The Erdős-Hajnal property for graphs with no fixed cycle as a pivot-minor

Jaehoon Kim* Sang-il Oum†
Department of Mathematical Sciences Discrete Mathematics Group
KAIST Institute for Basic Science (IBS)
Daejeon, Korea Daejeon, Korea
jaehoon.kim@kaist.ac.kr sangil@ibs.re.kr

Submitted: Apr 23, 2020; Accepted: Mar 22, 2021; Published: Apr 9, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We prove that for every integer k, there exists $\varepsilon > 0$ such that for every n-vertex graph G with no pivot-minor isomorphic to C_k, there exist disjoint sets $A, B \subseteq V(G)$ such that $|A|, |B| \geq \varepsilon n$, and A is either complete or anticomplete to B. This proves the analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minor isomorphic to C_k.

Mathematics Subject Classifications: 05C55, 05C75

1 Introduction

In this paper all graphs are simple, having no loops and no parallel edges. For a graph G, let $\omega(G)$ be the maximum size of a clique, that is a set of pairwise adjacent vertices and let $\alpha(G)$ be the maximum size of an independent set, that is a set of pairwise non-adjacent vertices. Erdős and Hajnal [9] proposed the following conjecture in 1989.

Conjecture 1 (Erdős and Hajnal [9]). For every graph H, there is $\varepsilon > 0$ such that all graphs G with no induced subgraph isomorphic to H satisfies

$$\max(\alpha(G), \omega(G)) \geq |V(G)|^\varepsilon.$$
This conjecture still remains open. See [5] for a survey on this conjecture. We can ask the same question for weaker containment relations. Recently Chudnovsky and Oum [6] proved that this conjecture holds if we replace “induced subgraphs” with “vertex-minors” as follows. This is weaker in the sense that every induced subgraph G is a vertex-minor of G but not every vertex-minor of G is an induced subgraph of G.

Theorem 2 (Chudnovsky and Oum [6]). *For every graph H, there exists $\varepsilon > 0$ such that every graph with no vertex-minors isomorphic to H satisfies*

$$\max(\alpha(G), \omega(G)) \geq |V(G)|^{\varepsilon}.$$

We ask whether Conjecture 1 holds if we replace “induced subgraphs” with “pivot-minors” as follows.

Conjecture 3. *For every graph H, there exists $\varepsilon > 0$ such that every graph G with no pivot-minor isomorphic to H satisfies*

$$\max(\alpha(G), \omega(G)) \geq |V(G)|^{\varepsilon}.$$

The detailed definition of pivot-minors will be presented in Section 3. For now, note that the analog for vertex-minors is weakest, the analog for pivot-minors is weaker than that for induced subgraphs but stronger than that for vertex-minors. This is because every induced subgraph of G is a pivot-minor of G, and every pivot-minor of G is a vertex-minor of G. In other words, Conjecture 1 implies Conjecture 3 and Conjecture 3 implies Theorem 2. We verify Conjecture 3 for $H = C_k$, the cycle graph on k vertices as follows.

Theorem 4. *For every $k \geq 3$, there exists $\varepsilon > 0$ such that every graph with no pivot-minor isomorphic to C_k satisfies*

$$\max(\alpha(G), \omega(G)) \geq |V(G)|^{\varepsilon}.$$

We actually prove a stronger property, as Chudnovsky and Oum [6] did. Before stating this property, let us first state a few terminologies. A class \mathcal{G} of graphs closed under taking induced subgraphs is said to have the *Erdős-Hajnal property* if there exists $\varepsilon > 0$ such that every graph G in \mathcal{G} satisfies

$$\max(\alpha(G), \omega(G)) \geq |V(G)|^{\varepsilon}.$$

A class \mathcal{G} of graphs closed under taking induced subgraphs is said to have the *strong Erdős-Hajnal property* if there exists $\varepsilon > 0$ such that every n-vertex graph in \mathcal{G} with $n > 1$ has disjoint sets A, B of vertices such that $|A|, |B| \geq \varepsilon n$ and A is either complete or anti-complete to B. It is an easy exercise to show that the strong Erdős-Hajnal property implies the Erdős-Hajnal property, see [1, 10].

Chudnovsky and Oum [6] proved that the class of graphs with no vertex-minors isomorphic to H for a fixed graph H has the strong Erdős-Hajnal property, implying Theorem 2. We propose its analog for pivot-minors as a conjecture, which implies the theorem...
of Chudnovsky and Oum [6]. Note that this conjecture is not true if we replace the pivot-minor with induced graphs. For example, the class of triangle-free graphs does not have the strong Erdős-Hajnal property [10].

Conjecture 5. For every graph H, there exists $\varepsilon > 0$ such that for all $n > 1$, every n-vertex graph with no pivot-minor isomorphic to H has two disjoint sets A, B of vertices such that $|A|, |B| \geq \varepsilon n$ and A is complete or anti-complete to B.

We prove that this conjecture holds if $H = C_k$. In other words, the class of graphs with no pivot-minor isomorphic to C_k has the strong Erdős-Hajnal property as follows. This implies Theorem 4.

Theorem 6. For every integer $k \geq 3$, there exists $\varepsilon > 0$ such that for all $n > 1$, every n-vertex graph with no pivot-minor isomorphic to C_k has two disjoint sets A, B of vertices such that $|A|, |B| \geq \varepsilon n$ and A is complete or anti-complete to B.

This paper is organized as follows. In Section 2, we will introduce basic definitions and review necessary theorems of Rödl [20] and Bonamy, Bousquet, and Thomassé [2]. In Section 3, we will present several tools to find a pivot-minor isomorphic to C_k. In particular, it proves that a long anti-hole contains C_k as a pivot-minor. In Section 4, we will present the proof of the main theorem, Theorem 6. In Section 5, we will relate our theorem to the problem on χ-boundedness, and discuss known results and open problems related to polynomial χ-boundedness and the Erdős-Hajnal property.

2 Preliminaries

Let \mathbb{N} be the set of positive integers and for each $n \in \mathbb{N}$, we write $[n] := \{1, 2, \ldots, n\}$. For a graph $G = (V, E)$, let $\overline{G} = (V, \binom{V}{2} - E)$ be the complement of G. We write $\Delta(G)$ and $\delta(G)$ to denote the maximum degree of G and the minimum degree of G respectively.

Let T be a tree rooted at a specified node v_r, called the root. If the path from v_r to a node y in T contains $x \in V(T) - \{y\}$, we say that x is an ancestor of y, and y is a descendant of x. If one of x and y is an ancestor of the other, we say that x, y are related. We say that two disjoint sets X and Y of nodes of T are unrelated if no pairs of $x \in X$ and $y \in Y$ are related.

For disjoint vertex sets X and Y, we say X is complete to Y if every vertex of X is adjacent to all vertices of Y. We say X is anti-complete to Y if every vertex of X is non-adjacent to Y. A pure pair of a graph G is a pair (A, B) of disjoint subsets of $V(G)$ such that A is complete or anti-complete to B.

For a vertex u, let $N_G(u)$ denote the set of neighbors of u in G. For each $U \subseteq V(G)$, we write

$$N_G(U) := \bigcup_{u \in U} N_G(u) - U.$$

The following lemma is proved in Section 2 of [2].
Lemma 7 (Bonamy, Bousquet, and Thomassé [2]). For every connected graph \(G \) and a vertex \(v_r \in V(G) \), there exist an induced subtree \(T \) of \(G \) rooted at \(v_r \) and a function \(r : V(G) \to V(T) \) satisfying the following.

(T1) \(r(v_r) = v_r \), and for each \(u \in V(G) - \{v_r\} \), the vertex \(r(u) \) is a neighbor of \(u \). In particular, \(T \) is a dominating tree of \(G \).

(T2) If \(r(x) \) and \(r(y) \) are not related, then \(xy \notin E(G) \).

Rödl [20] proved the following theorem. Its weaker version was later proved by Fox and Sudakov [11] without using the regularity lemma. A set \(U \) of vertices of a graph \(G \) is an \(\varepsilon \)-stable set of a graph \(G \) if \(G[U] \) has at most \(\varepsilon \binom{|U|}{2} \) edges. Similarly, \(U \) is an \(\varepsilon \)-clique of a graph \(G \) if \(G[U] \) has at least \((1 - \varepsilon)\binom{|U|}{2} \) edges.

Theorem 8 (Rödl [20]). For all \(\varepsilon > 0 \) and a graph \(H \), there exists \(\delta > 0 \) such that every \(n \)-vertex graph \(G \) with no induced subgraph isomorphic to \(H \) has an \(\varepsilon \)-stable set or an \(\varepsilon \)-clique of size at least \(\delta n \).

We will use the following simple lemma. We present its proof for completeness.

Lemma 9. Let \(G \) be a graph. Every \(\varepsilon \)-stable set \(U \) of \(G \) has a subset \(U' \) of size at least \(|U|/2 \) with \(\Delta(G[U']) \leq 4\varepsilon |U'| \).

Proof. Let \(U' \) be the set of vertices of degree of at most \(2\varepsilon |U| \) in \(G[U] \). Because

\[
\sum_{v \in U} \deg_{G[U]}(v) < \varepsilon |U|^2,
\]

we have \(|U'| \geq |U|/2 \). Moreover, for each vertex \(v \in U' \), we have \(\deg_{G[U']}(v) \leq 2\varepsilon |U| \leq 4\varepsilon |U'| \). \(\square \)

Using Lemma 9, we can deduce the following corollary of Theorem 8.

Corollary 10. For all \(\alpha > 0 \) and a graph \(H \), there exists \(\delta > 0 \) such that every graph \(G \) with no induced subgraph isomorphic to \(H \) has a set \(U \subseteq V(G) \) with \(|U| \geq \delta |V(G)| \) such that either \(\Delta(G[U]) \leq \alpha |U| \) or \(\Delta(G'[U]) \leq \alpha |U| \).

The following easy lemma will be used to find a connected induced subgraph inside the output of Corollary 10. We omit its easy proof.

Lemma 11. A graph \(G \) has a pure pair \((A, B)\) such that \(|A|, |B| \geq |V(G)|/3 \) or has a connected induced subgraph \(H \) such that \(|V(H)| \geq |V(G)|/3 \).

Lemma 12 (Bonamy, Bousquet, and Thomassé [2, Lemma 3]). Let \(T \) be a tree rooted at \(v_r \) and \(w : V(T) \to \mathbb{R} \) be a non-negative weight function on \(V(T) \) with \(\sum_{x \in V(T)} w(x) = 1 \). Then there exists either a path \(P \) from \(v_r \) with weight at least \(1/4 \) or two unrelated sets \(A \) and \(B \) both with weight at least \(1/4 \).
A hole is an induced cycle of length at least 5.

Lemma 13 (Bonamy, Bousquet, and Thomassé [2, Lemma 4]). For given \(k \geq 3 \), there exist \(\alpha = \alpha(k) > 0 \) and \(\varepsilon = \varepsilon(k) > 0 \) such that for any \(n \)-vertex graph \(G \) with \(n \geq 2 \) and \(\Delta(G) \leq \alpha n \), if \(G \) has no holes of length at least \(k \) and has a dominating induced path, then \(G \) contains a pair \((A, B) \) of disjoint vertex sets such that \(|A|, |B| \geq \varepsilon n \).

3 Finding a cycle as a pivot-minor

For a given graph \(G \) and an edge \(uv \), a graph \(G \wedge uv \) obtained from \(G \) by pivoting \(uv \) is defined as follows. Let \(V_1 = N_G(u) \cap N_G(v) \), \(V_2 = N_G(u) - N_G(v) \), \(V_3 = N_G(v) - N_G(u) \). Then \(G \wedge uv \) is the graph obtained from \(G \) by complementing adjacency between vertices between \(V_i \) and \(V_j \) for all \(1 \leq i < j \leq 3 \) and swapping the label of \(u \) and \(v \). See Figure 1 for an illustration. We say that \(H \) is a pivot-minor of \(G \) if \(H \) can be obtained from \(G \) by deleting vertices and pivoting edges. For this paper, we will also say that \(H \) is a pivot-minor of \(G \), when \(G \) has a pivot-minor isomorphic to \(H \). A pivot-minor \(H \) of \(G \) is proper if \(|V(H)| < |V(G)| \).

We describe several scenarios for constructing \(C_k \) as a pivot-minor. The following proposition is an easy one; One can obtain a desired pivot-minor from a longer cycle of the same parity.

Proposition 14. For \(m \geq k \geq 3 \) with \(m \equiv k \pmod{2} \), the cycle \(C_m \) has a pivot-minor isomorphic to \(C_k \).

Proof. We proceed by induction on \(m - k \). We may assume that \(m > k \). Let \(xy \) be an edge of \(C_m \). Then \((C_m \wedge xy) - x - y \) is isomorphic to \(C_{m-2} \), which contains a pivot-minor isomorphic to \(C_k \) by the induction hypothesis.

Proposition 15. For integers \(k \geq 3 \) and \(m \geq \frac{3}{2}k + 6 \), the graph \(\overline{C_m} \) has a pivot-minor isomorphic to \(C_k \).

Before proving Proposition 15, we present a simple lemma on partial complements of the cycle graph. The partial complement\(^1 \) \(G \oplus S \) of a graph \(G \) by a set \(S \) of vertices is a

\(^1\)We found this concept in a paper by Kamiński, Lozin, and Milanič [14], though it may have been studied previously, as it is a natural concept.
Figure 2: Obtaining an \((s - 2, 3)\)-cycle from an \((s, 9)\)-cycle when \(s > 9\) in the proof of Lemma 16.

graph obtained from \(G\) by changing all edges within \(S\) to non-edges and non-edges within \(S\) to edges.

For \(s \geq t \geq 0\), we say that \(G\) is an \((s, t)\)-cycle if \(G\) is isomorphic to a graph \(C_s \oplus X\) for a set \(X\) of \(t\) consecutive vertices in the cycle \(C_s\).

Lemma 16. Let \(s \geq t \geq 6\). An \((s, t)\)-cycle contains a pivot-minor isomorphic to an \((s - 2, t - 6)\)-cycle.

Proof. Let \(v_1, \ldots, v_s\) be the vertices of \(C_s\) in the cyclic order where \(X = \{v_1, \ldots, v_t\}\). Then it is easy to check that \((C_s \oplus X) \land v_2v_{t-1} - \{v_2, v_{t-1}\}\) is isomorphic to \(C_{s-2} \oplus X'\) where \(X'\) consists of \(t - 6\) consecutive vertices on the cycle. See Figure 2.

Proof of Proposition 15. As \(C_m\) is an \((m, m)\)-cycle, by Lemma 16, \(C_m\) contains a pivot-minor isomorphic to an \((m - 2i, m - 6i)\)-cycle for all \(i \leq m/6\).

Let us fix \(i = \lceil (k - 2)/4 \rceil\). Then \(m - 6i \geq m - 6 \cdot (k + 1)/4 \geq 9/2\) and therefore \(C_m\) contains a pivot-minor \(H\) isomorphic to an \((m - 2i, m - 6i)\)-cycle and \(m - 6i \geq 5\). We may assume that \(H = C_{m-2i} \oplus X\) where \(C_{m-2i} = v_1 \cdots v_{m-2i}\) and \(X = \{v_{4i+1}, \ldots, v_{m-2i}\}\).

Note that \(H\) contains an induced cycle \(C = v_1 \cdots v_{4i}v_{4i+1}v_{m-2i}v_1\) of length \(4i + 2\geq k\). If \(k\) is even, then by Proposition 14, \(H\) contains a pivot-minor isomorphic to \(C_k\). So we may assume that \(k\) is odd and therefore \(|V(C)| = 4i + 2 \geq k + 1\).

Let \(x = v_{m-2i}, y = v_{4i+1}\) be the two vertices in \(V(C) \cap X\). Since \(m - 6i \geq 5\), there is a common neighbor \(z\) of \(x\) and \(y\) in \(X\). Then \(z\) has exactly two neighbors \(x\) and \(y\) in \(V(C)\). Then \(H[V(C) \cup \{z\}] \land yz - y - z\) is a cycle of length \(4i + 1\). Since \(4i + 1 \geq k\), by Proposition 14, it contains a pivot-minor isomorphic to \(C_k\).

A **generalized fan** is a graph \(G\) with a specified vertex \(c\), called the **center**, such that \(G - c\) is an induced path of length at least 1, called the **main path** of \(G\) and both ends of the main path are adjacent to \(c\). If \(c\) is adjacent to all vertices of \(G - c\), then \(G\) is called a **fan**.
An interval of a generalized fan with a center c is a maximal subpath of the main path having no internal vertex adjacent to c. The length of an interval is its number of edges. A generalized fan is an (a_1, \ldots, a_s)-fan if the lengths of intervals are a_1, \ldots, a_s in order. Note that an (a_1, \ldots, a_s)-fan is also an (a_s, \ldots, a_1)-fan. An (a_1, \ldots, a_s)-fan is a k-good fan if $a_1 \geq k - 2$ or $a_s \geq k - 2$. An (a_1, \ldots, a_s)-fan is a strongly k-good fan if $s \geq 2$ and either $a_1 \geq k - 2$ and a_s is odd, or $a_s \geq k - 2$ and a_1 is odd. It is easy to observe that every k-good fan has a hole of length at least k. However, that does not necessarily lead to a pivot-minor isomorphic to C_k because of the parity issues. In the next proposition, we show that every strongly k-good fan has a pivot-minor isomorphic to C_k.

Proposition 17. Let $k \geq 5$ be an integer. Every strongly k-good fan has a pivot-minor isomorphic to C_k.

Proof. Let G be an (a_1, \ldots, a_s)-fan such that $s \geq 2$, $a_1 \geq k - 2$, and a_s is odd. We proceed by the induction on $|V(G)|$. We may assume that G has no proper pivot-minor that is a strongly k-good fan. Note that C_{a_i+2} is an induced subgraph of G, hence if $a_1 \equiv k \pmod{2}$, then C_k is isomorphic to a pivot-minor of G by Proposition 14. Thus we may assume that $a_1 \not\equiv k \pmod{2}$ and so $a_1 \geq k - 1$.

If a_i is odd for some $1 < i < s$, then G contains a smaller strongly k-good fan by taking the first i intervals, contradicting our assumption. Thus a_i is even for all $1 < i < s$. If $a_i \geq 3$ for some $i > 1$, then let uv be an internal edge of the i-th interval. Then $G \backslash uv - u - v$ is a strongly k-good fan, contradicting our assumption. Thus, we may assume that $a_i \leq 2$ for all $i > 1$ and so G is an $(a_1, 2, \ldots, 2, 1)$-fan.

Let xy be the last interval of G with length 1. Then $G \backslash xy - x - y$ is a $(a_1, 2, \ldots, 2, 1)$-fan with $s - 1$ intervals. By the assumption, we may assume that $s = 2$ and $G \backslash xy - x - y$ is an $(a_1 - 1)$-fan with one interval, which is a cycle with $a_1 + 1$ edges. As $a_1 + 1 \geq k$ and $a_1 + 1 \equiv k \pmod{2}$, Proposition 14 implies that G contains a pivot-minor isomorphic to C_k. \qed

4 Proof of Theorem 6

First we choose $\alpha > 0$ and $\varepsilon_0 > 0$ so that

$$4\alpha \leq \alpha(\lceil \frac{3}{2}k + 6 \rceil) \quad \text{and} \quad \varepsilon_0 = \varepsilon(\lceil \frac{3}{2}k + 6 \rceil) \quad \text{where} \quad \alpha(\cdot), \varepsilon(\cdot) \quad \text{are specified in Lemma 13} \quad (1)$$

and in addition $\alpha < 1/(8k)$ as well. Let $\delta > 0$ be a constant obtained by applying Corollary 10 with $\alpha/3$ as α and C_k as H. Choose $\varepsilon > 0$ so that

$$\varepsilon < \min \left(\frac{\delta}{12}, (1 - 4(k + 3)\alpha) \frac{\delta}{240}, \frac{\varepsilon_0 \delta}{12} \right).$$

Let $n > 1$ be an integer and G be an n-vertex graph with no pivot-minor isomorphic to C_k. In particular, G does not have C_k as an induced subgraph. To derive a contradiction, we assume that G contains no pure pair (A, B) with $|A|, |B| \geq \varepsilon n$. We may assume that $\varepsilon n > 1$, because otherwise an edge or a non-edge of G gives a pure pair.
By Corollary 10, there exists a subset \(U \) of \(V(G) \) such that \(|U| \geq \delta|V(G)|\) and \(\Delta(G^0)[U] \leq (\alpha/3)|U| \) for some \(G^0 \in \{G, \overline{G}\} \). By the assumption on \(G \), \(G^0[U] \) has no pure pair \((A, B)\) with \(|A|, |B| \geq (\varepsilon/\delta)|U|\). As \(\varepsilon/\delta < 1/3 \), by Lemma 11, \(G^0[U] \) has a connected induced subgraph \(G' \) such that \(|V(G')| \geq |U|/3\). Let \(n' = |V(G')|\).

Then \(n' \geq (\delta/3)n \) and \(\Delta(G') \leq (\alpha/3)|U| \leq \alpha n' \). By the assumption on \(G \),

\[
G' \text{ contains no pure pair } (A, B) \text{ with } |A|, |B| \geq (3\varepsilon/\delta)n'.
\]

By applying Lemma 7 with \(G' \), we obtain a dominating induced tree \(T \) and \(r: V(G') \to V(T) \) satisfying Lemma 7 (T1)–(T2) with \(G' \). For each \(u \in V(T) \), let

\[
w(u) := \frac{|r^{-1}(\{u\})|}{n'}
\]

be the weight of \(u \). By applying Lemma 12 with the weight \(w \), we obtain either an induced path \(P \) of \(T \) with weight at least \(1/4 \) or two unrelated sets \(A \) and \(B \) both with weight at least \(1/4 \).

In the latter case, Lemma 7 (T2) implies that \(r^{-1}(A) \) is anticomplete to \(r^{-1}(B) \) in \(G' \) and \(|r^{-1}(A)|, |r^{-1}(B)| \geq n'/4 \geq (3\varepsilon/\delta)n' \), contradicting (2).

Hence, there exists an induced path \(P \) in \(G' \) with \(|V(P) \cup N_{G'}(V(P))| \geq n'/4 \). Let \(W := V(P) \cup N_{G'}(V(P)) \). Note that \(n'/4 \geq \delta n/12 > \varepsilon n > 1 \) and so \(|W| \geq 2 \).

Suppose that \(G' \) is an induced subgraph of \(\overline{G} \). Using (1), we apply Lemma 13 to \(G'[W] \) with \(4\alpha \) as \(\alpha \) and \(\lfloor \frac{3}{2}k + 6 \rfloor \) as \(k \). Then we can deduce from (2) and \(\varepsilon|W| \geq \frac{12\varepsilon n'}{\delta} = (3\varepsilon/\delta)n' \) that the graph \(G'[W] \) contains an induced cycle \(C_m \) with \(m \geq \lfloor \frac{3}{2}k + 6 \rfloor \) and by Proposition 15, \(\overline{G'} \) contains a pivot-minor isomorphic to \(C_k \), and so does \(G \), a contradiction.

Thus \(G' \) is an induced subgraph of \(G \). Let \(G^* := G'[W] \) and let \(n^* = |W| \). Then \(G^* \) has no pivot-minor isomorphic to \(C_k \), \(n^* \geq n'/4 \), and \(\Delta(G^*) \leq 4\alpha n^* \). By (2), \(G^* \) contains no pure pair \((A, B)\) with \(|A|, |B| \geq (12\varepsilon/\delta)n^* \). Now the theorem follows from applying the following lemma with \(G^*, n^*, 4\alpha, 12\varepsilon/\delta \) playing the roles of \(G, n, \alpha, \varepsilon \) respectively in the statement of the lemma.

Lemma 18. Let \(k \geq 3 \) be an integer. Let \(0 < \alpha < 1/(2k) \), \(0 < \varepsilon \leq (1 - (k + 3)\alpha)/20 \). Let \(G \) be a graph on \(n \geq 2 \) vertices such that \(\Delta(G) \leq \alpha n \) and \(G \) has no pure pair \((A, B)\) with \(|A|, |B| \geq \varepsilon n \). If \(G \) has a dominating induced path \(P \), then \(G \) has a pivot-minor isomorphic to \(C_k \).

Proof. Suppose that \(G \) has no pivot-minor isomorphic to \(C_k \). Note that \(\varepsilon n > 1 \) as otherwise we have a pure pair on two vertices since \(n \geq 2 \). Let us label vertices of \(P \) by \(1, 2, \ldots, s \) in the order.

As \(P \) is a dominating path of \(G \) and \(1 \leq \Delta(G) \leq \alpha n \), we have \(2\alpha ns \geq (\alpha n + 1)s \geq n \) and therefore

\[
s \geq 1/(2\alpha).
\]

Note that \(s - k > 0 \) because \(\alpha < \frac{1}{2k} \). As \(P \) is an induced path, it contains a pure pair \((A, B)\) with \(|A|, |B| \geq \lfloor \frac{s - 1}{2} \rfloor \) and so \(\frac{s^2}{2} \leq \lfloor \frac{s^2}{2} \rfloor < \varepsilon n \). Because \(\varepsilon n > 1 \), we have
For each \(i \in [s - k + 1] \), let
\[
U_i^- := \{1, \ldots, i - 1\}, \quad U_i^0 := \{i, \ldots, i + k - 1\}, \quad \text{and} \quad U_i^+ := \{i + k, \ldots, s\}.
\]

In other words, this partitions \(P \) into three (possibly empty) subpaths. Furthermore, for all \(i \in [s - k + 1] \) and \(u \in N_G(U_i^-) - V(P) \), let
\[
m_i^-(u) := \max(N_G(u) \cap U_i^-)
\]
and for all \(i \in [s - k + 1] \) and \(u \in N_G(U_i^+) - V(P) \), let
\[
m_i^+(u) := \min(N_G(u) \cap U_i^+),
\]
indicating the largest neighbor of \(u \) in \(U_i^- \) and the smallest neighbor of \(u \) in \(U_i^+ \) respectively. For each \(i \in [s - k + 1] \), let
\[
A_i := N_G(U_i^0) - V(P) \quad \text{and} \quad B_i := (N_G(U_i^-) \cap N_G(U_i^+)) - (A_i \cup V(P)).
\]

Note that for each \(u \in B_i \), we have
\[
m_i^+(u) - m_i^-(u) \not\equiv k \pmod{2},
\]
because otherwise \((u, m_i^-(u), m_i^-(u) + 1, \ldots, m_i^+(u), u)\) forms an induced cycle of length at least \(k \) and Proposition 14 implies that \(G \) contains a pivot-minor isomorphic to \(C_k \), a contradiction.

For each \(i \in [s - k + 1] \), let
\[
C_i^1 := \{u \in N_G(U_i^-) - (A_i \cup B_i \cup V(P)) : m_i^-(u) \equiv 1 \pmod{2}\},
\]
\[
C_i^2 := \{u \in N_G(U_i^-) - (A_i \cup B_i \cup V(P)) : m_i^-(u) \equiv 0 \pmod{2}\},
\]
\[
D_i^1 := \{u \in N_G(U_i^+) - (A_i \cup B_i \cup V(P)) : m_i^+(u) \equiv k \pmod{2}\}, \quad \text{and}
\]
\[
D_i^2 := \{u \in N_G(U_i^+) - (A_i \cup B_i \cup V(P)) : m_i^+(u) \equiv k + 1 \pmod{2}\}.
\]

Recall that \(P \) is dominating. Hence, for each \(i \), the sets \(\{A_i, B_i, C_i^1, C_i^2, D_i^1, D_i^2, V(P)\} \) forms a partition of \(V(G) \) into 7 possibly empty sets.

If there exists an edge between \(u \in C_i^j \) and \(v \in D_i^j \) for some \(j \in [2] \), then we obtain an induced cycle \((u, m_i^-(u), m_i^-(u) + 1, \ldots, m_i^+(v), v, u)\) having length \(m_i^+(v) - m_i^-(u) + 3 > k \) and \(m_i^+(v) - m_i^-(u) + 3 \equiv k \pmod{2} \), contradicting our assumption that \(G \) has no pivot-minor isomorphic to \(C_k \) by Proposition 14. Thus \(C_i^j \) is anticomplete to \(D_i^j \). Hence,
\[
\min\{|C_i^j|, |D_i^j|\} < \varepsilon n.
\]
for all \(i \in [s - k + 1] \) and \(j \in [2] \). Furthermore, we prove the following.
Figure 3: $s' = i + k - 1$. Bold lines indicate $m_i^-(u)$ and $m_i^+(u)$.

Claim 19. Let $i \in [s-k+1]$. For each $v \in B_i$, all integers in $N_G(v) \cap U_i^-$ have the same parity and all integers in $N_G(v) \cap U_i^+$ have the same parity.

Proof of Claim 19. If $N_G(v) \cap U_i^+$ has two integers $a < b$ of the different parity, then G contains a strongly k-good generalized fan by taking a subpath of P from $m_i^-(v)$ to b as its main path and v as its center. Then by Proposition 17, G contains a pivot-minor isomorphic to C_k, contradicting the assumption. Thus all integers in $N_G(v) \cap U_i^+$ have the same parity and similarly all integers in $N_G(v) \cap U_i^-$ have the same parity.

Claim 20. For all $i \in [s-k+1]$, $|B_i| < 2(\alpha + 2\varepsilon)n$.

Proof of Claim 20. Suppose $|B_i| \geq 2(\alpha + 2\varepsilon)n$ for some $i \in [s-k+1]$. Then there exists $r_B \in \{0, 1\}$ such that

$$B' := \{u \in B_i : m_i^+(u) \equiv r_B \pmod{2}\}$$

has size at least $(\alpha + 2\varepsilon)n$. By (4), $m_i^+(u) \equiv k + r_B + 1 \pmod{2}$ for all $u \in B'$.

We claim that if uv is an edge in $G[B']$, then $(m_i^-(u), m_i^+(u)) = (m_i^-(v), m_i^+(v))$. Suppose not. Without loss of generality, we may assume that $m_i^+(u) < m_i^+(v)$, because otherwise we may reverse the ordering of P to ensure that $m_i^-(u) \neq m_i^-(v)$ and swap u and v if necessary.

If $m_i^+(u) \geq m_i^+(v)$, then by Claim 19, $\{m_i^-(v), m_i^-(v) + 1, \ldots, m_i^+(u), u, v\}$ induces a strongly k-good generalized fan with v as a center and $(m_i^-(v), m_i^-(v) + 1, \ldots, m_i^+(u), u)$ as its main path. This implies that G has a pivot-minor isomorphic to C_k by Proposition 17, contradicting our assumption.
If \(m_i^+(u) < m_i^+(v) \), then \((m_i^-(v), m_i^+(v) + 1, \ldots, m_i^+(u), u, v)\) is an induced cycle of length \(m_i^+(u) - m_i^-(v) + 3 \geq k \), and \(m_i^+(u) - m_i^-(v) + 3 \equiv (k + r_B + 1) - r_B + 3 \equiv k \) (mod 2), a contradiction by Proposition 14.

Hence, \((m_i^-(v), m_i^+(u)) = (m_i^-(v), m_i^+(v))\) for all \(uv \in E(G[B']) \). Let \(C_1, \ldots, C_t \) be the connected components of \(G[B'] \). By the above observation, for each \(j \in [t] \), there exist \(a_j \in U_i^- \) and \(b_j \in U_i^+ \) such that \(V(C_j) \subseteq N_G(a_j) \cap N_G(b_j) \). So, \(|V(C_j)| \leq \alpha n \). As |\(B' \)\| \(\geq (\alpha + 2\varepsilon)n \), there exists a set \(I \subseteq \{1, 2, \ldots, t\} \) such that \(\varepsilon n \leq \sum_{i \in I} |V(C_i)| \leq (\alpha + \varepsilon)n \). Let \(A := \bigcup_{i \in I} V(C_i) \) and \(B := B' - A \). Then \((A, B)\) is a pure pair of \(G \) with \(|A|, |B| \geq \varepsilon n\), a contradiction.

Claim 21. There exist \(i_* \in [s - k + 1] \) and \(j_* \in [2] \) such that

\[|C_{i_*}^{\beta_1}|, |D_{i_*}^{3-j_*}| \geq 3\varepsilon n. \]

Proof of Claim 21. First, since \(\Delta(G) \leq \alpha n \), \(|A_i| \leq k\alpha n\) for each \(i \in [s - k + 1] \).

Let \(f(i) := |C_i^1| + |C_i^2| \). Then

\[
\begin{align*}
 f(1) & = 0, \\
 f(s - k + 1) & = n - |A_{s-k+1}| - s \quad \text{because } U_{s-k+1}^+ = D_{s-k+1}^1 = D_{s-k+1}^2 = B_{s-k+1} = \emptyset, \\
 & \geq n - k\alpha n - 4\varepsilon n \quad \text{by (3) and the assumption that } \Delta(G) \leq \alpha n, \\
 & = (1 - k\alpha - 4\varepsilon)n \geq 6\varepsilon n,
\end{align*}
\]

and for each \(i \in [s - k] \), we have

\[f(i + 1) - f(i) \leq \deg_G(i) \leq \alpha n. \]

Hence, there exists \(i_* \in [s - k + 1] \) such that \(6\varepsilon n \leq f(i_*) < (6\varepsilon + \alpha)n \). As \(|B_{i_*}| < 2(\alpha + 2\varepsilon)n\), we have

\[
\begin{align*}
 |D_{i_*}^1| + |D_{i_*}^2| & = n - |A_{i_*}| - |B_{i_*}| - (|C_{i_*}^1| + |C_{i_*}^2|) - |V(P)| \\
 & \geq n - k\alpha n - 2(\alpha + 2\varepsilon)n - (6\varepsilon + \alpha)n - 4\varepsilon n \\
 & = (1 - (k + 3)\alpha - 14\varepsilon)n \geq 6\varepsilon n.
\end{align*}
\]

So, there exist \(a, b \in \{1, 2\} \) such that \(|C_{i_*}^{\alpha}|, |D_{i_*}^{j_*}| \geq 3\varepsilon n\). By (5), \(a \neq b \) and so we take \(j_* := a \). This proves the claim.

Claim 22. For each component \(C \) of \(G[C_{i_*}^\alpha] \) and each component \(D \) of \(G[D_{i_*}^{3-j_*}] \), \((C, D)\) is a pure pair of \(G \).

Proof of Claim 22. Assume not. By symmetry, we may assume that \(C \) has a vertex \(u \) having both a neighbor and a non-neighbor in \(D \), because otherwise we swap \(C \) and \(D \) by reversing the order of \(P \). As \(D \) is connected, there exist \(v, v' \in V(D) \) such that \(uv, vv' \in E(G) \) and \(uv' \notin E(G) \).
Note that \(m_i^+(v) \equiv m_i^+(v') \pmod{2} \) and
\[
\text{for every neighbor } \ell \in N_G(v) \cap U_i^+, \text{ the number } \ell - m_i^+(v) \text{ is even,}
\] (6)
because otherwise for the minimum \(\ell \in N_G(v) \cap U_i^+ \) with odd \(\ell - m_i^+(v) \), a vertex set \(\{v, m_i^+(u), m_i^-(u) + 1, \ldots, \ell, u\} \) induces a strongly \(k \)-good generalized fan with \(v \) as its center, a contradiction by Proposition 17.

If \(m_i^+(v) \leq m_i^+(v') \), then \(\{v, u, m_i^+(u), m_i^-(u) + 1, \ldots, m_i^+(v'), v'\} \) induces a strongly \(k \)-good generalized fan with \(v \) as a center by (6).

If \(m_i^+(v) > m_i^+(v') \), then simply \(\{u, m_i^+(u), m_i^-(u) + 1, \ldots, m_i^+(v'), v', v, u\} \) is an induced cycle whose length is at least \(k \) and is of the same parity with \(k \). Hence Proposition 14 implies a contradiction.

By Claim 22, there exists \(S \in \{C_i^+, D_i^3\} \) such that every component of \(G[S] \) has less than \(\varepsilon n \) vertices. By Claim 21, we can greedily find a set of components of \(G[S] \) covering at least \(\varepsilon n \) vertices and at most \(2\varepsilon n \) vertices. Since \(|S| \geq 3\varepsilon n \), the vertices of \(S \) covered by this set of components with the vertices of \(S \) not covered by this set of components give a pure pair \((A, B) \) with \(|A|, |B| \geq \varepsilon n \), a contradiction. This proves the lemma. \(\square \)

5 Discussions

For a graph \(G \), we write \(\chi(G) \) to denote its chromatic number and \(\omega(G) \) to denote its clique number, that is the maximum size of a clique. A class \(\mathcal{G} \) of graphs is called \(\chi \)-bounded if there exists a function \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) such that for every induced subgraph \(H \) of a graph in \(\mathcal{G} \), \(\chi(H) \leq f(\omega(H)) \). In addition, we say \(\mathcal{G} \) is polynomially \(\chi \)-bounded if \(f \) can be taken as a polynomial.

Every polynomially \(\chi \)-bounded class of graphs has the strong Erdős-Hajnal property, but the converse does not hold; see the survey paper by Scott and Seymour [22]. So it is natural to ask whether the class of graphs with no pivot-minor isomorphic to \(C_k \) is polynomially \(\chi \)-bounded, which is still open. So far Choi, Kwon, and Oum [4] showed that it is \(\chi \)-bounded.

Theorem 23 (Choi, Kwon, and Oum [4, Theorem 4.1]). For each \(k \geq 3 \), the class of graphs with no pivot-minor isomorphic to \(C_k \) is \(\chi \)-bounded.

They showed that \(\chi(G) \leq 2(6k^3 - 26k^2 + 25k - 1)^{\omega(G) - 1} \) holds for graphs \(G \) having no pivot-minor isomorphic to \(C_k \), far from being a polynomial. Theorem 23 is now implied by a recent theorem of Scott and Seymour [21], solving three conjectures of Gyárfás [13] on \(\chi \)-boundedness all at once.

Theorem 24 (Scott and Seymour [21]). For all \(k \geq 0 \) and \(\ell > 0 \), the class of all graphs having no induced cycle of length \(k \) modulo \(\ell \) is \(\chi \)-bounded.

To see why Theorem 24 implies Theorem 23, take \(\ell := 2[k/2] \) and apply Proposition 14. Still the bound obtained from Theorem 24 is far from being a polynomial.

And yet no one was able to answer the following problem of Esperet.
Problem 25 (Esperet; see [15]). Is it true that every \(\chi \)-bounded class of graphs polynomially \(\chi \)-bounded?

Thus it is natural to pose the following conjecture.

Conjecture 26. For every graph \(H \), the class of graphs with no pivot-minor isomorphic to \(H \) is polynomially \(\chi \)-bounded.

It is open whether Conjecture 26 holds when \(H = C_k \). Conjecture 26 implies not only Conjectures 3, 5 but also the following conjecture of Geelen (see [8]) proposed in 2009 at the DIMACS workshop on graph colouring and structure held at Princeton University.

Conjecture 27 (Geelen; see [8]). For every graph \(H \), the class of graphs with no vertex-minor isomorphic to \(H \) is \(\chi \)-bounded.

Of course it is natural to pose the following conjecture, weaker than Conjecture 26 but stronger than Conjecture 27.

Conjecture 28 (Kim, Kwon, Oum, and Sivaraman [16]). For every graph \(H \), the class of graphs with no vertex-minor isomorphic to \(H \) is polynomially \(\chi \)-bounded.

For vertex-minors, more results are known. Kim, Kwon, Oum, and Sivaraman [16] proved that for each \(k \geq 3 \), the class of graphs with no vertex-minor isomorphic to \(C_k \) is polynomially \(\chi \)-bounded. Their theorem is now implied by the following two recent theorems. To describe these theorems, we first have to introduce a few terms. A *circle graph* is the intersection graph of chords in a circle. In particular, \(C_k \) is a circle graph. The *rank-width* of a graph is one of the width parameters of graphs, measuring how easy it is to decompose a graph into a tree-like structure while keeping every cut to have a small ‘rank’. Rank-width was introduced by Oum and Seymour [19]. We will omit the definition of the rank-width.

Theorem 29 (Geelen, Kwon, McCarty, and Wollan [12]). For each circle graph \(H \), there is an integer \(r(H) \) such that every graph with no vertex-minor isomorphic to \(H \) has rank-width at most \(r(H) \).

Theorem 30 (Bonamy and Pilipczuk [3]). For each \(k \), the class of graphs of rank-width at most \(k \) is polynomially \(\chi \)-bounded.

As noted in [6], it is easy to prove directly that the class of graphs of bounded rank-width has the strong Erdős-Hajnal property, without using Theorem 30. See Figure 4 for a diagram showing the containment relations between these properties.

So, one may wonder whether the class of graphs with no pivot-minor isomorphic to \(C_k \) has bounded rank-width. Unfortunately, if \(k \) is odd, then it is not true, because all bipartite graphs have no pivot-minor isomorphic to \(C_k \) for odd \(k \) and yet have unbounded rank-width, see [17]. If \(k \) is even, then it would be true if the following conjecture hold.

Conjecture 31 (Oum [18]). For every bipartite circle graph \(H \), there is an integer \(r(H) \) such that every graph with no pivot-minor isomorphic to \(H \) has rank-width at most \(r(H) \).
Note.

Chudnovsky, Scott, Seymour, and Spirkl [7] proved that for every graph H, the class of graphs G such that neither G nor \overline{G} has any subdivision of H as an induced subgraph has the strong Erdős-Hajnal property. This implies that when k is even, the class of graphs with no induced even hole of length at least k and no induced even anti-hole of length at least k has the strong Erdős-Hajnal property. This is because every subdivision of a large theta graph\(^2\) contains a large even hole. This implies Theorem 4 for even k but not for odd k by Propositions 14 and 15. The authors would like to thank the authors of [7] to share this observation.

Acknowledgement

The authors would like to thank anonymous reviewers for their careful reading and helpful suggestions.

References

\(^2\)A *theta graph* is a graph consisting of three internally disjoint paths of length at least 1 joining two fixed vertices.

