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Abstract

Suppose that χλ and χµ are distinct irreducible characters of the symmetric
group Sn. We give an algorithm that, in time polynomial in n, constructs π ∈ Sn
such that χλ(π) is provably different from χµ(π). In fact, we show a little more.
Suppose f = χλ for some irreducible character χλ of Sn, but we do not know λ, and
we are given only oracle access to f . We give an algorithm that determines λ, using
a number of queries to f that is polynomial in n. Each query can be computed in
time polynomial in n by someone who knows λ.

Mathematics Subject Classifications: 20C30, 05E10

1 Introduction

This paper is motivated by the following question. Suppose that we are given two distinct
irreducible characters χλ and χµ of the symmetric group Sn. How hard is it to find a
permutation π ∈ Sn such that χλ(π) 6= χµ(π)?

Surprisingly, this simple and natural question does not seem to have been considered
before in the literature. On the one hand, one might guess that the problem is hard, since
Pak and Panova [4, Theorem 7.1] have shown that even determining whether χλ(π) = 0
is in general NP-hard—in fact, it is strongly NP-hard (Pak, personal communication),
meaning there is no algorithm that runs in time polynomial in n unless P = NP.

On the other hand, empirically, if one simply tries various permutations—especially
permutations with a lot of fixed points—then it seems to take at most a few tries to find
a π such that χλ(π) 6= χµ(π). However, proving that this heuristic procedure always works
does not seem to be easy. For example, Craven [1] has shown that the number of distinct
irreducible characters of Sn with the same degree can be arbitrarily large. Similarly, it
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seems that known results on character values (e.g., [2]) do not provide us with enough
control over “unexpected” equalities of the form χλ(π) = χµ(π) (for π with many fixed
points) to answer our question.

Nevertheless, in this paper we give an algorithm that solves the stated problem in
polynomial time. The heart of our solution is an algorithm for the following related
problem. We are given a positive integer n as well as oracle access to a function f on
the symmetric group Sn, meaning that the only way we can obtain information about f
is to submit a query (i.e., an input value that we are free to choose) π ∈ Sn to an oracle,
which then truthfully tells us the value of f(π). We are promised that f = χλ for some
irreducible character χλ of Sn, but we do not know λ. Our job is to determine λ via a
sequence of queries to the oracle. Our queries are allowed to be adaptive; that is, we may
examine the results of previous queries when deciding which query to submit next.

Theorem 1. There is a deterministic algorithm that, given oracle access to a function f
that is promised to be an irreducible character of Sn, determines which irreducible char-
acter it is, using a number of queries that is polynomial in n.

Note that Theorem 1 focuses not on computational complexity but on query complexity,
since the latter is more natural in a context where the irreducible character is unknown.
However, an interesting feature of our algorithm is that, instead of querying permutations
with many fixed points, it mainly queries permutations with rather long cycles and very
few fixed points. The possible border-strip tableaux are thereby severely constrained,
allowing us to enumerate them explicitly and prove the inequalities we want.

To solve our original problem of finding π such that χλ(π) 6= χµ(π), one simply simu-
lates the algorithm using f = χλ until one reaches a query that rules out the possibility
that f = χµ. As will become apparent when we describe the algorithm, the specific com-
putations we need can all be done in time polynomial in n when λ is known; in fact, in
many cases, all that is needed is to determine whether χλ(π) is nonzero, or whether it is
even or odd. Though, as we noted above, such questions can be hard in general, they are
easy in the cases we need.

After some necessary preliminaries in Section 2, we describe the overall structure of
our algorithm in Section 3. There is one step of the algorithm that, as far as we can see,
requires a complicated case analysis; this is carried out in Section 4.

2 Background

In this section we review some standard material. It turns out that in the case of the
symmetric group, there is a natural bijection between irreducible characters and conjugacy
classes, and conjugacy classes are naturally indexed by partitions (the lengths of the cycles
of the permutation). So the first order of business is to review some of the combinatorics
of partitions.
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2.1 Partitions and Young Diagrams

Let n be a positive integer. A composition of n is defined to be a sequence α = (α1, . . . , α`)
of positive integers such that

∑`
i=1 αi = n. A partition of n is a composition λ =

(λ1, . . . , λ`) of n such that
λ1 > λ2 > · · · > λ`.

A partition of n may be visualized as a Young diagram, which is a left-justified grid of
boxes having λi boxes in row i. See Figure 1 for an example. The boxes of a Young
diagram are coordinatized in the same way that matrix entries are coordinatized; i.e., box
(i, j) is the jth box from the left in the ith row from the top, where i > 1 and j > 1.

Figure 1: Young Diagram of the Partition (7, 7, 5, 4, 1)

Following standard terminology [6, Section 7.2], we define the conjugate λ′ of a parti-
tion λ to be the sequence of column lengths of the Young diagram of λ. For example, the
conjugate of (7, 7, 5, 4, 1) is (5, 4, 4, 4, 3, 2, 2). A partition λ is self-conjugate if λ = λ′.

The principal diagonal of a Young diagram is the set of boxes with coordinates (i, i)
for some i.

For the purposes of this paper, it will be convenient to think of Young diagrams in a
slightly nonstandard manner, namely as a nested sequence of principal hooks.

Definition 2. The ith principal hook of a Young diagram D is the set

Hi := {(i, j) ∈ D : j > i} ∪ {(j, i) ∈ D : j > i}.

The ith principal hook length hi is the area (i.e., cardinality) of Hi.

For example, Figure 2 illustrates the (nonempty) principal hooks of the Young diagram
from Figure 1, where we have colored H1 red, H2 orange, H3 yellow, and H4 green.

Figure 2: Principal Hook Decomposition of (7, 7, 5, 4, 1)

The horizontal part of a principal hook is known as its arm and the vertical part is
known as its leg. Note that the arm of Hi extends at least as far to the right as the arm
of Hi+1, and may extend farther. If it extends farther, we refer to the extra boxes as
the ith arm overhang (and similarly for the legs). More formally, we have the following
definitions.
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Definition 3. Suppose that a Young diagram has exactly k nonempty principal hooks.
Then for 1 6 i 6 k, the ith arm overhang is

{(i, j) ∈ Hi : j > i and (i+ 1, j) /∈ Hi+1}.

Similarly, the ith leg overhang is

{(j, i) ∈ Hi : j > i and (j, i+ 1) /∈ Hi+1}.

If the ith arm overhang and the ith leg overhang have different cardinalities, then we
call the smaller one the ith short overhang and we let ai be its cardinality; similarly we
call the longer one the ith long overhang and we let bi be its cardinality. If the ith arm
overhang and the ith leg overhang have the same cardinality then we set both ai and bi
equal to that cardinality.

In our running example, the 1st leg overhang and the 2nd and 3rd arm overhangs are
nonempty, as indicated by the colored boxes in Figure 3, and a1 = a2 = a3 = a4 = 0 and
b1 = 1, b2 = 2, b3 = 1, b4 = 0.

Figure 3: Nonempty Overhangs of (7, 7, 5, 4, 1)

Lemma 4. If there are more than k principal hooks, then hk − ak > 3.

Proof. By assumption, the (k + 1)st principal hook has at least one box, so the kth
principal hook must have at least three boxes that do not overhang the (k+1)st principal
hook.

The next definition plays a key role in this paper.

Definition 5. The doppelgänger λ̂ of a partition λ is the partition whose Young dia-
gram D̂ is the same as the Young diagram D of λ except that the cardinality of the 1st
arm overhang of λ̂ equals the cardinality of the 1st leg overhang of λ, and vice versa.

For example, the doppelgänger of (7, 7, 5, 4, 1) is (8, 7, 5, 4), obtained by swapping the
1st leg overhang (whose cardinality is 1) with the 1st arm overhang (whose cardinality
is 0). Note that λ and λ̂ have the same values of hi, ai, and bi for all i.

The reason we have chosen the term “doppelgänger” is that it turns out to be surpris-
ingly tricky to find a permutation π such that χλ(π) is provably different from χλ̂(π).
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2.2 Border-Strip Tableaux

In the introduction, we mentioned but did not define irreducible characters of Sn. The
only fact about irreducible characters of Sn that we need in this paper (besides the fact
that they are indexed by partitions of n) is a famous result known as the Murnaghan–
Nakayama rule, which gives a combinatorial rule for computing them. In this section, we
give a complete statement of the Murnaghan–Nakayama rule, so the reader unfamiliar
with the concept of an irreducible character may take the Murnaghan–Nakayama rule as
a definition. For more details, including a proof of the Murnaghan–Nakayama rule, the
interested reader can consult Sagan [5, Section 4.10] or Stanley [6, Chapter 7].

To state the Murnaghan–Nakayama rule, we must define border strips (also known as
rim hooks or ribbons) and border-strip tableaux.

Definition 6. A border strip is a finite set of boxes such that in each row, the boxes in
that row are contiguous, and except for the top row, the rightmost box in each row lies
directly underneath the leftmost box in the row above it. The area or size of a border
strip is the total number of boxes. If B is a border strip, its height h(B) is the number of
rows of B minus 1.

In Figure 4, the four border strips have areas 11, 7, 1, 8 and heights 3, 2, 0, 3 respec-
tively. Note that the definition of a border strip ensures that the boxes are orthogonally
connected, and that a border strip never contains two boxes (i, j) and (i′, j′) with i < i′

and j < j′.

Figure 4: Four Examples of Border Strips

Definition 7. Let n be a positive integer, let λ be a partition of n, and let α be a
composition of n. A border-strip tableau (BST) of shape λ and type α is a tiling of the
Young diagram of λ with border strips such that

1. the area of the ith border strip is αi, and

2. if the number i is written in each box of the ith border strip, then the numbers
weakly increase across every row and down every column.

Figure 5 shows an example of a BST where we have colored each border strip with a
different color as a visual aid.

In Section 4.2, we will want to consider partial border-strip tableaux. We will not give
a completely formal definition, but the idea is that we take a BST and consider only the
placement of the first few border strips, ignoring the placement of the remaining border
strips.

We are now ready to state the Murnaghan–Nakayama rule.

the electronic journal of combinatorics 28(2) (2021), #P2.5 5



1 1 2 2 2
1 2 2 5
1 4 5 5
3

Figure 5: Border-Strip Tableau of Shape (5,4,4,1) and Type (4,5,1,1,3)

Theorem 8. Let λ be a partition of n, and let χλ be the irreducible character of Sn
indexed by λ. If π ∈ Sn and (αi) is the sequence of cycle lengths of π, then

χλ(π) =
∑
T

∏
B∈T

(−1)h(B), (1)

where the sum is over all BSTs T of shape λ and type α, and the product is over the
border strips B that tile T .

The expression
∏

B∈T (−1)h(B) appearing in Equation (1) is called the sign of the
BST T .

The alert reader may notice that the above statement of Theorem 8 speaks of “the”
sequence of cycle lengths of π, but there is no canonical ordering on the set of cycle lengths
of a permutation. It is a remarkable and nontrivial fact that Theorem 8 remains true no
matter what ordering is chosen. For example, let λ = (5, 4, 2) and let π be a permutation
with cycle lengths 6, 3, and 2. If we let α = (6, 3, 2) then there are two BSTs of shape λ
and type α, as shown in Figure 6. One of these BSTs contributes +1 to the sum in
Equation (1) and the other contributes −1, so χλ(π) = 0.

1 1 1 1 1
1 2 2 2
3 3

1 1 1 1 1
1 2 3 3
2 2

Figure 6: Border-Strip Tableaux of Shape (5,4,2) and Type (6,3,2)

On the other hand, the reader can check that if we let α = (6, 2, 3) then there are no
BSTs of shape λ and type α, so again Equation (1) tells us that χλ(π) = 0, but for a
“different reason” combinatorially.

Since the value of χλ(π) depends only on the sequence of cycle lengths of π, for the
rest of this paper we will usually regard χλ as a function of a composition of n, and our
queries will be compositions rather than permutations.

We conclude this section with a couple of simple but useful facts about BSTs.

Lemma 9. A border strip of a BST cannot contain more than one box on the principal
diagonal.

Proof. Let i be the smallest positive integer such that the border strip contains the box
of the Young diagram with coordinates (i, i). This box—call it x—appears in some row,
say the jth row, of the border strip. By the definition of a border strip, no box in the
border strip in any row below the jth can appear further to the right than x does, so in
particular no other box on the principal diagonal can appear in the border strip.
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Lemma 10. In any BST, for all k, the first k border strips fit into the first k principal
hooks.

Proof. We use induction on k. The case k = 0 is vacuously true. Suppose the claim is
true for some k > 0. For the claim to fail for k+1, the (k+1)st border strip must contain
a box x in the ith principal hook for some i > k + 2. Then since the box (k + 2, k + 2)
lies (weakly) above and to the left of x, the weakly increasing property of a BST forces
(k + 2, k + 2) to belong to border strip j for some j 6 k + 1. But by the induction
hypothesis, (k+ 2, k+ 2) does not belong to any of the first k border strips, so j = k+ 1.
The same argument proves that the box (k + 1, k + 1) must also belong to border strip
k + 1. This contradicts Lemma 9.

3 High-Level Structure of the Algorithm

The algorithm consists of a forward pass followed by a backward pass. As we explain in
Section 3.1, during the forward pass, we determine the principal hook lengths hi one at
a time, in the order h1, h2, h3, . . . . As we explain in Section 3.2, during the backward
pass, we determine the principal hooks (i.e., their actual shapes, not just their lengths)
in reverse order, starting with the last principal hook and working backward. It turns
out that for the backward pass, it suffices to show how to recover the 1st principal hook
given that we know all the later hooks, and we accomplish this in two steps:

1. Determine the overhang lengths a1 and b1. We give the details in Section 4.1. This
reduces the problem to distinguishing between λ and its doppelgänger λ̂.

2. Distinguish between λ and λ̂. This step is surprisingly complicated, and subdivides
into several cases, which we explain in detail in Section 4.2.

3.1 The Forward Pass

In the forward pass, we determine the principal hook lengths of λ. To determine h1, we
define, for each i ∈ {0, 1, . . . , n− 1}, the composition α(i) of n by

α
(i)
j =

{
n− i, if j = 1;

1, if 2 6 j 6 i+ 1.

We submit the queries α(0), α(1), α(2), . . . successively to the oracle, stopping as soon as we
encounter a nonzero value.

The key observation is that by Lemma 10 (with k = 1), there cannot exist a BST

of shape λ and type α(i) if α
(i)
1 > h1, because the 1st border strip would be simply too

large to fit inside the 1st principal hook. So if α
(i)
1 > h1, then χλ(α

(i)) = 0. Conversely, if

α
(i)
1 = h1, then the BSTs of shape λ and type α(i) are obtained by letting the 1st border

strip cover the entire 1st principal hook, and then arranging the numbers from 2 through
i+ 1 in the rest of λ so that they increase across rows and down columns. There is always
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at least one such BST; if there are more, then they all have the same sign, and hence in
particular, χλ(α

(i)) 6= 0. Therefore, if i0 is the smallest i such that χλ(α
(i)) 6= 0, then

h1 = α
(i0)
1 = n− i0.

Once we know h1, we can determine h2 by a similar procedure. If h1 = n then we
are done. Otherwise, we fix the size of the 1st border strip at h1, and find, by repeated
“guessing and checking,” the largest possible size of the 2nd border strip; this is h2. More
formally, we define compositions β(i) of n as follows:

β
(i)
j =


h1, if j = 1;

min(h1 − 2, n− h1)− i, if j = 2;

1, if 3 6 j 6 n− β(i)
1 − β

(i)
2 + 2.

We submit the queries β(0), β(1), β(2), . . . successively to the oracle, stopping as soon as we
encounter a nonzero value. Since β

(i)
1 = h1, Lemma 10 tells us that in any BST of shape λ

and type β(i), the 1st border strip must entirely cover the 1st principal hook. If β
(i)
2 > h2,

then there cannot be any BSTs of shape λ and type β(i), because the 2nd border strip
would be too large to fit inside the 2nd principal hook. Conversely, if β

(i)
2 = h2, then the

BSTs of shape λ and type β(i) are obtained by letting the 1st and 2nd border strips cover
the entire 1st and 2nd principal hooks respectively, and then arranging the numbers from
3 to n−β(i)

1 −β
(i)
2 +2 in the rest of λ so that they increase across rows and down columns.

As before, there is always at least one BST of this form, and if there are more, then they
all have the same sign. So if i0 is the smallest i such that χλ(β

(i)) 6= 0, then h2 = β
(i0)
2 .

The pattern should now be clear. Given that we know the first few principal hook
lengths, we fix the corresponding border-strip sizes to be equal to the known principal
hook lengths, and use the next border strip to “guess” the size of the next principal hook
length, starting with the largest conceivable value and working our way downward. If
our guess is too large, then the oracle will return zero. As soon as the oracle returns a
nonzero value for χλ, that tells us that our guess for the size of the next principal hook
length is correct. In this way, we can recover all the principal hook lengths.

3.2 The Backward Pass

Knowing the principal hook lengths of λ does not, in general, determine λ uniquely,
because there can be many different hooks with the same hook length. Our overall strategy
for determining λ will be to recover the principal hooks themselves (not just their lengths)
inductively, starting with the last (or innermost) principal hook, and working backward
one principal hook at a time. Each principal hook will be recovered in two steps; first, we
will recover the overhang lengths ai and bi, and then (if ai 6= bi) we will recover which of
ai and bi is the arm overhang length and which is the leg overhang length.

In this backward pass, we claim that we may assume without loss of generality that
we know λ completely except that we are unsure about the shape of the 1st principal
hook. To see this, suppose that we know only the shapes of the jth principal hooks of λ
for j greater than some value j0, and we want to recover the j0th principal hook of λ.
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Consider what happens if αi = hi for all i < j0. If we query the value of χλ(α), then by
the same kind of argument we gave in Section 3.1, each of the first j0 − 1 border strips
is forced to cover the corresponding principal hook entirely. In effect, we are querying a
smaller shape µ—one that has been obtained from λ by “stripping off” the first j0 − 1
principal hooks, and that we know completely except for its 1st principal hook. In other
words, given a sequence of queries for µ that recover its 1st principal hook, we can simply
prepend αi = hi for all i < j0 to each of these queries; this will give us a sequence of
queries for λ that allow us to recover its j0th principal hook.

Our description of the backward pass, and our proof of its correctness, proceeds by
induction on the number of principal hooks of λ. The induction step—which assumes
that the exact shapes of all the principal hooks Hi with i > 2 are known, and shows how
to recover the principal hook H1—is the topic of Section 4.

Let us now establish the base case, when we know that λ is a hook, and we know its
length h1, but we do not know its precise shape. Let λ1 denote the number of boxes in
the first row of λ. If we let αi = 1 for 1 6 i 6 n, then every BST of shape λ and type α
has positive sign, and Theorem 8 implies that

χλ(α) =

(
n− 1

λ1 − 1

)
,

because we may choose any λ1 − 1 of the numbers in the set {2, 3, . . . , n} to place in the
first row of our BST, and everything else about the BST is uniquely determined. For fixed
n, the binomial coefficients

(
n−1
r

)
are distinct, except that

(
n−1
r

)
=
(
n−1
n−1−r

)
. Therefore once

we know χλ(α), we know that our shape is either λ or its doppelgänger λ̂. If λ = λ̂ (i.e.,
λ is self-conjugate) then we are done. Otherwise, we define

βi :=

{
2, if i = 1;

1, if 2 6 i 6 n− 1.

We query the value of χλ(β). There are two types of BSTs of shape λ and type β,
depending on whether the first border strip is arranged horizontally or vertically; in the
former case, the first border strip has height 0 so the BST has positive sign, whereas
in the latter case, the first border strip has height 1 so the BST has negative sign. A
straightforward application of Theorem 8 yields

χλ(β) =

(
n− 2

λ1 − 2

)
−
(
n− 2

λ1 − 1

)
.

On the other hand, χλ̂(β) = −χλ(β). Therefore, as long as χλ(β) 6= 0, we can distinguish

between λ and λ̂ just by examining whether the answer to our query is positive or negative.
But the only way that χλ(β) can be zero is if (λ1 − 2) + (λ1 − 1) = n − 2, which can
happen only if λ is self-conjugate—a case that we already dealt with above.
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4 Recovering the First Principal Hook

For the remainder of this paper, we make the following standing assumptions: λ is a
partition with principal hook lengths hi and overhang lengths ai and bi, where ai 6 bi.
We assume that λ has exactly k + 1 nonempty principal hooks, with k > 1. We further
assume that we know all the hi as well as the exact shape formed by all the principal
hooks Hi with i > 2.

4.1 Determining the Overhang Lengths a1 and b1

Our goal in this section is to explain how to determine the overhang lengths a1 and b1.
We define compositions α(i) of n as follows:

α
(i)
j =


h1 − i, if j = 1;

h2 + i, if j = 2;

hj, if j > 3.

We submit the queries α(1), α(2), α(3), . . . successively to the oracle, stopping as soon as we
encounter a nonzero value.

Suppose that for some i > 1, there exists a BST T of shape λ and type α(i). Lemma 10
implies that the 2nd border strip must be contained within the first two principal hooks,
and because α

(i)
2 > h2, the 2nd border strip must contain some—in fact, exactly i—boxes

from the 1st principal hook. Let x be the box in the 1st principal hook adjacent to the
overhang of length a1, and let y be the box in the 1st principal hook adjacent to the
overhang of length b1. Then the 1st border strip cannot cover both x and y, because then
the 2nd border strip (which must in particular contain the box (2, 2)) would not be able
to contain any boxes from the 1st principal hook. See for example Figure 7, where the
1st border strip (which we have colored red, omitting the 1s in the boxes to avoid clutter)
contains both x and y, and thus blocks the 2nd border strip (in orange) from containing
any boxes from the 1st principal hook.

y

x

Figure 7: 1st Border Strip Contains Both x and y

But if i 6 a1 then the 1st border strip is so long that it is forced to cover both x and y.
Hence if i 6 a1, then χλ(α

(i)) = 0.
Conversely, suppose that i = a1 + 1. Then there is a BST of shape λ and type α(i) in

which

• the 1st border strip covers everything in the 1st principal hook except x and the
overhang adjacent to x;
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• the 2nd border strip covers x, the overhang adjacent to x, and the entire 2nd prin-
cipal hook; and

• for j > 2, the jth border strip covers the entire jth principal hook.

See for example Figure 8.

y

x

Figure 8: Border-Strip Tableau of Type α(a1+1)

Moreover, if a1 < b1, then this is the only BST of shape λ and type α(a1+1), because
any other placement of the 1st border strip would cover both x and y, and once the 1st
border strip is placed, the areas of the border strips (together with the constraint im-
posed by Lemma 10) force a unique placement of the remaining border strips. Therefore,
χλ(α

(a1+1)) = ±1, and i = a1 + 1 is the smallest value of i such that χλ(α
(i)) 6= 0.

On the other hand, if a1 = b1, then there is a second BST of shape λ and type α(a1+1),
where the 1st border strip covers everything in the 1st principal hook except y and the
overhang adjacent to y. In the case of one of these two BSTs, the heights of the first two
border strips are λ′1− 1 and λ′1− a1− 1, and in the other case, the heights of the first two
border strips are λ′1 − a1 − 2 and λ′1 − 2. Therefore the two BSTs have the same sign, so
χλ(α

(a1+1)) = ±2, and again i = a1 + 1 is the smallest value of i such that χλ(α
(i)) 6= 0.

Once the value of a1 is determined, the value of b1 is also determined, since h1 =
h2 + a1 + b1 + 2.

4.2 Distinguishing Doppelgängers

Our goal in this section is to construct a query α that distinguishes between λ and its
doppelgänger; i.e., such that χλ(α) 6= χλ̂(α). We assume that a1 6= b1, since otherwise

λ = λ̂.

Definition 11. The second imbalance of λ, denoted I(λ), is the smallest integer i > 2
such that ai 6= bi. If ai = bi for 2 6 i 6 k + 1, then we set I(λ) :=∞.

The reason for calling I(λ) the “second” imbalance is that the first imbalance is al-
ways 1, since we have assumed that a1 6= b1. Figure 9 illustrates a partition with k = 4
and I(λ) = 5.

Throughout this section, our queries will always start off the same way, as described
in the following crucial definition.

Definition 12. Let m := min(I(λ), k + 1)− 1, or in other words let m = k if I(λ) =∞
and m = I(λ)− 1 if I(λ) <∞. Define

αi(λ) =

{
h1 − a1 − 1, if i = 1;

hi − ai + ai−1, if 2 6 i 6 m.
(2)
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Figure 9: Partition with k = 4 and I(λ) = 5

4.2.1 The Greedy Arrangement

As we now explain, there is always a way to create a partial border-strip tableau of shape λ
in which the ith border strip has area αi(λ), for 1 6 i 6 m. Namely, let us place the 1st
border strip so that it entirely covers the 1st long overhang. The area of the 1st border
strip is α1(λ) = h1 − a1 − 1, which is less than h1, so it is short enough to fit inside the
1st principal hook. We must also check that it is long enough to reach the box in the
(1, 1) position, since in any BST, the 1st border strip must cover (1, 1). Because its area
is h1−a1−1, what the 1st border strip leaves uncovered (inside the 1st principal hook) is
the 1st short overhang and the box adjacent to the 1st short overhang—call this box x1.
Since λ has at least 2 nonempty principal hooks, x1 is not in the (1, 1) position, so the 1st
border strip does indeed cover (1, 1). See the red border strip in Figure 10 for an example.

x2

x3

x1

Figure 10: Greedy Arrangement

If m > 2, then let us place the 2nd border strip so that it entirely covers the 1st short
overhang. Because x1 is not in the 1st short overhang, it is adjacent to some box in the
2nd principal hook; indeed, it is adjacent to one end of the 2nd principal hook. Thus
the 2nd border strip can “spill over” into the 2nd principal hook; indeed, it spills over by
precisely

α2(λ)− (a1 + 1) = h2 − a2 + a1 − (a1 + 1) = h2 − a2 − 1

boxes. Now since m > 2, the 2nd arm overhang and the 2nd leg overhang both have
length a2, and there are at least 3 nonempty principal hooks. Arguing as we did for the
1st border strip, we conclude that what the 2nd border strip leaves uncovered (in the 2nd
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principal hook) is the overhang at the opposite end of the 2nd principal hook from x1,
plus the box (call it x2) adjacent to that overhang. Moreover, positioning the 2nd border
strip in this fashion does indeed cover the (2, 2) box, as it is required to do. See the orange
border strip in Figure 10.

The placements of the remaining border strips (if they exist) follow the same recipe.
The ith border strip is positioned to cover the boxes in the (i−1)st principal hook that are
not covered by the (i−1)st border strip, namely the uncovered overhang and the box xi−1
adjacent to that overhang. The border strip then “spills over” into the ith principal hook,
covering everything except the overhang at the opposite end of the ith principal hook and
the box xi adjacent to that overhang. This recipe works even when an overhang is empty,
as illustrated by the green border strip in Figure 10. We formalize this construction with
the following definition.

Definition 13. Let (αi(λ))i=1,...,m be given by Equation (2). A BST of shape λ is called
greedy if the first m border strips have areas (αi(λ))i=1,...,m and are arranged in the manner
described in the preceding paragraphs. It is called non-greedy if the first m border strips
have areas (αi(λ))i=1,...,m but some of those first m border strips are arranged differently.

In Sections 4.2.2 to 4.2.4, we deal with the case when I(λ) < ∞. In a nutshell, our
algorithm will submit queries α whose first few values are given by Equation (2), and we
will argue that, for the values of α that we choose,

• the number of non-greedy BSTs of shape λ and type α equals the number of non-
greedy BSTs of shape λ̂ and type α, and

• the number of greedy BSTs of shape λ and type α has the opposite parity from the
number of greedy BSTs of shape λ̂ and type α.

Given these two facts, it follows that, regardless of the signs of the BSTs, χλ(α) 6≡ χλ̂(α)
(mod 2), and therefore χλ(α) 6= χλ̂(α).

Finally, in Section 4.2.5, we deal with the case I(λ) =∞.

4.2.2 Non-Greedy Border-Strip Tableaux

In what follows, we will overload the notation αi, using it to mean both the ith part
of a composition α, as well as the function given by Equation (2). There should be
no confusion because we will only be considering compositions α whose first few parts
coincide with the values given in Equation (2).

Let us make some general observations about non-greedy BSTs. Let α be a compo-
sition of n with αi = αi(λ) for 1 6 i 6 m. Let T be a non-greedy BST of shape λ and
type α. Let i 6 m be the smallest number such that the ith border strip is not positioned
as the greedy arrangement dictates. We claim that the only other allowable positions of
the ith border strip are slides of its greedy position, meaning that we remove some boxes
from one end of the border strip and append the same number of boxes to the other end;
if we move j > 1 boxes from one end to the other then we call the resulting border strip
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x1 x1

Figure 11: Non-Greedy Arrangements of 1st Border Strip

the jth slide. For example, if λ = (14, 11, 9, 9, 8, 5, 4, 4, 2, 2, 1), then Figure 11 illustrates
the two possible slides of the 1st border strip if i = 1.

Figure 12 illustrates, for the same λ, the 1st and 3rd slides of the 2nd border strip if
i = 2.

x2

x1

x2

x1

Figure 12: 1st and 3rd Slides of 2nd Border Strip

To see why slides are the only allowable positions of the ith border strip, recall that
Lemma 10 implies that the first i border strips must lie within the first i principal hooks.
The only available boxes for the ith border strip are in the (i − 1)st and ith principal
hooks, because the greedy arrangement entirely fills all the earlier principal hooks.

We now claim that the only boxes in the ith principal hook of T that are not covered
by the ith border strip must lie in the ith arm overhang or the ith leg overhang.

To see why the claim is true if i = 1, note that every slide of the 1st border strip
necessarily covers the box x1, and any uncovered boxes in the 1st principal hook lying
beyond x1 must be in the 1st short overhang. On the other hand, even if the 1st border
strip is slid as far as possible, so that it covers the entire 1st short overhang, it will leave
uncovered at most a1 +1 6 b1 boxes, which must therefore all lie in the 1st long overhang.

A similar argument establishes the claim if i > 1. For example, if i = 2, then every
slide of the 2nd border strip covers x2, and any uncovered boxes in the 2nd principal hook
lying beyond x2 must be in an overhang. On the other hand, even if the 2nd border strip
is slid as far as possible, it will leave uncovered

h2 − (h2 − a2 + a1) = a2 − a1 6 a2

the electronic journal of combinatorics 28(2) (2021), #P2.5 14



boxes at one end of the 2nd principal hook, so these boxes must all lie in an overhang.
In fact, we can say a little more. Consider the set S of boxes in the first i principal

hooks that are not covered by the first i border strips. There are j boxes in S that were
covered in the greedy arrangement and that are now uncovered as a result of the slide; call
this set of boxes the outer island (see for example the blue boxes in Figure 13). The outer
island comprises some boxes in an (i−1)st overhang, plus possibly xi−1 and some boxes in
the adjacent ith overhang. The remaining boxes in S lie in the other ith overhang, at the
other end of the ith border strip; call this set of boxes the inner island (see for example
the violet boxes in Figure 13; note that the inner island may be empty). The reason we
call these sets “islands” is that they are disconnected from each other and from all later
principal hooks; i.e., no border strip can contain both a box from an (inner or outer)
island and a box from the i′-th principal hook for i′ > i, because they are disconnected
from each other by the ith border strip. Finally, note also that neither island can contain
a box from the principal diagonal; boxes in an overhang can never lie on the principal
diagonal, so the only worry is that xi−1 might lie on the principal diagonal, but this can
happen only if xi−1 is on the innermost hook, which is not possible because xi−1 is on the
(i− 1)st principal hook and there are at least i principal hooks.

Lemma 14. If α is a composition of n with αi = αi(λ) for 1 6 i 6 m, then the number
of non-greedy BSTs of shape λ and type α is equal to the number of non-greedy BSTs of
shape λ̂ and type α.

Proof. We describe a bijection between non-greedy BSTs of shape λ and type α and non-
greedy BSTs of shape λ̂ and type α. As above, if T is a non-greedy BST of shape λ and
type α, we let i be the smallest number such that the ith border strip is not positioned
greedily; the ith border strip in T is then the jth slide for some j. To construct the
corresponding BST T̂ of shape λ̂, we proceed as follows:

1. Arrange the first i− 1 border strips of T̂ greedily.

2. Put the ith border strip of T̂ in the jth slide position.

3. For each remaining border strip, if, in T , it lies in the inner or outer island, then
in T̂ , put it in the transposed location (explained below). Otherwise, put it in the
same place that it appears in T .

Step 3 requires further explanation. Suppose without loss of generality that the 1st long
overhang of λ is its 1st arm overhang (as opposed to the 1st leg overhang), so that the
1st long overhang of λ̂ is its 1st leg overhang. Then in the greedy arrangement of the first
i− 1 border strips of T , an extreme end of the 1st, 2nd, 3rd, 4th, . . . border strips will be
at the end of an arm, leg, arm, leg, . . . respectively, whereas in the greedy arrangement
of the first i − 1 border strips of T̂ , an extreme end of the 1st, 2nd, 3rd, 4th, . . . border
strips will be at the end of a leg, arm, leg, arm, . . . . Therefore if the ith border strip of T
is slid by j from the end of an arm, then the ith border strip of T̂ will be slid by j from
the end of a leg, and vice versa. The inner and outer islands in T and T̂ will therefore be
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identical except that they will be transposed—the (i−1)st and ith rows in T will become
the (i − 1)st and ith columns in T̂ , and vice versa. See Figure 13 for an example with
i = 2, where the outer and inner islands are colored blue and violet respectively.

Figure 13: T and T̂ with i = 2 and j = 1

This is what we mean in Step 3 above by “transposed”; the border strips that ulti-
mately cover the inner and outer islands in T should be used to cover the inner and outer
islands in the transposed positions in T̂ . This procedure will never cause a violation of the
weakly-increasing property of a BST, because the inner and outer islands will be covered
by border strips beyond the ith.

Verifying that our putative bijection is indeed a bijection is straightforward and we
will not belabor the details.

4.2.3 The Case I(λ) 666 k

Lemma 15. Assume that I := I(λ) 6 k. For 1 6 i < I, let αi = αi(λ) as defined by
Equation (2). Let

αi :=


hi − ai + ai−1, if i = I;

hi + ai−1 + 1, if i = I + 1;

hi, if I + 1 < i 6 k + 1.

Then either there is exactly one greedy BST of shape λ and type α and no greedy BST
of shape λ̂ and type α, or there is exactly one greedy BST of shape λ̂ and type α and no
greedy BST of shape λ and type α.

Proof. Informally, the main idea is that, depending on whether the Ith principal hook
covers the Ith long overhang or the Ith short overhang (and this in turn depends on
whether the 1st long overhang is the arm overhang or the leg overhang), either there will
be a unique way to place all the border strips, or the Ith border strip will disconnect the
remainder of the shape in such a way that it cannot be completed to a full BST. See for
example Figure 14, where I = 4.

On the left, the 4th (green) border strip covers the 4th long overhang and there is a
unique way to complete the BST, whereas on the right, the 4th border strip disconnects
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Figure 14: Greedy Arrangement

the remainder of the shape, rendering it impossible to cover with the single remaining
border strip of area 7.

More formally, in the Young diagrams of both λ and λ̂, let ys be the box in the Ith
principal hook that is adjacent to the Ith short overhang, and let yl be the box in the Ith
principal hook that is adjacent to the Ith long overhang. In one of the two cases—the
left-hand diagram in Figure 14—there will be a way to place the Ith border strip so that
it covers everything in the Ith principal hook up to but not including ys. In effect, this
is a “greedy” placement of the Ith border strip. Given this placement, there is a unique
way to place the (I + 1)st border strip, namely in such a way that it covers the Ith short
overhang, the box ys, and the entire (I+1)st principal hook. All subsequent border strips
are then uniquely forced to entirely cover the corresponding principal hooks. On the other
hand, if we attempt to place the Ith border strip “non-greedily” then it must cover ys,
but this will create an outer island that is disconnected from the (I + 1)st principal hook,
and there will be nowhere to place the (I + 1)st border strip.

In the other case—the right-hand diagram in Figure 14—the Ith border strip will cover
both ys and yl, as well as bI − aI − 1 boxes of the Ith long overhang, leaving aI + 1 > 0
boxes in the Ith long overhang uncovered. We are now in trouble with the (I+1)st border
strip, because it must cover these aI + 1 boxes as well as the entire (I + 1)st principal
hook, but this is impossible because these two nonempty regions are connected only via
the box yl, which is occupied by the Ith border strip. So there are no BSTs in this case.

Note that it is in this final step of the argument that we use the assumption that
I(λ) 6 k; this implies that the (I + 1)st principal hook is nonempty, which we need for
our contradiction.

4.2.4 The Case I(λ) = k + 1

As we observed in the proof of Lemma 14, if we compare the greedy arrangements of λ
and λ̂, then in one case an extreme end of the 1st, 2nd, 3rd, 4th, . . . border strips will be
at the end of an arm, leg, arm, leg, . . . respectively, whereas in the other case an extreme
end of the 1st, 2nd, 3rd, 4th, . . . border strips will be at the end of a leg, arm, leg, arm, . . .
respectively. Since I(λ) = k + 1, this process will continue until all that is left uncovered
is the final (k + 1)st principal hook, the box xk, and the adjacent kth overhang. In one
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case, xk and the kth overhang will be attached to the arm of the (k+ 1)st principal hook,
and in the other case, they will be attached to the leg of the (k + 1)st principal hook.
Motivated by this situation, let us define an arm extension of a hook to be the shape
obtained by attaching an additional row of boxes to the hook, with the leftmost box of
the new row directly above the box at the top right corner of the hook. Let us also define
a leg extension of a hook to be the shape obtained by attaching an additional column of
boxes to the hook, with the topmost box of the new column directly to the left of the box
at the bottom left corner of the hook. See Figure 15 for an example, where the original
hook is white and the additional row or column has been colored red for visual clarity.

Figure 15: Arm and Leg Extensions of a Hook

Arm and leg extensions are defined even for improper hooks; i.e., hooks that consist
of just a single row or a single column. See Figure 16 for an example of the arm and leg
extensions of an improper hook.

Figure 16: Arm and Leg Extensions of an Improper Hook

The observations above show that comparing the number of greedy BSTs of type α
and shapes λ and λ̂ reduces to comparing the number of BSTs of type α− of the arm
and leg extensions1 of the (k + 1)st principal hook, where α− consists of the parts αi for
i > k. Since I(λ) = k+ 1, we may further assume that the (k+ 1)st principal hook is not
self-conjugate.

Lemma 16. Assume that I(λ) = k + 1. For 1 6 i 6 k, let αi = αi(λ) as defined by
Equation (2). Let

αi :=

{
hk+1 − ak+1 + ak, if i = k + 1;

ak+1 + 1, if i = k + 2.

Then the number of greedy BSTs of shape λ and type α has the opposite parity from the
number of greedy BSTs of shape λ̂ and type α.

Proof. Let H denote the (k + 1)st principal hook. Without loss of generality, we may
assume that the length of the first row of H exceeds the height of its first column. For

1We have not formally defined a BST of a shape that is not a Young diagram, but the definition is
the obvious generalization.
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both the arm extension and the leg extension of H, we want to count the number of BSTs
of type

(hk+1 − ak+1 + ak, ak+1 + 1).

In each case, the answer will be at most 2, since the 2nd border strip must be placed at
either the upper right end or the lower left end of the arm/leg extension; it may be less
than 2 because one or both of these putative placements may violate the weakly increasing
condition of a BST.

Note first that placing the 2nd border strip at the lower left end of the arm extension
of H is illegal, because then it occupies precisely the entire 1st column of H; in particular,
the top box of the 1st column will contain a 2, and there will be boxes to its right that
contain a 1. On the other hand, placing the 2nd border strip at the upper right end of
the leg extension of H is legal; since ak+1 + 1 < bk+1 + 1, the 2nd border strip will occupy
a proper subset of the first row of H. See Figure 17 for an example using the arm and
leg extensions of Figure 15.

1 1 1
2 1 1 1 1 1
2
2

1 1 1 2 2 2
1

1 1
1
1

Figure 17: Illegal (left) and Legal (right) Tableaux

Now we split into two cases, depending on whether ak = ak+1. Suppose first that
ak = ak+1. Then placing the 2nd border strip at the upper right end of the arm extension
of H is illegal, because then it occupies precisely the boxes in the additional row; in
particular, the leftmost additional box will contain a 2, and there will be a box just below
it containing a 1. Similarly, placing the 2nd border strip at the lower left end of the leg
extension of H is illegal, because then it occupies precisely the boxes in the additional
column; in particular, the topmost additional box will contain a 2, and there will be a
box just to the right of it containing a 1. See Figure 18.

2 2 2
1 1 1 1 1 1
1
1

1 1 1 1 1 1
1

2 1
2
2

Figure 18: Illegal Tableaux

Combining this observation with the previous observation, we see that the arm ex-
tension admits 0 BSTs while the leg extension admits 1 BST, and 0 and 1 have opposite
parity, as required.

Now suppose that ak 6= ak+1. Then placing the 2nd border strip at the upper right
end of the arm extension will be legal, because it will occupy either a proper subset of
the additional row, or it will occupy the entire additional row plus a proper subset of
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the first row of H (it cannot occupy the entire first row of H because the first row of H
has bk+1 + 1 > ak+1 + 1 boxes, which is the area of the 2nd border strip, and the 2nd
border strip must cover at least one box in the additional row), and either way, there is
no violation of the weakly increasing property. Similarly, placing the 2nd border strip at
the lower left end of the leg extension will be legal. So in this case, the arm extension
admits 1 BST while the leg extension admits 2 BSTs, and 1 and 2 have opposite parity,
as required.

4.2.5 The Case I(λ) = ∞

If I(λ) =∞, then there is no second imbalance, and it is not hard to see that this implies
that if the 1st principal hook is deleted from λ, then what remains is self-conjugate. In
particular, λ′ = λ̂. We need the following standard fact.

Lemma 17. For any λ and π,

χλ(π) = (sgn π)χλ′(π).

Proof. Textbooks typically prove this fact by noting that taking the conjugate of a par-
tition corresponds to tensoring with the sign representation, but as pointed out to us by
Richard Stanley, it can be easily proved directly from the Murnaghan–Nakayama rule
as follows. It is not hard to see that a border strip of even area must have either an
odd number of rows and an even number of columns, or an even number of rows and an
odd number of columns; similarly, a border strip with odd area must have either an odd
number of rows and an odd number of columns, or an even number of rows and an even
number of columns. It follows that if we transpose a BST of shape λ, then in the result-
ing BST of shape λ′, the signs of the border strips with even area will reverse while the
signs of the border strips with odd area will remain the same. Now, in the disjoint-cycle
decomposition of π, a cycle of odd length is an even permutation, and a cycle of even
length is an odd permutation. Thus the overall sign of the BST will reverse if and only if
π has an odd number of cycles of even length; i.e., if and only if π is an odd permutation.
Since this argument applies for every BST, regardless of type, the lemma follows.

Lemma 17 implies that any odd permutation π such that χλ(π) 6= 0 has the desired
property that χλ(π) 6= χλ̂(π). From this point on, we focus on finding such a π.

Lemma 18. Assume that I(λ) = ∞. For 1 6 i 6 k, let αi = αi(λ) as defined by
Equation (2), and let αk+1 = hk+1 + ak + 1. Then there is exactly one BST of shape λ
and type α.

Proof. There certainly exists a unique greedy BST of shape λ and type α, whose (k+1)st
border strip covers all the boxes not covered by the first k border strips. The point is that
there cannot be any non-greedy BSTs, because then the first k border strips would leave
uncovered at least two disconnected components—an outer island, and some boxes in the
(k+ 1)st principal hook—which therefore cannot both be covered by the single remaining
border strip.
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If the α described in Lemma 18 is the cycle type of an odd permutation, then we
are done, so let us assume the contrary. Note that breaking any single cycle of an even
permutation into two nonempty cycles yields an odd permutation. In particular, any com-
position β with exactly k+2 nonzero parts where βi = αi(λ) (as defined by Equation (2))
for i 6 k, and whose last two parts βk+1 and βk+2 sum to hk+1 + ak + 1, is the cycle type
of an odd permutation. If we can show that the number of BSTs of type β is odd, then
that will imply that χλ(β) 6= 0, regardless of the signs of the BSTs.

The following lemma tells us that there are some strong constraints on what a non-
greedy BST can look like.

Lemma 19. Assume that I(λ) = ∞. For 1 6 i 6 k, let αi = αi(λ) as defined by
Equation (2), and assume that α has exactly k + 2 nonzero parts. Let T be a non-greedy
BST of shape λ and type α. Let i 6 k be the smallest number such that the ith border
strip is not positioned greedily. Then for i < i′ 6 k,

hi′ − ai′ + ai′−1 > ai + 1 (3)

and
ai′ = ai′−1. (4)

Moreover, αk+1 = hk+1 or αk+2 = hk+1.

Proof. The ith border strip of T is the jth slide for some j > 0; we use j for this number
in the rest of this proof.

By Lemma 9, a border strip cannot contain more than one box on the principal
diagonal. Here we have k + 2 border strips and k + 1 boxes on the principal diagonal,
so there can be at most one non-principal border strip (i.e., a border strip that does not
contain a box on the principal diagonal). In particular, there can be at most one border
strip that lies entirely in an overhang.

It follows that the inner island of T must be empty, or else the inner and outer islands
would both contain non-principal border strips. Thus the ith border strip must be slid as
far as possible. i.e., j = ai + 1.

For brevity, call the outer island S. The area of S is j = ai + 1. Equations (3) and (4)
are vacuously true if i = k, so assume that i < k. We prove the two equations jointly, by
induction on i′. The base case is i′ = i+ 1. By Lemma 4,

hi+1 − ai+1 > 3 > 1,

so hi+1 − ai+1 + ai > ai + 1, proving Equation (3) for i′ = i + 1. But what Equation (3)
says is that the (i + 1)st border strip is too large to fit inside S; therefore, it must lie
inside the (i+1)st principal hook. In fact, it must entirely fill the (i+1)st principal hook;
the reason is that the area of the (i+ 1)st border strip is

hi+1 − ai+1 + ai > hi+1 − ai+1,

so any boxes in the (i+1)st principal hook not covered by the (i+1)st border strip must lie
in an (i+ 1)st overhang, creating another region that must be covered by a non-principal
border strip. Therefore hi+1 − ai+1 + ai = hi+1, proving ai′ = ai′−1 for i′ = i+ 1.
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The proof of the induction step is similar to the proof of the base case. Lemma 4
implies hi′ − ai′ > 1, and by induction we may assume that ai′−1 = ai, so this proves
Equation (3). The i′th border strip cannot fit inside S and hence must lie inside the i′th
principal hook. Furthermore, by the same reasoning as we gave above, it must entirely
fill the i′th principal hook, proving that ai′ = ai′−1.

We have now almost completely specified the structure of T . The border strips before
the ith are placed greedily; the ith border strip is slid as far as possible; the remaining
border strips up to the kth border strip each entirely occupy the respective principal
hook. The only boxes not covered by the first k border strips are in two disconnected
components, namely S and the (k + 1)st principal hook. Therefore αk+1 and αk+2 must
specify the areas of these two regions, and in particular one of them must equal hk+1.

It turns out that for most shapes λ with I(λ) =∞, we can find an α for which there
exists a unique greedy BST of shape λ and type α and no non-greedy BST of shape λ and
type α; see Lemma 20. However, there are a few exceptions when the innermost hooks
are very small; these are dealt with in Lemma 21.

Lemma 20. Assume that I(λ) = ∞. For 1 6 i 6 k, let αi = αi(λ) as defined by
Equation (2). Let

αk+2 :=


2, if ak > 2 and ak+1 = 0;

ak+1 + 1, if ak 6= ak+1 and ak+1 > 1;

ak+1 + 2, if ak = ak+1 > 2.

Let αk+1 := hk+1 + ak + 1 − αk+2. Then there is exactly 1 BST of shape λ and type α,
and this BST is greedy.

Proof. First, it is easy to verify that neither αk+1 nor αk+2 is equal to hk+1, so by
Lemma 19, there can be no non-greedy BST of shape λ and type α. So we just need
to verify that there is exactly one greedy BST of shape λ and type α. To do this, it suf-
fices to consider the residual shape left uncovered by the greedy arrangement, and show
that there is a unique BST of this residual shape of type (αk+1, αk+2).

In the case that ak > 2 and ak+1 = 0, the residual shape is an arm extension (or a
leg extension, but we may assume without loss of generality that it is an arm extension;
this is also true for the remaining cases, so we will assume arm extensions in the rest of
this proof without further comment) of a single box, where the additional row has length
ak + 1 > 3. In this case, αk+2 = 2, so putting the 2nd border strip at the lower left end is
illegal, while putting the 2nd border strip at the upper right end is legal (since the first
row has length at least 3). See Figure 19.

In the case that ak 6= ak+1 and ak+1 > 1, the residual shape is an arm extension of a
proper self-conjugate hook H, where the number of boxes in the additional row is nonzero
and is different from the number of boxes in the first row (equivalently, the first column)
of H. In this case, αk+2 = ak+1 + 1, which is exactly the number of boxes in the first
column of H. Therefore putting the 2nd border strip at the lower left end is illegal, since
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Figure 19: Illegal (left) and Legal (right) Tableaux

it would fill up the entire first column of H, resulting in a 2 to the left of a 1 in the first
row of H. On the other hand, putting the 2nd border strip at the upper right end is legal,
because the 2nd border strip will either be a proper subset of the additional row, or it will
contain the entire additional row as well as a nonzero number of boxes at the right end of
the first row of H (but not all of the first row of H), and either way, the danger of having
a 2 above a 1 will be averted. See Figures 20 and 21 for examples in which ak < ak+1 and
ak+1 < ak respectively.

1 1 1
2 1 1 1
2
2
2

2 2 2
1 1 1 2
1
1
1

Figure 20: Illegal (left) and Legal (right) Tableaux

1 1 1 1
2 1 1
2
2

1 2 2 2
1 1 1
1
1

Figure 21: Illegal (left) and Legal (right) Tableaux

There remains the case that ak = ak+1 > 2, which is similar to the preceding case
except that now the additional row is exactly the same length as the first row of H. In
this case, αk+1 = ak+1 + 2, which is one more than the height of the first column of H.
Putting the 2nd border strip at the lower left end fills up the first column of H as well
as an extra box in the first row of H; since the first row of H has length at least 3, there
will be a 1 in the first row of H to the right of a 2, which is illegal. On the other hand,
putting the 2nd border strip at the upper right end fills up the additional row as well as
the rightmost box in the first row of H, and this is legal. See Figure 22.

1 1 1
2 2 1
2
2

2 2 2
1 1 2
1
1

Figure 22: Illegal (left) and Legal (right) Tableaux

This completes the proof.

Finally, we deal with the exceptional cases not covered by Lemma 20.
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Lemma 21. Assume that I(λ) = ∞. For 1 6 i 6 k, let αi = αi(λ) as defined by
Equation (2), and let αk+1 = hk+1 and αk+2 = ak +1. Let G be the number of greedy BST
of shape λ and type α and let N be the number of non-greedy BST of shape λ and type α.

1. If ak = 0 and ak+1 = 0 then G = 1 and N = 2.

2. If ak = 1 and ak+1 = 0 then G = 0 and N = 1.

3. If ak = 1 and ak+1 = 1 then G = 0 and N = 1.

Proof. Let us consider Case 1 first. The greedy arrangement leaves just two adjacent
boxes uncovered, and there is obviously only one way to cover them with the (singleton)
(k + 1)st and (k + 2)nd border strips. See Figure 23 for an example.

1 1 1 1 1 1 1 1
1 2 2 2 3 3
1 2 3 3 3
1 2 3 4 5
1 2 4 4 6
2 2

Figure 23: Case 1: hk+1 = 1 and ak = 0

Now consider the non-greedy BSTs. Let i′ be the smallest integer with the property
that ai′ = al = 0 for all i′ 6 l 6 k, and let the ith border strip be the first border strip
that is not positioned greedily. We claim that i = i′. Note first that Lemma 19 implies
that i > i′. If i > i′, then the outer island consists of the singleton box xi−1, which cannot
be covered by the (k + 1)st or (k + 2)nd border strip since it would violate the weakly
increasing property. See Figure 24 for an example with 4 = i > i′ = 3.

1 1 1 1 1 1 1 1
1 2 2 2 3 3
1 2 3 3 3
1 2 3 4 4
1 2 ? 4 ?
2 2

Figure 24: Case 1: Illegal Non-Greedy BST

Conversely, if i = i′, then since ai = 0, the only possible slide of the ith border strip
is the 1st slide, so the outer island consists of a singleton box at the extreme end of an
(i − 1)st overhang. This box and the (singleton) (k + 1)st hook can be covered by the
(k+1)st and (k+2)nd border strip in either order, while the intervening border strips are
uniquely forced to entirely cover their corresponding principal hooks. We obtain a total
of 2 non-greedy BSTs. See Figure 25 for an example.

Now consider Case 2. The greedy arrangement leaves uncovered a set of three boxes
(two in one row and one in another), and there is no legal way to cover this with a (k+1)st
border strip of area 1 and a (k+2)nd border strip of area 2. See Figure 26 for an example.
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1 1 1 1 1 1 1 1
1 2 2 2 3 5
1 2 3 3 3
1 2 3 4 4
1 2 3 4 6
2 2

1 1 1 1 1 1 1 1
1 2 2 2 3 6
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5
2 2

Figure 25: Case 1: Two Non-Greedy BSTs

1 1 1 1 1 1 1 1
1 2 2 2 3 3
1 2 3 3 3
1 2 ? ?
1 2 ?
2 2

Figure 26: Case 2: Illegal Greedy BST

Now consider the non-greedy BSTs. Let i′ be the smallest integer with the property
that ai′ = al = 1 for all i′ 6 l 6 k, and let the ith border strip be the first border
strip that is not positioned greedily. The ith border strip must be slid as far as possible,
since otherwise we would have both an outer island and an inner island, creating more
disconnected components than we have border strips to cover them. We claim that i = i′.
The argument is similar to the argument in Case 1. Lemma 19 implies that i > i′. If
i > i′, then because ai = 1, the outer island consists of two boxes, one of which is xi−1,
which cannot be covered by the (k + 1)st or (k + 2)nd border strip without violating the
weakly increasing property. See Figure 27 for an example with 3 = i > i′ = 2.

1 1 1 1 1 1 1 1
1 2 2 2 ? ?
1 2 3 3 3
1 2 3 ?
1 2 3
2 2

Figure 27: Case 2: Illegal Non-Greedy BST

Conversely, if i = i′ then there exists a unique non-greedy BST, because the outer
island has area 2 and the innermost principal hook has area 1, so the outer island must be
covered by the (k + 2)nd border strip and the innermost principal hook must be covered
by the (k + 1)st border strip. It is readily checked that covering the outer island with
the (k + 2)nd border strip does not violate the weakly increasing property, regardless of
whether ai−1 = 0 or ai−1 > 1; see Figure 28 for diagrams of these two subcases.

Finally, there is Case 3, which is very similar to Case 2, so we will just sketch the
argument. The greedy arrangement leaves 5 boxes uncovered, which cannot be covered
by a (k+ 1)st border strip of area 3 and a (k+ 2)nd border strip of area 2; see Figure 29.

For the non-greedy BSTs, we define i and i′ as in Case 2, and argue as before that we
must have i = i′; see Figure 30.
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1 1 1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3
1 2 3 4
1 2 3
5 5

1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3
1 2 3 4
1 2 3
2 2
5
5

Figure 28: Case 2: hk+1 = 1 and ak = 1

1 1 1 1 1 1 1 1 1
1 2 2 2 2 3 3
1 2 3 3 3 3
1 2 3 ? ?
1 2 ? ?
1 2 ?
2 2

Figure 29: Case 3: Illegal Greedy BST

1 1 1 1 1 1 1 1 1
1 2 2 2 2 ? ?
1 2 3 3 3 3
1 2 3 ? ?
1 2 3 ?
1 2 3
2 2

Figure 30: Case 3: Illegal Non-Greedy BST

If i = i′ then as in Case 2 we argue that there is a unique non-greedy BST, with the
(k + 1)st border strip covering the innermost principal hook and the (k + 2)nd border
strip covering the outer island; see Figure 31.

1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4
1 2 3 4
1 2 3
5 5

1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4
1 2 3 4
1 2 3
2 2
5
5

Figure 31: Case 3: hk+1 = 3 and ak = 1

In all cases, we have found an odd number of BSTs, so the character value cannot be
zero.
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5 Concluding Remarks

A crude upper bound on the number of queries needed for our algorithm is O(n3/2). In
the forward pass, there are at most n1/2 principal hooks, and the size of each principal
hook can be determined in at most n queries. In the backward pass, there are again at
most n1/2 principal hooks, and for each principal hook, determining ai and bi requires at
most n queries, and distinguishing doppelgängers requires a constant number of queries.
We should mention that Jiasheng Hu and David Brewster have analyzed the algorithm
a little more carefully; Hu has personally communicated to us an argument that in the
worst case, the number of queries used by the algorithm is linear in n.

It is natural to ask if a more efficient algorithm can be found. As we mentioned
in the Introduction, empirically it seems that permutations that consist mostly of fixed
points are good distinguishers. Enumerating the corresponding BSTs naturally leads
to enumerating skew tableaux, for which there exist formulae such as the Naruse hook-
length formula. It would take us too far afield to explain the Naruse hook-length formula
in detail (see [3] for a readable description and proof); roughly speaking, for permutations
which fix all but a small number of points, we obtain short sums of signed hook-length
formulae. It is plausible that “accidental linear relations” among such expressions occur
very infrequently, if at all. Unfortunately, a rigorous proof seems difficult, but perhaps it
is not out of reach, in which case the number of queries might be drastically reduced.
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