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Abstract

We prove that for every integer k, there exists € > 0 such that for every n-vertex
graph G with no pivot-minor isomorphic to C, there exist disjoint sets A, B C V(G)
such that |A|,|B| > en, and A is either complete or anticomplete to B. This proves
the analog of the Erd6s-Hajnal conjecture for the class of graphs with no pivot-minor
isomorphic to Cj.

Mathematics Subject Classifications: 05CC55, 05C75

1 Introduction

In this paper all graphs are simple, having no loops and no parallel edges. For a graph G,
let w(G) be the maximum size of a clique, that is a set of pairwise adjacent vertices and
let a(G) be the maximum size of an independent set, that is a set of pairwise non-adjacent
vertices. Erdés and Hajnal [9] proposed the following conjecture in 1989.

Conjecture 1 (Erdds and Hajnal [9]). For every graph H, there is € > 0 such that all
graphs G with no induced subgraph isomorphic to H satisfies

max(a (@), w(G)) = [V(G)[.
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This conjecture still remains open. See [5] for a survey on this conjecture. We can ask
the same question for weaker containment relations. Recently Chudnovsky and Oum [6]
proved that this conjecture holds if we replace “induced subgraphs” with “vertex-minors”
as follows. This is weaker in the sense that every induced subgraph G is a vertex-minor
of G but not every vertex-minor of GG is an induced subgraph of G.

Theorem 2 (Chudnovsky and Oum [6]). For every graph H, there exists € > 0 such that
every graph with no vertex-minors isomorphic to H satisfies

max(a(G),w(Q)) = |[V(G)|5.

We ask whether Conjecture 1 holds if we replace “induced subgraphs” with “pivot-
minors” as follows.

Conjecture 3. For every graph H, there exists ¢ > 0 such that every graph G with no
pivot-minor isomorphic to H satisfies

max(a(G),w(Q)) = |[V(G)|5.

The detailed definition of pivot-minors will be presented in Section 3. For now, note
that the analog for vertex-minors is weakest, the analog for pivot-minors is weaker than
that for induced subgraphs but stronger than that for vertex-minors. This is because
every induced subgraph of G is a pivot-minor of GG, and every pivot-minor of G is a
vertex-minor of G. In other words, Conjecture 1 implies Conjecture 3 and Conjecture 3
implies Theorem 2. We verify Conjecture 3 for H = C}, the cycle graph on k vertices as
follows.

Theorem 4. For every k > 3, there exists € > 0 such that every graph with no pivot-minor
isomorphic to Cy satisfies

max(a(G),w(@)) = |[V(G)|.

We actually prove a stronger property, as Chudnovsky and Oum [6] did. Before stating
this property, let us first state a few terminologies. A class G of graphs closed under taking
induced subgraphs is said to have the Erdds-Hajnal property if there exists ¢ > 0 such
that every graph G in G satisfies

max(a(G),w(Q)) = |[V(G)|°.

A class G of graphs closed under taking induced subgraphs is said to have the strong
Erdos-Hajnal property if there exists € > 0 such that every n-vertex graph in ¢ with
n > 1 has disjoint sets A, B of vertices such that |A|,|B| > en and A is either complete
or anti-complete to B. It is an easy exercise to show that the strong Erdés-Hajnal property
implies the Erdés-Hajnal property, see [1, 10].

Chudnovsky and Oum [6] proved that the class of graphs with no vertex-minors iso-
morphic to H for a fixed graph H has the strong Erddés-Hajnal property, implying Theo-
rem 2. We propose its analog for pivot-minors as a conjecture, which implies the theorem
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of Chudnovsky and Oum [6]. Note that this conjecture is not true if we replace the pivot-
minor with induced graphs. For example, the class of triangle-free graphs does not have
the strong Erdés-Hajnal property [10].

Conjecture 5. For every graph H, there exists ¢ > 0 such that for all n > 1, every
n-vertex graph with no pivot-minor isomorphic to H has two disjoint sets A, B of vertices
such that |A|,|B| > en and A is complete or anti-complete to B.

We prove that this conjecture holds if H = (. In other words, the class of graphs
with no pivot-minor isomorphic to C} has the strong Erdos-Hajnal property as follows.
This implies Theorem 4.

Theorem 6. For every integer k > 3, there exists € > 0 such that for alln > 1, every
n-vertex graph with no pivot-minor isomorphic to Cy has two disjoint sets A, B of vertices
such that |A|,|B| = en and A is complete or anti-complete to B.

This paper is organized as follows. In Section 2, we will introduce basic definitions
and review necessary theorems of R6dl [20] and Bonamy, Bousquet, and Thomassé [2].
In Section 3, we will present several tools to find a pivot-minor isomorphic to Cy. In
particular, it proves that a long anti-hole contains C}, as a pivot-minor. In Section 4, we
will present the proof of the main theorem, Theorem 6. In Section 5, we will relate our
theorem to the problem on y-boundedness, and discuss known results and open problems
related to polynomial y-boundedness and the Erdés-Hajnal property.

2 Preliminaries

Let N be the set of positive integers and for each n € N, we write [n] := {1,2,...,n}. For
a graph G = (V, E), let G = (V, (‘2/) — E) be the complement of G. We write A(G) and
d(G) to denote the maximum degree of G and the minimum degree of G respectively.

Let T be a tree rooted at a specified node v,., called the root. If the path from v, to
a node y in T contains z € V(T') — {y}, we say that x is an ancestor of y, and y is a
descendant of x. If one of x and y is an ancestor of the other, we say that z, y are related.
We say that two disjoint sets X and Y of nodes of T" are unrelated if no pairs of x € X
and y € Y are related.

For disjoint vertex sets X and Y, we say X is complete to Y if every vertex of X
is adjacent to all vertices of Y. We say X is anti-complete to Y if every vertex of X is
non-adjacent to Y. A pure pair of a graph G is a pair (A, B) of disjoint subsets of V(G)
such that A is complete or anticomplete to B.

For a vertex u, let Ng(u) denote the set of neighbors of u in G. For each U C V(G),
we write

Ne(U) := | Na(u) - U.

uelU

The following lemma is proved in Section 2 of [2].
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Lemma 7 (Bonamy, Bousquet, and Thomassé [2]). For every connected graph G and
a vertex v, € V(G), there exist an induced subtree T of G rooted at v, and a function
r: V(G) = V(T) satisfying the following.

(T1) r(v,) = v, and for each u € V(G) — {v,}, the vertex r(u) is a neighbor of u. In
particular, T is a dominating tree of G.

(T2) If r(x) and r(y) are not related, then xy ¢ E(G).

R6dl [20] proved the following theorem. Its weaker version was later proved by Fox
and Sudakov [11] without using the regularity lemma. A set U of vertices of G is an
e-stable set of a graph G if G[U] has at most 5(‘[2]') edges. Similarly, U is an e-clique of a

graph G if G[U] has at least (1 —¢) ('g‘) edges.

Theorem 8 (Rodl [20]). For all e > 0 and a graph H, there ezists 6 > 0 such that every
n-vertex graph G with no induced subgraph isomorphic to H has an e-stable set or an
e-clique of size at least on.

We will use the following simple lemma. We present its proof for completeness.

Lemma 9. Let G be a graph. Every e-stable set U of G has a subset U' of size at least
|U|/2 with A(G[U']) < 4¢|U|.

Proof. Let U’ be the set of vertices of degree at most 2¢|U| in G[U]. Because

ZdegG[U] (v) < elU]%,

velU

we have |U’| > |U]/2. Moreover, for each vertex v € U’, we have deggy(v) < 2¢|U[ <
4e|U|. O

Using Lemma 9, we can deduce the following corollary of Theorem 8.

Corollary 10. For all « > 0 and a graph H, there exists § > 0 such that every graph G
with no induced subgraph isomorphic to H has a set U C V(G) with |U| = §|V(G)| such

that either A(G[U]) < o|U| or A(G[U]) < a|U].

The following easy lemma will be used to find a connected induced subgraph inside
the output of Corollary 10. We omit its easy proof.

Lemma 11. A graph G has a pure pair (A, B) such that |A|,|B| = |[V(G)|/3 or has a
connected induced subgraph H such that |V (H)| > |V(G)|/3.

Lemma 12 (Bonamy, Bousquet, and Thomassé [2, Lemma 3]). Let T' be a tree rooted at
v and w : V(T') = R be a non-negative weight function on V(T) with 3y w(z) = 1.
Then there exists either a path P from v, with weight at least 1/4 or two unrelated sets A
and B both with weight at least 1/4.
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v U U v
G G A uv

Figure 1: Pivoting uv.

A hole is an induced cycle of length at least 5.

Lemma 13 (Bonamy, Bousquet, and Thomassé [2, Lemma 4]). For given k > 3, there
exist = (k) > 0 and € = (k) > 0 such that for any n-vertex graph G with n > 2 and
A(G) < an, if G has no holes of length at least k and has a dominating induced path,
then G contains a pair (A, B) of disjoint vertex sets such that A is anticomplete to B and
|Al,|B| = en.

3 Finding a cycle as a pivot-minor

For a given graph GG and an edge uv, a graph G A uv obtained from G by pivoting uv is
defined as follows. Let V; = Ng(u) N Ng(v), Va = Ng(u) — Ng(v), Vs = Ng(v) — Ne(u).
Then G A uv is the graph obtained from G by complementing adjacency between vertices
between V; and V; for all 1 < ¢ < j < 3 and swapping the label of v and v. See Figure 1
for an illustration. We say that H is a pivot-minor of G if H can be obtained from
G by deleting vertices and pivoting edges. For this paper, we will also say that H is a
pivot-minor of GG, when G has a pivot-minor isomorphic to H. A pivot-minor H of G is
proper if |V(H)| < |[V(G)].

We describe several scenarios for constructing C} as a pivot-minor. The following
proposition is an easy one; One can obtain a desired pivot-minor from a longer cycle of
the same parity.

Proposition 14. For m > k > 3 with m = k (mod 2), the cycle C,, has a pivot-minor
isomorphic to Cl.

Proof. We proceed by induction on m — k. We may assume that m > k. Let xy be an
edge of C,,. Then (C,, A zy) — x — y is isomorphic to C,,_», which contains a pivot-minor
isomorphic to C'} by the induction hypothesis. O

Proposition 15. For integers k > 3 and m > %k: + 6, the graph C,, has a pivot-minor
isomorphic to Cl.

Before proving Proposition 15, we present a simple lemma on partial complements of
the cycle graph. The partial complement! G @ S of a graph G by a set S of vertices is a

'We found this concept in a paper by Kaminiski, Lozin, and Milani¢ [14], though it may have been
studied previously, as it is a natural concept.

ot
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Figure 2: Obtaining an (s — 2,3)-cycle from an (s,9)-cycle when s > 9 in the proof of
Lemma 16.

graph obtained from G by changing all edges within S to non-edges and non-edges within
S to edges.

For s > t > 0, we say that G is an (s,t)-cycle if G is isomorphic to a graph Cs & X
for a set X of t consecutive vertices in the cycle C.

Lemma 16. Let s > t > 6. An (s,t)-cycle contains a pivot-minor isomorphic to an
(s —2,t — 6)-cycle.

Proof. Let vy, ..., vs be the vertices of Cy in the cyclic order where X = {wvy,... v}
Then it is easy to check that (Cs & X) A vavi_1 — {ve,v;1} is isomorphic to Cs_o & X’
where X consists of t — 6 consecutive vertices on the cycle. See Figure 2. O

Proof of Proposition 15. As C,, is an (m, m)-cycle, by Lemma 16, C,, contains a pivot-
minor isomorphic to an (m — 2i, m — 6i)-cycle for all i < m/6.

Let us fix i = [(k —2)/4]. Then m —6i > m —6- (k+1)/4 > 9/2 and therefore C,,
contains a pivot-minor H isomorphic to an (m — 2i, m — 6i)-cycle and m — 6i > 5. We
may assume that H = C,,_o; ® X where C,,_o; = v1 -+ Up_9; and X = {vgi41, -+, Um_2: }-

Note that H contains an induced cycle C' = vy - - - U404;41U;m—2;v1 of length 4i 42 > k.
If k is even, then by Proposition 14, H contains a pivot-minor isomorphic to Cj. So we
may assume that k is odd and therefore |V (C)| =4i+2 > k + 1.

Let © = vy_2;, ¥ = 4541 be the two vertices in V(C) N X. Since m — 6i > 5, there
is a common neighbor z of x and y in X. Then z has exactly two neighbors z and y in
V(C). Then H[V(C)U{z}] Ayz —y — z is a cycle of length 4i + 1. Since 4i + 1 > k, by
Proposition 14, it contains a pivot-minor isomorphic to C}. O]

A generalized fan is a graph G with a specified vertex ¢, called the center, such that
G — c is an induced path of length at least 1, called the main path of G and both ends of
the main path are adjacent to c. If ¢ is adjacent to all vertices of G — ¢, then G is called
a fan.
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An interval of a generalized fan with a center ¢ is a maximal subpath of the main path
having no internal vertex adjacent to c. The length of an interval is its number of edges.
A generalized fan is an (ay, ..., as)-fan if the lengths of intervals are ay,...,as in order.
Note that an (aq,...,as)-fan is also an (as,...,ar)-fan. An (aq,...,as)-fan is a k-good
fan if ay > k—2or ay > k—2. An (ay,...,as)-fan is a strongly k-good fan if s > 2 and
either a; > k — 2 and ay is odd, or ay, > k — 2 and a; is odd. It is easy to observe that
every k-good fan has a hole of length at least k. However, that does not necessarily lead
to a pivot-minor isomorphic to C) because of the parity issues. In the next proposition,
we show that every strongly k-good fan has a pivot-minor isomorphic to Cj.

Proposition 17. Let k > 5 be an integer. Fvery strongly k-good fan has a pivot-minor
isomorphic to Cl.

Proof. Let G be an (ay, ..., as)-fan such that s > 2, a; > k—2, and a, is odd. We proceed
by the induction on |V (G)|. We may assume that G has no proper pivot-minor that is
a strongly k-good fan. Note that Cy, ;2 is an induced subgraph of G, hence if a; = k
(mod 2), then C} is isomorphic to a pivot-minor of G by Proposition 14. Thus we may
assume that a; Z k (mod 2) and so a; > k — 1.

If a; is odd for some 1 < i < s, then G contains a smaller strongly k-good fan by taking
the first ¢ intervals, contradicting our assumption. Thus a; is even for all 1 < i < s. If
a; > 3 forsome i > 1, then let uv be an internal edge of the i-th interval. Then GAuv—u—v
is a strongly k-good fan, contradicting our assumption. Thus, we may assume that a; < 2
for all i > 1 and so G is an (ay,2,...,2,1)-fan.

Let zy be the last interval of G with length 1. Then GAzy—z—yisa (a1,2,...,2,1)-
fan with s —1 intervals. By the assumption, we may assume that s =2 and GAxy—x—y
is an (a; — 1)-fan with one interval, which is a cycle with a; + 1 edges. As a; +1 > k
and a; +1 =k (mod 2), Proposition 14 implies that G contains a pivot-minor isomorphic
to Ck ]

4 Proof of Theorem 6
First we choose o > 0 and ¢y > 0 so that
4o < o[3k+6]) and g = e([3k+6]) where o(+), e(-) are specified in Lemma 13 (1)

and in addition v < 1/(8k) as well. Let § > 0 be a constant obtained by applying
Corollary 10 with «/3 as a and Cy as H. Choose € > 0 so that

. 4] ) 80(5
£ < min (E’ (1—4(k +3)oz)%, E) .

Let n > 1 be an integer and G be an n-vertex graph with no pivot-minor isomorphic
to C}. In particular, G does not have C} as an induced subgraph. To derive a contradic-
tion, we assume that G contains no pure pair (A, B) with |A|, |B| > en. We may assume
that en > 1, because otherwise an edge or a non-edge of G gives a pure pair.
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By Corollary 10, there exists a subset U of V(G) such that |[U| > ¢|V(G)| and
AGH[U]) < (a/3)|U| for some G° € {G,G}. By the assumption on G, G°[U] has
no pure pair (A, B) with |A|,|B| = (¢/6)|U]. As g/6 < 1/3, by Lemma 11, G°[U] has a
connected induced subgraph G’ such that |V(G")| > |U|/3. Let n’ = |V(G")].

Then n’ > (6/3)n and A(G’) < (a/3)|U| < an’. By the assumption on G,

G’ contains no pure pair (A, B) with |A|,|B| = (3¢/d)n’. (2)

By applying Lemma 7 with G’, we obtain a dominating induced tree T"and r : V(G') —
V(T) satistying Lemma 7 (T1)—(T2) with G'. For each u € V(T), let
-1
wu) = 4Dl
n
be the weight of u. By applying Lemma 12 with the weight w, we obtain either an induced
path P of T with weight at least 1/4 or two unrelated sets A and B both with weight at
least 1/4.

In the latter case, Lemma 7 (T2) implies that r—!(A) is anticomplete to r~*(B) in G’
and [rt(A)|, |r~1(B)| = n'/4 > (3¢/§)n’, contradicting (2).

Hence, there exists an induced path P in G’ with |V (P) U Ng/(V(P))| > n'/4. Let
W :=V(P)U Ng (V(P)). Note that n'/4 > on/12 > en > 1 and so |W| > 2.

Suppose that G’ is an induced subgraph of G. Using (1), we apply Lemma 13 to
G'[W] with 4a as o and [3k + 6] as k. Then we can deduce from (2) and &/|W]| >
1= — (3¢/8)n’ that the graph G’[W] contains an induced cycle C,, with m > [3k + 6]
and by Proposition 15, G’ contains a pivot-minor isomorphic to Cj, and so does G, a
contradiction.

Thus G’ is an induced subgraph of G. Let G* := G'[W] and let n* = |W|. Then G*
has no pivot-minor isomorphic to Cy, n* > n’/4, and A(G*) < 4an*. By (2), G* contains
no pure pair (A, B) with |A|,|B| > (12¢/§)n*. Now the theorem follows from applying
the following lemma with G*,n*, 4a, 12¢/6 playing the roles of G,n, «,e respectively in
the statement of the lemma.

Lemma 18. Let k > 3 be an integer. Let 0 < aw < 1/(2k), 0 < e < (1 — (k + 3)a)/20.
Let G be a graph on n > 2 vertices such that A(G) < an and G has no pure pair (A, B)
with |A|,|B| = en. If G has a dominating induced path P, then G has a pivot-minor
isomorphic to Cl.

Proof. Suppose that G has no pivot-minor isomorphic to C%. Note that en > 1 as other-
wise we have a pure pair on two vertices since n > 2. Let us label vertices of P by 1, 2,
..., § in the order.
As P is a dominating path of G and 1 < A(G) < an, we have 2ans > (an+1)s > n
and therefore
s> 1/(2a).

Note that s — &k > 0 because a < ﬁ As P is an induced path, it contains a pure

pair (A, B) with |A],|B| > [%5}] and so 52 < [%51] < en. Because en > 1, we have
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2en + 2 < 4en and so
s < 2en + 2 < 4en. (3)

Now, for each i € [s — k + 1], let
U~ ={1,....i—1}, U :={i,...,i+k—1}, and U :={i+Fk,...,s}.

In other words, this partitions P into three (possibly empty) subpaths. Furthermore, for
alli € [s —k+1] and u € Ng(U;) — V(P), let

m; (u) := max(Ng(u) NU;")
and for all 7 € [s — k + 1] and u € Ng(U;") — V(P), let
m; (u) := min(Ng(u) NU;"),

indicating the largest neighbor of w in U;” and the smallest neighbor of u in U;" respectively.
For each i € [s — k + 1], let

A; == Ng(UP) — V(P) and
B, = (Na(U;') N Na(U7)) — (4 UV(P)).

Note that for each u € B;, we have

m (u) —my (u) # k  (mod 2), (4)

)

because otherwise (u, m; (u),m; (u) +1,...,m} (u),u) forms an induced cycle of length

at least k and Proposition 14 implies that G contains a pivot-minor isomorphic to Cy, a
contradiction.

For each i € [s — k + 1], let

Cl:={u € Ng(U;) - (A4;UB;UV(P)) :m;(u) =1 (mod 2)},

C? :={u€ Ng(U) — (A, UB;UV(P)) :m; (u) =0 (mod 2)},

D} :={u € Ng(U") — (A;uB;UV(P)) :m}f(u) =k (mod 2)}, and
D? .= {u € Ng(U") — (A;UuB;UV(P)) :m}(u)=k+1 (mod 2)}.

Recall that P is dominating. Hence, for each i, the sets {A;, B;, C},C? D} D2 V(P)}
forms a partition of V(G) into 7 possibly empty sets.

If there exists an edge between u € C7 and v € D? for some j € [2], then we obtain an
induced cycle (u, m; (u), m; (u)+1,...,m; (v),v,u) having length m; (v) —m; (u)+3 > k

and m; (v) —m; (u) +3 =k (mod 2), contradicting our assumption that G has no pivot-
minor isomorphic to C by Proposition 14. Thus €Y is anticomplete to DJ. Hence,

min{|C/, [D][} < en. (5)
for all i € [s — k+ 1] and j € [2]. Furthermore, we prove the following.
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Claim 19. Leti € [s—k~+1]. For each v € B;, all integers in Ng(v) NU;” have the same
parity and all integers in Ng(v) NU;" have the same parity.

Proof of Claim 19. If Ng(v) NU;" has two integers a < b of the different parity, then G
contains a strongly k-good generalized fan by taking a subpath of P from m; (v) to b
as its main path and v as its center. Then by Proposition 17, G contains a pivot-minor
isomorphic to C, contradicting the assumption. Thus all integers in Ng(v) N U;" have
the same parity and similarly all integers in Ng(v) NU;” have the same parity. [

Claim 20. For alli € [s — k+ 1], |B;| < 2(a + 2¢)n.

Proof of Claim 20. Suppose |B;| > 2(a + 2¢)n for some i € [s — k + 1]. Then there exists
rp € {0,1} such that

B :={u€e B;:m; (u)=rg (mod 2)}

has size at least (a + 2¢)n. By (4), m{ (u) = k+rp+1 (mod 2) for all u € B'.

We claim that if uv is an edge in G[B’], then (m; (u),m}(u)) = (m; (v),m; (v)).

K3 (3

Suppose not. Without loss of generality, we may assume that m; (u) < m; (v), because

otherwise we may reverse the ordering of P to ensure that m; (u) # m~(v) and swap u
and v if necessary.

If m; (u) = m;(v), then by Claim 19, {m; (v),m; (v) + 1,...,m; (u),u,v} induces a
strongly k-good generalized fan with v as a center and (m; (v), m; (v)+1,...,m] (u),u) as

its main path. This implies that G has a pivot-minor isomorphic to C} by Proposition 17,
contradicting our assumption.
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If mf(u) < mj(v), then (m; (v),m; (v) + 1,...,m; (u),u,v) is an induced cycle of
length m; (u) — m; (v) +3 = k, and m; (u) —m; (v) +3=(k+rg+1)—rp+3 =k
(mod 2), a contradiction by Proposition 14.

Hence, (m; (u),m; (u)) = (m; (v),m] (v)) for all ww € E(G[B]). Let Ci, ..., C; be
the connected components of G[B’]. By the above observation, for each j € [t], there
exist a; € U, and b; € U;" such that V(C;) C Ng(a;) N Ng(b;). So, [V(C))| < an. As
|B'| > (a+42¢)n, there exists aset I C {1,2,...,t} such that en < |J,.; V(Cs)| < (ate)n.
Let A:=J,;;V(C;) and B := B'— A. Then (A, B) is a pure pair of G with |A|,|B| > en,
a contradiction. [

Claim 21. There exist i, € [s — k + 1] and j. € [2] such that

|G|, | Dy

> 3en.

Proof of Claim 21. First, since A(G) < an, |A;] < kan for each i € [s — k + 1].
Let f(i) := |C}| + |C?|. Then

f(1) =0,
fls—k+1)=n—|Azpn|—s because UL, =Dy 4y = D] 11 = Byps1 = 2,
>n—kan —4en by (3) and the assumption that A(G) < an,

= (1 — ka — 4e)n > 6en,
and for each i € [s — k], we have

J(i+1) = f(i) < degg(i) < an.

Hence, there exists i, € [s—k+1] such that 6en < f(i,) < (6e4+a)n. As|B;,| < 2(a+2¢)n,
we have

D+ 1D} | =n—|Ai] = |Bi| = (ICL] + |CZ]) = [V(P)]

>n — kan —2(a+ 2e)n — (6 + a)n — 4en
= (1 — (k+3)a— 14e)n > 6en.

So, there exist a,b € {1,2} such that |C2|,|D! | > 3en. By (5), a # b and so we take
Jx := a. This proves the claim. [

Claim 22. For each component C of G[C}*] and each component D of G[D; ], (C, D)
s a pure pair of G.

Proof of Claim 22. Assume not. By symmetry, we may assume that C' has a vertex u
having both a neighbor and a non-neighbor in D, because otherwise we swap C' and
D by reversing the order of P. As D is connected, there exist v,v" € V(D) such that
wv,vv’ € B(G) and wv' ¢ E(G).

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(2) (2021), #P2.9 11



Note that m; (v) = m; (v') (mod 2) and

(2

for every neighbor £ € Ng(v) N U, the number £ —my (v) is even, (6)
because otherwise for the minimum ¢ € Ng(v) N UL with odd ¢ — m; (v), a vertex set
{v,m; (u),m; (u) +1,...,¢,u} induces a strongly k-good generalized fan with v as its
center, a contradiction by Proposition 17.

If m; (v) < mf(v'), then {v,u,m; (u),m; (u) +1,...,mf (v'),v'} induces a strongly
k-good generalized fan with v as a center by (6).

If mf (v) > m (v'), then simply (u,m; (u),m; (u) +1,...,m (v'),v',v,u) is an in-
duced cycle whose length is at least k£ and is of the same parity with k. Hence Proposi-
tion 14 implies a contradiction. [ |

By Claim 22, there exists S € {C?*, D7} such that every component of G[S] has less
than en vertices. By Claim 21, we can greedily find a set of components of G[S] covering
at least en vertices and at most 2en vertices. Since |S| > 3en, the vertices of S covered
by this set of components with the vertices of S not covered by this set of components
give a pure pair (A4, B) with |A],|B| > en, a contradiction. This proves the lemma. [

5 Discussions

For a graph G, we write x(G) to denote its chromatic number and w(G) to denote its
clique number, that is the maximum size of a clique. A class G of graphs is called x-
bounded if there exists a function f : Z — Z such that for every induced subgraph H of
a graph in G, x(H) < f(w(H)). In addition, we say G is polynomially x-bounded if f can
be taken as a polynomial.

Every polynomially x-bounded class of graphs has the strong Erdos-Hajnal property,
but the converse does not hold; see the survey paper by Scott and Seymour [22]. So it
is natural to ask whether the class of graphs with no pivot-minor isomorphic to Cj is
polynomially x-bounded, which is still open. So far Choi, Kwon, and Oum [4] showed
that it is y-bounded.

Theorem 23 (Choi, Kwon, and Oum [4, Theorem 4.1]). For each k > 3, the class of
graphs with no pivot-minor isomorphic to Cy is x-bounded.

They showed that y(G) < 2(6k% — 26k2 + 25k — 1)“(9~1 holds for graphs G having no
pivot-minor isomorphic to CY, far from being a polynomial. Theorem 23 is now implied
by a recent theorem of Scott and Seymour [21], solving three conjectures of Gyarfas [13]
on y-boundedness all at once.

Theorem 24 (Scott and Seymour [21]). For all k > 0 and £ > 0, the class of all graphs
having no induced cycle of length k modulo ¢ is x-bounded.

To see why Theorem 24 implies Theorem 23, take ¢ := 2[k/2| and apply Proposi-
tion 14. Still the bound obtained from Theorem 24 is far from being a polynomial.
And yet no one was able to answer the following problem of Esperet.
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Problem 25 (Esperet; see [15]). Is it true that every y-bounded class of graphs polyno-
mially y-bounded?

Thus it is natural to pose the following conjecture.

Conjecture 26. For every graph H, the class of graphs with no pivot-minor isomorphic
to H is polynomially y-bounded.

It is open whether Conjecture 26 holds when H = C}. Conjecture 26 implies not only
Conjectures 3, 5 but also the following conjecture of Geelen (see [8]) proposed in 2009 at
the DIMACS workshop on graph colouring and structure held at Princeton University.

Conjecture 27 (Geelen; see [8]). For every graph H, the class of graphs with no vertex-
minor isomorphic to H is y-bounded.

Of course it is natural to pose the following conjecture, weaker than Conjecture 26
but stronger than Conjecture 27.

Conjecture 28 (Kim, Kwon, Oum, and Sivaraman [16]). For every graph H, the class
of graphs with no vertex-minor isomorphic to H is polynomially y-bounded.

For vertex-minors, more results are known. Kim, Kwon, Oum, and Sivaraman [16]
proved that for each k£ > 3, the class of graphs with no vertex-minor isomorphic to Cj
is polynomially y-bounded. Their theorem is now implied by the following two recent
theorems. To describe these theorems, we first have to introduce a few terms. A circle
graph is the intersection graph of chords in a circle. In particular, C} is a circle graph.
The rank-width of a graph is one of the width parameters of graphs, measuring how easy
it is to decompose a graph into a tree-like structure while keeping every cut to have a
small ‘rank’. Rank-width was introduced by Oum and Seymour [19]. We will omit the
definition of the rank-width.

Theorem 29 (Geelen, Kwon, McCarty, and Wollan [12]). For each circle graph H, there
is an integer r(H) such that every graph with no vertex-minor isomorphic to H has rank-
width at most r(H).

Theorem 30 (Bonamy and Pilipczuk [3]). For each k, the class of graphs of rank-width
at most k s polynomially x-bounded.

As noted in [6], it is easy to prove directly that the class of graphs of bounded rank-
width has the strong Erddés-Hajnal property, without using Theorem 30. See Figure 4 for
a diagram showing the containment relations between these properties.

So, one may wonder whether the class of graphs with no pivot-minor isomorphic to
C) has bounded rank-width. Unfortunately, if k£ is odd, then it is not true, because all
bipartite graphs have no pivot-minor isomorphic to C} for odd k£ and yet have unbounded
rank-width, see [17]. If k is even, then it would be true if the following conjecture hold.

Conjecture 31 (Oum [18]). For every bipartite circle graph H, there is an integer r(H)
such that every graph with no pivot-minor isomorphic to H has rank-width at most r(H).
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Erdés-Hajnal

|

x-bounded strong Erdds-Hajnal

N

polynomially x-bounded

(3]

bounded rank-width

(4]

[12] no C-pivot-minors

P

Figure 4: Known implications between properties of classes of graphs.

no Cj-vertex-minors

Note.

Chudnovsky, Scott, Seymour, and Spirkl [7] proved that for every graph H, the class of
graphs G such that neither G nor G has any subdivision of H as an induced subgraph has
the strong Erdds-Hajnal property. This implies that when k is even, the class of graphs
with no induced even hole of length at least £ and no induced even anti-hole of length at
least k has the strong Erdds-Hajnal property. This is because every subdivision of a large
theta graph? contains a large even hole. This implies Theorem 4 for even k but not for
odd k by Propositions 14 and 15. The authors would like to thank the authors of [7] to
share this observation.
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