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Abstract

Given a partial edge coloring of a complete graph Kn and lists of allowed colors
for the non-colored edges of Kn, can we extend the partial edge coloring to a proper
edge coloring of Kn using only colors from the lists? We prove that this question
has a positive answer in the case when both the partial edge coloring and the color
lists satisfy certain sparsity conditions.

Mathematics Subject Classifications: 05C15, 05B15

1 Introduction

An edge precoloring (or partial edge coloring) of a graph G is a proper edge coloring of
some subset E ′ ⊆ E(G); a t-edge precoloring is such a coloring with t colors. A t-edge
precoloring ϕ is extendable if there is a proper t-edge coloring f such that f(e) = ϕ(e) for
any edge e that is colored under ϕ; f is called an extension of ϕ. In general, the problem
of extending a given edge precoloring is an NP-complete problem, already for 3-regular
bipartite graphs, as proved by Fiala [13].

Questions on extending a partial edge coloring seem to have been first considered
for balanced complete bipartite graphs, and these questions are usually referred to as
problems on completing partial Latin squares. In this form the problem appeared already
in 1960, when Evans [12] stated his now classic conjecture that for every positive integer
n, if n − 1 edges in Kn,n have been (properly) colored, then the partial coloring can be
extended to a proper n-edge-coloring of Kn,n. This conjecture was solved for large n by
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Häggkvist [15] and later for all n by Smetaniuk [18], and independently by Andersen
and Hilton [1]. Similar questions have also been investigated for complete graphs by
Andersen and Hilton [2]; as is well-known, problems on extending partial edge colorings
of complete graphs can be formulated as questions on completing symmetric partial Latin
squares. Moreover, quite recently, Casselgren et al. [8] proved an analogue of this result
for hypercubes.

Generalizing this problem, Daykin and Häggkvist [11] proved several results on ex-
tending partial edge colorings of Kn,n, and they also conjectured that much denser partial
colorings can be extended, as long as the colored edges are spread out in a specific sense:
a partial n-edge coloring of a graph is ε-dense if there are at most εn colored edges from
{1, . . . , n} at any vertex and each color in {1, . . . , n} is used at most εn times in the
partial coloring. Daykin and Häggkvist [11] conjectured that for every positive integer n,
every 1

4
-dense partial proper n-edge coloring of Kn,n can be extended to a proper n-edge

coloring of Kn,n, and proved a version of the conjecture for ε = o(1) (as n → ∞) and n
divisible by 16. Bartlett [7] proved that this conjecture holds for a fixed positive ε, and
recently a different proof which improves the value of ε was given by Barber et al [6].

For general edge colorings of balanced complete bipartite graphs, Dinitz conjectured,
and Galvin [14] proved, that if each edge of Kn,n is given a list of n colors, then there
is a proper edge coloring of Kn,n with support in the lists. Indeed, Galvin’s result was
a complete solution of the well-known List Coloring Conjecture for the case of bipartite
multigraphs (see e.g. [10] for more background on this conjecture and its relation to the
Dinitz conjecture).

Motivated by the Dinitz problem, Häggkvist [16] introduced the notion of βn-arrays,
which correspond to list assignments L of forbidden colors for E(Kn,n), such that each
edge e of Kn,n is assigned a list L(e) of at most βn forbidden colors from {1, . . . , n}, and
at every vertex v each color is forbidden on at most βn edges incident to v; we call such
a list assignment (of any graph), with colors from some base set {1, . . . , n}, β-sparse. If
L is a list assignment for E(Kn,n), then a proper n-edge coloring ϕ of Kn,n avoids the list
assignment L if ϕ(e) /∈ L(e) for every edge e of Kn,n; if such a coloring exists, then L is
avoidable. Häggkvist conjectured that there exists a fixed β > 0, in fact also that β = 1

3
,

such that for every positive integer n, every β-sparse list assignment for Kn,n is avoidable.
That such a β > 0 exists was proved for even n by Andrén in her PhD thesis [3], and
later for all n by Andrén et al [4].

Combining the notions of extending a sparse precoloring and avoiding a sparse list
assignment, Andrén et al. [5] proved that there are constants α > 0 and β > 0, such that
for every positive integer n, every α-dense partial edge coloring of Kn,n can be extended
to a proper n-edge-coloring avoiding any given β-sparse list assignment L, provided that
no edge e is precolored by a color that appears in L(e). Quite recently, Casselgren et al [9]
obtained analogous results for hypercubes. Moreover, similar results for a more general
family of graphs have been proved by Pham [17].

In this paper, we consider the corresponding problem for complete graphs. As men-
tioned above, edge precoloring extension problems have previously been considered for
complete graphs; the type of questions that we are interested in here, however, seems to

the electronic journal of combinatorics 28(2) (2021), #P2.8 2



be a hitherto quite unexplored line of research.
For an integer p, we define t = 4r − 1 if p = 4r or p = 4r − 1, and t = 4r − 2 if

p = 4r − 2 or p = 4r − 3. Our main result is the following.

Theorem 1. There are constants α > 0 and β > 0 such that for every positive integer p,
if ϕ is an α-dense t-edge precoloring of Kp, L is a β-sparse list assignment from the color
set {1, . . . , t}, and ϕ(e) /∈ L(e) for every edge e ∈ E(Kp), then there is a proper t-edge
coloring of Kp which agrees with ϕ on any precolored edge and which avoids L.

The number of colors in Theorem 1 agrees with the chromatic index of the complete
graph if p ∈ {4r, 4r − 1} and is thus best possible; we do not know whether t = 4r − 2
can be replaced by t = 4r− 3 if p ∈ {4r− 2, 4r− 3}. In fact, the number of colors used in
Theorem 1 is due to the proof method used in this paper: the general proof method in the
papers [9, 5, 4, 7] rely on the existence of a proper edge coloring of the considered graph
where every (or almost every) edge is contained in a large number of 2-colored 4-cycles.
Roughly speaking, after applying a simple probabilistic argument, the idea is then to
switch colors on such 4-cycles in a systematic way, so that the resulting coloring agrees
with the precoloring and respects the colors forbidden by the list assignment. Applying
similar methods to complete graphs requires a proper edge coloring where all or (“almost
all”) edges are contained in a large number of 2-edge-colored 4-cycles. However, we do
not know of any such proper edge coloring of a complete graph; thus, to be able to
apply methods previously used for complete bipartite graphs, we decompose a complete
graph K2n of order 2n into two copies of Kn and a complete bipartite graph Kn,n. In
particular, this means that a large number of edges in K2n are not contained in 2-edge-
colored 4-cycles, but every edge is adjacent to “many” edges that are contained in such
4-cycles. Nevertheless, to be able to apply the machinery from [5], we need to significantly
strengthen these techniques.

Since any complete graph K2n−1 of odd order is a subgraph of K2n, the following
theorem implies Theorem 1.

If n is even, let m = 2n− 1, and if n is odd, let m = 2n.

Theorem 2. There are constants α > 0 and β > 0 such that for every positive integer
n, if ϕ is an α-dense m-edge precoloring of K2n, L is a β-sparse list assignment for K2n

from the color set {1, . . . ,m}, and ϕ(e) /∈ L(e) for every edge e ∈ E(K2n), then there is
a proper m-edge coloring of K2n which agrees with ϕ on any precolored edge and which
avoids L.

The rest of the paper is devoted to the proof of Theorem 2. As already mentioned,
the proof of this theorem uses the same strategy as the proof of the main result of [5],
and we shall need to adapt several tools from [5, 7] to the setting of complete graphs.

2 Terminology, notation and proof outline

Let {p1, p2, . . . , pn, q1, q2, . . . , qn} be the 2n vertices of the complete graph K2n, and let
G1 be the subgraph induced by {p1, p2, . . . , pn}, and G2 be the subgraph induced by
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{q1, q2, . . . , qn}; so G1 and G2 are both isomorphic to Kn. We denote by Kn,n the
graph K2n − E(G1) ∪ E(G2), so Kn,n is the complete bipartite graph with partite sets
{p1, p2, . . . , pn} and {q1, q2, . . . , qn}. For any proper edge coloring h of K2n, we denote by
hK the restriction of this coloring to Kn,n; similarly, hG1 and hG2 are the restrictions of h
to the subgraphs G1 and G2, respectively.

For a vertex u ∈ V (K2n), we denote by Eu the set of edges with one endpoint being u,
and for a (partial) edge coloring f of K2n, let f(u) denote the set of colors on the edges
in Eu under f . Let ϕ be an α-dense precoloring of K2n. Edges of K2n which are colored
under ϕ, are called prescribed (with respect to ϕ). For an edge coloring h of K2n, an edge
e of K2n is called requested (under h with respect to ϕ) if h(e) = c and e is adjacent to an
edge e′ such that ϕ(e′) = c.

Consider a β-sparse list assignment L for K2n. For an edge coloring h of K2n, an edge
e of K2n is called a conflict edge (of h with respect to L) if h(e) ∈ L(e); such edges are
also referred to as just conflicts. An allowed cycle (under h with respect to L) of K2n is a
4-cycle C = uvztu in K2n that is 2-colored under h, and such that interchanging colors on
C yields a proper edge coloring h1 of K2n where none of uv, vz, zt, tu is a conflict edge.
We call such an interchange a swap on h, or a swap on C.

Let us now outline the proof of Theorem 2.

Step I. Define a standard m-edge coloring h of the complete graph K2n. In particular,
this coloring has the property that “most” edges of Kn,n are contained in a
large number of 2-colored 4-cycles.

Step II. Given the standard m-edge coloring h of K2n, from h we construct a new proper
m-edge-coloring h′ that satisfies certain sparsity conditions; in particular every
vertex of K2n is incident with a “small” number of conflict edges, and every
color class of h′ contains a “small” number of conflict edges. These sparsity
conditions will enable use to apply a modified variant of the machinery from
[5, 7] for finding a coloring that agrees with ϕ and which avoids L.

The exact formulation of these conditions shall be given below.

Step III. From the precoloring ϕ of K2n, we define a new edge precoloring ϕ′ that agrees
with ϕ, and such that an edge e of K2n is colored under ϕ′ if and only if e is
colored under ϕ or e is a conflict edge of h′ with respect to L. As for ϕ, we shall
also require that each of the colors in {1, . . . ,m} is used a bounded number of
times under ϕ′.

Step IV. In this step we prove a series of lemmas which roughly implies that for almost
all pairs of edges e and e′ in K2n, we can construct a new edge coloring hT from
h′ (or a coloring obtained from h′) such that hT (e′) = h′(e) by recoloring a
“small” subgraph of K2n. This property is crucial for our recoloring procedure
for obtaining a proper edge coloring of K2n that agrees with ϕ and which avoids
L, which is described in the next step.
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Step V. Using the lemmas proved in the previous step, we shall in this step from h′

construct a coloring hq of K2n that agrees with ϕ′ and which avoids L. This
is done iteratively by steps: in each step we consider a prescribed edge e of
K2n, such that h′(e) 6= ϕ′(e), and construct a subgraph Te of K2n, such that
performing a series of swaps on allowed cycles, all edges of which are in Te, we
obtain a coloring he where he(e) = ϕ′(e). Hence, after completing this iterative
procedure we obtain a coloring that is an extension of ϕ′ (and thus ϕ), and
which avoids L.

The main idea of our proof is thus to use structural properties of the restriction of
the coloring h to Kn,n for making stepwise alterations of the coloring h of K2n. Since the
restriction of h to G1 (G2) does not satisfy any such strong structural properties, we need
to extend the general method from [5]. Thus, the major differences between our proof
and the proof of the main result in [5] are in Steps IV and V, and the proofs in these
steps require a significant generalization of the machinery used in [5, 7] to the setting of
complete graphs. On the other hand, the proofs in Steps I-III are very similar (or even
identical) to the proofs in [5]; thus, we shall in general omit the proofs in these steps.

3 Proofs

In this section we prove Theorem 2. In the proof we shall verify that it is possible to
perform Steps I-V described above to obtain a proper m-edge-coloring of K2n that is an
extension of ϕ and which avoids L. This is done by proving some lemmas in each step.

The proof of Theorem 2 involves a number of functions and parameters:

α, β, d, ε, k, c(n), f(n)

and a number of inequalities that they must satisfy. For the reader’s convenience, explicit
choices for which the proof holds are presented here:

α =
1

1000000
, β =

1

1000000
, d =

1

200
, ε =

1

50000
,

k =
1

5000
, c(n) =

⌊ n

50000

⌋
, f(n) =

⌊ n

10000

⌋
.

We shall also use the functions

c′(n) = c(n)/2, H(n) = 9αm+ 9f(n) + 6c(n) + 4dn, P (n) = dn+ αm+ f(n).

Furthermore, we shall assume that n is large enough whenever necessary. Since the
proof contains a finite number of inequalities that are valid if n is large enough, say n > N ,
this suffices for proving the theorem with α′ and β′ in place of α and β, and where we set
α′ = min{1/N, α} and β′ = min{1/N, β}.

We remark that since the numerical values of α and β are not anywhere near what
we expect to be optimal, we have not put an effort into choosing optimal values for these

the electronic journal of combinatorics 28(2) (2021), #P2.8 5



parameters; see [9] for a more elaborate discussion on upper bounds for α and β that hold
for any d-regular graph.

Finally, for simplicity of notation, we shall omit floor and celling signs whenever these
are not crucial.

Proof of Theorem 2. Let ϕ be an α-dense precoloring of K2n, and let L be a β-sparse list
assignment for K2n such that ϕ(e) /∈ L(e) for every edge e ∈ E(K2n).

Step I: Below we shall define the standard m-edge coloring h of the complete graph K2n

by defining an n-edge coloring for Kn,n using the set of colors {1, 2, . . . , n} and a (m−n)-
edge coloring for G1 and G2 using the set of colors {n+1, . . . ,m}. Throughout this paper,
we assume x mod k = k in the case when x ≡ 0 mod k.

Firstly, we define a proper n-edge coloring for Kn,n using the set of colors {1, 2, . . . , n}.
This coloring was used in [4, 5, 7], and we shall give the explicit construction for the case
when n is even. For the case n is odd, one can modify the construction in the even case
by swapping on some 2-colored 4-cycles and using a transversal; the details are given in
Lemma 2.1 in [7].

So suppose that n = 2r. For 1 6 i, j 6 n, the standard coloring hK for Kn,n is defined
as follows.

hK(piqj) =


j − i+ 1 mod r for i, j 6 r,
i− j + 1 mod r for i, j > r,
(j − i+ 1 mod r) + r for i 6 r, j > r,
(i− j + 1 mod r) + r for i > r, j 6 r.

(1)

If a 2-colored 4-cycle with colors c1 and c2 satisfies that∣∣{c1, c2} ∩ {1, . . . , r}∣∣ = 1

then C is called a strong 2-colored 4-cycle. The following property of hK is fundamental
for our proof.

Lemma 3. [4, 5, 7] Each edge in Kn,n belongs to exactly r distinct strong 2-colored 4-cycles
under hK.

For the case when n = 2r + 1, we can construct an n-edge coloring hK for Kn,n such
that all but at most 3n+ 7 edges are in

⌊
n
2

⌋
strong 2-colored 4-cycles. In particular, there

is a vertex in Kn,n where no edge belongs to at least
⌊
n
2

⌋
strong 2-colored 4-cycles. The

full proof appears in [7] and therefore we omit the details here.
Secondly, let us define (m − n)-edge colorings of G1 and G2 using the set of colors

{n + 1, . . . ,m}. Suppose first that n is odd, and recall that m = 2n. We define the
colorings hG1 of G1 and hG2 of G2 by, for 1 6 i, j 6 n, setting

hG1(pipj) = hG2(qiqj) = (i+ j mod n) + n.

Assume now that n is even, and recall that m = 2n− 1. We define the colorings hG1

of G1 and hG2 of G2 as follows:
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• hG1(pipj) = hG2(qiqj) = (i+ j mod n− 1) + n for 1 6 i, j 6 n− 1.

• hG1(pipn) = hG2(qiqn) = (2i mod n− 1) + n for 1 6 i 6 n− 1.

It is straightforward to verify that hK , hG1 , hG2 are proper colorings. Taken together,
the colorings hK , hG1 , hG2 constitute the standard m-edge coloring h of K2n.

Step II: Let h be the m-edge coloring of K2n obtained in Step I, and let ρ = (ρ1, ρ2)
be a pair of permutations chosen independently and uniformly at random from all n!
permutations of the vertex labels of G1 and n! permutations of the vertex labels of G2.
We permute the labels of the vertices with respect to the coloring of h, while ϕ is considered
as a fixed partial coloring of K2n, as is also the list assignment L. Thus we can view a
relabeling of the vertices in G1 and G2 with respect to h (while keeping colors of edges
fixed) as equivalent to defining a new proper edge coloring of K2n from h by recoloring
edges in K2n. Hence, we can think of ρ as being applied to the edge coloring h of K2n

thereby defining a new edge coloring of K2n (rather than permuting vertex labels).
Denote by h′ a random m-edge coloring obtained from h by applying ρ to h. Note

that if u′ = ρ(u) and v′ = ρ(v), then h′(u′v′) = h(uv).

Lemma 4. Suppose that α, β, ε are constants, and c(n) and c′(n) = c(n)/2 are functions
of n, such that n− 1 > 2c(n) > 4 and( 4β

ε− 4β

)ε−4β( 1

1− 2ε+ 8β

)1/2−ε+4β

< 1,

α, β <
c(n)

2(n− c(n))

(n− c(n)

n

) n
c(n)

, and

β <
c′(n)

2(n− c′(n))

(n− c′(n)

n

) n
c′(n)

.

Then the probability that h′ fails the following conditions tends to 0 as n→∞.

(a) All edges in Kn,n, except for 3n + 7, belong to at least
⌊
n
2

⌋
− εn allowed strong

2-colored 4-cycles.

(b) Each vertex of Kn,n is incident to at most c′(n) conflict edges in Kn,n.

(c) For each color c ∈ {1, 2, . . . , n}, there are at most c(n) edges in Kn,n that are colored
c that are conflicts.

(d) For each color c ∈ {1, 2, . . . , n}, there are at most c(n) edges in Kn,n that are colored
c that are prescribed.

(e) For each pair of colors c1 ∈ {1, 2, . . . ,m} and c2 ∈ {1, 2, . . . , n}, there are at most
c(n) edges e in Kn,n with color c2 such that c1 ∈ L(e).

(f) Each vertex of G1 (G2) is incident to at most c′(n) conflict edges in G1 (G2).
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(g) For each color c ∈ {n + 1, n + 2, . . . ,m}, there are at most c(n) edges in G1 (G2)
that are colored c that are conflicts.

(h) For each color c ∈ {n + 1, n + 2, . . . ,m}, there are at most c(n) edges in G1 (G2)
that are colored c that are prescribed.

(i) For each pair of colors c1 ∈ {1, 2, . . . ,m} and c2 ∈ {n + 1, n + 2, . . . ,m}, there are
at most c(n) edges e in G1 (G2) with color c2 such that c1 ∈ L(e).

The proof of this lemma is very similar to corresponding auxiliary results in [5]. By
applying Lemmas 3.2, 3.3, 3.4 in [5], we can immediately deduce that the probability that
h′ fails conditions (a), (b), (c), (d) or (e) tends to 0 as n→∞ if( 2β′

ε− 2β′

)ε−2β′( 1

1− 2ε+ 4β′

)1/2−ε+2β′

< 1;

α′, β′ <
c(n)

(n− c(n))

(n− c(n)

n

) n
c(n)

; β′ <
c′(n)

(n− c′(n))

(n− c′(n)

n

) n
c′(n)

.

Since all these inequalities are true, it remains to prove that the probability that h′ fails
conditions (f), (g), (h) or (i) tends to 0 as n→∞.

However, that this indeed holds can be proved using arguments that are completely
analogous to the proofs of Lemmas 3.3-3.4 in [5]. Hence, we omit the details.

Lemma 4 implies that there exists a pair of permutations ρ = (ρ1, ρ2) such that if h′ is
the proper m-edge coloring obtained from h by applying ρ to h then h′ satisfies conditions
(a)-(i) of Lemma 4; then the coloring h′ also satisfies the following.

(a’) Each vertex of K2n is incident to at most c(n) conflict edges;

(b’) For each color c ∈ {1, 2, . . . ,m}, there are at most c(n) edges in K2n that are colored
c that are conflicts (prescribed);

(c’) For each pair of colors c1, c2 ∈ {1, 2, . . . ,m}, there are at most c(n) edges e in K2n

with color c2 such that c1 ∈ L(e).

Moreover, if we define α′ = 2α and β′ = 2β; then the α-dense precoloring ϕ satisfies that

(I) every color appears on at most α′n edges;

(II) for every vertex v, at most α′n edges incident with v are precolored.

Furthermore, for the β-sparse list assignment L, we have

(III) |L(e)| 6 β′n for every edge of K2n;

(IV) for every vertex v, every color appears in the lists of at most β′n edges incident to
v.
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Step III: Let h′ be the proper m-edge coloring satisfying conditions (a)-(i) of Lemma 4
obtained in the previous step.

We use the following lemma for extending ϕ to a proper m-edge precoloring ϕ′ of K2n,
such that an edge e of K2n is colored under ϕ′ if and only if e is precolored under ϕ or e
is a conflict edge of h′ with L.

Lemma 5. Let α, β be constants and c(n), f(n) be functions of n such that

m− βm− 2αm− 2c(n)− 2nc(n)

f(n)
> 1.

There is a proper m-edge precoloring ϕ′ of K2n satisfying the following:

(a) ϕ′(uv) = ϕ(uv) for any edge uv of K2n that is precolored under ϕ.

(b) For every conflict edge uv of h′ that is not colored under ϕ, uv is colored under ϕ′

and ϕ′(uv) /∈ L(uv).

(c) There are at most αm+ c(n) prescribed edges at each vertex of K2n under ϕ′.

(d) There are at most αm+ f(n) prescribed edges with color i, i = 1, . . . ,m, under ϕ′.

Furthermore, the edge coloring h′ of K2n and the precoloring ϕ′ of K2n satisfy that

(e) For each color c ∈ {1, 2, . . . , n}, there are at most 2c(n) prescribed edges in Kn,n

with color c under h′.

(f) For each color c ∈ {n+ 1, n+ 2, . . . ,m}, there are at most 2c(n) prescribed edges in
G1 (G2) with color c under h′.

The proof of this lemma is almost identical to the proof of a similar claim for Kn,n in
Step III in [5]; thus we omit the details of this proof.

Using Lemma 5, from ϕ we construct a coloring ϕ′ satisfying the conditions in the
lemma. Note that the two conditions (e) and (f) imply the following.

(g) For each color c ∈ {1, 2, . . . ,m}, there are at most 2c(n) prescribed edges in K2n

with color c in h′.

Step IV: Let h′ be the m-edge coloring of K2n obtained in Step II, and suppose that ĥ
is a proper m-edge coloring of K2n obtained from h′ by performing a sequence of swaps.
We say that an edge e in K2n is disturbed (in ĥ) if e appears in a swap which is used for
obtaining ĥ from h′, or if e is one of the original at most 3n + 7 edges in h′ that do not
belong to at least

⌊
n
2

⌋
− εn allowed strong 2-colored 4-cycles in h′. For a constant d > 0,

we say that a vertex v or color c is d-overloaded if at least dn edges which are incident to
v or colored c, respectively, are disturbed.

As mentioned in the outline, in Step IV we shall prove a number of lemmas. In all
these lemmas, we shall from an edge coloring h′′ of K2n, that have been obtained from h′

by performing some swaps, construct a new coloring hT of K2n by recoloring a subgraph
T of K2n. In every lemma in Step IV, the obtained coloring hT shall satisfy the following
conditions, where {t1, . . . , ta} is a set of colors used in the coloring h′′:
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(a) no edge with a color in {t1, . . . , ta} appears in T ;

(b) if there is a conflict of hT with respect to L, then this edge is also a conflict of h′′;

(c) any edge in G1 or G2 that is requested under hT (with respect to ϕ′) is also requested
under h′′.

For brevity, we say that a coloring hT obtained from h′′ by recoloring a subgraph T of
K2n as described above is good if it satisfies conditions (a)-(c).

The following lemma is similar to Lemmas 3.5 and 3.6 in [5], which are strengthened
variants of Lemma 2.2 in [7]; thus, we shall skip the proof.

Lemma 6. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose that for each color c, at most 2c(n) + P (n) edges with
color c under h′′ are prescribed. Moreover, let {t1, . . . , ta} be a set of colors from h′′. If⌊n

2

⌋
− 2εn− 6dn− 5

k

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0

then for any vertex u1 of G1 (G2) and all but at most

• 2
k

d
n + αm + c(n) + a choices of a vertex u2 in G2 (G1), such that h′′(u1u2) ∈

{1, 2, . . . , n}, and

• 4
k

d
n+ a+ 1 + 4c(n) + 2βm+ 2αm+ 2dn+ P (n) choices of a vertex v2 in G2 (G1),

such that h′′(u1v2) ∈ {1, 2, . . . , n},

there is a subgraph T of Kn,n and a proper m-edge coloring hT of K2n, obtained from h′′

by performing a sequence of swaps on 4-cycles in T , that satisfies the following:

• the color of any edge of T under h′′ is not d-overloaded;

• no edges that are prescribed (with respect to ϕ′) are in T ;

• h′′ and hT differs on at most 16 edges (i.e. T contains at most 16 edges);

• hT (u1u2) = h′′(u1v2) and hT (u1v2) = h′′(u1u2);

• hT is good.

Lemma 6 states that there are many pairs of adjacent edges ex, ey ∈ E(Kn,n) satisfying
that h′′(ex), h

′′(ey) ∈ {1, 2, . . . , n} such that we can exchange their colors by recoloring a
small subgraph of Kn,n. When applying the preceding lemma, we shall refer to u1u2 as
the “first edge” and u1v2 as the “second edge”.

Given an edge ex ∈ E(Kn,n) such that h′′(ex) ∈ {1, 2, . . . , n}, the following lemma is
used for obtaining a coloring where an edge ey ∈ E(Kn,n) adjacent to ex is colored h′′(ex).
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Lemma 7. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose that for each color c, at most 2c(n) + P (n) edges
with color c under h′′ are prescribed, and at most H(n) edges with color c are disturbed.
Moreover, let {t1, . . . , ta} be a set of colors from h′′. If⌊n

2

⌋
− 2εn− 6dn− 5

k + 34/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0

and

n−
(

8
k + 34/n2

d
n+ 2a+ 3 + 8c(n) + 6βm+ 4αm+ 4dn+ 2P (n) +H(n)

)
> 0

then for any edge u1u2 of Kn,n with

h′′(u1u2) = c1, c1 ∈ {1, 2, . . . , n}, c1 /∈ {t1, . . . , ta}

and all but at most

4c(n) + P (n) + 2βm+ 2αm+ 2a+ 1 + 4
k + 34/n2

d
n+H(n)

choices of a vertex v2 satisfying that u1v2 ∈ E(Kn,n), there is a subgraph T of Kn,n and
a proper m-edge coloring hT of K2n, obtained from h′′ by performing a sequence of swaps
on 4-cycles in T , that satisfies the following:

• except c1, any color of an edge in T under h′′ is not d-overloaded;

• except u1u2, no edge in T is prescribed;

• h′′ and hT differs on at most 34 edges (i.e. T contains at most 34 edges);

• hT (u1v2) = h′′(u1u2) = c1;

• hT is good.

Proof. Without loss of generality, assume that u1 ∈ V (G1); this implies u2 ∈ V (G2). We
choose v1 ∈ V (G1) and v2 ∈ V (G2) so that the following properties hold.

• The edge v1v2 in Kn,n satisfying h′′(v1v2) = c1 is not disturbed and not prescribed.
Since there are at most 2c(n) + P (n) prescribed edges and at most H(n) disturbed
edges with color c1 under h′′, and each such prescribed or disturbed edge of Kn,n can
be incident to at most one vertex of G2, this eliminates at most 2c(n)+P (n)+H(n)
choices.

• The edge u1v2 and the edge u2v1 are both valid choices for the first edge in an
application of Lemma 6. This eliminates at most

2
(

2
k + 34/n2

d
n+ αm+ c(n) + a

)
choices. The additive factor 34/n2 comes from the fact that Lemma 6 is applied
twice when performing a sequence of swaps to transform h′′ into hT .
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• c1 /∈ L(u1v2) ∪ L(u2v1) and u1u2 6= v1v2. This excludes at most 2βm+ 1 choices.

Thus we have at least

n− 4c(n)− P (n)− 2βm− 2αm− 2a− 1− 4
k + 34/n2

d
n−H(n)

choices for a vertex v2 and an edge v1v2. We note that this expression is greater than zero
by assumption, so we can indeed make the choice.

Next, we want to choose a color c2 ∈ {1, 2, . . . , n} such that the following properties
hold.

• The edges e1 and e2 colored c2 under h′′ that are incident with u1 and u2, respec-
tively, are both valid choices for the second edge in an application of Lemma 6; this
eliminates at most

2
(

4
k + 34/n2

d
n+ a+ 1 + 4c(n) + 2βm+ 2αm+ 2dn+ P (n)

)
choices. Note that this condition implies that color c2 is not d-overloaded.

• c2 6= c1 and c2 /∈ L(u1u2) ∪ L(v1v2). This excludes at most 2βm+ 1 choices.

Thus we have at least

n−
(

8
k + 34/n2

d
n+ 2a+ 3 + 8c(n) + 6βm+ 4αm+ 4dn+ 2P (n)

)
choices. By assumption, this expression is greater than zero, so we can indeed choose
such color c2. Now, since⌊n

2

⌋
− 2εn− 6dn− 5

k + 34/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0,

we can apply Lemma 6 two consecutive times to exchange the color of u1v2 and e1, and
similarly for u2v1 and e2. Finally, by swapping on the 2-colored 4-cycle u1u2v1v2u1, we
get the proper coloring hT such that hT (u1v2) = h′′(u1u2) = c1.

Note that the subgraph T , consisting of all edges used in the swaps above, contains
two edges u1u2 and v1v2 and the additional edges needed for two applications of Lemma 6;
this implies that T contains at most 2+16×2 = 34 edges. Furthermore, except (possibly)
u1u2, no edges in T are prescribed; except c1, T only contains edges with colors that are
not d-overloaded.

Since the applications of Lemma 6 do not result in any “new” requested edges in G1

or G2, the transformations in this lemma do not yield any “new” requested edges in G1

or G2; the same holds for conflict edges in K2n. Additionally, T does not contain an edge
with a color in {t1, . . . , ta}. Thus hT is good.
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As for Lemma 6, when applying Lemma 7, we shall refer to u1u2 as the “first edge”
and u1v2 as the “second edge”.

We use Lemma 8 below for transforming a coloring h′′ into a coloring where an edge
ey ∈ E(Kn,n) is colored by the color h′′(ex) of an adjacent edge ex ∈ E(G1) (E(G2)),
where h′′(ex) ∈ {n + 1, . . . ,m}. In applications of this lemma u1v1 will be referred to as
the “first edge”, and u1u2 as the “second edge”.

Lemma 8. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose further that for each color c, at most 2c(n)+P (n) edges
with color c under h′′ are prescribed, and at most H(n) edges with color c are disturbed.
Moreover, let {t1, . . . , ta} be a set of colors from h′′. If⌊n

2

⌋
− 2εn− 6dn− 5

k + 34/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0

and

n− (8
k + 34/n2

d
n+ 2a+ 2 + 12c(n) + 6βm+ 8αm+ 4dn+ 2P (n) + 2H(n)

)
> 0

then for any edge u1v1 of G1 (G2) with

h′′(u1v1) = c1, c1 ∈ {n+ 1, . . . ,m}, c1 /∈ {t1, . . . , ta}

and all but at most

6c(n) + 2P (n) + 2βm+ 2αm+ 2a+ 1 + 4
k + 34/n2

d
n+ 2H(n)

choices of u2 ∈ V (G2) (V (G1)), there is a subgraph T of K2n and a proper m-edge coloring
hT , obtained from h′′ by performing a sequence of swaps on 4-cycles in T , that satisfies
the following:

• except c1, any color of an edge in T under h′′ is not d-overloaded;

• except u1v1, no edge in T is prescribed;

• h′′ and hT differs on at most 34 edges (i.e. T contains at most 34 edges);

• hT (u1u2) = h′′(u1v1) = c1;

• hT is good.

Proof. Without loss of generality, assume that u1v1 ∈ E(G1). We choose the vertices
u2, v2 ∈ V (G2) such that the following properties hold.

• The edge u2v2 ∈ E(G2) satisfying h′′(u2v2) = c1 is not disturbed and not prescibed.
Since there are at most 2c(n) + P (n) prescribed edges and at most H(n) disturbed
edges with color c1 under h′′; and each prescribed or disturbed edge of G2 can be
incident to at most two vertices of G2, this eliminates at most 2(2c(n)+P (n)+H(n))
choices.
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• The edges u1u2 and v1v2 are both valid choices for the first edge in an application
of Lemma 6. As in the proof of the preceding lemma, this eliminates at most

2
(

2
k + 34/n2

d
n+ αm+ c(n) + a

)
choices.

• c1 /∈ L(u1u2) ∪ L(v1v2). This excludes at most 2βm choices.

In the coloring h′, there are at least n−1 vertices in G2 that are incident with an edge
of color c1; thus we have at least

n− 1− 6c(n)− 2P (n)− 2βm− 2αm− 2a− 4
k + 34/n2

d
n− 2H(n)

choices for u2. We note that this expression is greater than zero by assumption, so we
can indeed make the choice.

Next, we want to choose a color c2 ∈ {1, 2, . . . , n} (which implies c2 6= c1) such that
the following properties hold.

• The edges e1 and e2 colored c2 under h′′ that are incident with u1 and v1, respec-
tively, are both valid choices for the second edge in an application of Lemma 6; this
eliminates at most

2
(

4
k + 34/n2

d
n+ a+ 1 + 4c(n) + 2βm+ 2αm+ 2dn+ P (n)

)
choices.

• c2 /∈ L(u1v1) ∪ L(u2v2). This excludes at most 2βm choices.

• c2 /∈ ϕ′(u1)∪ϕ′(u2)∪ϕ′(v1)∪ϕ′(v2)\{ϕ′(u1v1), ϕ′(u2v2)}. This condition is needed to
ensure that performing a series of swaps on T , does not result in a “new” requested
edge in G1 or G2. Since there are at most αm+c(n) prescribed edges at each vertex
of K2n under ϕ′, this excludes at most 4(αm+ c(n)) choices.

Thus we have at least

n− (8
k + 34/n2

d
n+ 2a+ 2 + 12c(n) + 6βm+ 8αm+ 4dn+ 2P (n)

)
choices. By assumption, this expression is greater than zero, so we can indeed choose
such color c2. Now, since⌊n

2

⌋
− 2εn− 6dn− 5

k + 34/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0,

we can apply Lemma 6 two consecutive times to exchange the colors of u1u2 and e1, and
similarly for v1v2 and e2. Finally, by swapping on the 2-colored 4-cycle u1u2v2v1u1, we
get the proper coloring hT such that hT (u1u2) = h′′(u1v1) = c1.
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Note that the subgraph T , consisting of all edges used in the swaps above, contains
two edges u1v1 and u2v2 and the additional edges needed for two applications of Lemma
6; this implies that T uses at most 2 + 16× 2 = 34 edges. Furthermore, except (possibly)
u1v1, no edges in T are prescribed; except c1, T only contains edges with colors that are
not d-overloaded.

Finally, as in the proof of the preceding Lemma, since the applications of Lemma 6
result in a good coloring of K2n, the coloring hT is good.

The following lemma is used for transforming a coloring h′′ into a coloring where an
edge ey ∈ E(Kn,n) is colored by the color h′′(ex) of an adjacent edge ex ∈ E(Kn,n), where
h′′(ex) ∈ {n + 1, . . . ,m}. When applying the lemma we shall refer to u1u2 as the “first
edge” and u1v2 as the “second edge”.

Lemma 9. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose further that for each color c, at most 2c(n)+P (n) edges
with color c under h′′ are prescribed, and at most H(n) edges with color c are disturbed.
Let {t1, . . . , ta} be a set of colors from h′′. If⌊n

2

⌋
− 2εn− 6dn− 5

k + 101/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0

and

n−
(

8
k + 101/n2

d
n+ 2a+ 2 + 12c(n) + 6βm+ 8αm+ 4dn+ 2P (n) + 2H(n)

)
> 0

then for any edge u1u2 of Kn,n with

h′′(u1u2) = c1, c1 ∈ {n+ 1, . . . ,m}, c1 /∈ {t1, . . . , ta}

and all but at most

5c(n) + 2P (n) + αm+ βm+ a+ 2 + 2
k + 67/n2

d
n+ 2H(n)

choices of a vertex v2 satisfying u1v2 ∈ Kn,n, there is a subgraph T of K2n and a proper
m-edge coloring hT , obtained from h′′ by performing a sequence of swaps on 4-cycles in
T , that satisfies the following:

• except c1, any color of an edge in T under h′′ is not d-overloaded;

• except u1u2, no edge of T is prescribed;

• h′′ and hT differs on at most 67 edges (i.e. T contains at most 67 edges);

• hT (u1v2) = h′′(u1u2) = c1;

• hT is good.
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Proof. Without loss of generality, assume that u1 ∈ V (G1); this implies u2 ∈ V (G2). We
choose the vertices v2, x ∈ V (G2) such that the following properties hold.

• The edge v2x ∈ E(G2) satisfying h′′(v2x) = c1 is not disturbed. As in the proof of
the preceding lemma, this eliminates at most 2H(n) choices.

• The edge v2x is not prescribed and v2 6= u2. This eliminates at most 2(2c(n) +
P (n)) + 1 choices.

• The edge u1v2 is a valid choice for the first edge in an application of Lemma 6. This

eliminates at most 2
k + 67/n2

d
n+ αm+ c(n) + a choices.

• L(u1v2) does not contain the color c1. This eliminates at most βm choices.

In the coloring h′, there are at least n− 1 vertices in G2 that are incident with an edge of
color c1; thus we have at least

n− 1− 5c(n)− 2P (n)− αm− βm− a− 1− 2
k + 67/n2

d
n− 2H(n)

choices for v2. Since this expression is greater than zero by assumption, we can indeed
make the choice.

Next, we want to choose a vertex v1 ∈ V (G1) satisfying the following:

• The edge v2v1 is a valid choice for the second edge in an application of Lemma 8.
This eliminates at most

6c(n) + 2P (n) + 2βm+ 2αm+ 2a+ 1 + 4
k + (34 + 67)/n2

d
n+ 2H(n)

choices.

• The edge u2v1 is a valid choice for the first edge in an application of Lemma 6 and

v1 6= u1. This eliminates at most 2
k + 67/n2

d
n+ αm+ c(n) + a+ 1 choices.

• L(u2v1) does not contain the color c1. This eliminates at most βm choices.

Thus we have at least

n− 7c(n)− 2P (n)− 3αm− 3βm− 3a− 2− 6
k + 101/n2

d
n− 2H(n)

choices for v1. Since this expression is greater than zero by assumption, we can indeed
make the choice.

Finally, we want to choose a color c2 ∈ {1, 2, . . . , n} (which implies c2 6= c1) such that
the following properties hold.
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• The edges e1 and e2 colored c2 under h′′ that are adjacent to u1 and u2, respec-
tively, are both valid choices for the second edge in an application of Lemma 6; this
eliminates at most

2
(

4
k + 67/n2

d
n+ a+ 1 + 4c(n) + 2βm+ 2αm+ 2dn+ P (n)

)
choices.

• c2 /∈ L(u1u2) ∪ L(v1v2). This excludes at most 2βm choices.

Thus we have at least

n−
(

8
k + 67/n2

d
n+ 2a+ 2 + 8c(n) + 6βm+ 4αm+ 4dn+ 2P (n)

)
choices. By assumption, this expression is greater than zero, so we can indeed choose
such edges e1 and e2.

Now, since⌊n
2

⌋
− 2εn− 6dn− 5

k + 101/n2

d
n− 4αm− 8c(n)− 3a− 3βm− 2P (n)− 6 > 0

and

n−
(

8
k + 101/n2

d
n+ 2a+ 2 + 12c(n) + 6βm+ 8αm+ 4dn+ 2P (n) + 2H(n)

)
> 0,

we can apply Lemma 6 two consecutive times to exchange the colors of u1v2 and e1, and
similarly for u2v1 and e2. We can thereafter apply Lemma 8 to obtaing a coloring where
v1v2 is colored c1. Now, by swapping on the 2-colored 4-cycle u1u2v1v2u1, we get the
proper coloring hT such that hT (u1v2) = h′′(u1u2) = c1.

Note that the subgraph T , consisting of all edges used in the swaps above contains an
edge u1u2 and all the additional edges needed for applying Lemma 6 twice and Lemma
8 once; this implies that T contains at most 1 + 16 × 2 + 34 = 67 edges. Furthermore,
except u1u2, no edges in T are prescribed; except c1, T only contains edges with colors
that are not d-overloaded.

Finally, since the applications of Lemma 6 and 8 do not result in any “new” requested
edges in G1 or G2, the transformations in this lemma do not yield any “new” requested
edges in G1 or G2; the same holds for conflict edges in K2n. Additionally, T does not
contain an edge with a color in {t1, . . . , ta}, so in conclusion, hT is good.

Given a color c1 ∈ {1, 2, . . . , n}, the final lemma in this step is used for obtaining a
coloring where an edge in G1 or G2 is colored c1. In applications of this lemma we shall
refer to uv as the “first edge”.

Lemma 10. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose further that for each color c, at most 2c(n)+P (n) edges
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with color c under h′′ are prescribed, and at most H(n) edges with color c are disturbed.
Moreover, let {t1, . . . , ta} be a set of colors from h′′. If⌊n

2

⌋
− 2εn− 6dn− 8

k + 104/n2

d
n− 4αm− 15c(n)− 4a− 6βm− 5P (n)− 2H(n)− 6 > 0

then for any color c1 ∈ {1, 2, . . . , n}, where c1 /∈ {t1, . . . , ta}, there are at least⌊n
2

⌋
− 7c(n)− 3P (n)− dn− 2H(n)

choices of an edge uv ∈ E(G1) (E(G2)), such that there is a subgraph T of K2n and
a proper m-edge coloring hT , obtained from h′′ by performing a sequence of swaps on
4-cycles in T , that satisfies the following:

• except c1, any color of an edge in T under h′′ is not d-overloaded;

• T contains no prescribed edge;

• h′′ and hT differs on at most 70 edges (i.e. T contains at most 70 edges);

• hT (uv) = c1;

• hT is good.

Proof. We will prove the lemma assuming uv ∈ E(G1); the case when uv ∈ E(G2) is of
course analogous. Since at most kn2 edges in h′′ are disturbed, there are at most kn/d
d-overloaded colors; by assumption, n − 1 − kn/d − a > 0, so we can choose a color
c2 ∈ {n + 1, n + 2, . . . ,m} such that c2 /∈ {t1, . . . , ta} is not a d-overloaded color. Next,
we choose an edge uv ∈ E(G1) satisfying h′′(uv) = c2 such that the following properties
hold.

• The edge uv is not prescribed. Since there are at most 2c(n) + P (n) prescribed
edges with color c2 in h′′, this eliminates at most 2c(n) + P (n) choices.

• The edge uv is not disturbed and c1 /∈ L(uv). Since the color c2 is not d-overloaded
and for each pair of colors c1, c2 ∈ {1, 2, . . . ,m}, there are at most c(n) edges e in
K2n with h′(e) = c2 and c1 ∈ L(e) and at most dn edges of color c2 have been used
in the swaps for transforming h′ to h′′; this eliminates at most c(n) + dn choices.

• c1 /∈ ϕ′(u)∪ϕ′(v)\{ϕ′(uv)}. This condition is needed to ensure that after performing
the swaps in this lemma, uv is not a requested edge in G1. Since there are at most
2c(n) + P (n) prescribed edges with color c1 in h′′, this excludes at most 2(2c(n) +
P (n)) choices.

• The edges e1 and e2 colored c1 under h′′ that are incident with u and v, respectively,
are not disturbed. This condition implies that e1, e2 ∈ Kn,n and this eliminates at
most 2H(n) choices.
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Under h′ there are
⌊
n
2

⌋
edges in G2 that are colored c2; thus we have at least⌊n

2

⌋
− 7c(n)− 3P (n)− dn− 2H(n)

choices for an edge uv. Since this expression is greater than zero by assumption, we can
indeed make the choice.

Next, we want to choose an edge xy ∈ E(G2) satisfying h′′(xy) = c2 such that the
following properties hold.

• c1 /∈ L(xy) ∪ ϕ′(x) ∪ ϕ′(y) \ {ϕ′(xy)}, and the edge xy is not prescibed and not
disturbed. As before, this eliminates at most 7c(n) + 3P (n) + dn choices.

• The edges ux and vy are both valid choices for the second edge in an application of
Lemma 7. This eliminates at most

2
(

4c(n) + P (n) + 2βm+ 2αm+ 2a+ 1 + 4
k + (34 + 70)/n2

d
n+H(n)

)
choices.

• c2 /∈ L(ux) ∪ L(vy). This eliminates at most 2βm choices.

Thus we have at least⌊n
2

⌋
−
(

15c(n) + 5P (n) + 4αm+ 6βm+ dn+ 4a+ 2 + 8
k + 104/n2

d
n+ 2H(n)

)
choices for xy. Since this expression is greater than zero by assumption, we can indeed
make the choice.

Now, since⌊n
2

⌋
− 2εn− 6dn− 8

k + 104/n2

d
n− 4αm− 15c(n)− 4a− 6βm− 5P (n)− 2H(n)− 6 > 0

we can apply Lemma 7 two consecutive times to obtain a coloring where ux is colored c1
and vu is colored c1. Thereafter, finally, by swapping on the 2-colored 4-cycle uvyxu, we
get the proper coloring hT such that hT (uv) = h′′(e1) = c1.

Note that the subgraph T , consisting of all edges used in the swaps above, contains
two edges uv and xy and all additional edges needed for applying Lemma 7 twice; this
implies that T contains at most 2+34×2 = 70 edges. Furthermore, none of these edges in
T are prescribed; except c1, T only contains edges with colors that are not d-overloaded.

Finally, let us note that since the applications of Lemma 7 results in good edge color-
ings of K2n, the coloring hT is good.

Step V: Let ϕ′ be the proper m-precoloring of K2n obtained in Step III and h′ be
the m-edge coloring of K2n obtained in Step II. In this step we shall from h′ construct
a coloring hq of K2n that agrees with ϕ and which avoids L. This is done iteratively
by steps: in each step we consider a prescribed edge e of K2n, such that h′(e) 6= ϕ′(e),
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and perform a sequence of swaps on 2-colored 4-cycles to obtain a coloring he where e is
colored ϕ′(e). In this process, special care is taken so that these swaps do not result in
any new requested edges in G1 or G2; in particular, this implies that every requested edge
with a color in {1, 2, . . . , n} is always in Kn,n for any intermediate coloring of K2n that is
constructed in this iterative procedure.

We shall use four different recoloring techniques in this step; these are described in
the proof of the following lemma.

Lemma 11. Suppose that h′′ is a proper m-edge coloring of K2n obtained from h′ by
performing some sequence of swaps on h′ and that at most kn2 edges in h′′ are disturbed
for some constant k > 0. Suppose further that

• for each color c, at most 2c(n) + P (n) edges with color c under h′′ are prescribed;

• at most H(n) edges with color c are disturbed;

• all requested edges with a color from {1, 2, . . . , n} under h′′ are in Kn,n.

• if e is a prescribed edge of Kn,n that satisfies ϕ′(e) 6= h′′(e), then h′′(e) ∈ {1, . . . , n}.

Let uv be an edge of K2n such that

h′′(uv) = c1, ϕ′(uv) = c2, c1 6= c2.

and set

M =
⌊n

2

⌋
−
(

2εn+24c(n)+6dn+9P (n)+6βm+4αm+10+8
k + (67 + 205)/n2

d
n+6H(n)

)
If M > 0, then there is a subgraph T of K2n and a proper m-edge coloring hT , obtained
from h′′ by performing a sequence of swaps on 4-cycles in T , that satisfies the following:

• hT (uv) = c2;

• h′′ and hT differs on at most 205 edges (i.e. T contains at most 205 edges);

• besides uv, h′′ and hT disagree on at most 2 prescribed edges;

• if h′′ and hT disagree on a prescribed edge ab (where ab 6= uv), then ab is a requested
edge, hT (ab) is not d-overloaded and h′′(ab) 6= ϕ′(ab);

• the subgraph T contains at most three edges with color c1 under h′′, and at most
four edges with color c2 under h′′;

• except c1 and c2, no colors of edges in T (under h′′) are d-overloaded;

• if there is a conflict of hT with L, then this edge is also a conflict of h′′ with L;

• any edge in G1 or G2 that is requested under hT (with respect to ϕ′) is also requested
under h′′.
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Proof. We shall contruct a subgraph T of K2n, and by performing a sequence of swaps on
4-cycles of T , we shall obtain the coloring hT from h′′, where hT and ϕ′ agree on the edge
uv. We will accomplish this by applying Lemmas 6–10, and in our application of these
lemmas, we will avoid the colors {c1, c2}; so a = 2.

Let e1 and e2 be the requested edges incident with u and v, respectively, satisfying
that h′′(e1) = h′′(e2) = c2.

We shall consider four different cases.

Case 111. uv ∈ E(Kn,n) and c2 ∈ {1, 2, . . . , n}:

Since under h′′, all requested edges with colors in {1, 2, . . . , n} are in Kn,n, e1, e2 ∈
E(Kn,n). Moreover, by assumption c2 ∈ {1, . . . , n}, so we can proceed as in the proof of
Lemma 3.7 in [5] and use swaps on 4-cycles, all edges of which are contained in Kn,n, to
obtain a coloring hT where hT (uv) = c2. Note also that this implies that every precolored
edge e of Kn,n that satisfies h′′(e) ∈ {1, . . . , n}, also satisfies hT (e) ∈ {1, . . . , n}.

The swaps needed for obtaining the required coloring will involve at most 69 edges,
as described in proof of Lemma 3.7 in [5]. The exact details of the transformation of the
coloring h′′ into hT are given in [5], so we omit them here.

Case 222. uv ∈ E(Kn,n) and c2 ∈ {n+ 1, n+ 2, . . . ,m}:

In this case, we will contruct a subgraph T with at most 136 edges. Without loss of
generality, we assume that u ∈ V (G1), this implies v ∈ V (G2). By assumption c1 ∈
{1, . . . , n}; we choose an edge xy ∈ E(Kn,n) (x ∈ V (G1) and y ∈ V (G2)), with h′′(xy) = c1
such that the following properties hold.

• The edge xy is not disturbed and not prescribed and c2 /∈ L(xy). Since for each pair
of colors c1, c2 ∈ {1, 2, . . . ,m}, there are at most c(n) edges e in K2n with h′(e) = c1
and c2 ∈ L(e), and at most H(n) edges of color c1 have been used in the swaps for
transforming h′ into h′′, this eliminates at most H(n) + 2c(n) +P (n) + c(n) choices.

• The vertex x satisfies the following.

– If e2 ∈ E(G2), then we choose x such that vx is a valid choice for the second
edge in an application of Lemma 8. This eliminates at most

6c(n) + 2P (n) + 2βm+ 2αm+ 5 + 4
k + (34 + 136)/n2

d
n+ 2H(n)

choices.

– If e2 ∈ E(Kn,n), then since h′′(e2) = c2 ∈ {n + 1, n + 2, . . . ,m}, we choose x
such that vx is a valid choice for the second edge in an application of Lemma
9. This eliminates at most

5c(n) + 2P (n) + αm+ βm+ 4 + 2
k + (67 + 136)/n2

d
n+ 2H(n)
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choices.

So in both cases, this choosing process eliminates at most

6c(n) + 2P (n) + 2βm+ 2αm+ 5 + 4
k + 203/n2

d
n+ 2H(n)

choices.

• The vertex y is chosen with same strategy as x. Similarly, this eliminates at most

6c(n) + 2P (n) + 2βm+ 2αm+ 5 + 4
k + 203/n2

d
n+ 2H(n)

choices.

• c1 /∈ L(uy) ∪ L(vx). This excludes at most 2βm choices.

Thus we have at least

n−
(

15c(n) + 5P (n) + 6βm+ 4αm+ 10 + 8
k + 203/n2

d
n+ 5H(n)

)
choices for an edge xy. Since this expression is greater than zero by assumption, we can
indeed make the choice.

Now, since M > 0, we can apply Lemma 8 or Lemma 9 to obtain a coloring where uy
is colored h′′(e1). Similarly, we can apply Lemma 8 or Lemma 9 to thereafter obtain a
coloring where vx is colored h′′(vx). Next, by swapping on the 2-colored 4-cycle uvxyu,
we get the proper coloring hT such that hT (uv) = h′′(e1) = c2. Since the swaps from the
applications of Lemma 8 and Lemma 9 do not result in any “new” requested edges in G1

or G2, the swaps used in this case do not no yield any new requested edges in G1 or G2;
similarly for all conflict edges of K2n.

Here, the subgraph T contains the edges uv and xy and all additional edges used when
applying the previous lemmas above; in total there are at most 2 + 67× 2 = 136 edges in
T .

Note further that besides uv the only edges of K2n that might be prescribed and are
used in swaps for constructing hT are e1 and e2; this property shall be used when applying
Lemma 11.

Case 333. uv ∈ E(G1) (or uv ∈ E(G2)) and c2 ∈ {1, 2, . . . , n}:
In this case, we shall construct a subgraph T with at most 139 edges. Without loss of
generality, we shall assume that uv ∈ E(G1). Moreover, since all requested edges with a
color in {1, 2, . . . , n} under h′′ are in Kn,n, e1, e2 ∈ E(Kn,n).

If c1 ∈ {n+1, n+2, . . . ,m}, then we choose an edge xy ∈ E(G2) such that h′′(xy) = c1
and xy is not prescribed or disturbed. If c1 ∈ {1, 2, . . . , n}, then we choose an edge
xy ∈ E(G2) to be the first edge in an application of Lemma 10; this choice implies that
xy is not prescribed and not disturbed. So in both case we can have at least⌊n

2

⌋
− 7c(n)− 3P (n)− dn− 2H(n)
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choices for xy.
In addition to this, xy also needs to satisfy the following:

• The edges ux and vy are valid choices for the second edge in an application of
Lemma 7. This eliminates at most

2
(

4c(n) + P (n) + 2βm+ 2αm+ 5 + 4
k + (34 + 139)/n2

d
n+H(n)

)
choices.

• c2 /∈ L(xy)∪ϕ′(x)∪ϕ′(y)\{ϕ′(xy)}. This condition will imply that after performing
all swaps in this case, xy is not a “new” requested edge of G2. Since there are at
most c(n) edges e in K2n such that h′(e) = c1 and c2 ∈ L(e), and we have already
excluded the choices for xy which are disturbed, this condition eliminates at most
c(n) + 2(2c(n) + P (n)) choices.

• c1 /∈ L(ux) ∪ L(vy). This excludes at most 2βm choices.

So in total, we have at least⌊n
2

⌋
−
(

20c(n) + dn+ 7P (n) + 6βm+ 4αm+ 10 + 8
k + 173/n2

d
n+ 4H(n)

)
choices for xy. Since this expression is greater than zero by assumption, we can indeed
make the choice.

Since M > 0, firstly if c1 ∈ {1, 2, . . . , n}, we can apply Lemma 10 to obtain a coloring
where xy is colored c1. Secondly, we can apply Lemma 7 twice to obtain a coloring where
ux is colored h′′(e1) and vy is colored h′′(e2). Finally, by swapping on the 2-colored 4-cycle
uvyxu, we get the proper coloring hT such that hT (uv) = h′′(e1) = c2. Note that this
implies that uv is not a requested edge under hT . More generally, since the swaps from
the applications of Lemma 7 and Lemma 10 do not result in any new requested edges in
G1 or G2, the swaps used in this case do not yield any new requested edges in G1 or G2;
similarly for conflict edges in K2n.

Here, the subgraph T contains the edges uv and xy and all the additional edges needed
to apply the lemmas above (if we need to apply Lemma 10, then xy is included in the
edges used when applying this lemma); in total, T uses at most 1 + 70 + 34 × 2 = 139
edges.

Case 444. uv ∈ E(G1) (or uv ∈ E(G2)) and c2 ∈ {n+ 1, n+ 2, . . . ,m}:
In this case we proceed similarly to Case 3, so we just sketch the arguments: using the
same setup as in Case 3, a slight difference between two cases is that in Case 4, we can use
Lemma 8 or Lemma 9 to obtain a coloring where ux is colored h′′(e1) and vy is colored
h′′(e2). Similar calculations as above yields that we have at least⌊n

2

⌋
−
(

24c(n) + dn+ 9P (n) + 6βm+ 4αm+ 10 + 8
k + (67 + 205)/n2

d
n+ 6H(n)

)
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choices for xy; and this expression is greater than zero by assumption, so we can in-
deed make the choice and perform the necessary swaps to get the coloring hT satisfying
hT (uv) = h′′(e1) = c2. Here, T contains at most 1 + 70 + 67× 2 = 205 edges.

Finally, let us note that in the first two cases, T contains exactly two edges with color
c1 under h′′. In the last two cases, T contains exactly two edges with color c1 under h′′ if
we do not have to apply Lemma 10; otherwise T contains exactly three edges with color c1
under h′′. Any application of Lemma 7, 8 or 9 above uses at most two edges with color c2
under h′′, so the subgraph T contains at most four edges with color c2 under h′′. Except
c1 and c2, the subgraph T only contains edges with colors that are not d-overloaded.

We will take care of every prescribed edge e of K2n such that h′(e) 6= ϕ′(e) by succes-
sively applying Lemma 11; using this lemma we can construct the proper m-edge colorings
h0 = h′, h1, h2, . . . , hq, where hi is constructed from hi−1 by an application of Lemma 11
and hq is an extension of ϕ′. Since the number of prescribed edge at each vertex of K2n is
at most αm+ c(n), the total number of prescribed edges in K2n is at most 2n(αm+ c(n));
thus q 6 2n(αm+ c(n)).

When we apply Lemma 11, we first consider all prescribed edges e in Kn,n that satisfies
ϕ′(e) ∈ {1, . . . , n} (Case 1 in the proof of the lemma). This is important, since otherwise
we might recolor such edges by colors from {n + 1, . . . ,m}, and are thereafter unable to
apply Lemma 11.

Thereafter we apply Lemma 11 to all prescribed edges e of Kn,n that satisfies ϕ′(e) ∈
{n + 1, . . . ,m} (Case 2 in the proof of Lemma 11). Note that after performing all the
swaps as described in the preceding paragraph, we have not recolored any edge of G1 or
G2. Thus, if one of the requested edges e1 and e2 in Case 2 of the proof of Lemma 11
is in Kn,n, then it has been used in a previous application of Lemma 11 to a prescribed
edge e′ of Kn,n that satisfies ϕ′(e′) ∈ {n + 1, . . . ,m} (i.e. a “Case 2 application” of
the lemma). Moreover, since the only prescribed edges that are used in an application
of Lemma 11 is uv and (possibly) the requested edges e1 and e2, it follows that every
prescribed edge e in Kn,n that satisfies ϕ′(e) ∈ {n+ 1, . . . ,m} is not recolored by a color
from {n + 1, . . . ,m} \ {ϕ′(e)} in a “Case 2 application” of Lemma 11. Thus, we may
assume that h′′(e) ∈ {1, . . . , n} for any intermediate coloring h′′ and any precolored edge
e in Kn,n. Hence, we can perform all the swaps as described in Case 2 in the proof of
Lemma 11. Thereafter, we consider all prescribed edges of G1 and G2 (Cases 3 and 4 in
the proof of Lemma 11).

In an application of Lemma 11 to obtain hi from hi−1, we use swaps involving at most
three prescribed edges: the edge uv, and the two adjacent requested edges e1 and e2.
Since there are at most 2c(n) prescribed edges in K2n with any given color c in h′, there
are at most αm + f(n) prescribed edges with color c under ϕ′, and hi(e1) and hi(e2) are
not d-overloaded colors in the coloring hi−1, it follows that for each i = 1, . . . , q, there are
at most 2c(n) + dn+ αm+ f(n) edges with color c under hi that are prescribed.

Furthermore, each application of Lemma 11 to a prescribed edge uv with h′(uv) = c
constructs a subgraph T with at most three edges with color c under h′; thus a color c is
used at most 3

(
2c(n) + dn+ αm+ f(n)

)
times in a subgraph T where a prescribed edge
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has color c in h′. Moreover, there are at most αm + f(n) prescribed edges with color c
under ϕ′, and a subgraph T constructed by an application of Lemma 11 uses at most four
edges with color c. Except for these edges, any other edges contained in a subgraph T
created by an application of Lemma 11 are colored by colors that are not d-overloaded.
Hence, at most

4
(
αm+ f(n)

)
+ 3
(
2c(n) + dn+ αm+ f(n)

)
+ dn = 7αm+ 7f(n) + 6c(n) + 4dn

distinct edges with color c under h′ are used in swaps for constructing hq from h′.
Let H(n) = 7αm+ 7f(n) + 6c(n) + 4dn, P (n) = dn+ αm+ f(n); from the preceding

paragraph we deduce that as long as kn2 > 205× 2n(αm+ c(n)) = 410n(αm+ c(n)) and⌊n
2

⌋
−
(

2εn+ 24c(n) + 6dn+ 9P (n) + 6βm+ 4αm+ 10 + 8
k + 272/n2

d
n+ 6H(n)

)
> 0

c′(n) = c(n)/2; n− 1 > 2c(n) > 4;
( 4β

ε− 4β

)ε−4β( 1

1− 2ε+ 8β

)1/2−ε+4β

< 1

α, β <
c(n)

2(n− c(n))

(n− c(n)

n

) n
c(n)

; β <
c′(n)

2(n− c′(n))

(n− c′(n)

n

) n
c′(n)

m− βm− 2αm− 2c(n)− 2nc(n)

f(n)
> 1

for some constants α, β, ε, k, d and functions c(n), f(n) of n, we can apply Lemma 4 to
obtain h′, Lemma 5 to obtain ϕ′ and finally Lemma 11 to obtain the coloring hq which is
a completion of ϕ′ that avoids L. This completes the proof of Theorem 2.

References

[1] L.D. Andersen, A.J.W. Hilton, Thank Evans!, Proceedings of the London Mathemat-
ical Society, 47 (1983), 507–522.

[2] L.D. Andersen, A.J.W. Hilton, Symmetric latin square and complete graph analogues
of the evans conjecture, Journal of Combinatorial Designs, 2 (1994), 197–252.

[3] L.J Andrén, On latin squares and avoidable arrays, Ph.D. thesis, Ume̊a University,
2010.
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