
Connector-Breaker games on random boards

Dennis Clemens
Institut für Mathematik

Technische Universität Hamburg
21073 Hamburg, Germany

dennis.clemens@tuhh.de

Laurin Kirsch
Fachbereich Mathematik

Universität Hamburg
20146 Hamburg, Germany

laurin.kirsch@studium.uni-hamburg.de

Yannick Mogge
Institut für Mathematik

Technische Universität Hamburg
21073 Hamburg, Germany

yannick.mogge@tuhh.de

Submitted: Feb 19, 2020; Accepted: Jan 24, 2021; Published: Jul 2, 2021

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The Maker-Breaker connectivity game on a complete graph Kn or on a random
graph G ∼ Gn,p is well studied by now. Recently, London and Pluhár suggested
a variant in which Maker always needs to choose her edges in such a way that her
graph stays connected. It follows from their results that for this connected version
of the game, the threshold bias on Kn and the threshold probability on G ∼ Gn,p

for winning the game drastically differ from the corresponding values for the usual
Maker-Breaker version, assuming Maker’s bias to be 1. However, they observed
that the threshold biases of both versions played on Kn are still of the same order if
instead Maker is allowed to claim two edges in every round. Naturally, London and
Pluhár then asked whether a similar phenomenon can be observed when a (2 : 2)
game is played on Gn,p. We prove that this is not the case, and determine the
threshold probability for winning this game to be of size n−2/3+o(1).

Mathematics Subject Classifications: 05C57, 05C40, 05C80

1 Introduction

A positional game is a perfect information game played by two players on a board X
equipped with a family of subsets F ⊂ 2X , which represent winning sets. During each
round of such a game both players claim previously unclaimed elements of the board. For
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instance, in the (m : b) Maker-Breaker variant, Maker and Breaker take turns claiming up
to m (as Maker) or up to b (as Breaker) such elements. Maker wins the game by claiming
all elements of a winning set; Breaker wins otherwise. If m = b = 1, the game is called
unbiased. Otherwise, we call the game biased with m and b being the respective biases of
Maker and Breaker.

Note that Maker-Breaker games are bias monotone in the sense that claiming more
elements of the board never hurts the corresponding player. Given (X,F) and having
Maker’s bias m fixed, we thus can find an integer b0, called the threshold bias, such that
Breaker wins the (m, b) Maker-Breaker game if and only if b > b0 holds (except for trivial
games, where Maker can win before Breaker’s first move).

In our paper, we will consider a variant of such Maker-Breaker games played on a graph
G sampled according to the binomial random graph model Gn,p (for short we will write
G ∼ Gn,p), where we fix n vertices and each edge appears with probability p independently
of all other choices. It is well known that for monontone increasing graph properties F
this model always comes with a threshold probability p∗ (see e.g. [5]) such that

P (G ∼ Gn,p satisfies F)→

{
0 if p = o(p∗)

1 if p = ω(p∗).

For some properties F there is even a sharp threshold in the sense that

P (G ∼ Gn,p satisfies F)→

{
0 if p 6 (1 + o(1))p∗

1 if p > (1 + o(1))p∗

holds. One such example will be given in the following paragraph.

Maker-Breaker connectivity game. The Maker-Breaker connectivity game is a
game variant played on the edges of a graph G with F consisting of all spanning trees of
G. Lehman [20] stated that Maker wins the (1 : 1) Maker-Breaker version of this game
as the second player if and only if the graph G contains two edge-disjoint spanning trees.
Since the complete graph Kn can be decomposed into even more spanning trees, a natural
question is to ask what happens when Breaker’s power gets increased by making his bias
larger. Chvátal and Erdős [6] initiated the study of the (1 : b) variant and they could
prove that its threshold bias is bounded from above by (1 + o(1))n/ lnn. A matching
lower bound was later given by Gebauer and Szabó [14].

Now, if in the (m : b) game on Kn Maker and Breaker do not play according to a
deterministic strategy but instead they play purely at random, the final graph consisting
of Maker’s edges will behave similarly to a random graph G ∼ Gn,p with p = m/(m+ b).
It is well known that the (sharp) threshold probability p∗ for G ∼ Gn,p being connected,
i.e. where G ∼ Gn,p turns from almost surely being disconnected to almost surely being
connected, satisfies p∗ = (1 + o(1)) lnn/n (see e.g. [4], [18]). Surprisingly, when m = 1,
the latter corresponds to b = (1 + o(1))n/ lnn and thus perfectly matches the threshold
bias mentioned above. In other words, for most values of b, a randomly played (1 : b)
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Maker-Breaker connectivity game on Kn is very likely to end up with the same winner as
the corresponding deterministically played game. This phenomenon usually is referred to
as probabilistic intuition. There is a wide range of other games fulfilling this property as
well, for example the perfect matching game, the Hamiltonicity game [19] and the doubly
biased (m : b) connectivity game when Maker’s bias satisfies m = o(lnn) [17]. But there
also exist games, where this intuition fails, such as the diameter game [2] and the H-game
[3].

A different approach to give Breaker more power is to play unbiased, but to thin the
board instead. Stojaković and Szabó [23] initiated the study of Maker-Breaker games
played on a random graph G ∼ Gn,p, their main question being to find the threshold
probability p∗ at which an almost sure Breaker’s win turns into an almost sure Maker’s
wins. The existence of such a (not necessarily sharp) threshold is guaranteed by the
fact that the property of Maker having a winning strategy is monotone increasing. Now,
for the connectivity game it is obvious that the threshold probability needs to satisfy
p∗ > (1 + o(1)) lnn/n since for smaller p a random graph G ∼ Gn,p almost surely con-
tains isolated vertices (see e.g. [4], [18]). Stojaković and Szabó could show that indeed
p > (1+o(1)) lnn/n is enough for Maker to win the connectivity game on G ∼ Gn,p almost
surely. Interestingly, this threshold probability asymptotically equals the reciprocal of the
threshold bias for the corresponding Maker-Breaker game on Kn – another phenomenon
which has also been observed for many other natural games (see e.g. [10], [15], [22], [23]).

Connector-Breaker games. Recently, under the name PrimMaker-Breaker games,
London and Pluhár [21] introduced a connected version of the Maker-Breaker games dis-
cussed above. These games, which we will call Connector-Breaker games in the following,
are played in the same way as the already described Maker-Breaker games, with the only
difference that Connector (in the role of Maker) needs to choose her edges in such a
way that the graph consisting of her edges stays connected throughout the game. While
London and Pluhár [21] studied the Connector-Breaker connectivity game on Kn, where
Connector aims for a spanning tree of Kn, even more recently Corsten, Mond, Pokrovskiy,
Spiegel and Szabó [8] discussed the variant in which Connector aims for an odd cycle of
Kn. For the unbiased game, London and Pluhár proved the following:

Theorem 1.1. Playing the (1 : 1) Connector-Breaker game on a graph G with n vertices,
Connector wins as the first player if and only if G contains a copy of Hn, where Hn is
the graph Kn−2,2 with an additional edge inside its two-element color class.

Moreover, one can easily see that for b > 2 the (1 : b) Connector-Breaker connectivity
game is won by Breaker on every graph G [21]. Thus, the threshold bias for such a game
equals 2. Also, if the game is played on G ∼ Gn,p, then, by the theorem above, p needs to
be almost 1 for Connector to have a winning strategy on G almost surely. Note that both
these observations are in huge contrast to the results for the Maker-Breaker analogue.
However, by increasing Maker’s bias by just 1, London and Pluhár [21] showed that the
situation changes suddenly.
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Theorem 1.2. Playing the (2 : b) Connector-Breaker game on Kn, Connector wins if
b < n/(8 lnn), and Breaker wins if b > n/ lnn.

This result shows that increasing Connector’s bias makes a huge difference. In partic-
ular, the threshold bias in the (2 : b) variant is of the same order as in the corresponding
Maker-Breaker game and thus, in contrast to the (1 : b) games, both variants behave
similarly. Naturally, this made London and Pluhár [21] ask whether something similar
could be observed when playing the (2 : 2) game on a graph G ∼ Gn,p and if it might
behave similarly to the (1 : 1) Maker-Breaker version. In this paper we show that the
latter is not the case, and we prove the following result:

Theorem 1.3. The threshold probability p∗ for the (2 : 2) Connector-Breaker connectivity
game on G ∼ Gn,p is of size n−2/3+o(1).

Hence, even if Connector’s bias gets increased, a much denser random graph is neces-
sary for Connector to have a chance at winning almost surely the connectivity game than
in the respective Maker-Breaker variant of this game.

Let us briefly give an intuition why the threshold probability p∗ is of the above size.
Assume Connector aims to reach a vertex x from another vertex r. It will turn out that
she can do so if we can find the following good structure: a full binary tree with root r
and k levels, the leaves of which are adjacent to x. As k tends to infinity, the density of
this structure tends to 3

2
. Hence, we can expect many such structures to appear in Gn,p

helping Connector to win the game when p becomes larger than n−
2
3 , while for smaller p

the lack of such and similar structures helps Breaker to win. More details will be given
later in the strategy discussions.

x

r

Figure 1.1: Good structure for k = 4

Since the proof of our theorem is rather technical and the proofs of the upper and
lower bound require different techniques, we split the theorem into two parts.

Theorem 1.4. Let ε > 0 be a constant. For p 6 n−2/3−ε a random graph G ∼ Gn,p

a.a.s. has the following property: Playing a (2 : 2) Connector-Breaker game on the edge
set of G, Breaker has a strategy to keep a vertex isolated in Connector’s graph.

Theorem 1.5. Let ε > 0 be a constant. For p > n−2/3+ε a random graph G ∼ Gn,p

a.a.s. has the following property: Playing a (2 : 2) Connector-Breaker game on the edge
set of G, Connector has a strategy to claim a spanning tree.
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1.1 Organization of the paper

The main focus of this paper is proving Theorem 1.4 and Theorem 1.5. In Section 2
we will give an overview over all required tools. In the Sections 3 and 4 we will describe
Breaker’s and Connector’s strategy, respectively. We will also state some lemmas, from
which it will follow that the given strategies succeed almost surely for the respective
ranges of the edge probability p. We postpone the proofs of these lemmas to Section 5
(for Breaker’s strategy) and Section 6 (for Connector’s strategy). Finally, we will give
some concluding remarks in Section 7.

1.2 Notation and terminology

The game-theoretic and graph-theoretic notation in our paper is rather standard and
most of the times it follows the notation of [16] and [24].

For a positive integer n, we set [n] := {k ∈ N : 1 6 k 6 n}. For a graph G = (V,E) we
write V (G) and E(G) for the vertex set and the edge set of G, respectively. If {v, w} is an
edge from E(G), we denote it with vw for short. A vertex w is called a neighbour of v in G
if vw ∈ E(G) holds. The neighbourhood of v in G is NG(v) = {w ∈ V (G) : vw ∈ E}, and
with dG(v) = |NG(v)| we denote the degree of v in G. Let subsets A,B ⊂ V (G) be given.
We let NG(v, A) = NG(v) ∩ A be the neighbourhood of v in A, and we set dG(v, A) =
|NG(v,A)| to be the degree of v into A. Moreover, we let NG(A) :=

⋃
v∈ANG(v), eG(A) :=

{vw ∈ E(G) : v, w ∈ A} and eG(A,B) := {vw ∈ E(G) : v ∈ A,w ∈ B}.
Let two graphsH andG be given. If V (H) ⊂ V (G) and E(H) ⊂ E(G) holds, we callH

a subgraph of G, and we write H ⊂ G for short. We also let G\H = (V (G), E(G)\E(H))
in this case. If there is a bijection f : V (H) → V (G) such that vw ∈ E(H) holds if and
only if f(v)f(w) ∈ E(G) holds, the two graphs H and G are called isomorphic (denoted
by H ∼= G), and we also say that H is a copy of G in this case.

A path P with V (P ) = {v1, v2, . . . , vk} and E(P ) = {vivi+1 : 1 6 i 6 k − 1} will be
represented by its sequence of vertices, e.g. P = (v1, v2, . . . , vk). Its length is its number
of edges.

Assume that some Connector-Breaker game, played on the edge set of some graph
G, is in progress. At any moment during the game, let C be the graph consisting of
Connector’s edges and let B be the graph consisting of Breaker’s edges. For short, also
set VC = V (C), EC = E(C) and EB = E(B). If an edge belongs to B ∪ C, we call it
claimed; otherwise it is called free.

Given a distribution D and a random variable X, we write X ∼ D for X being sampled
according to the distribution D. We denote by Bin(n, p) the binomial distribution with
parameters n and p. Moreover, with Gn,p we denote the Erdős-Renyi random graph model
on n vertices and with edge probability p. If X is a random variable, we let E(X) denote
its expectation. If E is an event, we let P(E) denote its probability. A sequence of events
En is said to hold asymptotically almost surely (a.a.s.) if P(En)→ 1 for n→∞.

Our main results are asymptotic. Whenever necessary, we will assume n to be large
enough. We will not optimize constants, and whenever these are not crucial, we will omit
rounding signs.
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2 Preliminaries

2.1 Maker-Breaker Box game

A simple, yet very useful positional game is the following one, introduced by Chvátal
and Erdős [6], which usually is helpful to describe strategies that aim to bound the
degrees in the opponent’s graph. The game Box(p, 1; a1, . . . , an) is played on a hypergraph
(X,H), with H = {F1, . . . , Fn} consisting of n pairwise disjoint hyperedges (called boxes),
satisfying |Fi| = ai for every i ∈ [n]. In every round, BoxMaker claims at most p elements
from X that have not been claimed before, while BoxBreaker solely claims one such
element. If, throughout the game, BoxMaker succeeds in claiming all the elements of a
box Fi, she is declared the winner of the game. Otherwise, i.e. when BoxBreaker succeeds
in claiming at least one element in each box, BoxBreaker wins. The following lemma is
a well-known criterion for BoxBreaker to have a winning strategy in the Box game (see
e.g. [6], [16]).

Lemma 1. Let ai = m for every i ∈ [n] and assume that m > p(lnn+1), then BoxBreaker
wins the game Box(p, 1; a1, . . . , an). A winning strategy S is the following one: in every
round, BoxBreaker claims an element which belongs to a box that he does not have an
element from and which, among all such boxes, contains the largest number of Maker’s
elements.

In fact, the first sentence in the above lemma is Theorem 3.4.1 in [16], while the
mentioned strategy is contained in its proof. As an immediate corollary of the above
lemma we obtain the following:

Corollary 2.1. Let BoxMaker and BoxBreaker play the game Box(p, 1; a1, . . . , an) with
boxes Fi of size |Fi| = ai > m. Then following the strategy S from Lemma 1, BoxBreaker
can guarantee that the following holds for every i ∈ [n] throughout the game: as long as
he does not claim an element in Fi, the number of BoxMaker’s elements in Fi is bounded
by p(lnn+ 1).

2.2 Probabilistic tools and basic properties of Gn,p

In this section we present a few bounds on large deviations of random variables that will
be used to identify typical edge distributions in a random graph G ∼ Gn,p. Most of the
time, we will use the following inequalities due to Chernoff (see e.g. [1], [18]).

Lemma 2. If X ∼ Bin(n, p), then

• P(X < (1− δ)np) < exp
(
− δ2np

2

)
for every δ > 0, and

• P(X > (1 + δ)np) < exp
(
−np

3

)
for every δ > 1.

Lemma 3. Let X ∼ Bin(n, p) with expectation µ = E(X), and let k > 7µ, then

P(X > k) 6 e−k.
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Moreover, we will make use of the well-known Markov inequality (see e.g. [18]).

Lemma 4. Let X > 0 be a random variable. For every t > 0 it holds that

P (X > t) 6
E(X)

t
.

As a first application of Chernoff’s inequalities we will prove a few simple bounds on
degrees that are very likely to hold in a random graph G ∼ Gn,p.

Lemma 5. Let ε > 0, p = n−2/3−ε and let G ∼ Gn,p. Then with probability at least
1− exp(−n1/3−2ε) every vertex v ∈ V (G) satisfies

dG(v) < 2n
1
3
−ε. (2.1)

Proof. For v ∈ V (G) we have dG(v) ∼ Bin(n − 1, p) with E(dG(v)) = (n − 1)p ∼ np.
Applying Lemma 2 we deduce that P (dG(v) > 2np) 6 exp

(
−1

4
n1/3−ε) . Taking a union

bound over all possible vertices v, the claim follows.

Lemma 6. Let ε > 0, p = n−2/3+ε and let G ∼ Gn,p. Let A ⊂ V (G) be of size n2/3, then
with probability at least 1−exp(−nε/2) every vertex v ∈ V (G)\A satisfies dG(v,A) > nε/2.

Proof. Let A be a fixed set of size n2/3. Generating G ∼ Gn,p yields that for every vertex
v ∈ V (G)\A, we have dG(v, A) ∼ Bin(|A|, p) and thus E(dG(v,A)) = nε. By Lemma 2 we
deduce that P

(
dG(v, A) 6 1

2
nε
)
< exp

(
−1

8
nε
)
. Taking a union bound over all possible v,

the claim follows.

3 Breaker’s strategy

3.1 Defining bad vertices

For p = n−2/3−ε we aim to give a Breaker’s strategy that a.a.s. isolates a given vertex x
from Connector’s graph when a (2 : 2) game is played on G ∼ Gn,p. In order to do so, we
first define iteratively a set Bx of vertices that are bad with respect to the aim of isolating
x. If x is carefully chosen (which we will manage later) then Breaker has a strategy to
make sure that Maker in her move either does not even reach Bx, or in case she reaches
Bx then Breaker can immediately destroy all potential threads. More details will be given
later.

The following Algorithm 1 describes how Bx is constructed. We provide this pseu-
docode (instead of an iterative definition) in order to emphasise better in which order the
edges of Gn,p will be exposed when we prove the properties (B 1)–(B 4) of Theorem 7.
This will be important to make sure that each step in our proof is independent of previous
discussions.

The following lemma will be crucial for Breaker’s strategy.
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Algorithm 1: Bad vertex set Bx for given vertex x

Input : graph G and vertex x ∈ V (G)
Output: number of iterations rx, bad vertex set Bx =

⋃
k6rx

Bx
k

Bx
1 := NG(x);

Bx := Bx
1 ;

for i > 2 do
Bx
i := {v /∈ Bx ∪ {x} : dG(v,Bx) > 2} ;

Bx ← Bx ∪Bx
i

if Bx
i = ∅

then halt with output Bx
1 , . . . , B

x
i−1, B

x and rx = i− 1;

end

Lemma 7. Let n be a large enough integer and let ε > 7 ln lnn/ lnn. For p = n−2/3−ε

generate G ∼ Gn,p. Then a.a.s. G satisfies the following property: For every set M ⊂
V (G) of size 3, there exists a vertex x such that Algorithm 1 produces a set Bx of vertices
and a sequence (Bx

1 , . . . , B
x
rx) of disjoint subsets of Bx such that the following holds:

(B 1) Bx
1 = NG(x) and eG(Bx

1 ) = 0,

(B 2) for every 2 6 i 6 rx and every vertex in v ∈ Bx
i we have dG

(
v,
⋃
k6iB

x
k

)
= 2,

(B 3) for every vertex v ∈ V \ (Bx ∪ {x}) it holds that dG(v,Bx) 6 1,

(B 4) Bx ∩ (M ∪NG(M)) = ∅.

We postpone the proof of the above lemma to Section 5 and recommend to read
Breaker’s strategy first.

3.2 The strategy

In the following we prove Theorem 1.4. Let Connector and Breaker play a (2 : 2) game
on G ∼ Gn,p. We will show that, under the condition that the property described in
Lemma 7 holds, Breaker has a strategy that isolates a vertex from Connector’s graph.
Let V r

C denote the set of vertices that are covered by Connector’s edges at the end of round
r. Immediately after Connector’s first move, we have |V 1

C | = 3 and thus, by the property
from Lemma 7 (applied with M = V 1

C), we find a vertex x such that Algorithm 1 produces
a set Bx of vertices and a sequence (Bx

1 , . . . , B
x
rx) of disjoint subsets of Bx such that the

Properties (B 1)–(B 4) hold with M = V 1
C . Notice that, at this point x /∈ V 1

C ∪ NG(V 1
C)

holds, according to (B 4) and since NG(x) ⊂ Bx.
In order to simplify notation, let Bx

0 := {x} and set Bx
<i :=

⋃i−1
`=0B

x
` as well as

Bx
6i :=

⋃i
`=0B

x
` . Breaker’s strategy is to make sure that for each round r, immediately

after his move the following property holds for every free edge vw:
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(Q 1) If there exists 0 6 i 6 rx such that v ∈ (NG(V r
C) \ V r

C) ∩ Bx
i and

w ∈ V r
C , then w ∈ Bx

<i.

Let us observe first that Breaker keeps x isolated in Connector’s graph, if he is indeed
able to maintain (Q 1) for every free edge after each of his moves. Assume this is not the
case, i.e. there is some round r in which Connector reaches vertex x. Then immediately
after Breaker’s (r − 1)st move, we have that (Q 1) holds for every free edge and still x /∈
V r−1
C . From this it follows that immediately before Connector’s rth move there cannot be a

free edge xw with w ∈ V r−1
C . Indeed, otherwise we would need x ∈ (NG(V r−1

C )\V r−1
C )∩Bx

0

and by (Q 1) we would get w ∈ Bx
<0 = ∅, a contradiction. Thus, in order to reach x during

round r, Connector would need do claim a path (w, v, x) of length 2, starting with some
vertex w ∈ V r−1

C and ending in x. It then follows that v ∈ (NG(V r−1
C ) \ V r−1

C ) ∩ Bx
1 .

However, using (Q 1) for the free edge wv at the end of round r − 1, this would give
w ∈ Bx

<1 = Bx
0 and thus x = w, a contradiction.

Hence, we know that Connector cannot reach x as long as Breaker restores (Q 1) for
every free edge. It thus remains to verify that Breaker can indeed do so. We proceed by
induction.

For round 1, observe that immediately after Connector’s first move, there is no edge
between V 1

C and Bx ∪ {x}, according to Property (B 4) (with M = V 1
C). Thus, Prop-

erty (Q 1) holds at the end of round 1 for every free edge, independent of what Breaker’s
first move is, as there does not exist any edge vw as described in that property.
Let us assume then, that (Q 1) is satisfied immediately after Breaker’s (r − 1)st move for
every free edge, and let us explain how Breaker restores (Q 1) in the next round. Without
loss of generality we may assume that in round r Connector reaches exactly two new
vertices, say w1 and w2, i.e. V r

C = V r−1
C ∪ {w1, w2}.

If after Connector’s rth move, there exist at most two free edges that fail to satisfy
Property (Q 1) (with VC = V r

C), then Breaker claims these edges and by this easily restores
that (Q 1) holds for every free edge at the end of round r. So, assume for a contradiction
that immediately after Connector’s rth move there are at least three free edges that do
not satisfy (Q 1). All of these edges need to be incident to w1 or w2, as before Connector’s
move the Property (Q 1) was true for every free edge (where VC = V r−1

C ). Without loss of
generality let w2 be incident to at least two of these edges, say w2v1 and w2v2. As these
edges fail to hold (Q 1) after Connector’s rth move, we have v1 ∈ (NG(V r

C) \ V r
C) ∩ Bx

i1

and v2 ∈ (NG(V r
C) \ V r

C) ∩ Bx
i2

for some 0 6 i1, i2 6 rx, while w2 ∈ V r
C and w2 /∈ Bx

<i with
i := max{i1, i2}. Now, since w2 has two neighbours in Bx∪{x}, Algorithm 1 at some point
must have added w2 to Bx. Thus, we conclude that w2 ∈ Bx

k for some k > max{i1, i2}.
Consider first the case that in round r Connector reaches w2 by claiming a free edge

yw2 with y ∈ V r−1
C . Then y /∈ {v1, v2}. Moreover, w2 ∈ NG(V r−1

C ) \ V r−1
C and, since (Q 1)

was true for yw2 at the end of round r − 1 (with VC = V r−1
C ), we conclude y ∈ Bx

<k.
But this means that w2 ∈ Bx

k has three neighbours in Bx
6k (namely v1, v2 and y), a

contradiction to (B 2).
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Consider then the case that in round r Connector does not reach w2 as in the first
case. That is, in round r Connector claims a path (y, w1, w2) with y ∈ V r−1

C and w1 ∈
NG(V r−1

C ) \V r−1
C . We know that w2 ∈ Bk has exactly two neighbours in Bx

6k according to
Property (B 2), and these neighbours need to be v1 and v2. It follows that the third edge,
which does not satisfy (Q 1) immediately before Breaker’s rth move, cannot be incident
to w2 and thus needs to be of the form v3w1 with v3 ∈ (NG(V r

C) \ V r
C) ∩ Bx

i3
for some

0 6 i3 6 rx. Then v3, w2 ∈ Bx are two neighbours of w1 and hence Algorithm 1 must
have added w1 to Bx at some point, say w1 ∈ Bx

t . Since again w2 ∈ Bx
k has exactly two

neighbours in Bx
6k and these are v1 and v2, we must have w1 /∈ Bx

6k, i.e. t > k. But now,
by induction, Property (Q 1) was true for the free edge yw1 at the end of round r − 1,
and thus y ∈ Bx

<t. Moreover, as we assumed v3w1 to be an edge not satisfying (Q 1) after
Connector’s rth move, we have w1 /∈ Bx

<i3
and thus i3 6 t. Hence, we obtain that the

three neighbours w2, v3, y of w1 ∈ Bx
t belong to Bx

6t, as we have w2 ∈ Bx
k ⊂ Bx

6t and
v3 ∈ Bx

i3
⊂ Bx

6t and y ∈ Bx
<t. This again leads to a contradiction with (B 2). �

4 Connector’s strategy

4.1 Defining good structures

For p = n−2/3+ε we aim to give a Connector’s strategy with which Connector a.a.s. can
reach every vertex of G ∼ Gn,p. In order to do so, we will first describe a few useful
structures, that are typically contained in G even after deleting a few edges and which
will help Connector later on to reach any fixed vertex within a small number of rounds.

Recall that EB denotes the set of Breaker’s edges at any moment during a Connector-
Breaker game, while VC denotes the set of vertices incident to Connector’s edges. More-
over, denote by Tk the full binary tree with k levels.

Definition 4.1. Let k ∈ N. Assume a (2 : 2) Connector-Breaker game on some graph
H is in progress. Let x ∈ V (H) \ VC . Then we call a subgraph T ∼= Tk of H good with
respect to (x,H) if the following conditions hold:

(1) x /∈ V (T ),

(2) if
−→
T is the orientation where the edges are oriented from the root to the leaves, then

for every arc −→uw ∈ E(
−→
T ) we have either uw /∈ EB or (uw ∈ EB and w ∈ VC).

(3) for every leaf v of T we have vx ∈ E(H) \ EB.

Lemma 8 (Base strategy). Assume a (2 : 2) Connector-Breaker game on some graph H
is in progress with Connector being the next player to make a move. Let x ∈ V (H) \ VC
and let k > 2 be any integer. Moreover, assume that H contains a binary tree T ∼= Tk
which is good with respect to (x,H) and such that its root r belongs to VC already. Then
Connector has a strategy Sx to reach x (i.e. to add x to VC) within at most k rounds.
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Proof. We prove the statement by induction on k. For k = 2, by assumption we are given
a tree T ∼= T2 the leaves of which are adjacent with x in H \B, according to Definition 4.1.
If one of the leaves belongs to VC , then Connector can take the edge between that leaf
and x. Otherwise, according to (2) we obtain E(T ) ∩ EB = ∅. Then, since the root r of
T belongs to VC by assumption, Connector can claim one edge between r and a leaf of
T , and for her second edge she can claim the edge between that leaf and x. Thus, she
reaches x within 1 round.

Let k > 2 then. Let T ∼= Tk be a tree as described in the assumption of the lemma.
Denote the root of T with r, let r1 and r2 be the neighbours of r in T , and let r1,1, r1,2
and r2,1, r2,2 be the respective children of r1 and r2 in T . Each of the vertices ri,j is the
root of a subtree Ti,j ∼= Tk−2 the leaves of which are adjacent with x in H \B. Let

Ei,j := {riri,j} ∪ E(Ti,j) ∪ {xw : w is a leaf of Ti,j}

for every 1 6 i, j 6 2, and observe that the four sets Ei,j are pairwise disjoint. For the
first round, Connector makes sure that r1 and r2 are added to VC if they do not belong
to VC already. This is possible since for every i ∈ [2] we have that ri ∈ VC already before
that round or rir /∈ EB according to (2) in Definition 4.1. After Breaker’s following move
we know that there are at least two sets Ei,j with 1 6 i, j,6 2 that Breaker did not touch
in his move. Taking the union of two such sets, say Ei1,j1 and Ei2,j2 , while identifying r1
with r2 if i1 6= i2, we obtain a binary tree T ′ ∼= Tk−1 which is good with respect to (x,H ′)
where E(H ′) = Ei1,j1 ∪Ei2,j2 . Thus, by induction Connector needs at most k − 1 further
rounds for reaching x.

Connector’s main strategy will be split into different stages. Depending on the number
of rounds played so far, she will use similar but different structures that help to increase
VC until every vertex is reached. These structures are given by the following lemmas while
the proofs of the lemmas will be given in Section 6.

Lemma 9 (Good structures for Stage I). For every constant δ > 0 there exists an integer
k1 ∈ N such that the following holds. Let G ∼ Gn,p with p = n−2/3+δ, then with probability
at least 1− n−1 the following is true for every r, x ∈ V (G):
Let B be any subgraph of G with e(B) 6 n1/3 lnn, then the graph G \ B contains a copy
T of Tk1 such that r is the root of T , x /∈ V (T ) and every leaf of T is adjacent to x in
G \B.

Lemma 10 (Good structures for Stage II). For every constant δ > 0 there exists an
integer k2 ∈ N such that the following holds. Let G ∼ Gn,p with p = n−2/3+δ, and let
A ⊂ V (G) be of size n1/3, then with probability at least 1 − n−1 the following is true for
every x ∈ V \ A:

Let M be any subset of V \ {x}, let B be any subgraph of G with dB(v) 6 ln2 n for
every v ∈ V \M and such that e(B) 6 n2/3 lnn, then G contains a vertex z ∈ NG\B(A)
and four vertex disjoint copies T` of Tk2 with roots r` such that for every ` ∈ [4] we have:

(S 1) x /∈ V (T`),
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(S 2) zr` ∈ E(G \B),

(S 3) if
−→
T` is the orientation where the edges are oriented from the root to the leaves,

then for every arc −→uw ∈ E(
−→
T`) we have either uw /∈ E(B) or (uw ∈ E(B) and

w ∈M),

(S 4) for every leaf v of T` we have vx ∈ E(G \B).

z

A

T1 T2 T3 T4

x

r1 r2 r3 r4

Figure 4.1: Structure for Stage II

We postpone the proofs of the above lemmas to Section 6 and recommend to read
Connector’s strategy first.

4.2 The strategy

In the following we prove Theorem 1.5. Let ε > 0 be given, and let k1 and k2 be
integers promised by Lemma 9 and Lemma 10 (applied with δ = ε), respectively. Set
k := max{k1, k2} + 2. Before revealing G ∼ Gn,p on the vertex set V = [n], we fix an
arbitrary set A1 ⊂ [n] of size n1/3 and an arbitrary set A2 ⊂ [n] of size n2/3. Then,
with probability tending to 1, all the properties from Lemma 9, Lemma 10 (applied for
A = A1) and Lemma 6 (applied for A = A2) hold. From now on, let us condition on
these. Let Connector and Breaker play a (2 : 2) game on G. In the following we will first
describe a strategy for Connector, and afterwards we will show that indeed it constitutes a
winning strategy for the connectivity game on G, when we assume all the properties that
we conditioned on above to hold. The strategy will be described through the following two
stages between which Connector alternates. If at any moment Connector cannot follow
the strategy while V 6= VC still holds, then she forfeits the game. (We will show later that
this does not happen).

Strategy description: Fix a vertex r ∈ V to be Connector’s start vertex, and set
VC = {r} before the game starts. As long as V 6= VC holds, Connector plays as follows,
starting with Stage I for her very first move.
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Stage I: Let x ∈ V \ VC be an arbitrary vertex, where we first prefer the vertices
of A1, secondly prefer the vertices of A2 and only afterwards consider all the re-
maining vertices. Connector then adds the vertex x to VC within at most k rounds.
The details of how she can do this can be found later in the strategy discussion.
Immediately afterwards, if still V 6= VC holds, Connector proceeds with Stage II.

Stage II: Let x ∈ V \ VC be an arbitrary vertex maximizing dB(x) among all
vertices in V \VC . Connector then adds the vertex x to VC within at most k rounds.
The details of how she can do this can be found later in the strategy discussion.
Immediately afterwards, if still V 6= VC holds, Connector proceeds with Stage I.

Strategy discussion: If Connector can follow the strategy, without forfeiting the
game, until V = VC holds, then it is obvious that she succeeds in occupying a spanning
tree and thus wins the game. It thus remains to prove that Connector always can follow
the proposed strategy. In order to so, we start with two simple observations.

Observation 4.2. For as long as Connector can follow the proposed strategy, it holds
that dB(v) < ln2 n for every v ∈ V \ VC.

Proof. While the Connector-Breaker game on G is going on, let us consider the Box
game Box(8k, 1;n − 1, . . . , n − 1) where for every vertex i ∈ V (G) there is a box Fi of
size n − 1. In this auxiliary game, let Breaker take over the role of BoxMaker and let
Connector be BoxBreaker in the following way. Whenever Breaker claims some edge uw in
the game on G, let BoxMaker claim one element in each of the boxes Fu and Fw. Observe
that this way, the number of BoxMaker’s elements in any box Fv will be equal to dB(v).
Furthermore, whenever in Stage II Connector fixes some vertex x of largest degree dB(x)
(in order to add this vertex to VC within the following k rounds), let BoxBreaker claim
an element in the box Fx. Observe that everything is within the rules then, as the latter
always repeats within at most 2k rounds in which BoxMaker may get up to 2k · 4 = 8k
new elements over all the boxes.

Now, Corollary 2.1 ensures that whenever a vertex x ∈ V \ VC is selected for Stage II,
right at this moment we have

dB(x) = |Fx| < 8k(lnn+ 1).

Since such a vertex x is always chosen to have maximal Breaker degree among all vertices
in V \ VC and since such a choice always repeats within at most 2k rounds, we obtain

dB(v) < 8k(lnn+ 1) + 2k · 2 < ln2 n

whenever v ∈ V \ VC . This proves the observation. �

Observation 4.3. As long as Connector can follow the proposed strategy the following
holds:

(i) If A1 6⊂ VC, then e(B) < n1/3 lnn.

(ii) If A2 6⊂ VC, then e(B) < n2/3 lnn.
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Proof. Stage I always repeats after at most 2k rounds. Since for Stage I Connector
prefers the vertices of A1 to be added to VC , it takes her at most 2k|A1| rounds until
A1 ⊂ VC holds, if she is able to follow the strategy. Thus, as long as A1 6⊂ VC holds,
Breaker cannot have more than 2k|A1| · 2 < n1/3 lnn edges. This proves statement (i).
Statement (ii) can be proven analogously. �

Now, using the Observations 4.2 and 4.3 as well as the properties from Lemma 9, 10
and 6, we finally will show that Connector can always follow the proposed strategy. That
is, assuming that so far Connector could follow her strategy, we will show that when she
fixes her next vertex x according to Stage I or Stage II, she can really add this vertex to
VC within at most k rounds. In order to do so, we will consider three cases.

Case 1 (A1 6⊂ VC): In this case we have e(B) 6 n1/3 lnn according to Observa-
tion 4.3. Thus, by the property from Lemma 9 we can find a copy T of Tk1 in G \B such
that r is the root of T , such that x /∈ V (T ) and such that every leaf of T is adjacent to
x in G \ B. In particular, T is good with respect to (x,G \ B). Thus, following the base
strategy Sx from Lemma 8, Connector can reach x within k1 6 k rounds.

Case 2 (A1 ⊂ VC and A2 6⊂ VC): In this case we have e(B) 6 n2/3 lnn according
to Observation 4.3, and dB(v) < ln2 n for every v ∈ V \ VC ⊂ V \ A1 according to
Observation 4.2. Applying the property from Lemma 10 (with M = VC and A = A1)
we can find a vertex z ∈ NG\B(A1) and four vertex disjoint copies T` of Tk2 with roots
r` such that for every ` ∈ [4] we have that zr` ∈ E(G \ B) and T` is good with respect
to (x,G \ B). In the first round, Connector claims an edge between A1 and z which is
possible as A1 ⊂ VC and z ∈ NG\B(A1). Afterwards, consider the pairwise disjoint sets

E` := {zr`} ∪ E(T`) ∪ {xw : w is a leaf of T`}

for ` ∈ [4]. As in the meantime Breaker claims only two edges, there will be at least two
of these sets that Breaker does not touch until Connector’s next move. Without loss of
generality let these be the sets E1 and E2. Then the union {zr1, zr2} ∪ E(T1) ∪ E(T2)
induces a copy of Tk2+1, which is good with respect to (x,G \ B). Therefore, following
the base strategy Sx from Lemma 8, Connector can reach x within at most k2 + 1 further
rounds. Hence, in total, Connector needs at most k2 + 2 6 k rounds in this case.

Case 3 (A1 ∪ A2 ⊂ VC and VC 6= V ): According to Observation 4.2, we have
dB(x) < ln2 n before Connector wants to add x to VC . Following the property from
Lemma 6 (with A = A2) we then conclude that dG(x,A2) > nε/2 > dB(x). Therefore,
since A2 ⊂ VC , Connector immediately can claim an edge leading to x. �

5 Analysis of Algorithm 1

The aim of this section is to prove Lemma 7. For that reason we will prove a slightly
more general lemma, Lemma 11, from which Lemma 7 will follow. For Lemma 11 we are
going to apply Algorithm 1 to a set A = {x1, . . . , xt} of vertices, later choosing one of
them carefully to obtain a vertex x as promised by Lemma 7. That is, we first fix x1 and
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apply Algorithm 1 in order to determine the set Bx1 , then we repeat the algorithm for x2
and so on. Amongst other properties we will obtain that it is very likely that all the sets
Bxj are pairwise disjoint and satisfy certain degree conditions. To simplify notation we
set

B(j,i) :=
⋃
`<j

Bx` ∪
⋃
k6i

B
xj
k . (5.1)

Bx1
1

Bx1
2

Bx1
3

Bx1
rx1

Bx1
1

Bx1
2

Bx1
3

x2

Bx1
rx1

B
xj

1

B
xj

2

B
xj

3

xj

Bx1
1

Bx1
2

Bx1
3

x1

Bx1
rx1

Bx2
1

Bx2
2

Bx2
3

Bx2
rx2

B
xj

i

Bx1 Bx2

...
...

...

Figure 5.1: Structure of B(j,i)

That is, B(j,i) is the set of all bad vertices that are determined immediately after B
xj
i

is created. In particular, B(t,rxt ) =
⋃
x∈AB

x is the union of all bad vertices after the
algorithm is proceeded for all vertices xj. Moreover, we let

a(j, i) :=

{
(j, i− 1), i 6= 1

(j − 1, rxj−1
) , i = 1

denote the pair coming immediately before (j, i) in lexicographic order, for (j, i) 6=
(1, 1).

Lemma 11 (Technical Lemma). Let n be a large enough integer, let ε > 7 ln lnn/ lnn
and let t ∈ N be any constant. For p = n−2/3−ε generate a random graph G ∼ Gn,p. Then
with probability at least 1−n−ε/4 there exists a set A = {x1, . . . , xt} ⊂ V (G) of size t, such
that successively applying Algorithm 1 for x1, . . . , xt the following holds for every j ∈ [t]
and i 6 r̃j := min{rxj , d1/εe}:

(P 1) xj /∈ Ba(j,1) ∪NG(Ba(j,1)),

(P 2) |Bxj
i | < n(1−iε)/3,

(P 3) e(B
xj
i ) = 0,
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(P 4) B
xj
i ∩

(
NG(Ba(j,1)) ∪Ba(j,1)

)
= ∅,

(P 5) if we define N s
(j,i) :=

{
v ∈ V \B(j,i) : dG

(
v,B(j,i)

)
> s
}

then

|N s
(j,i)| 6

(
2jε−1 + i

)
n

3−s(1+ε)
3 for every s ∈ {0, 1, 2, 3},

and for every k ∈ [t] we have

(P 6) rxk = r̃k.

Before proving Lemma 11, let us first show how it implies Lemma 7.

Proof of Lemma 7. Apply Lemma 11 with t = 7. Then a.a.s. we can find a set A =
{x1, . . . , xt} as promised by this lemma. Now, fix any set M ⊂ V (G) of size 3. Since
|A| = 7, it will be enough to verify the following two statements.

(i) Every vertex x ∈ A satisfies (B 1)–(B 3).

(ii) At most six vertices x ∈ A do not satisfy (B 4).

For (i), consider any xj ∈ A. Property (B 1) follows immediately by the definition
of B

xj
1 and Property (P 3). Moreover, Property (B 3) follows immediately from the halt

condition of Algorithm 1. To see Property (B 2), let v ∈ B
xj
i . By the algorithm, v is

added to B
xj
i if dG

(
v,
⋃
k<iB

xj
k

)
> 2. Moreover, we have v ∈ V \ Ba(j,i), because of

Property (P 4) and since B
xj
i ∩

(⋃
k<iB

xj
i

)
= ∅ according to the algorithm. Now, using

the Properties (P 5) and (P 6), and provided n is large enough, we deduce |N3
a(j,i)| < n−ε/2

and thus v /∈ N3
a(j,i) = ∅. This yields dG

(
v,
⋃
k<iB

xj
k

)
6 dG

(
v,Ba(j,i)

)
6 2. Finally,

using that eG(B
xj
i ) = 0 according to Property (P 3), we deduce dG

(
v,
⋃
k6iB

xj
k

)
= 2,

proving (B 2).
Let us prove (ii) then. For any k < j, we have Bxk ⊂ Ba(j,1) by Definition (5.1) and

since Bxk =
⋃
i6rxk

Bxk
i by Algorithm 1. Thus, using Property (P 4) we conclude that

Bxj and Bxk are disjoint. Moreover, since Bxk ⊂ Ba(j,i) we also obtain that NG(Bxk) ⊂
NG(Ba(j,i)). Thus, using Property (P 4) again, we get that G does not have any edges
between Bxj and Bxk . As a consequence we have that every vertex v which is adjacent
to but not contained in Bxj for some j ∈ [7] needs to be element of V \B(t,rxt ). However,
according to Property (P 5) and since rxj 6 d1/εe holds by Property (P 6), we obtain

N3
(t,rxt )

= ∅ for large enough n. This implies that every vertex of V \ B(t,rxt ) is adjacent

to at most two of the sets Bxj with j ∈ [7].
We conclude that at most 3 of the pairwise disjoint sets Bxj may contain a vertex of

M . If a vertex v ∈ M belongs to some set Bxj with j ∈ [7], then v /∈ Bxk ∪ NG(Bxk)
for every k 6= j. If otherwise a vertex v ∈ M belongs to V \ B(t,rxt ), then it is adjacent
to at most two of the sets Bxj . Hence, there are at most six vertices x ∈ A such that
M ∩ (Bx ∪NG(Bx)) 6= ∅. This proves statement (ii).
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Proof of Lemma 11. For the proof of Lemma 11 we expose the edges of G ∼ Gn,p step
by step with respect to the given algorithm, and only during the process we choose the
vertices of A randomly. To be more precise, we proceed as follows: We first choose
x1 uniformly at random from V (G) = [n] and then apply Algorithm 1 for x1. Once,
Algorithm 1 has been applied for xj−1 and afterwards Bxj−1 is determined, we choose
xj uniformly at random from [n] and apply Algorithm 1 for xj. While doing this, we
always expose only those edges which have not been exposed yet and which are needed to
determine the next set B

xj
i in the algorithm. For example: When applying the algorithm

for x1, we first expose only the edges incident to x1 so that we are able to determine Bx1
1 .

Once this set is fixed, we expose all edges incident to Bx1
1 that have not been exposed yet,

so that we can find Bx1
2 . We then expose all edges incident to Bx1

2 that have not been
exposed yet, and so on.

For the analysis of the algorithm, we consider the pairs (j, i), with j ∈ [t] and i ∈ [r̃j],
in lexicographic order. We consider the following event:

E(j,i): for all pairs until and including (j, i) the Properties (P 1)–(P 5) hold,
and the Property (P 6) is true for all k < j.

We will show that
P
(
E(j,i)

∣∣Ea(j,i)) < 5n−ε/3 (5.2)

for every pair E(j,i), where Ea(1,1) is the event which is always true. Before going into
detail, let us first prove that Lemma 11 follows, once (5.2) is proven.

Claim 5.1. If (5.2) holds, then P
(
E(t,rxt )

and rxt = r̃t
)
> 1− n−ε/4.

Proof. Observe first that for every j ∈ [t] the events E(j,rxj )
and E(j,r̃j) are equivalent.

Indeed, by definition E(j,rxj )
implies E(j,r̃j), since rxj > r̃j. Now, let E(j,r̃j) be given and

let us explain why E(j,rxj )
follows then. If we assume that the latter does not hold, then

r̃j 6= rxj , and by definition of r̃j we then have r̃j = d1/εe < rxj . Applying (P 2) for (j, r̃j),
which is given under assumption of E(j,r̃j), we obtain B

xj
r̃j

= ∅. But this means that
Algorithm 1, when processed for vertex xj, must have already stopped, i.e. rxj < r̃j, a
contradiction.

Moreover, by looking at the above argument more carefully we see that whenever one
of the events E(j,rxj )

and E(j,r̃j) holds, we must have rxj = r̃j 6 d1/εe.
For every j ∈ [t] we now conclude that

P
(
E(j,rxj )

)
= P

(
E(j,r̃j)

)
6

r̃j∑
i=1

P
(
E(j,i)

∣∣∣Ea(j,i))+ P
(
Ea(j,1)

)
(5.2)

6 r̃j · 5n−
ε
3 + P

(
E(j−1,rxj−1 )

)
<

10

ε
n−

ε
3 + P

(
E(j−1,rxj−1 )

)
.

Applying the above inequality recursively we finally obtain

P
(
E(t,rxt )

and rxt = r̃t
)

= P
(
E(t,rxt )

)
< t · 10

ε
n−

ε
3 < n−

ε
4

as claimed. �

the electronic journal of combinatorics 28(3) (2021), #P3.10 17



It thus remains to prove (5.2). We start with a few observations.

Observation 5.2. If Algorithm 1 adds a vertex v to the set B
xj
i , then dG(v,B

xj
i−1) > 1 and

dG
(
v,
⋃
k6i−1B

xj
k

)
> 2.

Proof. Algorithm 1 adds a vertex v toB
xj
i if dG

(
v,
⋃
k6i−1B

xj
k

)
> 2 and only if v was not

already added to some B
xj
k with k < i. However, the latter ensures dG

(
v,
⋃
k6i−2B

xj
k

)
6 1

and thus dG(v,B
xj
i−1) > 1. �

Observation 5.3. If Ea(j,i) holds, then the following is true:

(i)
∣∣⋃

k6i−1B
xj
k

∣∣ 6 ∣∣Ba(j,i)
∣∣ < n1/3 and

∣∣⋃
k6i−1NG(B

xj
k )
∣∣ 6 ∣∣NG(Ba(j,i))

∣∣ < n2/3−ε.

(ii) If Algorithm 1 adds a vertex v to B
xj
i , then v ∈ V \Ba(j,i).

Proof. If Ea(j,i) holds, we obtain

|Ba(j,i)|
(5.1)

6
∑
k<j

∑
`6rk

|Bxk
` |+

∑
`<i

|Bxj
` |

(P 2)

6
∑
k<j

∑
`6rk

n
1−`ε

3 +
∑
`<i

n
1−`ε

3 < 2jn
1−ε
3 < n

1
3

and

|Ba(j,i) ∪NG(Ba(j,i))|
(2.1)

6 2jn
1−ε
3 + 2jn

1−ε
3 · 2n

1
3
−ε < n

2
3
−ε

provided n is large enough. Thus, (i) follows.
For (ii) observe that, according to the algorithm, no vertex from

⋃
k6i−1B

xj
k can be

added to B
xj
i . Moreover, using Property (P 4), no vertex in Ba(j,1) has a neighbour in B

xj
i−1

(or in {xj} in the case when i = 1, because of (P 1)), while every vertex being added to
B
xj
i needs to have such a neighbour according to Observation 5.2 (or since B

xj
1 = NG(xj)

if i = 1). It thus follows that no vertex from Ba(j,i) = Ba(j,1) ∪
⋃
k6i−1B

xj
k is added to

B
xj
i . �

Now, for each j ∈ [t] and i ∈ [r̃j] we will prove (5.2), by showing that, under condition
of Ea(j,i), each of the Properties (P 1)–(P 5) in Lemma 11 fails to hold for the pair (j, i)
with probability smaller than n−ε/3. This is obviously enough for showing (5.2) when
i > 1. To get (5.2) for i = 1, recall that under condition of Ea(j,1) = E(j−1,rj−1) we also
have that rxj−1

= r̃j−1 (as shown in the proof of Claim 5.1), making sure that (P 6) holds
for (j, 1) as well. We discuss each of the Properties (P 1)–(P 5) separately.

Property (P 1): The statement is trivially true for j = 1. So, let j > 1 and let us
condition on Ea(j,1). The vertex xj is chosen uniformly at random from [n] after Algo-
rithm 1 has been applied for x1, . . . , xj−1 and Ba(j,1) was determined. Now, conditioned
on Ea(j,1), we have |Ba(j,1) ∪ NG(Ba(j,1))| < n2/3 due to Observation 5.3. It thus follows
that

P
(
(P 1) fails for j

∣∣ Ea(j,1)) < n−
1
3 < n−

ε
3 . (5.3)
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Property (P 2): Let j ∈ [t]. Consider first the case when i = 1. Then B
xj
1 = NG(xj)

and using Claim 2.1 we have

P
(
(P 2) fails for B

xj
1

∣∣Ea(j,1)) < exp(−n
1
3
−2ε) < n−ε.

So, let i > 1 from now on and consider the moment immediately after B
xj
i−1 was deter-

mined, i.e. when all remaining edges incident to B
xj
i−1 get exposed in order to determine

B
xj
i .

When we condition on Ea(j,i), only vertices from v ∈ V \ Ba(j,i) can be added to B
xj
i

according to Observation 5.3. Moreover, before B
xj
i−1 was determined, for every vertex

v ∈ V \ Ba(j,i) all the edges towards B
xj
i−1 have not been exposed so far. Now, if a vertex

v ∈ V \ Ba(j,i) is added to B
xj
i then by Observation 5.2 one of the following two options

needs to happen:

(i) dG(v,B
xj
i−1) > 2, or

(ii) dG(v,B
xj
i−1) = 1 and dG(v,

⋃
k<i−1B

xj
k ) > 1.

Conditioned on Ea(j,i), the expected number of vertices in (i) is smaller than n · |Bxj
i−1|2 ·

p2
(P 2)

< n1/3−2(i+2)ε/3. Meanwhile, for (ii), observe that dG(v,
⋃
k<i−1B

xj
k ) > 1, which means

that v ∈
⋃
k<i−1NG(B

xj
k ). Since we have

∣∣⋃
k<i−1NG

(
B
xj
k

)∣∣ < n2/3−ε according to Ob-

servation 5.3, we get that the expected number of vertices in V \ Ba(j,i) satisfying (ii)

is at most n2/3−ε · |Bxj
i−1| · p

(P 2)

< n1/3−(i+5)ε/3. Summing up, we get that the (conditional)
expected size of B

xj
i is at most

n
1−2(i+2)ε

3 + n
1−(i+5)ε

3 < n
1−(i+4)ε

3

and thus, using Markov’s inequality (Lemma 4), we obtain

P
(
(P 2) fails for (j, i)

∣∣Ea(j,i)) < n−
4ε
3 < n−ε. (5.4)

Property (P 3): Again we condition on the event Ea(j,i). By Observation 5.2 all the
vertices we add to B

xj
i need to come from V \Ba(j,i). Thus, when B

xj
i is determined, neither

of the edges in E(B
xj
i ) has been exposed before. With probability at least 1− n−4ε/3 we

get |Bxj
i | < n(1−iε)/3, according to (5.4). If we condition on the latter, the expectation of

eG(B
xj
i ) is smaller than |Bxj

i |2 · p
(P 2)

< n−4ε/3. Thus, using Markov’s inequality (Lemma 4),

P
(
(P 3) fails for (j, i)

∣∣Ea(j,i)) 6 n−
4ε
3 + n−

4ε
3 < n−

ε
3 .

Property (P 4): Let i = 1. If j = 1 then the statement is trivially true. Otherwise,
we know from (5.3) that, under condition of Ea(j,i), we have xj /∈ Ba(j,1)∪NG(Ba(j,1)) with
probability at least 1−n−1/3. This implies B

xj
1 ∩Ba(j,1) = ∅ and thus it remains to check

that it is unlikely to have a vertex fromNG(Ba(j,1))\Ba(j,1) landing inB
xj
1 . Note that before

B
xj
1 gets determined none of the edges betweenNG(Ba(j,1))\Ba(j,1) and xj has been exposed

so far, when xj /∈ Ba(j,1) ∪ NG(Ba(j,1)). Thus, using Observation 5.3, we (conditionally)
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expect at most |NG(Ba(j,1))| ·p < n2/3−ε ·p = n−2ε vertices in
(
NG(Ba(j,1)) \Ba(j,1)

)
∩Bxj

1 .
It follows that

P
(
(P 4) fails for (j, 1)

∣∣Ea(j,1)) < n−
1
3 + n−2ε < n−ε.

Let i > 1 then. Under assumption of Ea(j,i), we have that B
xj
i−1 ∩ NG(Ba(j,1)) = ∅

according to (P 4). But then, according to Observation 5.2, no vertex from Ba(j,1) is added
to B

xj
i , giving that B

xj
i ∩Ba(j,1) = ∅. It thus remains to check that it is unlikely to have

a vertex from NG(Ba(j,1)) \Ba(j,1) landing in B
xj
i . Using that B

xj
i−1 ∩Ba(j,1) = ∅ by (P 4),

we note that before B
xj
i gets determined, no edge between NG(Ba(j,1)) \ Ba(j,1) and B

xj
i−1

has been exposed. Now, applying Observation 5.2, a vertex v from NG(Ba(j,1)) \Ba(j,1) is
added to B

xj
i if

(i) dG(v,B
xj
i−1) > 2, or

(ii) dG(v,B
xj
i−1) = 1 and dG(v,

⋃
k<i−1B

xj
k ) > 1.

Hereby, again using Observation 5.3 as well as (P 2), the (conditional) expected num-
ber of vertices in (i) is at most |NG(Ba(j,i))| · |Bxj

i−1|2p2 < n−3ε. For (ii), observe that
NG(Ba(j,1)) \ Ba(j,1) ⊂ V \ Ba(j,i) holds, since

⋃
k<iB

xj
k and NG(Ba(j,1)) are disjoint due

to Property (P 4). Therefore, if dG(v,
⋃
k<i−1B

xj
k ) > 1 and v ∈ NG(Ba(j,1)) \ Ba(j,1), then

v ∈ N2
a(j,i). Using (P 5) and (P 6), we have that

∣∣∣N2
a(j,i)

∣∣∣ < n1/3. Thus, the (conditional) ex-

pected number of vertices satisfying (ii) is bounded from above by n1/3 ·|Bxj
i−1|·p

(P 2)

< n−4ε/3.
Summing up, we expect at most

n−3ε + n−
4ε
3 < n−ε

vertices in B
xj
i ∩ (NG(Ba(j,1)) \Ba(j,1)). By Markov’s inequality (Lemma 4) we obtain

P
(
(P 4) fails for (j, i)

∣∣Ea(j,i)) < n−ε.

Property (P 5): Consider first the case when (j, i) = (1, 1). The bound on |N0
(1,1)| is

trivially true. So, let s > 1. Immediately after B(1,1) = NG(x1) is determined, none of the
edges between V \ B(1,1) and B(1,1) has been exposed. Moreover, according to Lemma 5,
with probability at least 1−exp(−n1/3−2ε) we have |B(1,1)| < n(1−ε)/3. Thus, if we condition
on that bound, the expected size of N s

(1,1) is at most n ·
(
|B(1,1)| · p

)s
< n(3−s(1+4ε))/3. It

follows that

P
(

(P 5) fails for (1, 1)
)
6
∑
s∈[3]

n
3−s(1+4ε)

3

(2ε−1 + 1)n
3−s(1+ε)

3

< n−
ε
3 .

So let (j, i) 6= (1, 1) from now on. Again, the bound on |N0
(j,i)| is trivially true. Under

condition of Ea(j,i) we have |Bxj
i | < n(1−iε)/3 with probability at least 1−n−4ε/3, according

to (5.4). Condition on the latter from now on. Given that Ea(j,i) holds, we additionally
get

∣∣N s
a(j,i)

∣∣ (P 5)

6

{
(2jε−1 + i− 1)n

3−s(1+ε)
3 if i > 1(

2(j − 1)ε−1 + rxj−1

)
n

3−s(1+ε)
3

(P 6)

< (2jε−1 + i− 1)n
3−s(1+ε)

3 if i = 1
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for every s ∈ {0, 1, 2, 3}. Thus,∣∣N s
(j,i)

∣∣ =
∣∣N s

(j,i) ∩N s
a(j,i)

∣∣+
∣∣N s

(j,i) \N s
a(j,i)

∣∣
6
(
2jε−1 + i− 1

)
n

3−s(1+ε)
3 +

∣∣N s
(j,i) \N s

a(j,i)

∣∣ . (5.5)

Now, for s ∈ [3], if a vertex v ends up being in N s
(j,i) \ N s

a(j,i) then, by definition, v ∈
V \ B(j,i) ⊂ V \ Ba(j,i) and dG

(
v,Ba(j,i)

)
= t for some t < s. But this means that

v ∈ N t
a(j,i) and, in order to be added to N s

(j,i), the vertex v needs to get at least s− t edges

towards B
xj
i (which get exposed only after B

xj
i has been determined, since v ∈ V \B(j,i)).

We conclude that the (conditional) expected size of
∣∣∣N s

(j,i) \N s
a(j,i)

∣∣∣ is at most

∑
t<s

∣∣N t
a(j,i)

∣∣ · (∣∣Bxj
i

∣∣ · p)s−t 6 (2jε−1 + i− 1
)∑
t<s

n
3−t(1+ε)

3

(
n
−1−(i+3)ε

3

)s−t
=
(
2jε−1 + i− 1

)∑
t<s

n
3−s(1+ε)−(i+2)(s−t)ε

3

6
(
2jε−1 + i− 1

)∑
t<s

n
3−s(1+ε)−3ε

3 < n
3−s(1+ε)−2.5ε

3 ,

where the first inequality uses (P 2) and (P 5), and the last inequality uses that i 6 r̃j 6
2ε−1. Thus, with Markov’s inequality (Lemma 4) and union bound, we obtain

P
(
∃s ∈ [3] :

∣∣N s
(j,i) \N s

a(j,i)

∣∣ > n
3−s(1+ε)−ε

3

)
< n−

ε
2 .

Combining this with (5.5), we see that with (conditional) probability at least 1 − n−ε/2
we have ∣∣N s

(j,i)

∣∣ 6 (2jε−1 + i− 1
)
n

3−s(1+ε)
3 + n

3−s(1+ε)−ε
3 <

(
2jε−1 + i

)
n

3−s(1+ε)
3

for every s ∈ [3], and thus

P
(
(P 5) fails for (j, i)

∣∣Ea(j,i)) < n−
4ε
3 + n−

ε
2 < n−

ε
3 .

This finishes the proof of Lemma 11.

6 Good structures for Connector

6.1 Technical Lemma

Throughout Section 6, we will consider the sequence (αi)i∈N given by

αi := 3 · 2i−1 − 2, (6.1)
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and note that α1 = 1 and αi+1 = 2(αi + 1) hold. In order to simplify our argument, in
the next lemma we will consider ε to be a real number of the form ε = 1/(9 · 2k−2 − 3)
with k ∈ N. Note that this yields

αkε =
2

3
and αk−1ε =

1

3
− ε. (6.2)

Given G ∼ Gn,p and x ∈ V (G), with high probability the following lemma will provide us
with a suitable subgraph H of G which later (see e.g. Claim 6.1) will turn out to contain
many copies of Tk that help to prove Lemma 9 and Lemma 10.

In order to simplify notation, we set

Ik =
{

(i, j, `) : 1 6 i 6 k, 1 6 j 6 2k−i, 1 6 ` 6 4
}
.

Starting with vertex disjoint sets V(i,j,`) ⊂ V (G) for (i, j, `) ∈ Ik we will iteratively find
well-behaving subsets M(i,j,`) of those which later turn out to be good candidate sets for
embedding the vertices of Tk, even when some edges of G are not allowed to be used.
Hereby, the tuple (i, j) will represent the position of a vertex in the desired tree, while the
component ` is used in order to apply our argument on disjoint subsets of V (G) labeled
with distinct indices `, so that we will be able to find a few edge-disjoint copies of Tk.
When we find the candidate sets M(i,j,`) by applying Algorithm 2 we will start with the
neighbours of x and afterwards move iteratively through the levels of Tk until we finally
find candidates for the root of Tk.

Lemma 12 (Decomposition of Gn,p). Let k > 3 be an integer, let ε = (9 · 2k−2 − 3)−1

and let n ∈ N be large enough. Let G ∼ Gn,p with p = n−2/3+ε. Fix x ∈ V (G) and let

V (G) = {x} ∪
⋃

(i,j,`)∈Ik

V(i,j,`) ∪R

be any partition of V (G) such that |V(i,j,`)| = n/(2k+4) holds. Then with probability at
least 1− exp(− ln1.5 n) there exist sets M(i,j,`) ⊂ V (G) and a subgraph H ⊂ G with

V (H) =
⋃

(i,j,`)∈Ik

M(i,j,`) ∪ {x}

such that the following are true for every (i, j, `) ∈ Ik:

(D 1) M(i,j,`) ⊂ V(i,j,`)

(D 2) |M(i,j,`)| = n1/3+αiε ln−2αi n

(D 3) if i > 2 then ∀v ∈M(i,j,`) : dH
(
v,M(i−1,2j−1,`)

)
> 1 and dH

(
v,M(i−1,2j,`)

)
> 1

(D 4) if i > 2 then ∀v ∈M(i−1,2j−1,`) ∪M(i−1,2j,`) : dH(v,M(i,j,`)) 6 n(αi−αi−1)ε

(D 5) ∀v ∈M(1,j,`) : x ∈ NH(v)
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V(i−1,2j−1,`) V(i−1,2j,`)

M(i−1,2j−1,`) M(i−1,2j,`)

M(i,j,`)

V(i,j,`)

M̃(i,j,`)

Figure 6.1: Part of the structure of H, depicted in red

(D 6) ∀e ∈ E(H) ∃(i, j, `) ∈ Ik : e ∈ EG(M(i−1,2j−1,`) ∪M(i−1,2j,`),M(i,j,`))

where we define M(0,j,`) := {x} for every j ∈ [2k] and ` ∈ [4].

Proof. Fix x ∈ V (G) and let

V (G) = {x} ∪
⋃

(i,j,`)∈Ik

V(i,j,`) ∪R

be any partition of V (G) such that |V(i,j,`)| = n/(2k+4). We will iteratively construct a
subgraph H together with sets M(i,j,`) ⊂ V(i,j,`) through Algorithm 2 and we will prove
that with probability at least 1− exp(− ln1.5 n) the algorithm succeeds in creating these
candidate sets in such a way that all the Properties (D 1)–(D 6) hold. Again, we provide
a pseudocode here in order to emphasise in which order the edges of Gn,p will be exposed.
Whenever a new set is going to be determined, we will only expose those edges which
have not been exposed before and which are needed for the corresponding step in the
algorithm.

Following Algorithm 2 it is obvious that the Properties (D 1), (D 3), (D 5) and (D 6)
hold.

Let Et be the event that the Properties (D 2) and (D 4) hold for every i 6 t (and every
j 6 2k−i and ` ∈ [4]). In the following we will show that

P(E1) 6 exp
(
−n

1
3

)
and P

(
Et
∣∣∣Et−1) 6 exp

(
−2 ln1.5 n

)
for every 2 6 t 6 k. Observe that, once these two inequalities are proven, we can deduce
that P(Ek) > 1− k exp

(
−2 ln1.5 n

)
> 1− exp

(
− ln1.5 n

)
, from which Lemma 12 follows.

The event E1: Property (D 4) holds trivially when i = 1. For (D 2) observe that a stan-
dard Chernoff argument (apply Lemma 2 and union bound) yields that, with probability
at least 1− exp(−n1/3), for every j ∈ [2k−1] we have

|NG(x, V(1,j,`))| >
1

2
p|V(1,j,`)| >

n
1
3
+ε

2k+5
> n

1
3
+ε ln−2 n.
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Algorithm 2: Good subgraph H for vertex x

Input : graph G, vertex x ∈ V (G), partition of V (G) as described in
Lemma 12

Output: subgraph H, sets M(i,j,`)

M(0,j,`) := {x} for every j ∈ [2k] and ` ∈ [4];
V (H) := {x} and E(H) := ∅ ;

for 1 6 i 6 k do
for 1 6 j 6 2k−i do

for 1 6 ` 6 4 do

M(i,j,`) := {v ∈ V(i,j,`) : dG(v,M(i−1,2j−1,`)) > 1, dG(v,M(i−1,2j,`)) > 1}
;

if |M(i,j,`)| > n1/3+αiε ln−2αi n
then remove arbitrary vertices from M(i,j,`)

until |M(i,j,`)| = n1/3+αiε ln−2αi n;
V (H)← V (H) ∪M(i,j,`)

E(H)← E(H) ∪ EG(M(i−1,2j−1,`) ∪M(i−1,2j,`),M(i,j,`))

end

end

end
halt with output H and sets M(i,j,`)

Since M(1,j,`) is obtained from NG(x, V(1,j,`)) by reducing the latter to size n1/3+ε ln−2 n,
we then obtain that (D 2) holds for i = 1. Thus, P(E1) 6 exp(−n1/3).

The event Et: Assume that Et−1 holds. Observe that, before the sets M(i,j,`) get deter-
mined by Algorithm 2, none of the edges between the sets V(i,j,`), with j 6 2k−i, and the
sets M(i−1,j′,`), with j′ 6 2k−i+1, have been revealed so far. Now, conditioning on Prop-
erty (D 2) for i = t− 1, a Chernoff-type argument yields the following with probability at
least 1− exp

(
− ln1.8 n

)
:

(i) dG(v,M(i−1,2j−1,`)) 6 ln1.9 n and dG(v,M(i−1,2j,`)) 6 ln1.9 n for every v ∈ V(i,j,`) with
j 6 2k−i+1,

(ii) eG(M(i−1,2j−1,`), V(i,j,`)) > 0.5 · |M(i−1,2j−1,`)| · |V(i,j,`)| · p for every j 6 2k−i+1.

In fact, for (i) observe that |M(i−1,2j−1,`)| = |M(i−1,2j,`)|
(D 2)
= n1/3+αi−1ε

(6.2)

6 p−1 which
implies that the (conditional) expectation of the degrees in (i) is bounded by 1. Thus,
applying Lemma 3 ensures that the probability for one vertex v failing to satisfy the
degree conditions in (i) is bounded by 2j exp(− ln1.9 n); a union bound completes the
argument. Moreover, by Lemma 2 and a simple union bound, the property in (ii) fails
with probability at most exp

(
−n2/3

)
.

Now, let us condition on the properties in (i) and (ii) from now on. Consider

M̃(i,j,`) :=
{
v ∈ V(i,j,`) : dG(v,M(i−1,2j−1,`)) > 1

}
,
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M̂(i,j,`) :=
{
v ∈ M̃(i,j,`) : dG(v,M(i−1,2j,`)) > 1

}
and observe that, according to Algorithm 2, M(i,j,`) has size n1/3+αiε ln−2αi n if and only

if M̂(i,j,`) is at least of that size. In order to see that the latter is likely to hold, we first
observe that

|M̃(i,j,`)|
(i)

>
eG(M(i−1,2j−1,`), V(i,j,`))

ln1.9 n

(ii),(D 2)

> n
2
3
+(αi−1+1)ε ln−2αi−1−2 n.

Notice that when we determine the set M̃(i,j,`) we don’t need to reveal the edges between

M̃(i,j,`) and M(i−1,2j,`). Thus, we can expose these edges afterwards, and by a Chernoff-
type argument (apply Lemma 2 and union bound) we get, with probability at least 1 −
exp

(
−n1/3

)
, that

eG(M̃(i,j,`),M(i−1,2j,`)) > 0.5 · |M̃(i,j,`)| · |M(i−1,2j,`)| · p

for every j 6 2k−i+1. It then follows that

|M̂(i,j,`)|
(i)

>
eG(M̃(i,j,`),M(i−1,2j,`))

ln1.9 n

(D 2)

> n
1
3
+(2αi−1+2)ε ln−4αi−1−4 n

(6.1)
= n

1
3
+αiε ln−2αi n

from which (D 2) follows, as was explained above.

As next, let us look at Property (D 4). Fix s ∈ {0, 1} and consider the set M̃v,(i,j,`) :=
NG(v, V(i,j,`)) for every v ∈ M(i−1,2j−s,`). According to a Chernoff-type argument (apply
Lemma 2 and union bound), with probability at least 1 − exp

(
−n1/3

)
, it holds that

|M̃v,(i,j,`))| 6 n1/3+ε for every v ∈ M(i−1,2j−s,`). Notice as before that, when we determine

the set M̃v,(i,j,`) we don’t need to reveal the edges between M̃v,(i,j,`) and M(i−1,2j−(1−s),`).
Thus, we can expose these edges afterwards, and another Chernoff-type argument (apply
Lemma 2 and union bound) yields that, with probability at least 1−n exp

(
−n(αi−1+2)ε

)
>

1− n−ε, it holds that

eG

(
M̃v,(i,j,`),M(i−1,2j−(1−s),`)

)
6 2p|M̃v,(i,j,`)|·|M(i−1,2j−(1−s),`)|

(D 2)

6 n(αi−1+2)ε (6.1)
= n(αi−αi−1)ε

for every v ∈ M(i−1,2j−s,`). Finally, notice that a vertex w ∈ M(i,j,`) ⊂ V(i,j,`) can only

become a neighbour of v in H if w ∈ M̃v,(i,j,`) and EG(w,M(i−1,2j−(1−s),`)) 6= ∅, where the

first condition comes from the definition of M̃v,(i,j,`), and the second is a consequence of
the construction of M(i,j,`) in the Algorithm 2. But this immediately implies

dH(v,M(i,j,`)) 6 eG

(
M̃v,(i,j,`),M(i−1,2j−(1−s),`)

)
6 n(αi−αi−1)ε,

as is required for Property (D 4).
Hence, summing up all the failure probabilities that occurred in our argument, we see

that

P
(
Et
∣∣∣Et−1) 6 exp

(
− ln1.8 n

)
+ exp

(
−n

1
3

)
+ 2

(
exp

(
−n

1
3

)
+ exp

(
−n−ε

))
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< exp
(
−2 ln1.5 n

)
.

This finishes the proof of Lemma 12.

Having Lemma 12 in our hands, we are now able to prove Lemma 9 and Lemma 10
in the following. For short, let us write

M` :=
⋃

i,j: (i,j,`)∈Ik

M(i,j,`) (6.3)

for every ` ∈ [4], and for every i ∈ [k] set

Li :=
⋃

j,`: (i,j,`)∈Ik

M(i,j,`) and L0 := {x}. (6.4)

6.2 Finding good structures – Part I

Proof of Lemma 9. Let δ > 0 be given. Then fix k ∈ N such that

δ > ε :=
1

9 · 2k−2 − 3

holds, and let k1 = k + 1. We will prove the lemma for p = n−2/3+ε and notice that by
the monotonicity the lemma then follows for p = n−2/3+δ as well. As before, we set

Ik =
{

(i, j, `) ∈ N3 : 1 6 i 6 k, 1 6 j 6 2k−i, 1 6 ` 6 4
}
.

Let V = [n] be the vertex set, and let x, r ∈ V be fixed. Before exposing all the edges of
G ∼ Gn,p we fix a partition

[n] = {x} ∪
⋃

(i,j,`)∈Ik

V(i,j,`) ∪R

of the vertex set such that r ∈ R and |V(i,j,`)| = n/(2k+4) for every (i, j, `) ∈ Ik. We will
show that with probability at least 1 − n−3 a random graph G ∼ Gn,p is such that for
every subgraph B with e(B) 6 n1/3 lnn the graph G \ B contains a copy T of Tk1 as
desired, additionally satisfying that V (T ) ⊂ ([n] \ R) ∪ {r}. Taking a union bound over
all choices of r and x, it then follows that the property described in Lemma 9 holds with
probability at least 1− n−1.

In order to do so, we first expose the edges of G on [n] \ R. By Lemma 12 we know
that with probability at least 1− exp(− ln1.5 n) there exist subsets M(i,j,`) ⊂ V(i,j,`) and a
subgraphH ⊂ G on the vertex set

⋃
(i,j,`)∈Ik M(i,j,`)∪{x} such that all the Properties (D 1)–

(D 6) hold. Let EH be the event that such a graph H with vertex sets M(i,j,`) exists. From
now on, we will condition on EH to hold. Recall the definition of M` in (6.3) and Li in
(6.4). We first observe that there must be many copies of Tk in H with all leaves being
adjacent to x in H.
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Claim 6.1. For every ` ∈ [4] and every v ∈M(k,1,`) there exists a tree Tv ∼= Tk such that

(T 1) v is the root of Tv,

(T 2) V (Tv) ⊂M` and E(Tv) ⊂ E(H),

(T 3) all the leaves of Tv are adjacent to x in H,

(T 4) for all vertices in V (Tv) ∩ Li and i > 2, their children in Tv belong to Li−1.

Proof. Label the vertices of Tk in such a way that the root gets label (k, 1) and for
every vertex with label (i, j) and i > 1 its two children get the labels (i− 1, 2j − 1) and
(i− 1, 2j), respectively.

Let ` ∈ [4] and v ∈ M(k,1,`) be given. Applying Property (D 3) iteratively we find
an embedding of Tk into H, such that the root of Tk is mapped to v, and such that the
vertex with label (i, j) in Tk is mapped to a vertex in M(i,j,`) ⊂M`∩Li. Let Tv denote the
resulting copy of Tk in H. Also every leaf of Tk has some label (1, j) with 1 6 j 6 2k−1

and thus the corresponding leaf in Tv is contained in M(1,j,`). By Property (D 5) it follows
that the latter is adjacent to x in H. Thus the claim follows. �

From now on, for every v ∈ Lk =
⋃
`∈[4]M(k,1,`) fix a tree Tv as described above. Since,

for the property that we are aiming for, we need to have control on how many such trees
become useless when some edge is removed from H, we define

Se := {v ∈ Lk : e ∈ E(Tv) ∪ {xw : w is a leaf of Tv}} (6.5)

for every edge e ∈ E(H). Under assumption of the event EH , we next deduce that Se does
not get too large.

Claim 6.2. Let EH hold. Then |Se| 6 n2/3−ε for every e ∈ E(H).

Proof. Let e ∈ E(H), then e is incident to at least one vertex y ∈ M(i,j,`) for some
(i, j, `) ∈ Ik, because of Property (D 6). For every vertex v ∈ Se there must exist a
path P in Tv leading from y to v. According to Property (T 4), this path P needs to
be of the form P = (y, vi+1, vi+2, . . . , vk−1, v) with vs ∈ Ls for every i + 1 6 s 6 k − 1.
Following Property (D 4) and Property (D 6), we have dH(vs, Ls+1) 6 n(αs+1−αs)ε for every
i + 1 6 s 6 k − 1 and dH(y, Li+1) 6 n(αi+1−αi)ε. Thus, the number of all possible such
y-v-paths P that belong to some Tv with v ∈ Lk is bounded from above by

k−1∏
s=i

n(αs+1−αs)ε = n(αk−αi)ε 6 n
2
3
−ε,

where the last inequality holds by (6.2) and since αi > α1 = 1. This proves the claim. �

We next expose the edges incident to r ∈ R. By a standard Chernoff argument (apply
Lemma 3 and union bound), we conclude that with probability at least 1−exp(−0.5 ln2 n)
it holds that

dG(r, Se) < ln2 n (6.6)
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for every e ∈ E(H), and

dG
(
r,M(k,1,`)

)
>

1

2
p|M(k,1,`)|

(D 2)
=

n−
1
3
+(αk+1)ε

2 ln2αk n

(6.2)
=

n
1
3
+ε

2 ln2αk n
(6.7)

for every ` ∈ [4]. Conditioning on (6.6) and (6.7) as well as the event EH , which
together hold with probability at least 1−exp(−0.5 ln1.5 n) > 1−n−3, it remains to prove
that for every subgraph B with e(B) 6 n1/3 lnn the graph H \B ⊂ G\B contains a copy
T of Tk1 as was described at the beginning of the proof.

So, let B of size e(B) 6 n1/3 lnn be given. Set SB :=
⋃
e∈B Se and observe that

dG\B (r, SB) < dG (r, SB)
(6.6)
< |B| · ln2 n < n

1
3 ln3 n.

For every ` ∈ [4] we thus obtain

dG\B
(
r,M(k,1,`)

)
> dG

(
r,M(k,1,`)

)
− e(B)

(6.7)
>

n
1
3
+ε

2 ln2αk n
− n

1
3 lnn > dG\B (r, SB) ,

provided n is large enough. Hence, for every ` ∈ [4], we find a vertex x` ∈ NG\B(r) with
x` ∈M(k,1,`) \ SB. By the choice of Tx` (Claim 6.1), the tree Tx` is a copy of Tk in H with
x` being its root, such that every leaf of Tx` is adjacent to x in H ⊂ G and such that
V (Tx`) ⊂M`. Moreover, by the definition of Se in (6.5), and since x` /∈ SB, we find that

E(Tx`) ∪ {xw : w is a leaf of Tx`} ⊂ E(H) \ E(B).

Now, set T to be the union of Tx1 , Tx2 and {x1r, x2r}. Then, since M1 ∩M2 = ∅, we get
that T ⊂ G \ B is a copy of Tk+1 = Tk1 with all its leaves being adjacent to x in G \ B.
Moreover, r is the root of T , and we have x /∈ V (T ), since x /∈M` ⊃ V (Tx`).

6.3 Finding good structures – Part II

Proof of Lemma 10. Let δ > 0 be given. Fix k ∈ N such that δ > ε := 1/(9 · 2k−2 − 3)
holds, and let k2 = k. Again, it is enough to prove the lemma for p = n−2/3+ε and to use
the monotonicity of the desired property. Again, we set

Ik =
{

(i, j, `) ∈ N3 : 1 6 i 6 k, 1 6 j 6 2k−i, 1 6 ` 6 4
}
.

Let V = [n] be the vertex set, let A ⊂ V with |A| = n1/3 be fixed, and let x ∈ V \ A.
Before exposing the edges of G ∼ Gn,p let

[n] = {x} ∪
⋃

(i,j,`)∈Ik

V(i,j,`) ∪R

be any partition of the vertex set satisfying A ⊂ R and |V(i,j,`)| = n/(2k+4) for every
(i, j, `) ∈ Ik. We will show that with probability at least 1−n−2 a random graph G ∼ Gn,p

the electronic journal of combinatorics 28(3) (2021), #P3.10 28



is such that for every vertex set M ⊂ V \{x} and every subgraph B, with e(B) 6 n2/3 lnn
and dB(v) 6 ln2 n for every v ∈ V \M , the graph G \ B contains a vertex z and four
binary trees T` as described by the lemma, additionally satisfying that z ∈ R \ A and
V (T`) ⊂ V` :=

⋃
(i,j) V(i,j,`) for every ` ∈ [4]. Then, taking union bound over all choices of

x, Lemma 10 follows immediately.

In order to do so, we first expose the edges of G on [n] \ R. By Lemma 12 we know
that with probability at least 1 − exp(− ln1.5 n) there exists a subgraph H ⊂ G with
V (H) ⊂ [n] \ R as well as subsets M(i,j,`) ⊂ V(i,j,`) satisfying the Properties (D 1)–(D 6).
Let EH be the event that such a graph H with vertex sets M(i,j,`) exists. From now on,
we will condition on EH to hold. Following Claim 6.1 we then know that for every ` ∈ [4]
and every vertex v ∈ M(k,1,`) there exists a tree Tv ∼= Tk in H such that V (Tv) ⊂ V` and
such that all the leaves of Tv are adjacent to x in H.

Set R′ = R \ A and for every Q ⊂ Lk =
⋃
`∈[4]M(k,1,`) let

BigQ :=
{
u ∈ R′ : dG(u,Q) > n

1
3
+ ε

2

}
. (6.8)

Next expose all remaining edges of G. Under the assumption of EH we then have the
following

Claim 6.3. Let EH hold. Then, with probability at least 1− exp(−0.5 ln2 n) the following
holds:

(a) ∀` ∈ [4] ∀v ∈ R′ : dG(v,M(k,1,`)) > n1/3+2ε/3,

(b) |NG(A) ∩R′| > n2/3+2ε/3,

(c) for every Q ⊂ Lk of size n1−2ε we have |BigQ| 6 n2/3+ε/2.

Proof. For (a) notice that dG(v,M(k,1,`)) ∼ Bin(|M(k,1,`)|, p) and thus

E(dG(v,M(k,1,`))) = |M(k,1,`)|p
(D 2)
=

n−
1
3
+(αk+1)ε

ln2αk n

(6.2)
=

n
1
3
+ε

ln2αk n
.

Applying Chernoff’s inequality (Lemma 2) and a union bound over all choice of ` ∈ [4]
and v ∈ R′ we get P((a) fails) 6 4n exp(−n1/3).

For (b), observe first that |R′| > n
4
. Applying Chernoff’s inequality (Lemmas 2 and 3)

and a union bound, we see that with probability at least 1− exp(−0.9 ln2 n) we have

eG(A,R′) >
1

2
|A||R′|p > n

2
3
+ε

8
and dG(v,A) < ln2 n for every v ∈ R′.

From these inequalities we can conclude that

|NG(A) ∩R′| > eG(A,R′)

ln2 n
> n

2
3
(1+ε).
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Thus, P((b) fails) 6 exp(−0.9 ln2 n).
For (c) we start by observing that according to a Chernoff and union bound argument

(applying Lemma 3) the following property holds with probability at least 1− exp(−n):
for every subsets X ⊂ Lk and Y ⊂ R′ of sizes |X| = n1−2ε and |Y | = n2/3+ε/2 we
have eG(X, Y ) < n1+ε/2. Given that property, assume that (c) fails to hold. Then there
exist Q ⊂ Lk of size n1−2ε and a subset Big′Q ⊂ BigQ with |Big′Q| = n2/3+ε/2. We then

have eG(Q,Big′Q) < n1+ε/2 under assumption of the property mentioned above; but also

eG(Q,Big′Q) > n1/3+ε/2 · |Big′Q| = n1+ε according to the definition of BigQ in (6.8), a
contradiction. Thus, P((c) fails) 6 exp(−n).

Finally, summing up all the failure probabilities, that were obtained above, the claim
follows. �

Conditioning on the event EH and on the properties described in Claim 6.3, it remains
to prove that for every vertex setM ⊂ V \{x} and every subgraph B, with e(B) 6 n2/3 lnn
and dB(v) 6 ln2 n for every v ∈ V \M , the graph G \ B contains a vertex z and four
binary trees T` as described at the beginning of the proof. So, let any such M and B be
given. Similarly to the proof of Lemma 9 consider the set

Se = {v ∈ Lk : e ∈ E(Tv) ∪ {xw : w is a leaf of Tv}}

for every edge e ∈ E(H), and let SX :=
⋃
e∈X Se for every X ⊂ V . Further, let

Bi := {e ∈ B ∩H : e = ab with a ∈ Li−1 \M and b ∈ Li} and B∗ :=
⋃
i∈[k]

Bi.

Similarly to Claim 6.2, we prove the following

Claim 6.4. Let EH hold. Then |SB∗| 6 n1−2ε.

Proof. We first bound |SBi
| for every i ∈ [k]. If v is a vertex in SBi

, then this means
that the edge set E(Tv) ∪ {xw : w is a leaf of Tv} needs to contain an edge e = ab ∈ B
between a vertex a ∈ Li−1 \ M and a vertex b ∈ Li. By assumption on B we have
dB(a) 6 ln2 n. Moreover, there must exist a path P in Tv leading from b to v which
is of the form P = (b, vi+1, vi+2, . . . , vk−1, v) with vs ∈ Ls for every i + 1 6 s 6 k − 1.
Analogously to the proof of Claim 6.2 we know that the number of such paths is at most∏k−1

s=i n
(αs+1−αs)ε = n(αk−αi)ε. Provided n is large enough, we thus conclude that for i > 2

it holds that

|SBi
| < |Li−1| · ln2 n · n(αk−αi)ε = 2k−i+3n

1
3
+αi−1ε ln2 n · n

2
3
−αiε

< n1−(αi−αi−1)ε ln3 n 6 n1−3ε ln3 n

where for the equation we make use of Definition (6.4), Property (D 2), the equation
αkε = 2

3
from (6.2), and where in the last inequality we use that, according to (6.1),

αi − αi−1 = 3 · 2i−2 > 3 holds. Moreover, since L0 = {x} and using (6.1) again,

|SB1| < |L0| · ln2 n · n(αk−α1)ε = n
2
3
−ε ln2 n.
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Hence, |SB∗| 6
∑

i∈[k] |SBi
| < n1−2ε, which finishes the proof of the claim. �

Now, under assumption of |SB∗ | 6 n1−2ε and the properties in Claim 6.3 it follows
that

|(NG\B(A) ∩R′) \ BigSB∗
| > |NG(A) ∩R′| − e(B)− |BigSB∗

|
(b),(c)
> n

2
3
(1+ε) − n

2
3 lnn− n

2
3
+ ε

2 > 2e(B),

provided n is large enough. Thus, there exists a vertex

z ∈ (NG\B(A) ∩R′) \ BigSB∗

such that dB(z) = 0. In particular, we then obtain that

dG\B(z,M(k,1,`)) = dG(z,M(k,1,`))
(a)
> n

1
3
(1+2ε) > dG(z, SB∗)

for every ` ∈ [4], where in the last inequality we use that z /∈ BigSB∗
. For every ` ∈ [4] we

thus find a vertex r` ∈M(k,1,`) \SB∗ such that zr` ∈ E(G \B). The latter already ensures
that Property (S 2) holds. By the choice of T` := Tr` (Claim 6.1), we know that T` is a
copy of Tk in H such that V (T`) ⊂ M` and such that all the leaves of T` are adjacent to
x in H. Since r` /∈ SB∗ we also know that the set E(T`) ∪ {xw : w is a leaf of T`} does
not contain any edges from Bi for i ∈ [k]. Thus, if there is an edge e = ab ∈ B that
belongs to E(T`) with a ∈ Li−1 and b ∈ Li for some 2 6 i 6 k, then a ∈ M must hold,
according to the definition of Bi, B

∗ and SB∗ . This yields Property (S 3). Analogously,
if there were edges from B incident to x and to a leaf of T`, then x ∈ M would need to
hold. However, we have x /∈ M by assumption, and thus Property (S 4) follows. Finally,
(S 1) holds, since V (T`) ⊂M` by Property (T 2), and x /∈M`.

7 Concluding remarks

Adding more constraints. Another variant of Maker-Breaker games are Walker-
Breaker games (see e.g. [7], [9] and [13]) which put even more constraints on the edges
that Maker may choose from in every round. Here, Maker is only allowed to claim her
edges according to a walk. That is, in each round she must claim a free edge or she must
walk along one of her already claimed edges, such that this edge is incident to her current
position in the graph. It is quite natural to ask what happens in the connectivity game
on G ∼ Gn,p when the game is played in the Walker-Breaker setting. This is work in
progress already. Moreover, one may consider the variant in which Breaker also needs to
play as a Walker, as suggested in [9] and [12]. We have not considered this variant, but
we would be interested in how it behaves compared to the usual Maker-Breaker game and
the Connector-Breaker game, respectively.

Considering different graph properties. In our paper we consider the Connector-
Breaker game on G ∼ Gn,p in which Connector aims for a spanning tree. By combining
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our argument with the randomized strategy given by Ferber, Krivelevich and Naves [11],
we can even show that n−2/3+o(1) is the size of the threshold probability when Connector
aims for a Hamilton cycle. For a clearer presentation in this paper, we however skip the
full argument here. A proof will appear in a follow-up paper. Furthermore, it would
be interesting to consider other graph properties and to study the relation between the
Connector-Breaker game, the Walker-Breaker game and their Maker-Breaker analogue.
For example, consider the H-game where Maker (or Connector/Walker) wins if she claims
all the edges of a copy of a given (constant size) graph H. Following [3] and the approach
given in [7] it turns our that for all the three types of games the threshold bias for a
(1 : b) game played on Kn is of the same order, namely Θ(n1/m2(H)), with m2(H) being
the maximum 2-density of H. This is in contrast to the connectivity game discussed in
this paper. We wonder whether in the unbiased H-game on G ∼ Gn,p it also holds that
the threshold probabilities for winning either variant are of the same order.
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