sharp thresholds (if the graph property
admits one) is a very popular motif in the theory of Random Graphs.

For bipartite graphs, Erdős and Rényi also introduced the random bipartite model
G(n, n, p) where the vertex set is partitioned into two sets X, Y of size n each, and each
pair {x, y} with x ∈ X, y ∈ Y is in G(n, n, p) independently with probability p. One of
the first results in this model is the result that logn

n
is a sharp threshold for the existence

of a perfect matching in G(n, n, p) [10]. As observed earlier, if k = n, NMP is the same
as Hall’s condition for bipartite graphs, so it is natural to seek the threshold for NMP in
a slightly more general model for bipartite random graphs, which is what the question
previously posed seeks to do.

Suppose k 6 n are positive integers, and let 0 6 p 6 1. Let G(k, n, p) denote the
random bipartite graph with the vertex partition given by (X, Y ) with |X| = k, |Y | = n,
and each pair (x, y) ∈ X×Y is an edge in G independently with probability p. Here both
k and n should be thought of as parameters growing to infinity with n being a function
of k that always satisfies n > k. Our first main result in this paper establishes a sharp
threshold for NMP in the sense stated above:

Theorem 2. Suppose k 6 n(k) 6 exp(o(k)), and let 0 < ε, δ < 1. There exists k0 =
k0(ε, δ) such that for k > k0(ε, δ)

1. If p > (1+ε) logn
k

then P[G(k, n, p) has NMP] > 1− δ.

2. If p 6 (1−ε) logn
k

then P[G(k, n, p) has NMP] 6 δ.

In other words, G(k, n, p) has a sharp threshold for NMP at p = logn
k

.
Note that if n > exp(k) or equivalently, if log n > k, then the expression for our

threshold exceeds one. Also, for each fixed p < 1, if C > 1 + log( 1
1−p) and n > exp(Ck),

then a simple computation shows that the probability that Y has at least one isolated
vertex is bounded away from zero (this will be clear from the proof of Theorem 2; see
Lemma 13). Hence, the range for n in the statement of the theorem is essentially the
widest possible one if one seeks a sharp threshold.

Let us now return to the problems at the beginning of this section. To check if a given
bipartite graph has NMP is computationally simple: form a bigger new bipartite graph
G′(X ′, Y ′) with |X ′| = |Y ′| = nk with X ′ consisting of by n copies of X, Y ′consisting of
k copies of Y , and x′y′ being an edge in G′ if and only if xy was an edge in G. Then it
is straightforward to see that G has NMP if and only if G′ admits a perfect matching.
Hence either problem admits a computationally simple solution. But let us relax our
requirement and seek an answer only in an approximate sense: For the first problem, is it
possible to replace each ? entry with a non-negative integer such that with the exception
of a negligible proportion of the rows/columns, the remaining rows and columns satisfy
the aforementioned property? Or in the second problem, can we ignore a negligible
proportion of elements from both sets X, Y , so that the desired property holds for the
remaining elements? Since either of the originally posed problems is equivalent to asking
if a given bipartite graph has NMP, this approximate version asks if a given bipartite
graph “almost” has NMP in a certain sense that we shall formalize below.
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The bipartite graph considered in the second problem (with the subsets of Fq) possesses
certain regularity properties that are best described as “random-like” - as we shall soon
see. Taking a cue from this, we impose the following reasonable hypotheses on bipartite
graphs that we shall consider: If all the vertices of X have “almost” the same degree,
and suppose that no two vertices of X have “too many” common neighbors in Y (so that
there isn’t a clustering of edges between some subsets of X and Y ), is there an affirmative
answer to the approximate version for these problems?

To formulate this in more precise terms, we need the notion of a pseudorandom bipartite
graph. The notion of pseudorandomness was first introduced by Thomason in the 80s [20]
and pseudorandomness in graphs is a well-studied notion (see [18] for a definitive survey).
One of the more popular and well-understood models for pseudorandomness in graphs is
the notion of an (n, d, λ) graph (see [2]). An (n, d, λ) graph is a graph on n vertices which
is d-regular and which satisfies the following property: If d = λ1 > λ2 > · · · > λn are the
eigenvalues of G then |λi| 6 λ for all i > 1.

Pseudorandom graphs, as the name suggests, have some properties very reminiscent
of random graphs, and the most well-known is the Expander-Mixing Lemma (see [2]):

Suppose G is an (n, d, λ) graph. If U,W ⊂ V (G) then |e(U,W ) − d|U ||W |
n
| 6 λ

√
|U ||W |,

where e(U,W ) denotes the number of edges of the form uw with u ∈ U and w ∈ W .
As mentioned earlier, Thomason introduced the notion of pseudorandomness which is

a little more general, and in particular, we shall - in this paper - confine our attention to
the notion of pseudorandomness in bipartite graphs as proposed by Thomason in [21].

Definition 3. Suppose 0 < p < 1, and 0 6 ε < 1. A bipartite graph G with vertex classes
X and Y of sizes k and n respectively with k 6 n is called Thomason pseudorandom with
parameters (p, ε) if every vertex in X has degree at least pn, and every pair of distinct
vertices in X have at most p2n(1 + ε) neighbors in common.

At this juncture, a few remarks are in order. Thomason’s original definition in [21]
actually only considers bipartite graphs with |X| = |Y | = n. Secondly, Thomason’s
definition in [21] is more in line with the original notion of pseudorandomness in [20]: A
graph G(X, Y ) is pseudorandom with parameters (p, µ) for some µ > 0 where the second
condition states that every pair of vertices in X have at most p2n+µ common neighbors.
The definition that we shall be using is a relaxation of the restriction that |X| = |Y |, but
also a restriction to the more natural and intuitive case where µ 6 εp2n.

Notions of pseudorandomness are usually “symmetric” or “global” in their definitions
as in the definition in [20] or in the definition of an (n, d, λ) graph. This latter notion is at
first glance somewhat asymmetric in the sense that the conditions imposed on the degrees
and codegrees are only for the vertices of X. However, it is a simple exercise (which we
shall not get into here) to show that these conditions also imply certain restrictions on
the degrees and codegrees of the vertices of Y as a consequence of the following analogue
of the expander-mixing lemma (restricted to our setup):

Theorem 4 (Theorem 2 in [21]). Let G(X, Y ) be a bipartite graph with |X| = k 6 n =
|Y |, which is Thomason pseudorandom with parameters (p, ε). Then for every subset
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A ⊆ X of size at least 1/p and every subset B ⊆ Y , with |A| = a and |B| = b,

|e(A,B)− pab| 6
√
pnab(1 + εpa).

Again, we remark that Thomason’s theorem in [21] is stated for pseudorandom bipar-
tite graphs G(X, Y ) with |X| = |Y | = n and parameters (p, µ). But a glance at the proof
there immediately tells us that the same proof works in our general setup as well. The
interesting point is that this asymmetric definition of pseudorandomness also yields the
aforementioned theorem. A heuristic and somewhat simplistic explanation for this is that
we are restricting ourselves to bipartite graphs, and it is precisely due to the bipartite
structure of the graph that the arguments go through.

Another reason why we prefer to work with this notion of pseudorandomness is that it
is combinatorial in its definition; it only considers the degrees of the vertices and codegrees
of pairs of vertices of X, which is computationally easy to verify. In addition, it is a
reasonably robust notion which also allows us to generate several non-trivial examples of
Thomason pseudorandom graphs. While it is true that many notions of pseudorandomness
do pass onto subgraphs, we did not find any concrete statement in the literature that
established the same here for this notion. So we took it on ourselves to prove its robustness;
see the lemma in the Appendix for a precise statement.

Pseudorandom graphs enjoy several very interesting properties. It is not hard to show
that (n, d, λ) graphs with d− λ > 2 are d-edge connected and as a simple consequence, it
follows that for even n, (n, d, λ) graphs have a perfect matching [18]. In the more general
context, it is conceivable that Thomason pseudorandom graphs admit “almost-perfect”
matchings, i.e., admit a perfect matching on at least (1− o(1))|V | vertices under not-too-
restrictive conditions. The second result of our paper proves a more general version of
this statement for NMP for Thomason pseudorandom graphs.

Before we formally state our result, we need the following definition.

Definition 5 (NMP-Approximability). Suppose ε > 0. For functions f, g : R+ → R+

such that f(x), g(x)→ 0 as x→ 0, a bipartite graph G(X, Y ) is said to be (f, g, ε)-NMP
approximable if there are subsets DelX ⊆ X and DelY ⊆ Y such that:

• |DelX |
|X| 6 f(ε), |DelY |

|Y | 6 g(ε)

• The bipartite subgraph induced on the sets X \DelX and Y \DelY has NMP.

We now state our second main result of the paper.

Theorem 6. Suppose 0 < ε < 1, and let ω : N → R+ be a non-negative valued function
that satisfies ω(k) → ∞ as k → ∞. There exists an integer k0 = k0(ε, ω) such that

the following holds. Suppose p > ω(k)
k

, |X| = k, |Y | = n with k0 < k 6 n, and suppose
G = G(X, Y ) is a Thomason pseudorandom bipartite graph with parameters (p, ε). Then
G is (f, g, ε)-NMP-approximable with

(a) f(x) = O(x), g(x) = O(
√
x) if n > k√

ε
and
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(b) f(x) = g(x) = O( 4
√
x log

(
1
x

)
) if n 6 k√

ε
.

Note that in the statement of Theorem 6 the bounds f = g = O(x1/4 log(1/x)) work
for all (k, n). The first part of the theorem is a stronger conclusion when n � k. At
the level of generality of the statement of Theorem 6, it may in fact be necessary to
delete some vertices from the graph in order to achieve NMP. Indeed, the definition of a
Thomason pseudorandom graph does not preclude the existence of isolated vertices; in
fact, one could add a few isolated vertices to Y to get another pseudorandom graph with
only slightly worse parameters! Also, on a less frivolous note, suppose n = O(k) and
ω(k) � log k, and consider G(k, n, p); a consequence of the proof of the second item of
Theorem 2 (which appears later in the paper as Lemma 13) shows that there are isolated
vertices in Y whp. Since G(k, n, p) is also Thomason pseudorandom whp it follows that
over the sparser regime for p (where Theorem 6 is applicable), the deletion of some vertices
is indeed necessary to arrive at the conclusion of Theorem 6

Theorem 6 essentially says that if we have a not-too-sparse pseudorandom bipartite
graph, i.e., a Thomason pseudorandom graph with p not too small, then we can remove a
small fraction of vertices from both parts such that the graph induced by the remaining
vertices has the normalized matching property. The sense of how small these sets are is
described using the notion of NMP-Approximability defined above. As we shall see, the
proof actually establishes an “approximate decomposition” theorem: the vertex set of any
Thomason pseudorandom bipartite graph almost admits a decomposition into copies of
what we call a Euclidean Tree - a small tree that arises canonically via the execution of
the Euclidean algorithm. Furthermore, the entire process of obtaining DelX and DelY is
algorithmic (and efficient) in nature and we consider this to be a major feature of our
argument.

The rest of the paper is organised as follows. The next section gives some preliminaries
and sets up terminology and tools that will be of use in the latter sections. In Section 3
we prove Theorem 2, and in Section 4, we prove Theorem 6. The paper concludes with
some remarks and open questions in Section 5, and an Appendix. As mentioned earlier,
the lemma in the Appendix can serve as a generator of several examples of Thomason-
pseudorandom graphs for which Theorem 6 is applicable. The main reason for including
the Lemma is that most of the standard and well-studied examples of pseudorandom
graphs that arise from algebraic structures/posets tend to have |X| = |Y |, or even in the
cases where |X| 6= |Y |, the corresponding bipartite graphs are much sparser than the ones
we need in our hypothesis.

2 Preliminaries

Suppose G(X, Y,E) is a bipartite graph. For U ⊆ X ∪Y , set UX := U ∩X, UY := U ∩Y .
For sets A ⊆ X,B ⊆ Y , by G(A,B) we shall mean the subgraph of G induced by the
vertex set A∪B. For a vertex x, d(x) shall denote its degree, and for sets A ⊆ X,B ⊆ Y ,
e(A,B) shall denote the number of edges between A and B.

We shall repeatedly make use of the Chernoff bound:
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Theorem 7. [Chernoff Bound] (As in [15]) Suppose X ∼ Bin(n, p) is a binomial random
variable and λ := E(X) = np. Then for t > 0

P(X > E(X) + t) 6 exp

(
− t2

2(λ+ t/3)

)
P(X 6 E(X)− t) 6 exp

(
− t

2

2λ

)
.

A natural question that arises in the context of NMP is: If G(X, Y ) has NMP, then

does G(Y,X) also have NMP, i.e., is it true that for all T ⊆ Y, |N(T )|
|X| > |T |

|Y |? This is
not immediately obvious from the definition of NMP, but it is indeed the case, as can be
immediately seen from the second characterization of Theorem 1 which is symmetric in
X and Y .

We begin with a simple proposition that will be instrumental in our proof of Theorem
2 in Section 3. For a graph G(X, Y ) that does not have NMP we say that a set of vertices

S ⊆ X witnesses the violation of NMP for G(X, Y ) if |N(S)|
|Y | < |S|

|X| .

Lemma 8. Suppose G(X, Y ) with |X| = k, |Y | = n does not have NMP. Then, if T ⊂ Y
witnesses the violation of NMP for G(Y,X), then X \N(T ) ⊂ X witnesses the violation
of NMP for G(X, Y ). Moreover, either there exists S ⊂ X that witnesses the violation
of NMP for G(X, Y ) with |S| 6 k

2
, or there exists T ⊂ Y that witnesses the violation of

NMP for G(Y,X) with |T | < n
2

+ n
k

.

Proof. If T ⊂ Y witnesses the violation of NMP for G(Y,X), then

|N(T )|
|X|

<
|T |
|Y |
⇒ |X \N(T )|

|X|
>
|Y \ T |
|Y |

>
|N(X \N(T ))|

|Y |
,

where we subtracted both sides from 1 and used the simple fact that N(X \N(T )) ⊆ Y \T
in the final inequality. Now, to see the “moreover” part, as G does not have NMP, first let
S be a minimal set that witnesses the violation of NMP for G(X, Y ). By the minimality
of S, we have |N(S)| > n

k
(|S| − 1). If |S| 6 k

2
, then we are through, so suppose that

|S| > k
2
. Let T = Y \ N(S). Then note that |T | < n

2
+ n

k
. But then by the argument

above (which is symmetric in X and Y ), T witnesses the violation of NMP for G(Y,X).

We also take note of a couple of facts from literature on random graphs that will be
useful in the proof of Theorem 2. By d(x) (respectively d(y)) we mean the degree of
vertex x into Y (respectively the degree of vertex y into X) in G(X, Y ) = G(k, n, p).

Fact 9. Let p > (1+ε) logn
k

. For any fixed r ∈ N, in G(X, Y ), d(x) > r for all x ∈ X and
d(y) > r for all y ∈ Y whp.

This follows from the following well known result (see [5] for instance, chapter 3) that

in G(n, n, p) if p = logn+(r−1) log logn+ω(n)
n

for any function ω(n) that goes to infinity with
n, then whp G(n, n, p) has minimum degree r since the number of vertices of degree r is
approximately Poisson. The same argument extends to G(k, n, p) as well.
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Fact 10. Let p > (1+ε) logn
k

and suppose n > 2k. Then in G(X, Y ), whp every x ∈ X has

degree at least εn logn
2k

.

This is an easy consequence of the Chernoff bound (Theorem 7). Indeed, since
E[d(x)] = (1 + ε)n logn

k
, it follows that

P
[
d(x) <

εn log n

2k
for some x ∈ X

]
6 k exp

(
−(1 + ε/2)2n log n

2(1 + ε)k

)
6 n−ε

2/8.

We now introduce an important ingredient that is vital to the proof of Theorem 6.
Suppose `, L are positive integers with gcd(`, L) = 1. A tree will be called a left-right
tree if the two color classes of its vertex set are labelled as “left” and “right” respectively.
Since a connected bipartite graph admits a unique 2-coloring of its vertices, a left-right
tree can be thought of a tree with a label on each vertex denoting its color class.

The Euclidean (`,L)-tree which we shall denote by T`,L, is a left-right tree on `+L
vertices with ` left vertices, and L right vertices that is defined recursively as follows. If
` = 1, T1,L is simply a star on L + 1 vertices with one left vertex and L right vertices.
If L = 1, then T`,1 is the star on ` + 1 vertices with one right vertex, and ` left vertices.
In general, suppose X = {x1, . . . , x`} and Y = {y1, . . . , yL} are the left and right vertex
sets respectively, and suppose ` < L. Let M1 denote the matching consisting of the edges
{xi, yi+L−`} for 1 6 i 6 `. We define T`,L = M1 t T`,L−` where t denotes an edge disjoint
union, and T`,L−` is the corresponding Euclidean tree with left vertex set X ′ = X and
right vertex set Y ′ = {y1, . . . , yL−`}. If ` > L then we define M1 to be the matching
{xi+`−L, yi} for all 1 6 i 6 L and define T`,L = M1 t T`−L,L where T`−L,L is the Euclidean
tree with left vertex set X ′ = {x1, . . . , x`−L} and right vertex set Y ′ = Y . A picture is
worth a thousand words; see Figure 1 that illustrates the Euclidean tree T3,7, and Figure
2 that illustrates T5,8.

The following lemma conveys why Euclidean trees are relevant to us.

Lemma 11. Suppose T = T`,L is a Euclidean tree. Then if X, Y denote the sets of left
and right vertices respectively, then T as the bipartite graph T (X, Y ) has NMP. Moreover,
so does the graph obtained by making several vertex-disjoint copies T (Xi, Yi) of T i.e., the
graph T (X ,Y) where X = X1 t · · · tXr, Y = Y1 t · · · t Yr.

Proof. First assume that ` < L. If ` = 1, then T is simply a star with L leaves, and clearly,
T has NMP. Suppose by induction that Euclidean trees with fewer than ` + L vertices
have NMP. Let S ⊆ X. Then since T = M1 t T`,L−`, it follows that N(S) = {yj+L−` :
xj ∈ S} tN ′(S) where N ′(S) is the set of neighbors of S among {y1, . . . , y`}. But since
T`,L−` has NMP, we have |N ′(S)| > L−`

`
|S|, so that |N(S)| > |S| + L−`

`
|S| = L

`
|S| and

that completes the proof. If ` > L, then the above argument works with ` swapped with
L throughout and the fact that T (X, Y ) has NMP if and only if T (Y,X) does. Finally,
the observation that T (X ,Y) has NMP follows immediately from the third (multiplicity
function) characterization of NMP in Theorem 1.

We now describe what we call the “Euclidean (`, L)-tree process” which details a
realization of the graphs T`,L through a series of steps, which along with the corresponding
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terminology we build here will be relevant in Section 4 in the proof of Theorem 6. This
description also justifies why we call them Euclidean trees. Suppose ` < L. Consider the
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x2

x3

y1

y2

y3

y4

y5

y6

y7

⇒ ⇒ ⇒

T3,7

X

Y

X X X

Y Y Y

Figure 1: Construction of the Euclidean (3, 7)-tree. Each successive matching is shown
in a different color.

Euclidean algorithm on the pair (`, L) as follows.

L = qm`+ rm−1, 0 < rm−1 < rm = `,

` = qm−1rm−1 + rm−2, 0 < rm−2 < rm−1,

· · · = · · ·
r3 = q2r2 + r1, 0 < r1 < r2,

r2 = q1r1, r1 = 1.

If we set rm+1 = L, rm = `, r0 = 0, then we may write the equalities above as ri+1 =
qiri+ri−1 for 1 6 i 6 m. m is referred to as the complexity of the Euclidean algorithm for
the parameters (`, L). The following fact is well-known (see for instance, [17], page 360).

Fact 12. The complexity of the Euclidean algorithm with input parameters (`, L) is at
most 2.078 logL+ 0.6723.

We now describe T`,L as the evolution of an inductive sequence of trees through m
stages (m as above), and in order to do that, we need some additional terminology. By an
X q-fan, we mean the tree T1,q and by a Y q-fan, we mean Tq,1. By an X q-thrill1 of size
r we mean a union of r vertex disjoint X q-fans, and a Y q-thrill is defined analogously.
For a fixed graph F , an F -factor in a graph G is a spanning subgraph of G consisting of
vertex disjoint copies of F . As an example, an X q-thrill admits a factoring by X q-fans.

1The collective noun for fans is a thrill, so the nomenclature seemed appropriate.

the electronic journal of combinatorics 28(2) (2021), #P2.48 10



By definition, T`,L is inductively obtained through a sequence of edge disjoint unions
of matchings, until we finally terminate in a tree Tq,1 or T1,q, for some q. We now invert
this process.

Suppose m as described above in the Euclidean algorithm is even (the odd case is
analogous). Let T1 := Tr2,r1 = Tr2,1. Having inductively defined Ti−1 with left set X(i−1),
right set Y (i−1) and edge set Ei−1, we define Ti as follows. If i is even, then the vertex set
of Ti has left set X(i) := {x1, . . . , xri}, right set Y (i) = {y1, . . . , yri+1

}, and the edges of
Ti consist of the edges of Ti−1 along with an additional X qi-thrill of size ri between the
vertices of X(i−1) and the vertices of Y (i) \ Y (i−1). If i is odd, then Ti has left vertex set
X(i) := {x1, . . . , xri+1

}, right vertex set Y (i) := {y1, . . . , yri} and the edges of Ti consist
of the edges of Ti−1 along with an additional Y qi-thrill of size ri between the vertices of
X(i) \X(i−1) and the vertices of Y (i−1). In simpler terms, it is the same construction but
with the roles of the left and right sets reversed as per the parity of i. The main point
is that the graphs Ti are precisely the Euclidean trees Tr(i+1),ri (or Tri,r(i+1)

depending
on the parity of i) along with isolated vertices. While the inductive definition of the
Euclidean tree T`,L appends one additional matching at each step, the Euclidean tree
process accelerates this by adding a q-thrill for an appropriate q. In particular, Tm is
precisely T`,L and as we shall see in Section 4, it is particularly handy to think of T`,L as
the end result of this evolving process. Figure 2 gives an illustration of this evolution for
the Euclidean tree T5,8.
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y4
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y6
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y8

⇒ ⇒ ⇒ ⇒

T2,1 T2,3 T5,3 T5,8

Figure 2: The Euclidean (5, 8)-tree process. In this case m = 4, (r2, r3, r4, r5) = (2, 3, 5, 8),
(q1, q2, q3, q4) = (2, 1, 1, 1). T5,8 evolves as T2,1 ⇒ T2,3 ⇒ T5,3 ⇒ T5,8 in the process.

3 Threshold for NMP for G(k, n, p)

In this section we prove Theorem 2, restated below for convenience. Throughout this
section, we shall write G to denote G(k, n, p). Unless stated otherwise, we shall assume
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k 6 n 6 exp(o(k)).

Theorem 1.2. Suppose k 6 n(k) 6 exp(o(k)), and let 0 < ε, δ < 1. There exists
k0 = k0(ε, δ) such that for k > k0(ε, δ)

1. If p > (1+ε) logn
k

then P[G(k, n, p) has NMP] > 1− δ.

2. If p 6 (1−ε) logn
k

then P[G(k, n, p) has NMP] 6 δ.

We establish item 2 first i.e., that if p is below the threshold then whp, G does not
have NMP. The proof is straightforward as it simply shows the existence of an isolated
vertex in Y whp.

Lemma 13. Suppose n = n(k) be such that k 6 n(k) for all k ∈ N. Let 0 < ε < 1. There

exists k0 = k0(ε) such that for k > k0, if p 6 (1−ε) logn
k

then G(k, n, p) does not have NMP
whp.

Proof. Let G(X, Y ) = G and let N denote the number of isolated vertices in Y . Then
E[N ] = n(1− p)k.

Claim 14. Given c > 1, there exists a unique xc ∈ (0, 1) such that for all x ∈ (0, xc],
1− x > exp(−cx) and equality holds only when x = xc. Moreover, as c→ 1+, xc → 0+.

The claim is a standard exercise in basic calculus, so we omit its proof.
Fix c such that 1 < c < 1

1−ε . Since p < (1−ε) logn
k

= o(1), by the above claim, there

exists k sufficiently large such that 1−p > exp(−cp). Consequently, E[N ] = n · (1−p)k >
exp(−cpk+ log n) = exp(α log n) = nα which grows to infinity as k does, where α = α(ε)
is defined to be 1− c(1− ε) > 0. Now using the Chernoff bound (taking t = λ = E[N ] in
the second inequality in Theorem 7), we have

Pr[N = 0] 6 exp

(
−E[N ]

2

)
6 exp

(
−n

α

2

)
= exp(−nΩε(1)) = o(1)

for large n. This concludes the proof.

Lemma 13 establishes that the right threshold for having NMP in G must be at least
as large as logn

k
. The following is a heuristic argument that suggests that it is exactly logn

k
.

As mentioned in the Introduction, a classical result of Erdős-Rényi states that a sharp
threshold for the existence of a perfect matching in a bipartite graph G(n, n) is p = logn

n
.

In our present situation, suppose k divides n. Replicate each vertex of X by a factor of
n/k to obtain the set X ′. Define the graph G′(X ′, Y ) as follows. If x′ ∈ X ′ arises from
the replication of the vertex x ∈ X, then x′y ∈ E(G′) if and only if xy ∈ E(G). It is
a straightforward exercise to see that the original graph G(X, Y ) has NMP if and only
if G′(X ′, Y ) satisfies Halls’ condition, or equivalently, G has NMP if and only if G′ has
a perfect matching. If this new bipartite graph behaves likes G(n, n, p) (which it isn’t),
then we need p ∼ logn

n
for the existence of a perfect matching. But since each vertex of X

has been blown up to n/k copies, it is intuitive to expect that each vertex of G behaves
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like the union of all these n/k vertices bundled together, which suggests a threshold of
n
k
· logn

n
= logn

k
. While this argument is just a heuristic, it suggests what the correct

threshold ought to be, as we next show is indeed the case by establishing the remaining
(and main) item 1 of Theorem 2.

Here is an overview of the proof. Lemma 15 proves the theorem when n/k is large
(i.e., grows to infinity with k), and this part of the proof only takes recourse to Theorem
1. The general case however is a little more delicate. The basic idea in the general case of
the proof considers estimating the probability that there is a minimal set S that violates
the NMP condition. In that sense, our strategy follows a line of argument á la Erdős-
Rényi but we need some additional ideas and more careful analysis to carry it through to
fruition.

Lemma 15. Suppose n = kω(k) where the function ω(k) > 1 for all k ∈ N and satisfies
ω(k) → ∞ as k → ∞. Let 0 < ε, δ < 1. Then there exists k0 = k0(ε, δ) such that for

k > k0(ε, δ), if p > (1+ε) logn
k

, then P[G(k, n, p) has NMP] > 1− δ.

Proof. Let 0 < ε < 1/5, and let |X| = k 6 n = |Y |. Since NMP is a monotone property,

it suffices to establish the lemma for p = (1+ε) logn
k

.
Suppose G fails to have NMP. By Theorem 1, there exists an independent set I =

IX ∪ IY in G such that |IX |
k

+ |IY |
n
> 1. Thus, from the union bound, the probability that

G does not have NMP is at most
∑k

`=1 P` where for 1 6 ` 6 k, where

P` =

(
k

`

)(
n⌈

n
(
1− `

k

)⌉)(1− p)`dn(1− `
k)e for ` < k (1)

Pk = n · (1− p)k 6 exp(−(1 + ε) log n+ log n) 6
1

nε
. (2)

Here, P` is an upper bound on the probability that there is a set S ⊆ X of size ` and a set
T ⊆ Y of size

⌈
n
(
1− `

k

)⌉
such that S ∪ T is an independent set. Pk is an upper bound

on the probability that Y contains an isolated vertex.
We define ε′ := ε/2 and split

∑
` P` into three cases according to whether ` is “small”,

“intermediate”, or “large” and repeatedly make use of the well-known bounds 1 + x 6
exp(x) for all x ∈ R and the binomial coefficients

(
N
K

)
6
(
eN
K

)K
for all K 6 N .

Small Case: 1 6 ` 6 ε′k. Here, using
(

n

dn(1− `
k)e
)

=
(

n

bn`k c
)

followed by standard

binomial coefficient bounds, (1) yields

P` 6 exp

(
−(1 + ε)` log n

k
·
⌈
n

(
1− `

k

)⌉
+ ` ·

(
1 +

n

k

)
·
(

1 + log
k

`

))
(3)

6 exp

(
−(1 + ε) · n log n · `

k

(
1− `

k

)
+
(

1 +
ε

8

)2

· n · `
k
· log k

)
(4)

6 exp

(
n`

k
· log n

[
−(1 + ε)(1− ε′) +

(
1 +

ε

8

)2
])

(5)

< exp
(
−ε

8
· n
k
· log n

)
(6)
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where to derive (4), we use the bounds
⌈
n
(
1− `

k

)⌉
> n

(
1− `

k

)
, 1 + log k

`
6 1 + log k 6

(1 + ε
8
) log k and 1 + n

k
6 (1 + ε

8
)n
k

for large enough k. This is where we crucially use
our assumption that n/k → ∞ as k → ∞. (5) follows by using the trivial fact that
log k 6 log n and taking out the common factor n`

k
· log n. (6) is obtained by using ` > 1,

plugging in ε′ = ε/2 and working out that the expression in the square brackets in (5)
is at most −ε/8 for small ε. Finally, since n

k
> 16

ε
for large enough k, it follows that

P` < 1/n2 in this case.

Intermediate Case: ε′k 6 ` 6 (1 − ε′)k. Using the same expression for the upper
bound on P` as in the previous case, we have

P` 6 exp

(
−(1 + ε) · n log n · `

k

(
1− `

k

)
+ ` ·

(
1 +

n

k

)
·
(

1 + log
k

`

))
Using the observation that in this case, `

k
(1 − `

k
) > ε′(1 − ε′) and the trivial bound

1 + n
k
6 2n

k
, we obtain

P` 6 exp

(
−(1 + ε) · n log n · ε′(1− ε′) + 2n · `

k
· log

k

`
+

2n`

k

)
< exp

(
−εn log n

2
+ 3n

)
where the last inequality follows - setting x = `/k - from the fact that x log 1

x
< 0.5 for

all 0 < x < 1. Hence, P` <
1

nεn/3
.

Large Case: (1 − ε′)k 6 ` < k. This case is completely analogous to the small case.
First, observe

n

(
1− `

k

)
6

⌈
n

(
1− `

k

)⌉
6
(

1 +
ε

8

)
n

(
1− `

k

)
for large enough k (again using n/k →∞ as k →∞) and we have that P` is at most

exp

(
−(1 + ε) · log n · `

k
·
⌈
n

(
1− `

k

)⌉
+ (k − `)

(
1 +

(
1 +

ε

8

) n
k

)(
1 + log

k

k − `

))
6 exp

(
−(1 + ε) · n log n · `

k

(
1− `

k

)
+
(

1 +
ε

8

)3

n ·
(

1− `

k

)
· log k

)
where in the last step we use the bound 1 + log k

k−` 6 1 + log k 6
(
1 + ε

8

)
log k for large

enough k. Consequently,

P` 6 exp

(
n log n ·

(
1− `

k

)[
−(1 + ε)(1− ε′) +

(
1 +

ε

8

)3
])

6 exp

(
n log n

k
·
[
−(1 + ε)(1− ε′) +

(
1 +

ε

8

)3
])

6
1

n2
.

To explain the last step, the expression within the square brackets evaluates to ε
512

(ε2 +
280ε− 64) which is at most −199ε

12800
< −ε

128
when 0 < ε < 1/5. But n

k
> 256/ε for sufficiently

large k and n since n/k →∞. Thus, we have
∑

` P` = o(1) and that completes the proof
of the lemma.
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Note that the argument in the intermediate case does not require k = o(n) and in fact
shows the following (in light of Theorem 1, switching from the independent set viewpoint
to the violation of NMP viewpoint):

Corollary 16. Given ε > 0, for any k 6 n large enough, and vertex sets X and Y of sizes
k and n respectively, the probability that there exists S ⊂ X with ε′k 6 |S| 6 (1− ε′)k for
ε′ = ε/2 such that S witnesses a violation of NMP for G(X, Y ) = G(k, n, p) is at most
n−Ωε(n).

Interestingly, the proof of Lemma 15 actually works out for all n > k if one assumes
p > 10 logn

k
in the hypothesis instead of the sharper assumption on p. This, combined with

Lemma 13, already establishes that logn
k

is a threshold for NMP. The additional ideas

employed in the remainder of this section are essentially only required to show that logn
k

is a sharp threshold.

Proof of Theorem 2. In light of Lemma 15, it suffices to prove the theorem assuming
n
k
6 log n. log n here may be replaced by any slow-growing (but unbounded) function

of k or n without much change to the rest of the argument, but we stick to log n for
convenience.

By Lemma 8 either there exists S ⊂ X with |S| 6 k/2 that witnesses a violation of
NMP for G(X, Y ), or there exists T ⊂ Y with |T | < n

2
+ n

k
that witnesses the violation

of NMP for G(Y,X) (of course, these cases need not be mutually exclusive; we merely
use that combined, they exhaust the event that NMP is violated). The proof naturally
splits into cases (labelled X and Y respectively) according to whether the set winessing
the violation is a subset of X or Y . We shall show that either case occurs with low
probability by exploiting certain properties of the minimal witness.

Case X: Define `min to be the constant 18
ε

if 1 6 n
k
< 2 and ε logn

2
if 2 6 n

k
6 log n. In

light of Facts 9 (for r = 36
ε

if 1 6 n
k
< 2) and 10, it follows that any minimal S ⊂ X that

witnesses the violation of NMP for G(X, Y ) must have size at least |S| > kδ(G)
n

> `min whp
where δ(G) denotes the minimum degree of the vertices in X. The choice of the peculiar
constant r = 36

ε
will become clear later.

Suppose S ⊂ X such that `min 6 |S| = ` 6 ε′k where ε′ = ε
2
. We first claim that

every U ⊂ N(S) of size
⌈
n
k

⌉
witnesses at least 2 neighbors (as a set) in S. Indeed,

suppose there is a subset U of dn
k
e vertices in N(S) which are the neighbors of only one

vertex x in S. Then by the minimality of S, it follows that the set S ′ = S \ {x} satisfies
n
k
|S| − dn

k
e > |N(S ′)| > n

k
(|S| − 1) which is a contradiction, and that proves the claim.

We divide case X further into two subcases. First, we bound the probability that
there exists S ⊂ X of size ` for which 4`n logn

k2
< 1 (notice that this clearly implies ` 6 ε′k)

which witnesses a violation of NMP for G(X, Y ). So fix a choice for S ⊂ X of size `,
and T ⊂ Y (which will represent N(S)) of size equal to some integer in the interval
[n`
k
− n

k
, n`
k

). Fix a partition of T into sets of size
⌈
n
k

⌉
. By size considerations, there are

at least t =
⌊
n(`−1)
kdn/ke

⌋
>
⌊

`−1
1+(k/n)

⌋
>
⌊
`−1

2

⌋
such parts, and by the observation above, each

such part admits at least two neighbors in S. We conclude that the probability that there
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exists S ⊂ X with |S| 6 k2

4n logn
which witnesses a violation of NMP for G(X, Y ) is at

most

Σ1 :=
n

k

∑
`>`min

(
k

`

)(
n

bn`
k
c

)
(1− p)`dn(1− `

k)e
((

`

2

)(⌈n
k

⌉
p
)2
)t
. (7)

To see why, observe that there are
(
k
`

)
choices for S, at most n/k values for |N(S)|

(since S minimally witnesses a violation of NMP), each of which is at most bn`
k
c. The

probability that e(S, Y \ N(S)) = 0 is at most (1 − p)`dn(1− `
k)e, and finally, the last

expression is a bound on the probability that each of the t blocks of vertices has at least 2
neighbors in S. The condition on ` that we have imposed in this subcase simply translates
to the observation that the quantity in the right-most parenthesis that is raised to t is
less than 1. So, we have

Σ1 6
n

k

∑
`>`min

( ek
`

)`( ek
`

)(n`/k) (`dn/kep)2t

n(1+ε)(n`/k)(1− `
k

)(
Using 2t > `− 3 and p 6

2 log n

k

)
6

n

k

(
k2

4n log n

)3∑
`

(
( ek
`

)(n/k) · ek
`
· 4`n logn

k2

n(1+ ε
3

)(n/k)

)`

(
Using

n

k
6 log n

)
6

k3

64 log3 n

∑
`>`min

[(
ek

`n

)(n/k)

·
(

4e log2 n

nε/3

)]`

6
k3

32 log3 n

(
4e log2 n

nε/3

)`min

for n, k sufficiently large and where in the final step, we used the fact that an infinite
geometric series is at most twice the first term, when the common ratio is small enough.
This expression is clearly o(1) when n

k
> 2 (and so `min = ε logn

2
). Further, it is at most

k3

32 log3 n

(
4e log2 n
nε/6

)18/ε

= O( 1
log3 n

) = o(1) when 1 6 n
k
< 2.

For the subcase k2

4n logn
6 ` 6 ε′k, we simply bound (which we shall call Σ2) the

probability of a minimal S whose size is in this range by the probability that S ∪N(S) is
independent and sum over the entire range of ` again. First, observe that in this subcase,

ek

`
6

4en log n

k
6 4e log2 n

and thus,

Σ2 6
∑
`

( ek
`

)`( ek
`

)(n`/k)

n(1+ε)(n`/k)(1− `
k

)

6
∑
`

[
( ek
`

)1+(n/k)

n(1+ε/3)(n/k)

]`
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6
∑

`> k2

4n logn

[(
4e log2 n

n1+ε/6

)n/k
·
(

4e log2 n

nε/6

)]`
= o(1)

as before and we are through.
Finally, observe that the case ε′k 6 |S| 6 k/2 follows immediately from Corollary 16.

Case Y : There is a minimal witness T ⊂ Y with |T | = s 6 n
2

+ n
k

that witnesses the
violation of NMP for G(Y,X). This time though, since k 6 n it follows that |N(T )| 6
bks
n
c, and that for every x ∈ N(T ) there are at least 2 neighbors in T . Now, define

smin := 12
ε

. As earlier, by Fact 9, the minimal T ⊂ Y that witnesses the violation of
NMP for G(Y,X) must have size at least smin whp. Again, we split this into two subcases:
smin 6 s 6 ε′n and s > ε′n where again ε′ = ε/2.

Suppose smin 6 s 6 ε′n. Analogous to how we divided Case X into two subcases, let
us first assume that s 6 k

2 logn
which in particular, lets us assume that sp < 1. Then the

probability that such a witness exists of size in this range is at most

M1 =
∑

smin6s6
k

2 logn

(
n

s

)(
k

bks
n
c

)
(1− p)s(k−b

ks
n c)
((

s

2

)
p2

)b ksn c
(8)

6
1

s2
minp

2

∑
s

(en
s

)s(2en

s

)(ks/n)

(1− p)sk(1− s
n

)(s2p2)
ks
n (9)

6
144k2

ε2 log2 n

∑
s


(

2en
s

)1+(k/n)
(

2s2 log2 n
k2

)(k/n)

exp
(
pk
(
1− s

n

))

s

(10)

(
Using s 6

k

2 log n

)
6

144k2

ε2 log2 n

∑
s


(

2en
s

) (
4esn log2 n

k2

)(k/n)

exp
(

(1 + ε) log n− (1+ε)k
2n

)

s

(11)

(
Using s 6

k

2 log n
again

)
6

144k2

ε2 log2 n

∑
s

[
2en ·

(
2en logn

k

)(k/n)

n1+(ε/2)

]s
(12)(

As
n

k
6 log n and

k

n
6 1

)
6

144k2

ε2 log2 n

∑
s>smin

[
4e2 log2 n

nε/2

]s
(13)

(Geometric series bound) <
144k2

ε2 log2 n

(
8e2 log2 n

nε/2

)12/ε

= o(1) (14)

where to derive (9), we use bks
n
c > ks

n
− 1 in the exponent and the more crude bound⌊

ks
n

⌋
> ks

2n
elsewhere, which is applicable since by assumption,

⌊
ks
n

⌋
> |N(T )| > smin > 1.

We also subsequently drop the range k
2 logn

> s > smin in the sum for convenience. Next,

if k
2 logn

6 s 6 ε′n, then we simply bound the probability of there being a witness of
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size in this range by the probability that T ∪ N(T ) is an independent set (i.e. the final
parenthesis in the expression for M1 above is dropped) and sum over this range of s again.
The calculations (for the accordingly defined expression M2) are very similar to that of
Σ2 in case X and are omitted here.

Finally, if |T | > ε′n, then note that S = X \ N(T ) has size (1 − ε′)k > |S| >
ε′k, and by Lemma 8, S witnesses the violation of NMP for G(X, Y ) and is covered by
Corollary 16.

4 Normalized Matching Property in Pseudorandom Graphs

In this section, we prove Theorem 6 which is restated below for convenience. Suppose
0 < p < 1 and 0 < ε < 1. Recall that a bipartite graph G(X, Y ) with |X| = k 6 n = |Y |
is called Thomason pseudorandom with parameters (p, ε) if every vertex in X has degree
at least pn, and if every pair of vertices in X have at most p2n(1+ε) neighbors in common.

Theorem 6. Suppose 0 < ε < 1, and let ω : N→ R+ be a non-negative valued function
that satisfies ω(k) → ∞ as k → ∞. There exists an integer k0 = k0(ε, ω) such that

the following holds. Suppose p > ω(k)
k

, |X| = k, |Y | = n with k0 < k 6 n, and suppose
G = G(X, Y ) is a Thomason pseudorandom bipartite graph with parameters (p, ε). Then
G is (f, g, ε)-NMP-approximable with

(a) f(x) = O(x), g(x) = O(
√
x) if n > k√

ε
and

(b) f(x) = g(x) = O( 4
√
x log

(
1
x

)
) if n 6 k√

ε
.

In what follows, G = G(X, Y ) is a Thomason pseudorandom graph with parameters

(p, ε) where ε > 0 and p > ω(k)
k

where ω(k) denotes a function that satisfies ω(k) → ∞
as k → ∞. As always, |X| = k 6 n = |Y |, and n, k are sufficiently large (depending
on the choice of ε and ω). As in the proof of Theorem 2, we split the task of proving
NMP-approximability into two cases: the first, in which n is significantly larger than k
and the second, in which the two are comparable.

Here is a brief overview of the proof. Suppose that

n

k
=
L

`
,

where the latter is the representation in reduced form i.e., gcd(`, L) = 1 and `, L ∈ N.
Our strategy of proof is to show that we can find small sets DX ⊂ X,DY ⊂ Y such that
G(X \DX , Y \DY ) admits a vertex decomposition into copies of the Euclidean tree T`,L.
Since T`,L has NMP by Lemma 11, this establishes the NMP-approximability of G. An
essential ingredient in the proof of both cases is Lemma 17 (which appears below) which
basically states: If G(X, Y,E) satisfies that for every subset A ⊆ X of size at least 1/p
and every subset B ⊆ Y , we have |e(A,B) − p|A||B|| 6

√
pn|A||B|(1 + εp|A|), then all

large enough subsets of X, Y admit an almost partition into X-thrills or Y -thrills (as the
case may be).
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The application of this lemma in the first case (n/k large) is straightforward, but in the
second case, it does not apply directly. The principal issue in the second case emanates
from the possibility that in the reduced form `, L are still large; for instance if n, k are
coprime, then (`, L) = (k, n) and Lemma 17 does not apply. To circumvent this difficulty,
we pre-process the graph, by deleting a small portion from both X, Y to get X ′, Y ′ so
that the reduced form (`, L) for (|X ′|, |Y ′|) satisfies `, L = Oε(1). Lemma 17 then applies
in a multi-step process that we describe in Lemma 18.

Lemma 17. Let ε > 0 and q ∈ N be such that q =
⌊
n
k

⌋
or q = Oε(1). Suppose G(X, Y,E)

satisfies the conclusion of Theorem 4. Let U ⊆ X and V ⊆ Y and define d0 = 2εn. Then
there exist subsets A ⊆ U,B ⊆ V such that if |U | = u, |V | = v, |A| = a, and |B| = b, then

• if v = qu, then G(U \ A, V \ B) is spanned by an X q-thrill where a 6 d0/q and
b 6 d0;

• if u = qv, then G(U \A, V \B) is spanned by a Y q-thrill where a 6 qd0 and b 6 d0.

Proof. First, assume that |V | = q|U |. Let F be a maximal X q-thrill in G(U, V ) and let
F ∩ U = Ũ , i.e., let Ũ denote the set of all those vertices in U which belong to a q-fan in
F . Similarly, let F ∩ V = Ṽ and set A := U \ Ũ , B := V \ Ṽ . Since F is an X q-thrill,
q(u−a) = v− b which gives b = qa. Note that we may assume that a > 1/p as otherwise,
the bounds on a and b hold trivially since 1/p < d0/q for either assumption on q.

By the maximality of F , no vertex in A has more than q− 1 neighbors in B, implying
e(A,B) < qa. Since a > 1/p, the aforementioned observation coupled with Theorem 4
implies

qa > e(A,B) > pab−
√
pnab(1 + εpa)

so that
pab−

√
pnab(1 + εpa) < qa.

Plugging b = qa yields
q(pa− 1)2 < pn(1 + εpa)

which upon further simplification, yields the following quadratic inequality in a:

qp2a2 − (2pq + εp2n)a+ q − pn < 0. (15)

Since pn− q > 0 for either assumption on q for n sufficiently large,

a <
2q + εpn+

√
(2q + εpn)2 + 4q(pn− q)

2qp

=
(2q + εpn)

2qp

(
1 +

√
1 +

4q(pn− q)
(2q + εpn)2

)

<
(2q + εpn)

qp

(
1 +

2q(pn− q)
(2q + εpn)2

)
(as
√

1 + x < 1 +
x

2
for all x > 0)
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=
2

p
+
εn

q
+

2(pn− q)
p(2q + εpn)

<
2

p
+
εn

q
+

2n

(2q + εpn)
<

2

p
+
εn

q
+

2

εp
=: d.

It now suffices to show that (for either assumption on q) d 6 d0/q. Note that 2
p

+ 2
εp
<

4k
εω(k)

. If q = Oε(1), then we have for large enough k that ω(k) > 4q/ε2 and therefore,
4k

εω(k)
6 4n

εω(k)
< εn

q
. If q =

⌊
n
k

⌋
, then for large enough k, we have that ω(k) > 4/ε2 and

therefore, 4k
εω(k)

6 εk 6 εn
q
.

Now, assume that u = qv. This case proceeds analogously to the previous one, with
only minor changes at appropriate places. Let F now be a maximal Y q-thrill and let
Ũ = F ∩ U and F ∩ V = Ṽ . Define A and B as in the previous case. Then by
the maximality of F , no vertex in B has more than q − 1 neighbors in A, implying
e(A,B) < qb. Further, we have a = qb. By Theorem 4, assuming a > 1/p as earlier, we
have

qb > pab−
√
pnab(1 + εpa).

Upon plugging in a = bq and working out as before, we obtain the quadratic inequality

qp2b2 − (2pq + εp2qn)b+ (q − pn) < 0

which is identical to (15) except with b in place of a and qε in place of ε. Thus, it follows
that b < 2

p
+ εn + 2

εpq
6 2

p
+ εn + 2

εp
= d, therefore a 6 qd. This implies the claimed

bounds in terms of d0 as before.

A few remarks are in order.

1. Though we have slightly stronger bounds on a and b in the second case (when
u = qv), we simply use the stated bounds for the sake of ease of calculations later.

2. When ε = 0 (for instance in the pseudorandom graphs that arise from the point-
hyperplane incidences of projective geometries), the calculations above in fact yield

a < 1
p

+
√

n
pq

when v = qu and something analogous when u = qv. In particular,

the sizes of the deleted parts are considerably smaller in this case.

3. If U ⊂ X ′ ⊂ X, V ⊂ Y ′ ⊂ Y then the conclusions of Lemma 17 hold even for the
graph G(X ′, Y ′) with the same parameters (p, ε) since the lemma directly applies to
the pair (U, V ) as a subset of (X, Y ). This is vitally of use in the way we apply the
Lemma in the proof of Theorem 6 part (b).

Proof of Theorem 6 part (a). Suppose n = qk+r, where q =
⌊
n
k

⌋
and r is an integer such

that 0 6 r < k. Choose an arbitrary subset CY ⊂ Y of size r and define Y1 = Y \ CY .
Apply Lemma 17 to the sets U = X and V = Y1 to obtain A ⊂ X and B ⊂ Y1 such
that G(X \A, Y \B) is spanned by an X q-thrill and therefore has NMP (by Lemma 11).
Define DelX = A and DelY = CY ∪B so that

|DelX |
k

6
d0

qk
6 4ε = O(ε)
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and
|DelY |
n

6
d0 + r

n
< 2ε+

k

n
< 3
√
ε = O(

√
ε).

Lemma 18. Suppose L/` is representation in reduced form of n/k, suppose L, ` = Oε(1)
and let d0 = 2εn. There exist subsets DX ⊂ X,DY ⊂ Y with |DX | 6 `md0 and |DY | 6
Lmd0, such that G(X \ DX , Y \ DY ) admits a T`,L-factor. Here, m is the complexity of
the Euclidean algorithm for the parameters (`, L) as defined in Section 2.

Proof of Lemma 18. Partition both X and Y arbitrarily into “blocks”, each of size t =
gcd(k, n). Let the blocks be denoted by X1, . . . , X` and Y1, . . . , YL respectively. We shall
refer to the Xi blocks as left blocks and the Yj blocks as right blocks. Let ri, qj be the
remainders and quotients as defined in Section 2. We shall now replicate the Euclidean-
(`, L) process with the vertices being replaced by these blocks, which we shall carry out
in m stages, beginning with stage 1.

In the rest of the proof of Lemma 18 we assume that m is even; the m odd case is
completely analogous. We also define the sets X (i) and Y(i) analogous to the sets X(i)

and Y (i) in the definition of the Euclidean tree (see Section 2) as follows. If i is even,

X (i) = X1 t · · · tXri and Y(i) = Y1 t · · · t Yr(i+1)

and if i is odd, then

X (i) = X1 t · · · tXr(i+1)
and Y(i) = Y1 t · · · t Yri

We also assume that X (0) = Y(0) = ∅.
We induct on m. At stage i, we apply Lemma 17 to appropriately defined sets Ui

and Vi to obtain sets Ai ⊂ Ui and Bi ⊂ Vi such that G(Ui \ Ai, Vi \ Bi) is spanned by
an X qi-thrill or a Y qi-thrill (depending on whether i is even or odd respectively). In
fact, it will turn out that Ui and Vi are large subsets of X (i) and Y(i) \Y (i−1) respectively,
when i is even (and something analogous when i is odd). We denote the set of deleted
vertices from X and Y at the end of stage i by DX

i and DY
i respectively, and these are

obtained by modifying Ai and Bi suitably, with the help of DX
i−1 and DY

i−1. We then show
that Gi = G(X (i) \DX

i ,Y(i) \DY
i ) admits a Ti-factor, where Ti = Tri,r(i+1)

as was defined

in Section 2. By controlling the sizes of DX
i and DY

i (which we denote by dXi and dYi
respectively) the Lemma follows by plugging in i = m because rm = ` and rm+1 = L.

Let us get to the details now. For starters, we apply Lemma 17 to the “first” r1 right
blocks (recall that r1 = 1) and the “first” r2 left blocks. More precisely, we apply Lemma
17 to U1 = X (1) = X1t · · ·tXr2 and V1 = Y(1) = Yr1 = Y1 so that |U1| = t · r2 = t · q1r1 =
q1|V1|. We obtain sets A1 ⊂ U1 and B1 ⊂ V1 such that G(U1 \ A1, V1 \ B1) is spanned by
a Y q1-thrill. This terminates stage 1 with DX

1 := A1 and DY
1 := B1; consequently, by

Lemma 17 dX1 6 q1d0 and dY1 6 d0. This establishes the following:
G1 = G(X (1) \DX

1 ,Y(1) \DY
1 ) admits a T1-factor, with dX1 6 q1d0 and dY1 6 d0.

Suppose now that for some 1 < i 6 m, Gi−1 = G(X (i−1) \DX
i−1,Y(i−1) \DY

i−1) admits
a Ti−1-factor, and
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(1) if i is even, then dXi−1 6 (i− 1) · rid0 and dYi−1 6 (i− 1) · ri−1d0.

(2) if i is odd, then dXi−1 6 (i− 1) · ri−1d0 and dYi−1 6 (i− 1) · rid0.

We shall show that there exist subsets DX
i ⊂ X and DY

i ⊂ Y such that Gi admits a
Ti-factor, and furthermore,

(a) if i is even, then |DX
i | = dXi 6 irid0 and |DY

i | = dYi 6 iri+1d0,

(b) if i is odd, then |DX
i | = dXi 6 iri+1d0 and |DY

i | = dYi 6 irid0,

which would establish the induction step.
Suppose i is even. Let SYi be an arbitrary subset of Yr(i−1)+1 t · · · t Yr(i+1)

of size

qi · dXi−1. Define

Ui := X (i) \DX
i−1 and Vi := (Y(i) \ Y(i−1)) \ SYi = (Yr(i−1)+1 t · · · t Yr(i+1)

) \ SYi

Since ri+1 − ri−1 = qiri we have |Vi| = t(ri+1 − ri−1) − qid
X
i−1 = qi|Ui|, so by Lemma

17, we obtain sets Ai ⊂ Ui and Bi ⊂ Vi with |Ai| 6 d0/qi and |Bi| 6 d0 such that
G(Ui \ Ai, Vi \Bi) is spanned by an X qi-thrill.

By assumption, Gi−1 admits a Ti−1-factor i.e., Gi−1 is spanned by vertex-disjoint copies
of Ti−1. Define CORRUPTX

i to be the set of all those vertices in X (i−1)\DX
i−1 which belong

to one of the above copies of Ti−1 that also contains at least one vertex from Ai. Obviously,
Ai ⊆ CORRUPTX

i . Similarly, we define CORRUPTY
i as the set of vertices in Y(i−1)\DY

i−1

which belong to a copy of Ti−1 that contains at least one vertex from Ai. We refer to such
copies of Ti−1 in Gi−1 (that contain at least one vertex from Ai) as corrupt copies. Define

CORRUPTi := CORRUPTX
i t CORRUPTY

i

as the set of those vertices of Gi−1 that get “corrupted” due to the introduction of further
deletions during stage i (i.e. the set Ai). In other words, CORRUPTi is the set of vertices
touched by the corrupt copies. See Figure 3 for an illustration of the induction step.

Define

DX
i := DX

i−1 t CORRUPTX
i and DY

i := DY
i−1 t SYi tBi t CORRUPTY

i

and set dXi := |DX
i |, dYi := |DY

i |. Note that every corrupt copy of Ti−1 in Gi−1 has ri
vertices in X and ri−1 vertices in Y . Therefore, we have the bounds

|CORRUPTX
i | 6 ri|Ai| 6

ri
qi
d0 and |CORRUPTY

i | 6 ri−1|Ai| 6
ri−1

qi
d0

Putting things together, we obtain the recurrences

dXi 6 dXi−1 +
ri
qi
d0 and dYi 6 dYi−1 + qid

X
i−1 + d0 +

ri−1

qi
d0
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b
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b

Figure 3: An illustration of the induction step in the proof of Theorem 6. The picture
on the left depicts the copies of Ti−1 that span Gi−1 and are colored blue. The picture
on the right depicts what happens to each of these copies in the induction step: those
which have a vertex in Ai (the topmost box in X (i)) “corrupt” all the vertices that they
contain (colored pink) and those which do not have a vertex in Ai “evolve” to Ti via an
X qi-thrill into Y(i) \ Y(i−1), shown in green.

By the induction hypothesis we have dXi−1 6 (i − 1) · rid0 and dYi−1 6 (i − 1) · ri−1d0.
Therefore,

dXi 6 d0

(
(i− 1) · ri +

ri
qi

)
6 i · rid0

and

dYi 6 d0

(
(i− 1) · ri−1 + (i− 1) · qiri + 1 +

ri−1

qi

)
6 i · ri+1d0

where in the final step, we use ri+1 − ri−1 = qiri and the fact that 1 + ri−1 6 ri < ri+1.
We now prove that Gi admits a Ti-factor. Recall from the preliminaries that if Ti−1 =

Tri,r(i−1)
is the Euclidean tree with left vertices x1, . . . , xri and right vertices y1, . . . , yr(i−1)

,
then Ti = Tri,r(i+1)

is constructed on left vertices x1, . . . , xri and right vertices y1, . . . , yr(i+1)
,

by adding to Ti−1 an X qi-thrill of size ri between x1, . . . , xri and yr(i−1)+1, . . . , yr(i+1)
. By

Lemma 17, G(X (i) \ DX
i , (Y(i) \ Y(i−1)) \ DY

i ) is spanned by an X qi-thrill. This, along
with the copies of Ti−1 that span Gi−1, gives us the desired Ti-factoring of Gi.

The proof of the inductive step when i is odd i.e., (2)⇒ (b) is completely analogous (X
swapped with Y everywhere). The only small difference that arises is in the recurrences
for dXi and dYi because of the slightly different bounds for |Ai| and |Bi| given by Lemma
17 in this case. In particular, by following the same line of argument as in the proof of
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(1)⇒ (a), we obtain, in this case

dXi 6 dXi−1 + qid
Y
i−1 + qid0 + ri−1d0 and dYi 6 dYi−1 + rid0.

But then, by using the trivial bound qi + ri−1 6 ri+1, we obtain the desired estimates
dXi 6 i · ri+1d0 and dYi 6 i · rid0.

Thus, we have shown that there exist subsets DX = DX
m ⊂ X, DY = DY

m ⊂ Y such
that G(X \DX , Y \DY ) admits a T`,L-factor and consequently has NMP. Furthermore we
have

|DX | 6 `md0 and |DY | 6 Lmd0.

We are now in a position to prove Theorem 6 part (b).

Proof of Theorem 6 part (b). Suppose G is a Thomason pseudorandom bipartite graph
with parameters (p, ε) and with vertex classes X and Y of sizes k and n respectively with
n
k
6 1√

ε
.

Set α :=
4
√
ε3 and η := 4

√
ε and consider the interval [n(1−α), n]. Since its length is αn,

there is an integer N ∈ I such that N is a multiple of bαnc. Also, since ηk > αn, there is
an integer K in the interval J = [k(1− 2η), k(1− η)] such that K is a multiple of bαnc.
With K and N as defined above (note that K 6 N), simply pick a subset CX ⊂ X of size
k−K and CY ⊂ Y of n−N arbitrarily and define a new graph G′ = G(X \CX , Y \CY ).
Observe that if L/` is the representation in reduced from of N/K, then L 6 1

4√
ε3

= Oε(1).

Applying Lemma 18 toG′ (see Remark 3 after Lemma 17), we obtain subsets DX ⊂ X\CX
and DY ⊂ Y \ CY such that G(X \ DelX , Y \ DelY ) has NMP, where DelX = CX ∪ DX

and DelY = CY ∪DY . By Fact 12 and the trivial bounds K 6 n and N 6 n, we have

|DelY |
n

6 α +
L

n
·md0 6

4
√
ε3 + 5 4

√
ε logL 6 6 4

√
ε log

(
1

ε

)
and similarly,

|DelX |
k

6 2η +
`

k
·md0 6 7 4

√
ε log

(
1

ε

)
and that completes the proof.

5 Concluding Remarks

• The main engine in the proof of Theorem 6 comes from Lemma 17 which is the
place the pseudorandomness is used in an explicit form. The rest of the proof of the
theorem including the inductive argument uses this in a black-box manner. Hence, if
we had an equivalent statement to Lemma 4.1 for other models of pseudorandomness
- call it Lemma 4.1* (say), then the rest of the proof of Theorem 1.4 can run
through with the error estimates being dictated by Lemma 4.1* instead. The content
of Lemma 17 uses the notion of Thomason pseudorandomess explicitly only when
we evoke Theorem 4 which is basically a statement that estimates how much the
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difference between e(A,B) and the expected number of edges, if the graph were
random, viz., p|A||B| can be. For (n, d, λ) graphs, the analogue of this theorem is
the expander-mixing lemma which provides precisely such an estimate.

We illustrate this by returning to problem 2 that was stated in the introduction.
For ε > 0, and q a sufficiently large prime power, let H be a multiplicative subgroup
of F∗q of order at least q1/2+ε. Consider the Sum-Cayley graph Γq(H) whose vertex
set is Fq and vertices x, y are adjacent if and only if x+y ∈ H. A result of Alon and
Bourgain (see [1]) states that that Γq(H) is a (q, |H|, q1/2) graph, i.e., it is a regular
graph on q vertices, with degree |H|, and every non-trivial eigenvalue of Γq(H) is
at most q1/2. If G is the bipartite graph described in the introduction following the
description of problem 2, then it is not difficult to show that for any A ⊂ X,B ⊂ Y
we have |e(A,B)− |A||B||H|

q
| <

√
q|A||B| by using the expander-mixing lemma. Then,

via the argument in the proof of Lemma 17 we have: If X, Y ⊂ Fq with |Y | = 10|X|,
|X| > q/100, and let H is a subgroup of F∗q of size at least q1/2+ε, then there exists
A ⊂ X,B ⊂ Y with |A| 6 O(q1−ε), and |B| = 10|A| such that G(X \ A, Y \ B)
has NMP. Consequently, every element of Y \B can be labeled by some element of
X \ A such that each label appears 10 times, and further, for each y ∈ Y labeled
x, the sum x + y ∈ H. This answers in the affirmative, the approximate version of
problem 2. One could pose more general questions of the same kind, but without the
additional constraint that |Y | is a multiple of |X|. For instance, suppose X, Y ⊂ Fq
and |Y | = 3

2
|X| (say), with |X| > Ω(q), and let H be a subgroup of F∗q of size at least

q1/2+ε. Then one can similarly show that there exist subsets DelX ⊂ X,DelY ⊂ Y
with |DelX | 6 f(ε)|X|, |DelY | 6 g(ε)|Y | such that if X ′, Y ′ are the remaining sets,
then one may form a star-array A of dimension |X ′| × |Y ′| whose rows and columns
are labeled by the elements of X ′, Y ′ respectively with the property that if the
(x, y)th element of A is a star, then x + y ∈ H. Furthermore, each row of A has
precisely 3 stars, and each column has precisely 2 stars.

• For a bipartite graph G(X, Y ) with |X| = |Y | that admits a perfect matching,
the Max-Min Greedy Matching problem that was introduced in [8] goes as follows.
Given permutations σ, π of the vertices of X and Y respectively, the vertices of X are
processed according to σ, and each x ∈ X is matched to its earliest available neighbor
in Y according to π. If MG[σ, π] denote the size of the resulting greedy matching,

determine ρ[G] := maxπ minσ |MG[σ,π]|
|X| . This problem admits a natural generalization.

Suppose G(X, Y ) is a bipartite graph, with |X| = k, |Y | = n, with k 6 n, and
suppose r = bn/kc. As before, let σ, π be permutations of the vertices of X and Y
respectively. We process the vertices of X according to σ and for each x ∈ X, we
choose its first r neighbors in Y that have not been already chosen by some previous
vertex of X according to π. Let m

(r)
G [σ, π] denote the number of vertices of X for

which one can choose r such neighbors. Then determine ρr[G] :=
maxπ minσm

(r)
G [σ,π]

|X| .
Our proof of Lemma 17 can easily be adapted to establish the following: Suppose
ε > 0, and let ω be a function such that ω(k) → ∞ as k → ∞. Then there
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exists k0 = k0(ε) such that whenever n > k > k0 and G(X, Y ) is a (p, ε)-Thomason

pseudorandom bipartite graph with |X| = k, |Y | = n, and p > ω(k)
k

, then ρr[G] >
1−O(ε).

• Our proof of Theorem 2 on closer examination reveals that G(k, n, p) does not

have NMP whp for p = logn−ω(n)
k

for any arbitrary function ω that goes to infinity.
However, to prove the existence of NMP with high probability, our proof cannot

extend beyond p = logn+O(
√

logn)
n

. While it is possible to improve (using our methods)

our result to prove that G(k, n, p) has NMP whp for p = logn+f(n)
k

for some f =
o(log n), the question of whether there is a sharp threshold for NMP of the form

p = logn+ω(n)
k

remains open.

• As remarked in the Introduction, our proof of Theorem 6 shows that f(x) = g(x) =
O(x1/4 log(1/x)) works uniformly for all pairs (k, n). Is it possible to improve this
to f(x) = g(x) = O(x) uniformly over all (k, n)?

• We make a final remark pertaining to a remark following the statement of Theorem
6 in the Introduction. As we noted, the definition of Thomason pseudorandomness
does not preclude the existence of isolated vertices unless a more symmetric defini-
tion of pseudorandomness is adopted. In that case, it would be interesting to see if
one can arrive at a stronger conclusion than the statement of Theorem 6.
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Appendix: Robustness of Thomason pseudorandomness

Lemma. Let 0 < ε < 1
2
, and k 6 n be positive integers. Suppose G(X, Y ) is a Thomason

pseudorandom bipartite graph with parameters (p0, ε0) with |X| = k, |Y | = n, and suppose
p0 > 1√

k
. Then, for a given integer D satisfying α

2
n 6 D 6 αn for α = ε3, there exist

subsets CX ⊆ X and CY ⊆ Y such that

• |CY | = D and |CX | 6 ηk, where η = 2 exp(−C
ε
) for some fixed constant C,

• the subgraph induced by the sets X \ CX and Y \ CY is Thomason pseudorandom
with parameters (p1, ε1) where p1 = p0(1− ε) and ε1 6 5(ε0 + 3ε).

Proof. Let η = 2 exp(−C
ε
) where C shall be specified later. Let T ⊆ Y be a uniformly

random subset of Y of size D. Then by the tail bound of the hypergeometric distribution
(see [19]) we have, for every t > 0,

Pr

[∣∣∣∣|N(u) ∩ T | − d(u)

n
D

∣∣∣∣ > tD

]
6 2e−2t2D (16)

for every vertex u ∈ X. Now, fix t = εp0( n
D
− 1). Call a vertex u ∈ X bad with respect

to T if

|N(u) ∩ T | >
(
d(u)

n
+ t

)
D.

Then by equation 16, the expected number of bad vertices is at most 2ke−2t2D. Fix a set
CY ⊆ Y of size D for which the set of bad vertices (which we shall call CX) has size at
most 2ke−2t2D.

Now, for a vertex x ∈ X, let N ′(x) = N(x) ∩ (Y \ CY ). Then for x ∈ X \ CX , as x is
not a bad vertex,

|N ′(x)| = |N(x)| − |N(x) ∩CY | > p0n

(
1− D

n

)
−Dt = p0(1− ε)(n−D) = p1 · |Y \CY |

where the inequality follows from the hypothesis (see Definition 3) that G is Thomason
pseudorandom. Also note that for any distinct vertices u, v ∈ X \ CX ,

|N ′(u) ∩N ′(v)| 6 (1 + ε1)p2
1 · |Y \ CY |·

which follows since

|N ′(u) ∩N ′(v)| 6 |N(u) ∩N(v)| 6 (1 + ε0)p2
0n 6

(
1 + ε0

(1− ε)2(1− α)

)
p2

1(n−D)

where the last inequality follows from the fact that n − D > n(1 − α). The required
codegree bound then follows from the given condition on ε1.

It remains only to check is that 2e−2t2D 6 η. To see this, observe that t = εp0( n
D
−1) >

εp0( 1
α
− 1) and also note that ε < 1

2
⇒ 1− α > 7

8
. Thus,

2t2D > 2ε2p2
0

(
1

α
− 1

)2 (αn
2

)
>

(
ε2

α

)
(1− α)2(p2

0k) >
49

64ε
= log

(
1

η

)
where we may take the constant C = 49

64
= 0.765625 in the definition of η.
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One interesting consequence of the proof of the lemma is that if we seek η = poly(ε)
then one has a randomized algorithm to choose a set T ⊂ Y and a related BAD(T ) ⊂ X
with |T | = D, |BAD(T )| 6 ηk such that deleting these sets from Y,X respectively results
in another Thomason pseudorandom graph with only slightly worse parameters.

It is known (see [21]) that bipartite graphs arising from the point-hyperplane incidence
structure of a projective geometry of dimension d over a finite field Fq is Thomason
pseudorandom with parameters p = n−1/2(1 + o(1)) and ε = 0. More generally, one can
take the point-block incidence structure arising from a symmetric block design as the
“seed” Thomason pseudorandom graph which upon the application of the lemma above
gives us several other examples of Thomason pseudorandom graphs with parameters that
are relevant in Theorem 6.
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Addendum – Added September 21, 2021

After the initial publishing of this article, we have learned that the notion of Euclidean
Trees has been defined prior to our work in the context of graphic matroids2 (see [SS98]).
So we find it quite interesting to see it reappear in the context of a seemingly unrelated
problem.
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2We thank Attila Sali for bringing this to our attention.
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