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Abstract

We prove that for every integer k, there exists ε > 0 such that for every n-vertex
graph G with no pivot-minor isomorphic to Ck, there exist disjoint sets A,B ⊆ V (G)
such that |A|, |B| > εn, and A is either complete or anticomplete to B. This proves
the analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minor
isomorphic to Ck.

Mathematics Subject Classifications: 05CC55, 05C75

1 Introduction

In this paper all graphs are simple, having no loops and no parallel edges. For a graph G,
let ω(G) be the maximum size of a clique, that is a set of pairwise adjacent vertices and
let α(G) be the maximum size of an independent set, that is a set of pairwise non-adjacent
vertices. Erdős and Hajnal [9] proposed the following conjecture in 1989.

Conjecture 1 (Erdős and Hajnal [9]). For every graph H, there is ε > 0 such that all
graphs G with no induced subgraph isomorphic to H satisfies

max(α(G), ω(G)) > |V (G)|ε.
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This conjecture still remains open. See [5] for a survey on this conjecture. We can ask
the same question for weaker containment relations. Recently Chudnovsky and Oum [6]
proved that this conjecture holds if we replace “induced subgraphs” with “vertex-minors”
as follows. This is weaker in the sense that every induced subgraph G is a vertex-minor
of G but not every vertex-minor of G is an induced subgraph of G.

Theorem 2 (Chudnovsky and Oum [6]). For every graph H, there exists ε > 0 such that
every graph with no vertex-minors isomorphic to H satisfies

max(α(G), ω(G)) > |V (G)|ε.

We ask whether Conjecture 1 holds if we replace “induced subgraphs” with “pivot-
minors” as follows.

Conjecture 3. For every graph H, there exists ε > 0 such that every graph G with no
pivot-minor isomorphic to H satisfies

max(α(G), ω(G)) > |V (G)|ε.

The detailed definition of pivot-minors will be presented in Section 3. For now, note
that the analog for vertex-minors is weakest, the analog for pivot-minors is weaker than
that for induced subgraphs but stronger than that for vertex-minors. This is because
every induced subgraph of G is a pivot-minor of G, and every pivot-minor of G is a
vertex-minor of G. In other words, Conjecture 1 implies Conjecture 3 and Conjecture 3
implies Theorem 2. We verify Conjecture 3 for H = Ck, the cycle graph on k vertices as
follows.

Theorem 4. For every k > 3, there exists ε > 0 such that every graph with no pivot-minor
isomorphic to Ck satisfies

max(α(G), ω(G)) > |V (G)|ε.

We actually prove a stronger property, as Chudnovsky and Oum [6] did. Before stating
this property, let us first state a few terminologies. A class G of graphs closed under taking
induced subgraphs is said to have the Erdős-Hajnal property if there exists ε > 0 such
that every graph G in G satisfies

max(α(G), ω(G)) > |V (G)|ε.

A class G of graphs closed under taking induced subgraphs is said to have the strong
Erdős-Hajnal property if there exists ε > 0 such that every n-vertex graph in G with
n > 1 has disjoint sets A, B of vertices such that |A|, |B| > εn and A is either complete
or anti-complete to B. It is an easy exercise to show that the strong Erdős-Hajnal property
implies the Erdős-Hajnal property, see [1, 10].

Chudnovsky and Oum [6] proved that the class of graphs with no vertex-minors iso-
morphic to H for a fixed graph H has the strong Erdős-Hajnal property, implying Theo-
rem 2. We propose its analog for pivot-minors as a conjecture, which implies the theorem

the electronic journal of combinatorics 28(2) (2021), #P2.9 2



of Chudnovsky and Oum [6]. Note that this conjecture is not true if we replace the pivot-
minor with induced graphs. For example, the class of triangle-free graphs does not have
the strong Erdős-Hajnal property [10].

Conjecture 5. For every graph H, there exists ε > 0 such that for all n > 1, every
n-vertex graph with no pivot-minor isomorphic to H has two disjoint sets A, B of vertices
such that |A|, |B| > εn and A is complete or anti-complete to B.

We prove that this conjecture holds if H = Ck. In other words, the class of graphs
with no pivot-minor isomorphic to Ck has the strong Erdős-Hajnal property as follows.
This implies Theorem 4.

Theorem 6. For every integer k > 3, there exists ε > 0 such that for all n > 1, every
n-vertex graph with no pivot-minor isomorphic to Ck has two disjoint sets A, B of vertices
such that |A|, |B| > εn and A is complete or anti-complete to B.

This paper is organized as follows. In Section 2, we will introduce basic definitions
and review necessary theorems of Rödl [20] and Bonamy, Bousquet, and Thomassé [2].
In Section 3, we will present several tools to find a pivot-minor isomorphic to Ck. In
particular, it proves that a long anti-hole contains Ck as a pivot-minor. In Section 4, we
will present the proof of the main theorem, Theorem 6. In Section 5, we will relate our
theorem to the problem on χ-boundedness, and discuss known results and open problems
related to polynomial χ-boundedness and the Erdős-Hajnal property.

2 Preliminaries

Let N be the set of positive integers and for each n ∈ N, we write [n] := {1, 2, . . . , n}. For
a graph G = (V,E), let G = (V,

(
V
2

)
− E) be the complement of G. We write ∆(G) and

δ(G) to denote the maximum degree of G and the minimum degree of G respectively.
Let T be a tree rooted at a specified node vr, called the root. If the path from vr to

a node y in T contains x ∈ V (T ) − {y}, we say that x is an ancestor of y, and y is a
descendant of x. If one of x and y is an ancestor of the other, we say that x, y are related.
We say that two disjoint sets X and Y of nodes of T are unrelated if no pairs of x ∈ X
and y ∈ Y are related.

For disjoint vertex sets X and Y , we say X is complete to Y if every vertex of X
is adjacent to all vertices of Y . We say X is anti-complete to Y if every vertex of X is
non-adjacent to Y . A pure pair of a graph G is a pair (A,B) of disjoint subsets of V (G)
such that A is complete or anticomplete to B.

For a vertex u, let NG(u) denote the set of neighbors of u in G. For each U ⊆ V (G),
we write

NG(U) :=
⋃
u∈U

NG(u)− U.

The following lemma is proved in Section 2 of [2].
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Lemma 7 (Bonamy, Bousquet, and Thomassé [2]). For every connected graph G and
a vertex vr ∈ V (G), there exist an induced subtree T of G rooted at vr and a function
r : V (G)→ V (T ) satisfying the following.

(T1) r(vr) = vr and for each u ∈ V (G) − {vr}, the vertex r(u) is a neighbor of u. In
particular, T is a dominating tree of G.

(T2) If r(x) and r(y) are not related, then xy /∈ E(G).

Rödl [20] proved the following theorem. Its weaker version was later proved by Fox
and Sudakov [11] without using the regularity lemma. A set U of vertices of G is an
ε-stable set of a graph G if G[U ] has at most ε

(|U |
2

)
edges. Similarly, U is an ε-clique of a

graph G if G[U ] has at least (1− ε)
(|U |

2

)
edges.

Theorem 8 (Rödl [20]). For all ε > 0 and a graph H, there exists δ > 0 such that every
n-vertex graph G with no induced subgraph isomorphic to H has an ε-stable set or an
ε-clique of size at least δn.

We will use the following simple lemma. We present its proof for completeness.

Lemma 9. Let G be a graph. Every ε-stable set U of G has a subset U ′ of size at least
|U |/2 with ∆(G[U ′]) 6 4ε|U ′|.

Proof. Let U ′ be the set of vertices of degree at most 2ε|U | in G[U ]. Because∑
v∈U

degG[U ](v) < ε|U |2,

we have |U ′| > |U |/2. Moreover, for each vertex v ∈ U ′, we have degG[U ′](v) 6 2ε|U | 6
4ε|U ′|.

Using Lemma 9, we can deduce the following corollary of Theorem 8.

Corollary 10. For all α > 0 and a graph H, there exists δ > 0 such that every graph G
with no induced subgraph isomorphic to H has a set U ⊆ V (G) with |U | > δ|V (G)| such
that either ∆(G[U ]) 6 α|U | or ∆(G[U ]) 6 α|U |.

The following easy lemma will be used to find a connected induced subgraph inside
the output of Corollary 10. We omit its easy proof.

Lemma 11. A graph G has a pure pair (A,B) such that |A|, |B| > |V (G)|/3 or has a
connected induced subgraph H such that |V (H)| > |V (G)|/3.

Lemma 12 (Bonamy, Bousquet, and Thomassé [2, Lemma 3]). Let T be a tree rooted at
vr and w : V (T )→ R be a non-negative weight function on V (T ) with

∑
x∈V (T )w(x) = 1.

Then there exists either a path P from vr with weight at least 1/4 or two unrelated sets A
and B both with weight at least 1/4.
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v u

G G ∧ uv

u v

Figure 1: Pivoting uv.

A hole is an induced cycle of length at least 5.

Lemma 13 (Bonamy, Bousquet, and Thomassé [2, Lemma 4]). For given k > 3, there
exist α = α(k) > 0 and ε = ε(k) > 0 such that for any n-vertex graph G with n > 2 and
∆(G) 6 αn, if G has no holes of length at least k and has a dominating induced path,
then G contains a pair (A,B) of disjoint vertex sets such that A is anticomplete to B and
|A|, |B| > εn.

3 Finding a cycle as a pivot-minor

For a given graph G and an edge uv, a graph G ∧ uv obtained from G by pivoting uv is
defined as follows. Let V1 = NG(u) ∩NG(v), V2 = NG(u)−NG(v), V3 = NG(v)−NG(u).
Then G∧ uv is the graph obtained from G by complementing adjacency between vertices
between Vi and Vj for all 1 6 i < j 6 3 and swapping the label of u and v. See Figure 1
for an illustration. We say that H is a pivot-minor of G if H can be obtained from
G by deleting vertices and pivoting edges. For this paper, we will also say that H is a
pivot-minor of G, when G has a pivot-minor isomorphic to H. A pivot-minor H of G is
proper if |V (H)| < |V (G)|.

We describe several scenarios for constructing Ck as a pivot-minor. The following
proposition is an easy one; One can obtain a desired pivot-minor from a longer cycle of
the same parity.

Proposition 14. For m > k > 3 with m ≡ k (mod 2), the cycle Cm has a pivot-minor
isomorphic to Ck.

Proof. We proceed by induction on m − k. We may assume that m > k. Let xy be an
edge of Cm. Then (Cm ∧xy)−x− y is isomorphic to Cm−2, which contains a pivot-minor
isomorphic to Ck by the induction hypothesis.

Proposition 15. For integers k > 3 and m > 3
2
k + 6, the graph Cm has a pivot-minor

isomorphic to Ck.

Before proving Proposition 15, we present a simple lemma on partial complements of
the cycle graph. The partial complement1 G⊕ S of a graph G by a set S of vertices is a

1We found this concept in a paper by Kamiński, Lozin, and Milanič [14], though it may have been
studied previously, as it is a natural concept.
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Figure 2: Obtaining an (s − 2, 3)-cycle from an (s, 9)-cycle when s > 9 in the proof of
Lemma 16.

graph obtained from G by changing all edges within S to non-edges and non-edges within
S to edges.

For s > t > 0, we say that G is an (s, t)-cycle if G is isomorphic to a graph Cs ⊕X
for a set X of t consecutive vertices in the cycle Cs.

Lemma 16. Let s > t > 6. An (s, t)-cycle contains a pivot-minor isomorphic to an
(s− 2, t− 6)-cycle.

Proof. Let v1, . . ., vs be the vertices of Cs in the cyclic order where X = {v1, . . . , vt}.
Then it is easy to check that (Cs ⊕ X) ∧ v2vt−1 − {v2, vt−1} is isomorphic to Cs−2 ⊕ X ′
where X consists of t− 6 consecutive vertices on the cycle. See Figure 2.

Proof of Proposition 15. As Cm is an (m,m)-cycle, by Lemma 16, Cm contains a pivot-
minor isomorphic to an (m− 2i,m− 6i)-cycle for all i 6 m/6.

Let us fix i = d(k − 2)/4e. Then m− 6i > m− 6 · (k + 1)/4 > 9/2 and therefore Cm
contains a pivot-minor H isomorphic to an (m − 2i,m − 6i)-cycle and m − 6i > 5. We
may assume that H = Cm−2i⊕X where Cm−2i = v1 · · · vm−2i and X = {v4i+1, . . . , vm−2i}.

Note that H contains an induced cycle C = v1 · · · v4iv4i+1vm−2iv1 of length 4i+ 2 > k.
If k is even, then by Proposition 14, H contains a pivot-minor isomorphic to Ck. So we
may assume that k is odd and therefore |V (C)| = 4i+ 2 > k + 1.

Let x = vm−2i, y = v4i+1 be the two vertices in V (C) ∩ X. Since m − 6i > 5, there
is a common neighbor z of x and y in X. Then z has exactly two neighbors x and y in
V (C). Then H[V (C) ∪ {z}] ∧ yz − y − z is a cycle of length 4i+ 1. Since 4i+ 1 > k, by
Proposition 14, it contains a pivot-minor isomorphic to Ck.

A generalized fan is a graph G with a specified vertex c, called the center, such that
G− c is an induced path of length at least 1, called the main path of G and both ends of
the main path are adjacent to c. If c is adjacent to all vertices of G− c, then G is called
a fan.
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An interval of a generalized fan with a center c is a maximal subpath of the main path
having no internal vertex adjacent to c. The length of an interval is its number of edges.
A generalized fan is an (a1, . . . , as)-fan if the lengths of intervals are a1, . . . , as in order.
Note that an (a1, . . . , as)-fan is also an (as, . . . , a1)-fan. An (a1, . . . , as)-fan is a k-good
fan if a1 > k − 2 or as > k − 2. An (a1, . . . , as)-fan is a strongly k-good fan if s > 2 and
either a1 > k − 2 and as is odd, or as > k − 2 and a1 is odd. It is easy to observe that
every k-good fan has a hole of length at least k. However, that does not necessarily lead
to a pivot-minor isomorphic to Ck because of the parity issues. In the next proposition,
we show that every strongly k-good fan has a pivot-minor isomorphic to Ck.

Proposition 17. Let k > 5 be an integer. Every strongly k-good fan has a pivot-minor
isomorphic to Ck.

Proof. Let G be an (a1, . . . , as)-fan such that s > 2, a1 > k−2, and as is odd. We proceed
by the induction on |V (G)|. We may assume that G has no proper pivot-minor that is
a strongly k-good fan. Note that Ca1+2 is an induced subgraph of G, hence if a1 ≡ k
(mod 2), then Ck is isomorphic to a pivot-minor of G by Proposition 14. Thus we may
assume that a1 6≡ k (mod 2) and so a1 > k − 1.

If ai is odd for some 1 < i < s, then G contains a smaller strongly k-good fan by taking
the first i intervals, contradicting our assumption. Thus ai is even for all 1 < i < s. If
ai > 3 for some i > 1, then let uv be an internal edge of the i-th interval. ThenG∧uv−u−v
is a strongly k-good fan, contradicting our assumption. Thus, we may assume that ai 6 2
for all i > 1 and so G is an (a1, 2, . . . , 2, 1)-fan.

Let xy be the last interval of G with length 1. Then G∧xy−x−y is a (a1, 2, . . . , 2, 1)-
fan with s−1 intervals. By the assumption, we may assume that s = 2 and G∧xy−x−y
is an (a1 − 1)-fan with one interval, which is a cycle with a1 + 1 edges. As a1 + 1 > k
and a1 +1 ≡ k (mod 2), Proposition 14 implies that G contains a pivot-minor isomorphic
to Ck.

4 Proof of Theorem 6

First we choose α > 0 and ε0 > 0 so that

4α 6 α(d3
2
k+6e) and ε0 = ε(d3

2
k+6e) where α(·), ε(·) are specified in Lemma 13 (1)

and in addition α < 1/(8k) as well. Let δ > 0 be a constant obtained by applying
Corollary 10 with α/3 as α and Ck as H. Choose ε > 0 so that

ε < min

(
δ

12
, (1− 4(k + 3)α)

δ

240
,
ε0δ

12

)
.

Let n > 1 be an integer and G be an n-vertex graph with no pivot-minor isomorphic
to Ck. In particular, G does not have Ck as an induced subgraph. To derive a contradic-
tion, we assume that G contains no pure pair (A,B) with |A|, |B| > εn. We may assume
that εn > 1, because otherwise an edge or a non-edge of G gives a pure pair.
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By Corollary 10, there exists a subset U of V (G) such that |U | > δ|V (G)| and
∆(G0)[U ]) 6 (α/3)|U | for some G0 ∈ {G,G}. By the assumption on G, G0[U ] has
no pure pair (A,B) with |A|, |B| > (ε/δ)|U |. As ε/δ < 1/3, by Lemma 11, G0[U ] has a
connected induced subgraph G′ such that |V (G′)| > |U |/3. Let n′ = |V (G′)|.

Then n′ > (δ/3)n and ∆(G′) 6 (α/3)|U | 6 αn′. By the assumption on G,

G′ contains no pure pair (A,B) with |A|, |B| > (3ε/δ)n′. (2)

By applying Lemma 7 with G′, we obtain a dominating induced tree T and r : V (G′)→
V (T ) satisfying Lemma 7 (T1)–(T2) with G′. For each u ∈ V (T ), let

w(u) :=
|r−1({u})|

n′

be the weight of u. By applying Lemma 12 with the weight w, we obtain either an induced
path P of T with weight at least 1/4 or two unrelated sets A and B both with weight at
least 1/4.

In the latter case, Lemma 7 (T2) implies that r−1(A) is anticomplete to r−1(B) in G′

and |r−1(A)|, |r−1(B)| > n′/4 > (3ε/δ)n′, contradicting (2).
Hence, there exists an induced path P in G′ with |V (P ) ∪ NG′(V (P ))| > n′/4. Let

W := V (P ) ∪NG′(V (P )). Note that n′/4 > δn/12 > εn > 1 and so |W | > 2.
Suppose that G′ is an induced subgraph of G. Using (1), we apply Lemma 13 to

G′[W ] with 4α as α and d3
2
k + 6e as k. Then we can deduce from (2) and ε′|W | >

12ε
δ
n′

4
= (3ε/δ)n′ that the graph G′[W ] contains an induced cycle Cm with m > d3

2
k + 6e

and by Proposition 15, G′ contains a pivot-minor isomorphic to Ck, and so does G, a
contradiction.

Thus G′ is an induced subgraph of G. Let G∗ := G′[W ] and let n∗ = |W |. Then G∗

has no pivot-minor isomorphic to Ck, n
∗ > n′/4, and ∆(G∗) 6 4αn∗. By (2), G∗ contains

no pure pair (A,B) with |A|, |B| > (12ε/δ)n∗. Now the theorem follows from applying
the following lemma with G∗, n∗, 4α, 12ε/δ playing the roles of G, n, α, ε respectively in
the statement of the lemma.

Lemma 18. Let k > 3 be an integer. Let 0 < α < 1/(2k), 0 < ε 6 (1 − (k + 3)α)/20.
Let G be a graph on n > 2 vertices such that ∆(G) 6 αn and G has no pure pair (A,B)
with |A|, |B| > εn. If G has a dominating induced path P , then G has a pivot-minor
isomorphic to Ck.

Proof. Suppose that G has no pivot-minor isomorphic to Ck. Note that εn > 1 as other-
wise we have a pure pair on two vertices since n > 2. Let us label vertices of P by 1, 2,
. . ., s in the order.

As P is a dominating path of G and 1 6 ∆(G) 6 αn, we have 2αns > (αn+ 1)s > n
and therefore

s > 1/(2α).

Note that s − k > 0 because α < 1
2k

. As P is an induced path, it contains a pure
pair (A,B) with |A|, |B| > b s−1

2
c and so s−2

2
6 b s−1

2
c < εn. Because εn > 1, we have
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2εn+ 2 < 4εn and so
s < 2εn+ 2 < 4εn. (3)

Now, for each i ∈ [s− k + 1], let

U−i := {1, . . . , i− 1}, U0
i := {i, . . . , i+ k − 1}, and U+

i := {i+ k, . . . , s}.

In other words, this partitions P into three (possibly empty) subpaths. Furthermore, for
all i ∈ [s− k + 1] and u ∈ NG(U−i )− V (P ), let

m−i (u) := max(NG(u) ∩ U−i )

and for all i ∈ [s− k + 1] and u ∈ NG(U+
i )− V (P ), let

m+
i (u) := min(NG(u) ∩ U+

i ),

indicating the largest neighbor of u in U−i and the smallest neighbor of u in U+
i respectively.

For each i ∈ [s− k + 1], let

Ai := NG(U0
i )− V (P ) and

Bi := (NG(U−i ) ∩NG(U+
i ))− (Ai ∪ V (P )).

Note that for each u ∈ Bi, we have

m+
i (u)−m−i (u) 6≡ k (mod 2), (4)

because otherwise (u,m−i (u),m−i (u) + 1, . . . ,m+
i (u), u) forms an induced cycle of length

at least k and Proposition 14 implies that G contains a pivot-minor isomorphic to Ck, a
contradiction.

For each i ∈ [s− k + 1], let

C1
i := {u ∈ NG(U−i )− (Ai ∪Bi ∪ V (P )) : m−i (u) ≡ 1 (mod 2)},

C2
i := {u ∈ NG(U−i )− (Ai ∪Bi ∪ V (P )) : m−i (u) ≡ 0 (mod 2)},

D1
i := {u ∈ NG(U+

i )− (Ai ∪Bi ∪ V (P )) : m+
i (u) ≡ k (mod 2)}, and

D2
i := {u ∈ NG(U+

i )− (Ai ∪Bi ∪ V (P )) : m+
i (u) ≡ k + 1 (mod 2)}.

Recall that P is dominating. Hence, for each i, the sets {Ai, Bi, C
1
i , C

2
i , D

1
i , D

2
i , V (P )}

forms a partition of V (G) into 7 possibly empty sets.
If there exists an edge between u ∈ Cj

i and v ∈ Dj
i for some j ∈ [2], then we obtain an

induced cycle (u,m−i (u),m−i (u)+1, . . . ,m+
i (v), v, u) having length m+

i (v)−m−i (u)+3 > k
and m+

i (v)−m−i (u) + 3 ≡ k (mod 2), contradicting our assumption that G has no pivot-
minor isomorphic to Ck by Proposition 14. Thus Cj

i is anticomplete to Dj
i . Hence,

min{|Cj
i |, |D

j
i |} < εn. (5)

for all i ∈ [s− k + 1] and j ∈ [2]. Furthermore, we prove the following.
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U−i U0
i U+

i

Ai

Bi

C1
i C2

i D1
i D2

i

1 2 . . . . . . i− 1 i . . . s′ s′ + 1 . . . . . . s

Figure 3: s′ = i+ k − 1. Bold lines indicate m−i (u) and m+
i (u).

Claim 19. Let i ∈ [s−k+ 1]. For each v ∈ Bi, all integers in NG(v)∩U−i have the same
parity and all integers in NG(v) ∩ U+

i have the same parity.

Proof of Claim 19. If NG(v) ∩ U+
i has two integers a < b of the different parity, then G

contains a strongly k-good generalized fan by taking a subpath of P from m−i (v) to b
as its main path and v as its center. Then by Proposition 17, G contains a pivot-minor
isomorphic to Ck, contradicting the assumption. Thus all integers in NG(v) ∩ U+

i have
the same parity and similarly all integers in NG(v) ∩ U−i have the same parity. �

Claim 20. For all i ∈ [s− k + 1], |Bi| < 2(α + 2ε)n.

Proof of Claim 20. Suppose |Bi| > 2(α+ 2ε)n for some i ∈ [s− k+ 1]. Then there exists
rB ∈ {0, 1} such that

B′ := {u ∈ Bi : m−i (u) ≡ rB (mod 2)}

has size at least (α + 2ε)n. By (4), m+
i (u) ≡ k + rB + 1 (mod 2) for all u ∈ B′.

We claim that if uv is an edge in G[B′], then (m−i (u),m+
i (u)) = (m−i (v),m+

i (v)).
Suppose not. Without loss of generality, we may assume that m−i (u) < m−i (v), because
otherwise we may reverse the ordering of P to ensure that m−i (u) 6= m−(v) and swap u
and v if necessary.

If m+
i (u) > m+

i (v), then by Claim 19, {m−i (v),m−i (v) + 1, . . . ,m+
i (u), u, v} induces a

strongly k-good generalized fan with v as a center and (m−i (v),m−i (v)+1, . . . ,m+
i (u), u) as

its main path. This implies that G has a pivot-minor isomorphic to Ck by Proposition 17,
contradicting our assumption.
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If m+
i (u) < m+

i (v), then (m−i (v),m−i (v) + 1, . . . ,m+
i (u), u, v) is an induced cycle of

length m+
i (u) − m−i (v) + 3 > k, and m+

i (u) − m−i (v) + 3 ≡ (k + rB + 1) − rB + 3 ≡ k
(mod 2), a contradiction by Proposition 14.

Hence, (m−i (u),m+
i (u)) = (m−i (v),m+

i (v)) for all uv ∈ E(G[B′]). Let C1, . . ., Ct be
the connected components of G[B′]. By the above observation, for each j ∈ [t], there
exist aj ∈ U−i and bj ∈ U+

i such that V (Cj) ⊆ NG(aj) ∩ NG(bj). So, |V (Cj)| 6 αn. As
|B′| > (α+2ε)n, there exists a set I ⊆ {1, 2, . . . , t} such that εn 6 |

⋃
i∈I V (Ci)| 6 (α+ε)n.

Let A :=
⋃
i∈I V (Ci) and B := B′−A. Then (A,B) is a pure pair of G with |A|, |B| > εn,

a contradiction. �

Claim 21. There exist i∗ ∈ [s− k + 1] and j∗ ∈ [2] such that

|Cj∗
i∗ |, |D

3−j∗
i∗ | > 3εn.

Proof of Claim 21. First, since ∆(G) 6 αn, |Ai| 6 kαn for each i ∈ [s− k + 1].
Let f(i) := |C1

i |+ |C2
i |. Then

f(1) = 0,

f(s− k + 1) = n− |As−k+1| − s because U+
s−k+1 = D1

s−k+1 = D2
s−k+1 = Bs−k+1 = ∅,

> n− kαn− 4εn by (3) and the assumption that ∆(G) 6 αn,

= (1− kα− 4ε)n > 6εn,

and for each i ∈ [s− k], we have

f(i+ 1)− f(i) 6 degG(i) 6 αn.

Hence, there exists i∗ ∈ [s−k+1] such that 6εn 6 f(i∗) < (6ε+α)n. As |Bi∗ | < 2(α+2ε)n,
we have

|D1
i∗|+ |D

2
i∗| = n− |Ai∗| − |Bi∗| − (|C1

i∗|+ |C
2
i∗ |)− |V (P )|

> n− kαn− 2(α + 2ε)n− (6ε+ α)n− 4εn

= (1− (k + 3)α− 14ε)n > 6εn.

So, there exist a, b ∈ {1, 2} such that |Ca
i∗ |, |D

b
i∗| > 3εn. By (5), a 6= b and so we take

j∗ := a. This proves the claim. �

Claim 22. For each component C of G[Cj∗
i∗ ] and each component D of G[D3−j∗

i∗ ], (C,D)
is a pure pair of G.

Proof of Claim 22. Assume not. By symmetry, we may assume that C has a vertex u
having both a neighbor and a non-neighbor in D, because otherwise we swap C and
D by reversing the order of P . As D is connected, there exist v, v′ ∈ V (D) such that
uv, vv′ ∈ E(G) and uv′ /∈ E(G).
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Note that m+
i∗(v) ≡ m+

i∗(v
′) (mod 2) and

for every neighbor ` ∈ NG(v) ∩ U+
i∗ , the number `−m+

i∗(v) is even, (6)

because otherwise for the minimum ` ∈ NG(v) ∩ U+
i∗ with odd ` − m+

i∗(v), a vertex set
{v,m−i∗(u),m−i∗(u) + 1, . . . , `, u} induces a strongly k-good generalized fan with v as its
center, a contradiction by Proposition 17.

If m+
i∗(v) 6 m+

i∗(v
′), then {v, u,m−i∗(u),m−i∗(u) + 1, . . . ,m+

i∗(v
′), v′} induces a strongly

k-good generalized fan with v as a center by (6).
If m+

i∗(v) > m+
i∗(v

′), then simply (u,m−i∗(u),m−i∗(u) + 1, . . . ,m+
i∗(v

′), v′, v, u) is an in-
duced cycle whose length is at least k and is of the same parity with k. Hence Proposi-
tion 14 implies a contradiction. �

By Claim 22, there exists S ∈ {Cj∗
i∗ , D

3−j∗
i∗ } such that every component of G[S] has less

than εn vertices. By Claim 21, we can greedily find a set of components of G[S] covering
at least εn vertices and at most 2εn vertices. Since |S| > 3εn, the vertices of S covered
by this set of components with the vertices of S not covered by this set of components
give a pure pair (A,B) with |A|, |B| > εn, a contradiction. This proves the lemma.

5 Discussions

For a graph G, we write χ(G) to denote its chromatic number and ω(G) to denote its
clique number, that is the maximum size of a clique. A class G of graphs is called χ-
bounded if there exists a function f : Z → Z such that for every induced subgraph H of
a graph in G, χ(H) 6 f(ω(H)). In addition, we say G is polynomially χ-bounded if f can
be taken as a polynomial.

Every polynomially χ-bounded class of graphs has the strong Erdős-Hajnal property,
but the converse does not hold; see the survey paper by Scott and Seymour [22]. So it
is natural to ask whether the class of graphs with no pivot-minor isomorphic to Ck is
polynomially χ-bounded, which is still open. So far Choi, Kwon, and Oum [4] showed
that it is χ-bounded.

Theorem 23 (Choi, Kwon, and Oum [4, Theorem 4.1]). For each k > 3, the class of
graphs with no pivot-minor isomorphic to Ck is χ-bounded.

They showed that χ(G) 6 2(6k3− 26k2 + 25k− 1)ω(G)−1 holds for graphs G having no
pivot-minor isomorphic to Ck, far from being a polynomial. Theorem 23 is now implied
by a recent theorem of Scott and Seymour [21], solving three conjectures of Gyárfás [13]
on χ-boundedness all at once.

Theorem 24 (Scott and Seymour [21]). For all k > 0 and ` > 0, the class of all graphs
having no induced cycle of length k modulo ` is χ-bounded.

To see why Theorem 24 implies Theorem 23, take ` := 2dk/2e and apply Proposi-
tion 14. Still the bound obtained from Theorem 24 is far from being a polynomial.

And yet no one was able to answer the following problem of Esperet.
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Problem 25 (Esperet; see [15]). Is it true that every χ-bounded class of graphs polyno-
mially χ-bounded?

Thus it is natural to pose the following conjecture.

Conjecture 26. For every graph H, the class of graphs with no pivot-minor isomorphic
to H is polynomially χ-bounded.

It is open whether Conjecture 26 holds when H = Ck. Conjecture 26 implies not only
Conjectures 3, 5 but also the following conjecture of Geelen (see [8]) proposed in 2009 at
the DIMACS workshop on graph colouring and structure held at Princeton University.

Conjecture 27 (Geelen; see [8]). For every graph H, the class of graphs with no vertex-
minor isomorphic to H is χ-bounded.

Of course it is natural to pose the following conjecture, weaker than Conjecture 26
but stronger than Conjecture 27.

Conjecture 28 (Kim, Kwon, Oum, and Sivaraman [16]). For every graph H, the class
of graphs with no vertex-minor isomorphic to H is polynomially χ-bounded.

For vertex-minors, more results are known. Kim, Kwon, Oum, and Sivaraman [16]
proved that for each k > 3, the class of graphs with no vertex-minor isomorphic to Ck
is polynomially χ-bounded. Their theorem is now implied by the following two recent
theorems. To describe these theorems, we first have to introduce a few terms. A circle
graph is the intersection graph of chords in a circle. In particular, Ck is a circle graph.
The rank-width of a graph is one of the width parameters of graphs, measuring how easy
it is to decompose a graph into a tree-like structure while keeping every cut to have a
small ‘rank’. Rank-width was introduced by Oum and Seymour [19]. We will omit the
definition of the rank-width.

Theorem 29 (Geelen, Kwon, McCarty, and Wollan [12]). For each circle graph H, there
is an integer r(H) such that every graph with no vertex-minor isomorphic to H has rank-
width at most r(H).

Theorem 30 (Bonamy and Pilipczuk [3]). For each k, the class of graphs of rank-width
at most k is polynomially χ-bounded.

As noted in [6], it is easy to prove directly that the class of graphs of bounded rank-
width has the strong Erdős-Hajnal property, without using Theorem 30. See Figure 4 for
a diagram showing the containment relations between these properties.

So, one may wonder whether the class of graphs with no pivot-minor isomorphic to
Ck has bounded rank-width. Unfortunately, if k is odd, then it is not true, because all
bipartite graphs have no pivot-minor isomorphic to Ck for odd k and yet have unbounded
rank-width, see [17]. If k is even, then it would be true if the following conjecture hold.

Conjecture 31 (Oum [18]). For every bipartite circle graph H, there is an integer r(H)
such that every graph with no pivot-minor isomorphic to H has rank-width at most r(H).
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Erdős-Hajnal

χ-bounded strong Erdős-Hajnal

polynomially χ-bounded

bounded rank-width

no Ck-pivot-minors

no Ck-vertex-minors

[3]
[4]

[12]

Figure 4: Known implications between properties of classes of graphs.

Note.

Chudnovsky, Scott, Seymour, and Spirkl [7] proved that for every graph H, the class of
graphs G such that neither G nor G has any subdivision of H as an induced subgraph has
the strong Erdős-Hajnal property. This implies that when k is even, the class of graphs
with no induced even hole of length at least k and no induced even anti-hole of length at
least k has the strong Erdős-Hajnal property. This is because every subdivision of a large
theta graph2 contains a large even hole. This implies Theorem 4 for even k but not for
odd k by Propositions 14 and 15. The authors would like to thank the authors of [7] to
share this observation.
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