The Erdős-Hajnal property for graphs with no fixed cycle as a pivot-minor

Jaehoon Kim*
Department of Mathematical Sciences KAIST
Daejeon, Korea
jaehoon.kim@kaist.ac.kr

Sang-il Oum ${ }^{\dagger}$
Discrete Mathematics Group
Institute for Basic Science (IBS)
Daejeon, Korea
Department of Mathematical Sciences
KAIST
Daejeon, Korea
sangil@ibs.re.kr

Submitted: Apr 23, 2020; Accepted: Mar 22, 2021; Published: Apr 9, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We prove that for every integer k, there exists $\varepsilon>0$ such that for every n-vertex graph G with no pivot-minor isomorphic to C_{k}, there exist disjoint sets $A, B \subseteq V(G)$ such that $|A|,|B| \geqslant \varepsilon n$, and A is either complete or anticomplete to B. This proves the analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minor isomorphic to C_{k}.

Mathematics Subject Classifications: 05CC55, 05C75

1 Introduction

In this paper all graphs are simple, having no loops and no parallel edges. For a graph G, let $\omega(G)$ be the maximum size of a clique, that is a set of pairwise adjacent vertices and let $\alpha(G)$ be the maximum size of an independent set, that is a set of pairwise non-adjacent vertices. Erdős and Hajnal [9] proposed the following conjecture in 1989.

Conjecture 1 (Erdős and Hajnal [9]). For every graph H, there is $\varepsilon>0$ such that all graphs G with no induced subgraph isomorphic to H satisfies

$$
\max (\alpha(G), \omega(G)) \geqslant|V(G)|^{\varepsilon}
$$

[^0]This conjecture still remains open. See [5] for a survey on this conjecture. We can ask the same question for weaker containment relations. Recently Chudnovsky and Oum [6] proved that this conjecture holds if we replace "induced subgraphs" with "vertex-minors" as follows. This is weaker in the sense that every induced subgraph G is a vertex-minor of G but not every vertex-minor of G is an induced subgraph of G.

Theorem 2 (Chudnovsky and Oum [6]). For every graph H, there exists $\varepsilon>0$ such that every graph with no vertex-minors isomorphic to H satisfies

$$
\max (\alpha(G), \omega(G)) \geqslant|V(G)|^{\varepsilon}
$$

We ask whether Conjecture 1 holds if we replace "induced subgraphs" with "pivotminors" as follows.

Conjecture 3. For every graph H, there exists $\varepsilon>0$ such that every graph G with no pivot-minor isomorphic to H satisfies

$$
\max (\alpha(G), \omega(G)) \geqslant|V(G)|^{\varepsilon}
$$

The detailed definition of pivot-minors will be presented in Section 3. For now, note that the analog for vertex-minors is weakest, the analog for pivot-minors is weaker than that for induced subgraphs but stronger than that for vertex-minors. This is because every induced subgraph of G is a pivot-minor of G, and every pivot-minor of G is a vertex-minor of G. In other words, Conjecture 1 implies Conjecture 3 and Conjecture 3 implies Theorem 2. We verify Conjecture 3 for $H=C_{k}$, the cycle graph on k vertices as follows.

Theorem 4. For every $k \geqslant 3$, there exists $\varepsilon>0$ such that every graph with no pivot-minor isomorphic to C_{k} satisfies

$$
\max (\alpha(G), \omega(G)) \geqslant|V(G)|^{\varepsilon}
$$

We actually prove a stronger property, as Chudnovsky and Oum [6] did. Before stating this property, let us first state a few terminologies. A class \mathcal{G} of graphs closed under taking induced subgraphs is said to have the Erdős-Hajnal property if there exists $\varepsilon>0$ such that every graph G in \mathcal{G} satisfies

$$
\max (\alpha(G), \omega(G)) \geqslant|V(G)|^{\varepsilon}
$$

A class \mathcal{G} of graphs closed under taking induced subgraphs is said to have the strong Erdős-Hajnal property if there exists $\varepsilon>0$ such that every n-vertex graph in \mathcal{G} with $n>1$ has disjoint sets A, B of vertices such that $|A|,|B| \geqslant \varepsilon n$ and A is either complete or anti-complete to B. It is an easy exercise to show that the strong Erdős-Hajnal property implies the Erdős-Hajnal property, see [1, 10].

Chudnovsky and Oum [6] proved that the class of graphs with no vertex-minors isomorphic to H for a fixed graph H has the strong Erdős-Hajnal property, implying Theorem 2. We propose its analog for pivot-minors as a conjecture, which implies the theorem
of Chudnovsky and Oum [6]. Note that this conjecture is not true if we replace the pivotminor with induced graphs. For example, the class of triangle-free graphs does not have the strong Erdős-Hajnal property [10].

Conjecture 5. For every graph H, there exists $\varepsilon>0$ such that for all $n>1$, every n-vertex graph with no pivot-minor isomorphic to H has two disjoint sets A, B of vertices such that $|A|,|B| \geqslant \varepsilon n$ and A is complete or anti-complete to B.

We prove that this conjecture holds if $H=C_{k}$. In other words, the class of graphs with no pivot-minor isomorphic to C_{k} has the strong Erdős-Hajnal property as follows. This implies Theorem 4.

Theorem 6. For every integer $k \geqslant 3$, there exists $\varepsilon>0$ such that for all $n>1$, every n-vertex graph with no pivot-minor isomorphic to C_{k} has two disjoint sets A, B of vertices such that $|A|,|B| \geqslant \varepsilon n$ and A is complete or anti-complete to B.

This paper is organized as follows. In Section 2, we will introduce basic definitions and review necessary theorems of Rödl [20] and Bonamy, Bousquet, and Thomassé [2]. In Section 3, we will present several tools to find a pivot-minor isomorphic to C_{k}. In particular, it proves that a long anti-hole contains C_{k} as a pivot-minor. In Section 4, we will present the proof of the main theorem, Theorem 6. In Section 5, we will relate our theorem to the problem on χ-boundedness, and discuss known results and open problems related to polynomial χ-boundedness and the Erdős-Hajnal property.

2 Preliminaries

Let \mathbb{N} be the set of positive integers and for each $n \in \mathbb{N}$, we write $[n]:=\{1,2, \ldots, n\}$. For a graph $G=(V, E)$, let $\bar{G}=\left(V,\binom{V}{2}-E\right)$ be the complement of G. We write $\Delta(G)$ and $\delta(G)$ to denote the maximum degree of G and the minimum degree of G respectively.

Let T be a tree rooted at a specified node v_{r}, called the root. If the path from v_{r} to a node y in T contains $x \in V(T)-\{y\}$, we say that x is an ancestor of y, and y is a descendant of x. If one of x and y is an ancestor of the other, we say that x, y are related. We say that two disjoint sets X and Y of nodes of T are unrelated if no pairs of $x \in X$ and $y \in Y$ are related.

For disjoint vertex sets X and Y, we say X is complete to Y if every vertex of X is adjacent to all vertices of Y. We say X is anti-complete to Y if every vertex of X is non-adjacent to Y. A pure pair of a graph G is a pair (A, B) of disjoint subsets of $V(G)$ such that A is complete or anticomplete to B.

For a vertex u, let $N_{G}(u)$ denote the set of neighbors of u in G. For each $U \subseteq V(G)$, we write

$$
N_{G}(U):=\bigcup_{u \in U} N_{G}(u)-U .
$$

The following lemma is proved in Section 2 of [2].

Lemma 7 (Bonamy, Bousquet, and Thomassé [2]). For every connected graph G and a vertex $v_{r} \in V(G)$, there exist an induced subtree T of G rooted at v_{r} and a function $r: V(G) \rightarrow V(T)$ satisfying the following.
(T1) $r\left(v_{r}\right)=v_{r}$ and for each $u \in V(G)-\left\{v_{r}\right\}$, the vertex $r(u)$ is a neighbor of u. In particular, T is a dominating tree of G.
(T2) If $r(x)$ and $r(y)$ are not related, then $x y \notin E(G)$.
Rödl [20] proved the following theorem. Its weaker version was later proved by Fox and Sudakov [11] without using the regularity lemma. A set U of vertices of G is an ε-stable set of a graph G if $G[U]$ has at most $\varepsilon\binom{(U \mid}{2}$ edges. Similarly, U is an ε-clique of a graph G if $G[U]$ has at least $(1-\varepsilon)\binom{(U \mid}{2}$ edges.

Theorem 8 (Rödl [20]). For all $\varepsilon>0$ and a graph H, there exists $\delta>0$ such that every n-vertex graph G with no induced subgraph isomorphic to H has an ε-stable set or an ε-clique of size at least δn.

We will use the following simple lemma. We present its proof for completeness.
Lemma 9. Let G be a graph. Every ε-stable set U of G has a subset U^{\prime} of size at least $|U| / 2$ with $\Delta\left(G\left[U^{\prime}\right]\right) \leqslant 4 \varepsilon\left|U^{\prime}\right|$.

Proof. Let U^{\prime} be the set of vertices of degree at most $2 \varepsilon|U|$ in $G[U]$. Because

$$
\sum_{v \in U} \operatorname{deg}_{G[U]}(v)<\varepsilon|U|^{2},
$$

we have $\left|U^{\prime}\right| \geqslant|U| / 2$. Moreover, for each vertex $v \in U^{\prime}$, we have $\operatorname{deg}_{G\left[U^{\prime}\right]}(v) \leqslant 2 \varepsilon|U| \leqslant$ $4 \varepsilon\left|U^{\prime}\right|$.

Using Lemma 9, we can deduce the following corollary of Theorem 8.
Corollary 10. For all $\alpha>0$ and a graph H, there exists $\delta>0$ such that every graph G with no induced subgraph isomorphic to H has a set $U \subseteq V(G)$ with $|U| \geqslant \delta|V(G)|$ such that either $\Delta(G[U]) \leqslant \alpha|U|$ or $\Delta(\bar{G}[U]) \leqslant \alpha|U|$.

The following easy lemma will be used to find a connected induced subgraph inside the output of Corollary 10. We omit its easy proof.

Lemma 11. A graph G has a pure pair (A, B) such that $|A|,|B| \geqslant|V(G)| / 3$ or has a connected induced subgraph H such that $|V(H)| \geqslant|V(G)| / 3$.

Lemma 12 (Bonamy, Bousquet, and Thomassé [2, Lemma 3]). Let T be a tree rooted at v_{r} and $w: V(T) \rightarrow \mathbb{R}$ be a non-negative weight function on $V(T)$ with $\sum_{x \in V(T)} w(x)=1$. Then there exists either a path P from v_{r} with weight at least $1 / 4$ or two unrelated sets A and B both with weight at least $1 / 4$.

Figure 1: Pivoting uv.

A hole is an induced cycle of length at least 5 .
Lemma 13 (Bonamy, Bousquet, and Thomassé [2, Lemma 4]). For given $k \geqslant 3$, there exist $\alpha=\alpha(k)>0$ and $\varepsilon=\varepsilon(k)>0$ such that for any n-vertex graph G with $n \geqslant 2$ and $\Delta(G) \leqslant \alpha n$, if G has no holes of length at least k and has a dominating induced path, then G contains a pair (A, B) of disjoint vertex sets such that A is anticomplete to B and $|A|,|B| \geqslant \varepsilon n$.

3 Finding a cycle as a pivot-minor

For a given graph G and an edge $u v$, a graph $G \wedge u v$ obtained from G by pivoting $u v$ is defined as follows. Let $V_{1}=N_{G}(u) \cap N_{G}(v), V_{2}=N_{G}(u)-N_{G}(v), V_{3}=N_{G}(v)-N_{G}(u)$. Then $G \wedge u v$ is the graph obtained from G by complementing adjacency between vertices between V_{i} and V_{j} for all $1 \leqslant i<j \leqslant 3$ and swapping the label of u and v. See Figure 1 for an illustration. We say that H is a pivot-minor of G if H can be obtained from G by deleting vertices and pivoting edges. For this paper, we will also say that H is a pivot-minor of G, when G has a pivot-minor isomorphic to H. A pivot-minor H of G is proper if $|V(H)|<|V(G)|$.

We describe several scenarios for constructing C_{k} as a pivot-minor. The following proposition is an easy one; One can obtain a desired pivot-minor from a longer cycle of the same parity.

Proposition 14. For $m \geqslant k \geqslant 3$ with $m \equiv k(\bmod 2)$, the cycle C_{m} has a pivot-minor isomorphic to C_{k}.

Proof. We proceed by induction on $m-k$. We may assume that $m>k$. Let $x y$ be an edge of C_{m}. Then $\left(C_{m} \wedge x y\right)-x-y$ is isomorphic to C_{m-2}, which contains a pivot-minor isomorphic to C_{k} by the induction hypothesis.

Proposition 15. For integers $k \geqslant 3$ and $m \geqslant \frac{3}{2} k+6$, the graph $\overline{C_{m}}$ has a pivot-minor isomorphic to C_{k}.

Before proving Proposition 15, we present a simple lemma on partial complements of the cycle graph. The partial complement ${ }^{1} G \oplus S$ of a graph G by a set S of vertices is a

[^1]

Figure 2: Obtaining an $(s-2,3)$-cycle from an $(s, 9)$-cycle when $s>9$ in the proof of Lemma 16.
graph obtained from G by changing all edges within S to non-edges and non-edges within S to edges.

For $s \geqslant t \geqslant 0$, we say that G is an (s, t)-cycle if G is isomorphic to a graph $C_{s} \oplus X$ for a set X of t consecutive vertices in the cycle C_{s}.

Lemma 16. Let $s \geqslant t \geqslant 6$. An (s, t)-cycle contains a pivot-minor isomorphic to an ($s-2, t-6$)-cycle.

Proof. Let v_{1}, \ldots, v_{s} be the vertices of C_{s} in the cyclic order where $X=\left\{v_{1}, \ldots, v_{t}\right\}$. Then it is easy to check that $\left(C_{s} \oplus X\right) \wedge v_{2} v_{t-1}-\left\{v_{2}, v_{t-1}\right\}$ is isomorphic to $C_{s-2} \oplus X^{\prime}$ where X consists of $t-6$ consecutive vertices on the cycle. See Figure 2.
Proof of Proposition 15. As $\overline{C_{m}}$ is an (m, m)-cycle, by Lemma 16, $\overline{C_{m}}$ contains a pivotminor isomorphic to an $(m-2 i, m-6 i)$-cycle for all $i \leqslant m / 6$.

Let us fix $i=\lceil(k-2) / 4\rceil$. Then $m-6 i \geqslant m-6 \cdot(k+1) / 4 \geqslant 9 / 2$ and therefore $\overline{C_{m}}$ contains a pivot-minor H isomorphic to an $(m-2 i, m-6 i)$-cycle and $m-6 i \geqslant 5$. We may assume that $H=C_{m-2 i} \oplus X$ where $C_{m-2 i}=v_{1} \cdots v_{m-2 i}$ and $X=\left\{v_{4 i+1}, \ldots, v_{m-2 i}\right\}$.

Note that H contains an induced cycle $C=v_{1} \cdots v_{4 i} v_{4 i+1} v_{m-2 i} v_{1}$ of length $4 i+2 \geqslant k$. If k is even, then by Proposition 14, H contains a pivot-minor isomorphic to C_{k}. So we may assume that k is odd and therefore $|V(C)|=4 i+2 \geqslant k+1$.

Let $x=v_{m-2 i}, y=v_{4 i+1}$ be the two vertices in $V(C) \cap X$. Since $m-6 i \geqslant 5$, there is a common neighbor z of x and y in X. Then z has exactly two neighbors x and y in $V(C)$. Then $H[V(C) \cup\{z\}] \wedge y z-y-z$ is a cycle of length $4 i+1$. Since $4 i+1 \geqslant k$, by Proposition 14, it contains a pivot-minor isomorphic to C_{k}.

A generalized fan is a graph G with a specified vertex c, called the center, such that $G-c$ is an induced path of length at least 1, called the main path of G and both ends of the main path are adjacent to c. If c is adjacent to all vertices of $G-c$, then G is called a fan.

An interval of a generalized fan with a center c is a maximal subpath of the main path having no internal vertex adjacent to c. The length of an interval is its number of edges. A generalized fan is an $\left(a_{1}, \ldots, a_{s}\right)$-fan if the lengths of intervals are a_{1}, \ldots, a_{s} in order. Note that an $\left(a_{1}, \ldots, a_{s}\right)$-fan is also an $\left(a_{s}, \ldots, a_{1}\right)$-fan. An $\left(a_{1}, \ldots, a_{s}\right)$-fan is a k-good fan if $a_{1} \geqslant k-2$ or $a_{s} \geqslant k-2$. An $\left(a_{1}, \ldots, a_{s}\right)$-fan is a strongly k-good fan if $s \geqslant 2$ and either $a_{1} \geqslant k-2$ and a_{s} is odd, or $a_{s} \geqslant k-2$ and a_{1} is odd. It is easy to observe that every k-good fan has a hole of length at least k. However, that does not necessarily lead to a pivot-minor isomorphic to C_{k} because of the parity issues. In the next proposition, we show that every strongly k-good fan has a pivot-minor isomorphic to C_{k}.

Proposition 17. Let $k \geqslant 5$ be an integer. Every strongly k-good fan has a pivot-minor isomorphic to C_{k}.

Proof. Let G be an $\left(a_{1}, \ldots, a_{s}\right)$-fan such that $s \geqslant 2, a_{1} \geqslant k-2$, and a_{s} is odd. We proceed by the induction on $|V(G)|$. We may assume that G has no proper pivot-minor that is a strongly k-good fan. Note that $C_{a_{1}+2}$ is an induced subgraph of G, hence if $a_{1} \equiv k$ $(\bmod 2)$, then C_{k} is isomorphic to a pivot-minor of G by Proposition 14. Thus we may assume that $a_{1} \not \equiv k(\bmod 2)$ and so $a_{1} \geqslant k-1$.

If a_{i} is odd for some $1<i<s$, then G contains a smaller strongly k-good fan by taking the first i intervals, contradicting our assumption. Thus a_{i} is even for all $1<i<s$. If $a_{i} \geqslant 3$ for some $i>1$, then let $u v$ be an internal edge of the i-th interval. Then $G \wedge u v-u-v$ is a strongly k-good fan, contradicting our assumption. Thus, we may assume that $a_{i} \leqslant 2$ for all $i>1$ and so G is an $\left(a_{1}, 2, \ldots, 2,1\right)$-fan.

Let $x y$ be the last interval of G with length 1 . Then $G \wedge x y-x-y$ is a $\left(a_{1}, 2, \ldots, 2,1\right)$ fan with $s-1$ intervals. By the assumption, we may assume that $s=2$ and $G \wedge x y-x-y$ is an $\left(a_{1}-1\right)$-fan with one interval, which is a cycle with $a_{1}+1$ edges. As $a_{1}+1 \geqslant k$ and $a_{1}+1 \equiv k(\bmod 2)$, Proposition 14 implies that G contains a pivot-minor isomorphic to C_{k}.

4 Proof of Theorem 6

First we choose $\alpha>0$ and $\varepsilon_{0}>0$ so that

$$
\begin{equation*}
4 \alpha \leqslant \alpha\left(\left\lceil\frac{3}{2} k+6\right\rceil\right) \text { and } \varepsilon_{0}=\varepsilon\left(\left\lceil\frac{3}{2} k+6\right\rceil\right) \text { where } \alpha(\cdot), \varepsilon(\cdot) \text { are specified in Lemma } 13 \tag{1}
\end{equation*}
$$

and in addition $\alpha<1 /(8 k)$ as well. Let $\delta>0$ be a constant obtained by applying Corollary 10 with $\alpha / 3$ as α and C_{k} as H. Choose $\varepsilon>0$ so that

$$
\varepsilon<\min \left(\frac{\delta}{12},(1-4(k+3) \alpha) \frac{\delta}{240}, \frac{\varepsilon_{0} \delta}{12}\right) .
$$

Let $n>1$ be an integer and G be an n-vertex graph with no pivot-minor isomorphic to C_{k}. In particular, G does not have C_{k} as an induced subgraph. To derive a contradiction, we assume that G contains no pure pair (A, B) with $|A|,|B| \geqslant \varepsilon n$. We may assume that $\varepsilon n>1$, because otherwise an edge or a non-edge of G gives a pure pair.

By Corollary 10, there exists a subset U of $V(G)$ such that $|U| \geqslant \delta|V(G)|$ and $\left.\Delta\left(G^{0}\right)[U]\right) \leqslant(\alpha / 3)|U|$ for some $G^{0} \in\{G, \bar{G}\}$. By the assumption on $G, G^{0}[U]$ has no pure pair (A, B) with $|A|,|B| \geqslant(\varepsilon / \delta)|U|$. As $\varepsilon / \delta<1 / 3$, by Lemma $11, G^{0}[U]$ has a connected induced subgraph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right| \geqslant|U| / 3$. Let $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$.

Then $n^{\prime} \geqslant(\delta / 3) n$ and $\Delta\left(G^{\prime}\right) \leqslant(\alpha / 3)|U| \leqslant \alpha n^{\prime}$. By the assumption on G,

$$
\begin{equation*}
G^{\prime} \text { contains no pure pair }(A, B) \text { with }|A|,|B| \geqslant(3 \varepsilon / \delta) n^{\prime} \text {. } \tag{2}
\end{equation*}
$$

By applying Lemma 7 with G^{\prime}, we obtain a dominating induced tree T and $r: V\left(G^{\prime}\right) \rightarrow$ $V(T)$ satisfying Lemma $7(\mathrm{~T} 1)-(\mathrm{T} 2)$ with G^{\prime}. For each $u \in V(T)$, let

$$
w(u):=\frac{\left|r^{-1}(\{u\})\right|}{n^{\prime}}
$$

be the weight of u. By applying Lemma 12 with the weight w, we obtain either an induced path P of T with weight at least $1 / 4$ or two unrelated sets A and B both with weight at least $1 / 4$.

In the latter case, Lemma 7 (T2) implies that $r^{-1}(A)$ is anticomplete to $r^{-1}(B)$ in G^{\prime} and $\left|r^{-1}(A)\right|,\left|r^{-1}(B)\right| \geqslant n^{\prime} / 4 \geqslant(3 \varepsilon / \delta) n^{\prime}$, contradicting (2).

Hence, there exists an induced path P in G^{\prime} with $\left|V(P) \cup N_{G^{\prime}}(V(P))\right| \geqslant n^{\prime} / 4$. Let $W:=V(P) \cup N_{G^{\prime}}(V(P))$. Note that $n^{\prime} / 4 \geqslant \delta n / 12>\varepsilon n>1$ and so $|W| \geqslant 2$.

Suppose that G^{\prime} is an induced subgraph of \bar{G}. Using (1), we apply Lemma 13 to $G^{\prime}[W]$ with 4α as α and $\left\lceil\frac{3}{2} k+6\right\rceil$ as k. Then we can deduce from (2) and $\varepsilon^{\prime}|W| \geqslant$ $\frac{12 \varepsilon}{\delta} \frac{n^{\prime}}{4}=(3 \varepsilon / \delta) n^{\prime}$ that the graph $G^{\prime}[W]$ contains an induced cycle C_{m} with $m \geqslant\left\lceil\frac{3}{2} k+6\right\rceil$ and by Proposition 15, $\overline{G^{\prime}}$ contains a pivot-minor isomorphic to C_{k}, and so does G, a contradiction.

Thus G^{\prime} is an induced subgraph of G. Let $G^{*}:=G^{\prime}[W]$ and let $n^{*}=|W|$. Then G^{*} has no pivot-minor isomorphic to $C_{k}, n^{*} \geqslant n^{\prime} / 4$, and $\Delta\left(G^{*}\right) \leqslant 4 \alpha n^{*}$. By (2), G^{*} contains no pure pair (A, B) with $|A|,|B| \geqslant(12 \varepsilon / \delta) n^{*}$. Now the theorem follows from applying the following lemma with $G^{*}, n^{*}, 4 \alpha, 12 \varepsilon / \delta$ playing the roles of $G, n, \alpha, \varepsilon$ respectively in the statement of the lemma.

Lemma 18. Let $k \geqslant 3$ be an integer. Let $0<\alpha<1 /(2 k), 0<\varepsilon \leqslant(1-(k+3) \alpha) / 20$. Let G be a graph on $n \geqslant 2$ vertices such that $\Delta(G) \leqslant \alpha n$ and G has no pure pair (A, B) with $|A|,|B| \geqslant \varepsilon n$. If G has a dominating induced path P, then G has a pivot-minor isomorphic to C_{k}.

Proof. Suppose that G has no pivot-minor isomorphic to C_{k}. Note that $\varepsilon n>1$ as otherwise we have a pure pair on two vertices since $n \geqslant 2$. Let us label vertices of P by 1,2 , \ldots, s in the order.

As P is a dominating path of G and $1 \leqslant \Delta(G) \leqslant \alpha n$, we have $2 \alpha n s \geqslant(\alpha n+1) s \geqslant n$ and therefore

$$
s \geqslant 1 /(2 \alpha)
$$

Note that $s-k>0$ because $\alpha<\frac{1}{2 k}$. As P is an induced path, it contains a pure pair (A, B) with $|A|,|B| \geqslant\left\lfloor\frac{s-1}{2}\right\rfloor$ and so $\frac{s-2}{2} \leqslant\left\lfloor\frac{s-1}{2}\right\rfloor<\varepsilon n$. Because $\varepsilon n>1$, we have
$2 \varepsilon n+2<4 \varepsilon n$ and so

$$
\begin{equation*}
s<2 \varepsilon n+2<4 \varepsilon n . \tag{3}
\end{equation*}
$$

Now, for each $i \in[s-k+1]$, let

$$
U_{i}^{-}:=\{1, \ldots, i-1\}, U_{i}^{0}:=\{i, \ldots, i+k-1\}, \text { and } U_{i}^{+}:=\{i+k, \ldots, s\} .
$$

In other words, this partitions P into three (possibly empty) subpaths. Furthermore, for all $i \in[s-k+1]$ and $u \in N_{G}\left(U_{i}^{-}\right)-V(P)$, let

$$
m_{i}^{-}(u):=\max \left(N_{G}(u) \cap U_{i}^{-}\right)
$$

and for all $i \in[s-k+1]$ and $u \in N_{G}\left(U_{i}^{+}\right)-V(P)$, let

$$
m_{i}^{+}(u):=\min \left(N_{G}(u) \cap U_{i}^{+}\right),
$$

indicating the largest neighbor of u in U_{i}^{-}and the smallest neighbor of u in U_{i}^{+}respectively. For each $i \in[s-k+1]$, let

$$
\begin{aligned}
& A_{i}:=N_{G}\left(U_{i}^{0}\right)-V(P) \text { and } \\
& B_{i}:=\left(N_{G}\left(U_{i}^{-}\right) \cap N_{G}\left(U_{i}^{+}\right)\right)-\left(A_{i} \cup V(P)\right) .
\end{aligned}
$$

Note that for each $u \in B_{i}$, we have

$$
\begin{equation*}
m_{i}^{+}(u)-m_{i}^{-}(u) \not \equiv k \quad(\bmod 2), \tag{4}
\end{equation*}
$$

because otherwise $\left(u, m_{i}^{-}(u), m_{i}^{-}(u)+1, \ldots, m_{i}^{+}(u), u\right)$ forms an induced cycle of length at least k and Proposition 14 implies that G contains a pivot-minor isomorphic to C_{k}, a contradiction.

For each $i \in[s-k+1]$, let

$$
\begin{aligned}
& C_{i}^{1}:=\left\{u \in N_{G}\left(U_{i}^{-}\right)-\left(A_{i} \cup B_{i} \cup V(P)\right): m_{i}^{-}(u) \equiv 1 \quad(\bmod 2)\right\}, \\
& C_{i}^{2}:=\left\{u \in N_{G}\left(U_{i}^{-}\right)-\left(A_{i} \cup B_{i} \cup V(P)\right): m_{i}^{-}(u) \equiv 0 \quad(\bmod 2)\right\}, \\
& D_{i}^{1}:=\left\{u \in N_{G}\left(U_{i}^{+}\right)-\left(A_{i} \cup B_{i} \cup V(P)\right): m_{i}^{+}(u) \equiv k \quad(\bmod 2)\right\}, \text { and } \\
& D_{i}^{2}:=\left\{u \in N_{G}\left(U_{i}^{+}\right)-\left(A_{i} \cup B_{i} \cup V(P)\right): m_{i}^{+}(u) \equiv k+1 \quad(\bmod 2)\right\} .
\end{aligned}
$$

Recall that P is dominating. Hence, for each i, the sets $\left\{A_{i}, B_{i}, C_{i}^{1}, C_{i}^{2}, D_{i}^{1}, D_{i}^{2}, V(P)\right\}$ forms a partition of $V(G)$ into 7 possibly empty sets.

If there exists an edge between $u \in C_{i}^{j}$ and $v \in D_{i}^{j}$ for some $j \in[2]$, then we obtain an induced cycle $\left(u, m_{i}^{-}(u), m_{i}^{-}(u)+1, \ldots, m_{i}^{+}(v), v, u\right)$ having length $m_{i}^{+}(v)-m_{i}^{-}(u)+3>k$ and $m_{i}^{+}(v)-m_{i}^{-}(u)+3 \equiv k(\bmod 2)$, contradicting our assumption that G has no pivotminor isomorphic to C_{k} by Proposition 14. Thus C_{i}^{j} is anticomplete to D_{i}^{j}. Hence,

$$
\begin{equation*}
\min \left\{\left|C_{i}^{j}\right|,\left|D_{i}^{j}\right|\right\}<\varepsilon n . \tag{5}
\end{equation*}
$$

for all $i \in[s-k+1]$ and $j \in[2]$. Furthermore, we prove the following.

Figure 3: $s^{\prime}=i+k-1$. Bold lines indicate $m_{i}^{-}(u)$ and $m_{i}^{+}(u)$.

Claim 19. Let $i \in[s-k+1]$. For each $v \in B_{i}$, all integers in $N_{G}(v) \cap U_{i}^{-}$have the same parity and all integers in $N_{G}(v) \cap U_{i}^{+}$have the same parity.

Proof of Claim 19. If $N_{G}(v) \cap U_{i}^{+}$has two integers $a<b$ of the different parity, then G contains a strongly k-good generalized fan by taking a subpath of P from $m_{i}^{-}(v)$ to b as its main path and v as its center. Then by Proposition 17, G contains a pivot-minor isomorphic to C_{k}, contradicting the assumption. Thus all integers in $N_{G}(v) \cap U_{i}^{+}$have the same parity and similarly all integers in $N_{G}(v) \cap U_{i}^{-}$have the same parity.

Claim 20. For all $i \in[s-k+1],\left|B_{i}\right|<2(\alpha+2 \varepsilon) n$.
Proof of Claim 20. Suppose $\left|B_{i}\right| \geqslant 2(\alpha+2 \varepsilon) n$ for some $i \in[s-k+1]$. Then there exists $r_{B} \in\{0,1\}$ such that

$$
B^{\prime}:=\left\{u \in B_{i}: m_{i}^{-}(u) \equiv r_{B} \quad(\bmod 2)\right\}
$$

has size at least $(\alpha+2 \varepsilon) n$. By $(4), m_{i}^{+}(u) \equiv k+r_{B}+1(\bmod 2)$ for all $u \in B^{\prime}$.
We claim that if $u v$ is an edge in $G\left[B^{\prime}\right]$, then $\left(m_{i}^{-}(u), m_{i}^{+}(u)\right)=\left(m_{i}^{-}(v), m_{i}^{+}(v)\right)$. Suppose not. Without loss of generality, we may assume that $m_{i}^{-}(u)<m_{i}^{-}(v)$, because otherwise we may reverse the ordering of P to ensure that $m_{i}^{-}(u) \neq m^{-}(v)$ and swap u and v if necessary.

If $m_{i}^{+}(u) \geqslant m_{i}^{+}(v)$, then by Claim 19, $\left\{m_{i}^{-}(v), m_{i}^{-}(v)+1, \ldots, m_{i}^{+}(u), u, v\right\}$ induces a strongly k-good generalized fan with v as a center and $\left(m_{i}^{-}(v), m_{i}^{-}(v)+1, \ldots, m_{i}^{+}(u), u\right)$ as its main path. This implies that G has a pivot-minor isomorphic to C_{k} by Proposition 17, contradicting our assumption.

If $m_{i}^{+}(u)<m_{i}^{+}(v)$, then $\left(m_{i}^{-}(v), m_{i}^{-}(v)+1, \ldots, m_{i}^{+}(u), u, v\right)$ is an induced cycle of length $m_{i}^{+}(u)-m_{i}^{-}(v)+3 \geqslant k$, and $m_{i}^{+}(u)-m_{i}^{-}(v)+3 \equiv\left(k+r_{B}+1\right)-r_{B}+3 \equiv k$ $(\bmod 2)$, a contradiction by Proposition 14.

Hence, $\left(m_{i}^{-}(u), m_{i}^{+}(u)\right)=\left(m_{i}^{-}(v), m_{i}^{+}(v)\right)$ for all $u v \in E\left(G\left[B^{\prime}\right]\right)$. Let C_{1}, \ldots, C_{t} be the connected components of $G\left[B^{\prime}\right]$. By the above observation, for each $j \in[t]$, there exist $a_{j} \in U_{i}^{-}$and $b_{j} \in U_{i}^{+}$such that $V\left(C_{j}\right) \subseteq N_{G}\left(a_{j}\right) \cap N_{G}\left(b_{j}\right)$. So, $\left|V\left(C_{j}\right)\right| \leqslant \alpha n$. As $\left|B^{\prime}\right| \geqslant(\alpha+2 \varepsilon) n$, there exists a set $I \subseteq\{1,2, \ldots, t\}$ such that $\varepsilon n \leqslant\left|\bigcup_{i \in I} V\left(C_{i}\right)\right| \leqslant(\alpha+\varepsilon) n$. Let $A:=\bigcup_{i \in I} V\left(C_{i}\right)$ and $B:=B^{\prime}-A$. Then (A, B) is a pure pair of G with $|A|,|B| \geqslant \varepsilon n$, a contradiction.

Claim 21. There exist $i_{*} \in[s-k+1]$ and $j_{*} \in[2]$ such that

$$
\left|C_{i_{*}}^{j_{*}}\right|,\left|D_{i_{*}}^{3-j_{*}}\right| \geqslant 3 \varepsilon n
$$

Proof of Claim 21. First, since $\Delta(G) \leqslant \alpha n,\left|A_{i}\right| \leqslant k \alpha n$ for each $i \in[s-k+1]$.
Let $f(i):=\left|C_{i}^{1}\right|+\left|C_{i}^{2}\right|$. Then

$$
\begin{aligned}
f(1) & =0, \\
f(s-k+1) & =n-\left|A_{s-k+1}\right|-s \quad \text { because } U_{s-k+1}^{+}=D_{s-k+1}^{1}=D_{s-k+1}^{2}=B_{s-k+1}=\varnothing, \\
& \geqslant n-k \alpha n-4 \varepsilon n \quad \text { by }(3) \text { and the assumption that } \Delta(G) \leqslant \alpha n, \\
& =(1-k \alpha-4 \varepsilon) n \geqslant 6 \varepsilon n,
\end{aligned}
$$

and for each $i \in[s-k]$, we have

$$
f(i+1)-f(i) \leqslant \operatorname{deg}_{G}(i) \leqslant \alpha n
$$

Hence, there exists $i_{*} \in[s-k+1]$ such that $6 \varepsilon n \leqslant f\left(i_{*}\right)<(6 \varepsilon+\alpha) n$. As $\left|B_{i_{*}}\right|<2(\alpha+2 \varepsilon) n$, we have

$$
\begin{aligned}
\left|D_{i_{*}}^{1}\right|+\left|D_{i_{*}}^{2}\right| & =n-\left|A_{i_{*}}\right|-\left|B_{i_{*}}\right|-\left(\left|C_{i_{*}}^{1}\right|+\left|C_{i_{*}}^{2}\right|\right)-|V(P)| \\
& \geqslant n-k \alpha n-2(\alpha+2 \varepsilon) n-(6 \varepsilon+\alpha) n-4 \varepsilon n \\
& =(1-(k+3) \alpha-14 \varepsilon) n \geqslant 6 \varepsilon n .
\end{aligned}
$$

So, there exist $a, b \in\{1,2\}$ such that $\left|C_{i_{*}}^{a}\right|,\left|D_{i_{*}}^{b}\right| \geqslant 3 \varepsilon n$. By (5), $a \neq b$ and so we take $j_{*}:=a$. This proves the claim.
Claim 22. For each component C of $G\left[C_{i_{*}}^{j_{*}}\right]$ and each component D of $G\left[D_{i_{*}}^{3-j_{*}}\right],(C, D)$ is a pure pair of G.

Proof of Claim 22. Assume not. By symmetry, we may assume that C has a vertex u having both a neighbor and a non-neighbor in D, because otherwise we swap C and D by reversing the order of P. As D is connected, there exist $v, v^{\prime} \in V(D)$ such that $u v, v v^{\prime} \in E(G)$ and $u v^{\prime} \notin E(G)$.

Note that $m_{i_{*}}^{+}(v) \equiv m_{i_{*}}^{+}\left(v^{\prime}\right)(\bmod 2)$ and

$$
\begin{equation*}
\text { for every neighbor } \ell \in N_{G}(v) \cap U_{i_{*}}^{+} \text {, the number } \ell-m_{i_{*}}^{+}(v) \text { is even, } \tag{6}
\end{equation*}
$$

because otherwise for the minimum $\ell \in N_{G}(v) \cap U_{i^{*}}^{+}$with odd $\ell-m_{i_{*}}^{+}(v)$, a vertex set $\left\{v, m_{i_{*}}^{-}(u), m_{i_{*}}^{-}(u)+1, \ldots, \ell, u\right\}$ induces a strongly k-good generalized fan with v as its center, a contradiction by Proposition 17.

If $m_{i_{*}}^{+}(v) \leqslant m_{i_{*}}^{+}\left(v^{\prime}\right)$, then $\left\{v, u, m_{i_{*}}^{-}(u), m_{i_{*}}^{-}(u)+1, \ldots, m_{i_{*}}^{+}\left(v^{\prime}\right), v^{\prime}\right\}$ induces a strongly k-good generalized fan with v as a center by (6).

If $m_{i_{*}}^{+}(v)>m_{i_{*}}^{+}\left(v^{\prime}\right)$, then simply $\left(u, m_{i_{*}}^{-}(u), m_{i_{*}}^{-}(u)+1, \ldots, m_{i_{*}}^{+}\left(v^{\prime}\right), v^{\prime}, v, u\right)$ is an induced cycle whose length is at least k and is of the same parity with k. Hence Proposition 14 implies a contradiction.

By Claim 22, there exists $S \in\left\{C_{i_{*}}^{j_{*}}, D_{i_{*}}^{3-j_{*}}\right\}$ such that every component of $G[S]$ has less than εn vertices. By Claim 21, we can greedily find a set of components of $G[S]$ covering at least εn vertices and at most $2 \varepsilon n$ vertices. Since $|S| \geqslant 3 \varepsilon n$, the vertices of S covered by this set of components with the vertices of S not covered by this set of components give a pure pair (A, B) with $|A|,|B| \geqslant \varepsilon n$, a contradiction. This proves the lemma.

5 Discussions

For a graph G, we write $\chi(G)$ to denote its chromatic number and $\omega(G)$ to denote its clique number, that is the maximum size of a clique. A class \mathcal{G} of graphs is called χ bounded if there exists a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for every induced subgraph H of a graph in $\mathcal{G}, \chi(H) \leqslant f(\omega(H))$. In addition, we say \mathcal{G} is polynomially χ-bounded if f can be taken as a polynomial.

Every polynomially χ-bounded class of graphs has the strong Erdős-Hajnal property, but the converse does not hold; see the survey paper by Scott and Seymour [22]. So it is natural to ask whether the class of graphs with no pivot-minor isomorphic to C_{k} is polynomially χ-bounded, which is still open. So far Choi, Kwon, and Oum [4] showed that it is χ-bounded.

Theorem 23 (Choi, Kwon, and Oum [4, Theorem 4.1]). For each $k \geqslant 3$, the class of graphs with no pivot-minor isomorphic to C_{k} is χ-bounded.

They showed that $\chi(G) \leqslant 2\left(6 k^{3}-26 k^{2}+25 k-1\right)^{\omega(G)-1}$ holds for graphs G having no pivot-minor isomorphic to C_{k}, far from being a polynomial. Theorem 23 is now implied by a recent theorem of Scott and Seymour [21], solving three conjectures of Gyárfás [13] on χ-boundedness all at once.

Theorem 24 (Scott and Seymour [21]). For all $k \geqslant 0$ and $\ell>0$, the class of all graphs having no induced cycle of length k modulo ℓ is χ-bounded.

To see why Theorem 24 implies Theorem 23, take $\ell:=2\lceil k / 2\rceil$ and apply Proposition 14. Still the bound obtained from Theorem 24 is far from being a polynomial.

And yet no one was able to answer the following problem of Esperet.

Problem 25 (Esperet; see [15]). Is it true that every χ-bounded class of graphs polynomially χ-bounded?

Thus it is natural to pose the following conjecture.
Conjecture 26. For every graph H, the class of graphs with no pivot-minor isomorphic to H is polynomially χ-bounded.

It is open whether Conjecture 26 holds when $H=C_{k}$. Conjecture 26 implies not only Conjectures 3, 5 but also the following conjecture of Geelen (see [8]) proposed in 2009 at the DIMACS workshop on graph colouring and structure held at Princeton University.

Conjecture 27 (Geelen; see [8]). For every graph H, the class of graphs with no vertexminor isomorphic to H is χ-bounded.

Of course it is natural to pose the following conjecture, weaker than Conjecture 26 but stronger than Conjecture 27.

Conjecture 28 (Kim, Kwon, Oum, and Sivaraman [16]). For every graph H, the class of graphs with no vertex-minor isomorphic to H is polynomially χ-bounded.

For vertex-minors, more results are known. Kim, Kwon, Oum, and Sivaraman [16] proved that for each $k \geqslant 3$, the class of graphs with no vertex-minor isomorphic to C_{k} is polynomially χ-bounded. Their theorem is now implied by the following two recent theorems. To describe these theorems, we first have to introduce a few terms. A circle graph is the intersection graph of chords in a circle. In particular, C_{k} is a circle graph. The rank-width of a graph is one of the width parameters of graphs, measuring how easy it is to decompose a graph into a tree-like structure while keeping every cut to have a small 'rank'. Rank-width was introduced by Oum and Seymour [19]. We will omit the definition of the rank-width.

Theorem 29 (Geelen, Kwon, McCarty, and Wollan [12]). For each circle graph H, there is an integer $r(H)$ such that every graph with no vertex-minor isomorphic to H has rankwidth at most $r(H)$.

Theorem 30 (Bonamy and Pilipczuk [3]). For each k, the class of graphs of rank-width at most k is polynomially χ-bounded.

As noted in [6], it is easy to prove directly that the class of graphs of bounded rankwidth has the strong Erdős-Hajnal property, without using Theorem 30. See Figure 4 for a diagram showing the containment relations between these properties.

So, one may wonder whether the class of graphs with no pivot-minor isomorphic to C_{k} has bounded rank-width. Unfortunately, if k is odd, then it is not true, because all bipartite graphs have no pivot-minor isomorphic to C_{k} for odd k and yet have unbounded rank-width, see [17]. If k is even, then it would be true if the following conjecture hold.

Conjecture 31 (Oum [18]). For every bipartite circle graph H, there is an integer $r(H)$ such that every graph with no pivot-minor isomorphic to H has rank-width at most $r(H)$.

Figure 4: Known implications between properties of classes of graphs.

Note.

Chudnovsky, Scott, Seymour, and Spirkl [7] proved that for every graph H, the class of graphs G such that neither G nor \bar{G} has any subdivision of H as an induced subgraph has the strong Erdős-Hajnal property. This implies that when k is even, the class of graphs with no induced even hole of length at least k and no induced even anti-hole of length at least k has the strong Erdős-Hajnal property. This is because every subdivision of a large theta graph 2 contains a large even hole. This implies Theorem 4 for even k but not for odd k by Propositions 14 and 15. The authors would like to thank the authors of [7] to share this observation.

Acknowledgement

The authors would like to thank anonymous reviewers for their careful reading and helpful suggestions.

References

[1] N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir. Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A, 111(2):310-326, 2005. https://doi.org/10.1016/j.jcta.2004.12.008.

[^2][2] M. Bonamy, N. Bousquet, and S. Thomassé. The Erdős-Hajnal conjecture for long holes and antiholes. SIAM J. Discrete Math., 30(2):1159-1164, 2016. https://doi.org/10.1137/140981745.
[3] M. Bonamy and M. Pilipczuk. Graphs of bounded cliquewidth are polynomially χ-bounded. Adv. Comb., Paper No. 8, 21 pp., 2020. https://doi.org/10.19086/aic. 13668.
[4] I. Choi, O. Kwon, and S. Oum. Coloring graphs without fan vertex-minors and graphs without cycle pivot-minors. J. Combin. Theory Ser. B, 123:126-147, 2017. https://doi.org/10.1016/j.jctb.2016.11.007.
[5] M. Chudnovsky. The Erdös-Hajnal conjecture - a survey. J. Graph Theory, 75(2):178-190, 2014. https://doi.org/10.1002/jgt.21730.
[6] M. Chudnovsky and S. Oum. Vertex-minors and the Erdős-Hajnal conjecture. Discrete Math., 341(12):3498-3499, 2018. https://doi.org/10.1016/j.disc.2018.09.007.
[7] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Pure pairs. II. Excluding all subdivisions of a graph. arXiv:1804.01060, 2020.
[8] Z. Dvořák and D. Král. Classes of graphs with small rank decompositions are χ bounded. European J. Combin., 33(4):679-683, 2012. https://doi.org/10.1016/j.ejc.2011.12.005.
[9] P. Erdős and A. Hajnal. Ramsey-type theorems. Discrete Appl. Math., 25(1-2):37-52, 1989. Combinatorics and complexity (Chicago, IL, 1987).
[10] J. Fox and J. Pach. Erdős-Hajnal-type results on intersection patterns of geometric objects. In Horizons of combinatorics, volume 17 of Bolyai Soc. Math. Stud., pages 79-103. Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-77200-2_4.
[11] J. Fox and B. Sudakov. Induced Ramsey-type theorems. Adv. Math., 219(6):17711800, 2008. https://doi.org/10.1016/j.aim.2008.07.009.
[12] J. Geelen, O. Kwon, R. McCarty, and P. Wollan. The grid theorem for vertex-minors. J. Combin. Theory Ser. B, 2020. https://doi.org/10.1016/j.jctb.2020.08.004.
[13] A. Gyárfás. Problems from the world surrounding perfect graphs. In Proceedings of the International Conference on Combinatorial Analysis and its Applications (Pokrzywna, 1985), volume 19, pages 413-441 (1988), 1987.
[14] M. Kamiński, V. V. Lozin, and M. Milanič. Recent developments on graphs of bounded clique-width. Discrete Appl. Math., 157(12):2747-2761, 2009. https://doi.org/10.1016/j.dam.2008.08.022.
[15] T. Karthick and F. Maffray. Vizing bound for the chromatic number on some graph classes. Graphs Combin., 32(4):1447-1460, 2016. https://doi.org/10.1007/s00373-015-1651-1.
[16] R. Kim, O. Kwon, S. Oum, and V. Sivaraman. Classes of graphs with no long cycle as a vertex-minor are polynomially χ-bounded. J. Combin. Theory Ser. B, 140:372-386, 2020. https://doi.org/10.1016/j.jctb.2019.06.001.
[17] S. Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79-100, 2005. https://doi.org/10.1016/j.jctb.2005.03.003.
[18] S. Oum. Excluding a bipartite circle graph from line graphs. J. Graph Theory, 60(3):183-203, 2009. https://doi.org/10.1002/jgt. 20353.
[19] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006. https://doi.org/10.1016/j.jctb.2005.10.006.
[20] V. Rödl. On universality of graphs with uniformly distributed edges. Discrete Math., 59(1-2):125-134, 1986. https://doi.org/10.1016/0012-365X (86) 90076-2.
[21] A. Scott and P. Seymour. Induced subgraphs of graphs with large chromatic number. X. Holes of specific residue. Combinatorica, 39(5):1105-1132, 2019. https://doi.org/10.1007/s00493-019-3804-y.
[22] A. Scott and P. Seymour. A survey of χ-boundedness. J. Graph Theory, 95(3):473504, 2020. https://doi.org/10.1002/jgt. 22601.

[^0]: *Supported by the POSCO Science Fellowship of POSCO TJ Park Foundation and by the KAIX Challenge program of KAIST Advanced Institute for Science-X.
 ${ }^{\dagger}$ Supported by the Institute for Basic Science (IBS-R029-C1).

[^1]: ${ }^{1}$ We found this concept in a paper by Kamiński, Lozin, and Milanič [14], though it may have been studied previously, as it is a natural concept.

[^2]: ${ }^{2}$ A theta graph is a graph consisting of three internally disjoint paths of length at least 1 joining two fixed vertices.

