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Abstract
A graph G is said to be the intersection of graphs G1, G2, . . . , Gk if V (G) =

V (G1) = V (G2) = · · · = V (Gk) and E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk). For a
graph G, dimCOG(G) (resp. dimTH(G)) denotes the minimum number of cographs
(resp. threshold graphs) whose intersection gives G. We present several new bounds
on these parameters for general graphs as well as some special classes of graphs. It is
shown that for any graph G: (a) dimCOG(G) 6 tw(G)+2, (b) dimTH(G) 6 pw(G)+
1, and (c) dimTH(G) 6 χ(G)·box(G), where tw(G), pw(G), χ(G) and box(G) denote
respectively the treewidth, pathwidth, chromatic number and boxicity of the graph
G. We also derive the exact values for these parameters for cycles and show that
every forest is the intersection of two cographs. These results allow us to derive
improved bounds on dimCOG(G) and dimTH(G) when G belongs to some special
graph classes.
Mathematics Subject Classifications: 05C70, 05C62

1 Introduction

All graphs in this paper are simple, finite and undirected, unless otherwise mentioned.
Let G(V,E) be a graph, where V (G) is the vertex set and E(G) is the edge set of G.
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Given graphs G1, G2, . . . , Gk such that V (G) = V (G1) = V (G2) = · · · = V (Gk), we say
that G = G1 ∩G2 ∩ · · · ∩Gk if E(G) = E(G1)∩E(G2)∩ · · · ∩E(Gk); in this case we say
that “G is the intersection of the graphs G1, G2, . . . , Gk”, or that “G can be represented
as the intersection of k graphs G1, G2, . . . , Gk”.

Let A be a class of graphs. We are concerned with the question of representing a
graph G as the intersection of a small number of graphs from A. Kratochv́ıl and Tuza [26]
defined the intersection dimension of a graph G with respect to a graph class A, denoted
by dimA(G), as the smallest number of graphs from A whose intersection gives G. This
is formally defined below.

Definition 1 (Intersection dimension of graph [26]). Given a class A of graphs and a
graph G(V,E), the intersection dimension of G with respect to A is defined as:

dimA(G) = min{k : ∃G1, G2, . . . , Gk ∈ A such that G =
k⋂
i=1

Gi}

Kratochv́ıl and Tuza also note that for a graph class A, dimA(G) exists for every graph
G if and only if A contains all complete graphs and all graphs that can be obtained by
removing an edge from a complete graph. The notion of intersection dimension was in-
troduced as a generalization of some well-studied notions like boxicity, circular dimension
and overlap dimension of graphs (see [26]).

A “complement reducible graph” or cograph is a graph that can be recursively con-
structed from copies of K1 (the graph containing one vertex and no edges) using the
disjoint union and complementation operations. Cographs turn out to be exactly those
graphs that do not contain P4—a path on four vertices—as an induced subgraph [12].

A split graph G is a graph whose vertices can be partitioned into two sets, one of
which is an independent set in G and the other a clique in G. Cographs that are also
split graphs form the class of graphs known as threshold graphs [8]. Threshold graphs
have been widely studied in the literature and have several different equivalent definitions
(see [28, 22]). For example, they are exactly the graphs that do not contain an induced
subgraph isomorphic to P4, 2K2 (the graph having four vertices and two disjoint edges)
or C4 (the cycle on four vertices) [11]. In fact, this characterization follows from the fact
that split graphs are exactly those graphs that do not contain 2K2, C4 or C5 (the cycle
on five vertices) as an induced subgraph [18].

In this paper, we use COG and TH to denote the class of cographs and the class of
threshold graphs respectively. Thus, dimCOG(G) is the intersection dimension of a graph
G with respect to cographs, and for short, we call this the “cograph dimension of G”.
Similarly, we shall call dimTH(G) the “threshold dimension of G”.

2 Related Work

The notion of representing a given graph as the intersection of graphs from a special
class of graphs appears frequently in the literature. For example, the boxicity of a graph
G, denoted as box(G), is the smallest integer d such that G is the intersection of d-
dimensional boxes (such a box is just the Cartesian product of d closed intervals of the
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real line). It is well-known that box(G) is equal to the smallest integer k such that G
is the intersection of k interval graphs [30]; or in other words, box(G) = dimINT (G),
where INT denotes the class of interval graphs. The representation of planar graphs as
the intersection of graphs from a specific class of graphs has also received much attention
in the literature. Thomassen’s [35] proof that every planar graph has boxicity at most 3
showed that every planar graph is the intersection of at most 3 interval graphs. Shahrokhi
introduced the clique cover width (refer [34]) as a generalization of the bandwidth of a
graph. He showed that every graph G having clique cover width ccw(G) is the intersection
of dlog(ccw(G))e+ 1 co-bipartite graphs and a unit-interval graph. As a consequence, he
obtains the result that every planar graph is the intersection of one chordal graph, 4
co-bipartite graphs, and one unit-interval graph. We would like to remark here that it
follows from the Four Colour Theorem [31] that every planar graph is the intersection of
3 co-bipartite graphs and a complete 4-partite graph (which is a cograph).

The threshold dimension of graphs is closely related to the “threshold cover”, which is
a parameter that has been widely studied. We say that a graph G “is covered by” graphs
G1, G2, . . . , Gk, if V (G) = V (G1) = V (G2) = · · · = V (Gk) and E(G) = E(G1) ∪ E(G2) ∪
· · · ∪ E(Gk). Note that since cographs are closed under complementation, dimCOG(G) is
the smallest integer k such that the graph G can be covered by k cographs. Similarly, since
threshold graphs are closed under complementation, dimTH(G) is the smallest number of
threshold graphs using which a graph G can be covered. Chvátal and Hammer introduced
the parameter t(G), defined as the smallest number of threshold graphs required to cover
a graph G [11], the study of which has resulted in several influential papers [37, 13]. The
parameter t(G) has been called the “threshold dimension” of G due to the equivalent def-
inition of this parameter as the smallest number of linear inequalities on |V (G)| variables
such that every inequality is satisfied by a vector in {0, 1}|V (G)| if and only if it is the
characteristic vector of an independent set in G (refer [29] for details). The parameter
t(G) is also known as the threshold cover of G [13]. In this paper, we shall refer to t(G)
exclusively as the “threshold cover” of G. We reserve the term “threshold dimension of G”
for dimTH(G). Since t(G) = dimTH(G), our results about dimTH(G) can also be thought
of as results about t(G). Thus dimTH(G) is the minimum integer k such that there exist
k linear inequalities

a11x1 + a12x2 + · · ·+ a1nxn 6 t1

a21x1 + a22x2 + · · ·+ a2nxn 6 t2
...

ak1x1 + ak2x2 + · · ·+ aknxn 6 tk

on the variables x1, x2, . . . , xn, where n = |V (G)|, such that the characteristic vector of a
set S ⊆ V (G) satisfies all the inequalities if and only if S is a clique in G. In other words,
it is the minimum number of halfspaces in Rn whose intersection contains exactly those
corners of the n-dimensional hypercube that correspond to cliques in G (the corners of
the n-dimensional hypercube are the points in {0, 1}n).

Hellmuth and Wieseke [24] showed that the problem of determining whether the edge
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set of an input graph can be written as the union of the edge sets of 2 cographs is NP-
complete. As cographs are closed under complementation, this implies that the problem
of determining whether dimCOG(G) 6 2 for an input graph G is NP-complete. Yan-
nakakis [37] showed that the problem of determining if an input graph G has t(G) 6 k is
NP-complete for every fixed k > 3. As dimTH(G) = t(G), this means that it is NP-hard to
determine if the threshold dimension of a graph is at most k for every fixed k > 3. Raschle
and Simon [29] showed that it can be decided in polynomial-time whether t(G) 6 2 for
an input graph G; thus the problem of checking whether an input graph has threshold
dimension at most 2 is solvable in polynomial time. Gimbel and Nešetřil [21] discuss the
problem of deciding whether the vertex set of an input graph G can be partitioned into k
parts such that the subgraph induced in G by each part is a cograph and show that this
problem is NP-complete for every fixed k > 2.

3 Our results and organization of the paper

The paper is organized as follows. Section 4 contains some preliminary observations
and definitions which will be used later sections. We study the threshold and cograph
dimensions of forests in Section 5, in which it is shown that every forest is the intersection
of at most two cographs and that there exist trees with threshold dimension at least
3. The cograph and threshold dimensions of cycles are studied in Section 6, where a
proof is given that shows that cycles on more than 6 vertices cannot be represented as
the intersection of two cographs. From this fact, we can deduce the exact values for the
cograph dimension and threshold dimension of every cycle. In Sections 7 and 8, we derive
the following upper bounds on the cograph dimension and threshold dimension of a graph:

• dimCOG(G) 6 tw(G) + 2,

• dimTH(G) 6 pw(G) + 2, and

• dimTH(G) 6 χ(G) · box(G).

Here tw(G), pw(G), χ(G) and box(G) denote respectively the treewidth, pathwidth,
chromatic number and boxicity of the graph G. Note that the upper bound of tw(G) +
2 on the cograph dimension of any graph G is equal to the upper bound on boxicity
proved in [10]. This is interesting considering that the boxicity of a graph G is nothing
but dimINT (G) where INT is the class of interval graphs. Kratochv́ıl and Tuza [26]
showed that dimPER(G) 6 4 for every planar bipartite graph G. Our bound on threshold
dimension in terms of boxicity implies the stronger result that dimTH(G) 6 4 for every
planar bipartite graph G.

In Section 9, we focus on the cograph dimension of planar graphs and their subclasses.
Kratochv́ıl and Tuza [26] show that dimPER(G) 6 12 (here, PER denotes the class
of permutation graphs) when G is a planar graph and ask whether this bound can be
improved. Since cographs and threshold graphs are subclasses of permutation graphs,
any upper bound on dimCOG(G) or dimTH(G) is also an upper bound on dimPER(G). We
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show that if G is a planar graph, then dimTH(G) 6 12 and dimCOG(G) 6 10. For the
latter result, we use a (slightly improved) upper bound on cograph dimension in terms of
the acyclic chromatic number that was first obtained by Aravind and Subramaniam [3],
and the upper bound on cograph dimension of forests obtained in Section 5. We use a
similar upper bound on the cograph dimension in terms of the star chromatic number
(again observed in [3]) to show upper bounds on the cograph dimension of planar graphs
with lower bounds on girth. The bounds derived in Sections 8 and 7 allow us to obtain
new upper bounds on the cograph dimension and threshold dimensions of partial 2-trees
and outerplanar graphs. These results are summarized in Table 1.

Graph G is dimCOG(G) 6 dimTH(G) 6
Planar 10 (Corollary 34) 12 (Corollary 23)

girth > 4 9 (Corollary 24) 9 (Corollary 24)

8 > (girth g) > 5 13− g (Corollary 36) 9 (Corollary 24)

girth > 13 3 (Corollary 36) 9 (Corollary 24)

Partial 2-tree 4 (Corollary 29) 9 (Corollary 26)

Outerplanar 4 (Corollary 29) 6 (Corollary 25)

weak dual is a path 3 (Corollary 31) 3 (Corollary 31)

Planar bipartite 4 (Corollary 22) 4 (Corollary 22)

Forest 2 (Corollary 9) 4 (Corollary 22)

Table 1: Upper bounds on the cograph and threshold dimensions of some subclasses of
planar graphs.

In order to show that the technique using the star chromatic number cannot yield
a bound on the cograph dimension of outerplanar graphs that is better than the one
obtained using treewidth, we present an outerplanar graph whose star chromatic number
can be proved to be at least 6. This graph, which contains 20 vertices and 33 edges, is
in our opinion simpler than the earlier known example, which contains 41 vertices and 71
edges.

4 Preliminaries

Given a graph G(V,E), let V (G) and E(G) denote its vertex set and edge set respectively.
For a vertex u ∈ V (G), N(u) denotes the set of neighbours of u and N [u] = N(u) ∪ {u}.
Given a set S ⊆ V (G), we denote by G[S] the subgraph induced in G by the vertices in
S. An induced P4 (resp. 2K2, C4) in G is an induced subgraph of G that is isomorphic
to P4 (resp. 2K2, C4).
Observation 2. Let A be a class of graphs and let G,G1, G2, . . . , Gk be graphs such that
G = G1 ∩G2 ∩ · · · ∩Gk. Then dimA(G) 6 dimA(G1) + dimA(G2) + · · ·+ dimA(Gk).
Proof. For each i ∈ {1, 2, . . . , k}, there exists a collection Hi ⊆ A of at most dimA(Gi)
graphs such that Gi = ⋂

H∈Hi
H. Since G = ⋂k

i=1 Gi = ⋂k
i=1

⋂
H∈Hi

H, we now have that
dimA(G) 6 ∑k

i=1 dimA(Gi).
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Definition 3 (the join operation). The join of two vertex-disjoint graphs G1 and G2,
denoted as G1 +G2, is the graph G having V (G) = V (G1)∪ V (G2) and E(G) = E(G1)∪
E(G2) ∪ {uv : u ∈ E(G1), v ∈ E(G2)}.

The join operation is called the “Zykov sum” operation in [26].

Definition 4 (the disjoint union operation). The disjoint union of two vertex-disjoint
graphs G1 and G2, denoted as G1 ] G2, is the graph G having V (G) = V (G1) ∪ V (G2)
and E(G) = E(G1) ∪ E(G2).

A class of graphs A is said to be “closed” under the join operation (resp. the disjoint
union operation) if for any G1, G2 ∈ A, we have G1 +G2 ∈ A (resp. G1 ]G2 ∈ A). The
following observation is easy to see.

Observation 5. Let A be a class of graphs that is closed under the join operation (resp.
disjoint union operation). Then for any two graphs G1 and G2, dimA(G1 + G2) (resp.
dimA(G1 ]G2)) 6 max{dimA(G1), dimA(G2)}.

Note that the class of cographs is closed under both the join and disjoint union oper-
ations whereas the class of threshold graphs is not closed under either operation. A class
of graphs is said to be hereditary if it is closed under taking induced subgraphs; i.e. for
any graph G in the class, every induced subgraph of G is also in the class.

Partial 2-trees are exactly the graphs that have treewidth at most 2 [4]. Outerplanar
graphs are the planar graphs that have a planar embedding in which every vertex is on
the boundary of the outer face. They form a subclass of partial 2-trees [4]. For any
terminology or notation that is not defined herein, please refer [15].

5 Cograph and Threshold Dimensions of Forests

In this section, we shall show that every forest is the intersection of at most two cographs
and then, using a known characterization of graphs that have a threshold cover of size 2,
we show that there exist trees that are not the intersection of two threshold graphs.

We first show a construction using which given any forest F , two cographs whose
intersection gives F can be constructed. We describe the construction for a tree, and the
construction for forests as an extension to it.

Let T be a tree in which one vertex r has been arbitrarily selected to be the root. The
ancestor-descendant and parent-child relations on V (T ) are then defined in the usual way
(i.e., for x, y ∈ V (T ), x is an ancestor of y if and only if x lies on the path between r
and y in T ; x is the parent of y if and only if x is an ancestor of y and xy ∈ E(T )). The
vertices that are at an even distance from the root r are called “even vertices” and those
that are at an odd distance from the root r are called “odd vertices”. In the following, for
any vertex v ∈ V (T ), we denote by p(v) its parent vertex. We let p(r) = r.

Let To (resp. Te) denote the graph with vertex set V (To) (resp. V (Te)) = V (T ) and
E(To) (resp. E(Te)) = E(T )∪{uv : u is an odd (resp. even) vertex and v is a descendant
of p(u)}.
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Lemma 6. Let T be a tree with a root. Then both To and Te are cographs.
Proof. We shall first prove that To is a cograph using induction on |V (T )|. Clearly, To
is a cograph when |V (T )| = 1, since K1 is a cograph. Let T 1, T 2, . . . , T k be the trees
which form the components of T −N [r]. It is easy to see that for each i ∈ {1, 2, . . . , k},
there exists exactly one vertex ri in T i such that in T , p(p(ri)) = r. Choose ri to be the
root of T i, for each i ∈ {1, 2, . . . , k}. Observe that To = (T [{r}] ] T 1

o ] T 2
o ] · · · ] T ko ) +∑

u∈N(r) T [{u}] (here, for a vertex v ∈ V (T ), T [{v}] refers to the subgraph of T isomorphic
to K1 that contains just the vertex v). By the induction hypothesis, T 1

o , T
2
o , . . . , T

k
o are

all cographs. Since K1 is a cograph and cographs are closed under the join and disjoint
union operations, we have that To is a cograph.

Next let us prove that Te is a cograph. Let T 1, T 2, . . . , T k be the trees that form the
components of T − r. For each i ∈ {1, 2, . . . , k}, let ri denote the unique vertex in T i

such that in T , p(ri) = r. Choose ri as the root of T i, for each i ∈ {1, 2, . . . , k}. Observe
that Te = (T 1

o ] T 2
o ] · · · ] T ko ) + T [{r}]. By our earlier observation, we know that each of

T 1
o , T

2
o , . . . , T

k
o are cographs. Therefore, it follows that Te is a cograph.

Lemma 7. Let T be a tree with a root. Then T = To ∩ Te.
Proof. Since each of To and Te are supergraphs of T , we only need to show that E(To) ∩
E(Te) ⊆ E(T ). Suppose for the sake of contradiction that there exists an edge xy ∈
E(To) ∩ E(Te) such that xy /∈ E(T ). As xy ∈ E(To) ∩ E(Te), we may assume without
loss of generality that y is a descendant of p(x) in T . Since xy /∈ E(T ), we have that
xy /∈ E(To) if x is even and xy /∈ E(Te) if x is odd. This contradicts our assumption that
xy ∈ E(To) ∩ E(Te).

Combining Lemma 6 and Lemma 7, we have the following theorem.
Theorem 8. For any tree T , dimCOG(T ) 6 2.

Since cographs are closed under the disjoint union operation, we can now deduce from
Observation 5 that the cograph dimension of every forest is at most 2.
Corollary 9. Let F be a forest then dimCOG(F ) 6 2.

Clearly, there are trees, even paths, that are not cographs, and therefore this bound
is tight. Note that when T is a path, then we can choose one of its endpoints as the
root so that the graphs To and Te are split graphs. Since To and Te are also cographs by
Lemma 6, we get that each of them is a threshold graph. We thus have the following from
Lemma 7.
Corollary 10. For every path P , dimTH(P ) 6 2.

Next, we show that there are trees having threshold dimension at least 3. Chvátal
and Hammer [11] defined the auxiliary graph G∗ corresponding to a graph G as follows:
V (G∗) = E(G) and two vertices uv and xy of V (G∗) = E(G) are adjacent in G∗ if and
only if ux, vy /∈ E(G). They asked whether t(G) = χ(G∗) for every graph G. Although
Cozzens and Leibowitz [13] gave a negative answer to this question, Raschle and Simon [29]
proved the following theorem (a shorter proof was recently given in [19]).
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Theorem 11 (Raschle-Simon). A graph G has a threshold cover of size 2 if and only if
G∗ is bipartite.

This theorem can be used to prove that the tree T shown in Figure 1 has threshold di-
mension at least 3. Consider the graph T ∗. Note that (ci)(dj)(ei)(fh)(gd)(fc)(eb)(da)(hb)
(ic) is an odd cycle in T ∗. By Theorem 11, we then have that t(T ) > 2. This implies that
dimTH(T ) > 2.

a

b
c

de
fg

h
i

j

Figure 1: A tree that is not the intersection of two threshold graphs.

6 Cograph and Threshold Dimensions of Cycles

We shall now turn our attention to cycles, and show that cycles on more than 6 vertices
cannot be represented as the intersection of two cographs.

Let Cn denote the cycle on n vertices having V (Cn) = {v1, v2, . . . , vn} and E(Cn) =
{vivi+1 : 1 6 i 6 n − 1} ∪ {vnv1}. In the following, we shall let vn+t denote vt and v1−t
denote vn+1−t, for 1 6 t 6 n. We prove that for n > 7, there do not exist cographs A
and B such that Cn = A ∩ B. We will use the well-known fact that the diameter of any
induced subgraph of a cograph is at most 2; i.e. if G′ is an induced subgraph of a cograph
G, then there cannot be two vertices that are at a distance of 3 or more in G′ (since the
shortest path between them in G′ will contain a P4 that is an induced subgraph of G′,
and therefore also an induced subgraph of G).

First we derive a lemma that is true for any cycle that is the intersection of two
cographs, provided that the cycle contains at least 6 vertices.

Lemma 12. Let A and B be two cographs such that Cn = A ∩ B for some n > 6. Then
there does not exist i, j ∈ {1, 2, . . . , n} such that vivj, vivj+1, vivj+2 /∈ E(A).

Proof. Suppose there exist i, j ∈ {1, 2, . . . , n} such that vivj, vivj+1, vivj+2 /∈ E(A). Since
E(Cn) ⊆ E(A), we have that vi /∈ {vj−1, vj, vj+1, vj+2, vj+3}. Consider the graph A.
Let vx be the last neighbour of vi in the sequence vi+1, vi+2, . . . , vj−1 and let vy be the
first neighbour of vi in the sequence vj+3, vj+4, . . . , vi−1. Clearly, the vertices vx, vy, vi are
pairwise distinct. We can see that vivxvx+1 . . . vjvj+1vj+2 . . . vy−1vyvi forms a cycle with at
least 6 vertices in the cograph A. Note that vx and vy are the only neighbours of vi in this
cycle. Consider the subgraph A′ induced in A by the vertices in {vx+1, vx+2, . . . , vy, vi}.
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Since A′ is clearly a connected induced subgraph of the cograph A, there should be a
path of length at most 2 in A′ between vi and every other vertex in A′. As vy is the
only neighbour of vi in A′, each vertex in {vx+1, vx+2, . . . , vy−1} is adjacent to vy in A′

and therefore vyvx+1, vyvx+2, . . . , vyvy−1 ∈ E(A). By applying the same arguments on
the subgraph induced in A by the vertices in {vi, vx, vx+1, . . . , vy−1}, we can show that
vxvx+1, vxvx+2, . . . , vxvy−1 ∈ E(A).

Now let us consider the graph B. As Cn = A ∩ B, we can conclude from the above
observations that vxvx+2, vxvx+3, . . . , vxvy−1, vyvx+1, vyvx+2, . . . , vyvy−2 /∈ E(B). Note that
this means that there is no vertex in {vx+1, vx+2, . . . , vy−1} that is adjacent to both vx and
vy. Consider the subgraph B′ induced in B by the vertices in {vx, vx+1, . . . , vy}. As B′ is
a connected induced subgraph of the cograph B, there must be a path of distance at most
2 between vx and vy in B′. Since there is no vertex in {vx+1, vx+2, . . . , vy} that is adjacent
to both vx and vy, this implies that vxvy ∈ E(B′), and therefore vxvy ∈ E(B). But then,
vxvyvy−1vy−2 is an induced P4 in B, contradicting the fact that B is a cograph.

Lemma 13. Let A and B be two cographs such that Cn = A ∩ B for some n > 7. Then
there does not exist i, j ∈ {1, 2, . . . , n} such that vivj, vivj+1 /∈ E(A) and vi /∈ {vj−2, vj+3}.

Proof. Let us assume that such i and j exist. Note that since vivj, vivj+1 /∈ E(A) ⊇ E(Cn)
and vi /∈ {vj−2, vj+3}, we can conclude that vi /∈ {vj−2, vj−1, vj, vj+1, vj+2, vj+3}. By
Lemma 12, vivj−1 and vivj+2 ∈ E(A). Note that vjvj+2 ∈ E(A), as otherwise vivj+2vj+1vj
will be an induced P4 in A. Similarly, vj−1vj+1 ∈ E(A), as otherwise vivj−1vjvj+1 will form
an induced P4 in A. As Cn = A ∩ B, we now have that vivj−1, vivj+2, vj−1vj+1, vjvj+2 /∈
E(B). This tells us that vj−1vj+2 ∈ E(B), as otherwise, vj−1vjvj+1vj+2 will be an induced
P4 in B. Further, using Lemma 12 on B, we can infer that at least one of the edges
vivj, vivj+1 must be present in E(B). If vivj ∈ E(B), then vivjvj−1vj+2 will be an induced
P4 in B and if vivj+1 ∈ E(B), then vivj+1vj+2vj−1 will be an induced P4 in B. In either
case, we have a contradiction to the fact that B is a cograph.

Corollary 14. Let Cn = A ∩ B, for some n > 7, where A and B are cographs, and let
i ∈ {1, 2, . . . , n}. Then:

• exactly one of the edges in {vivi+3, vivi+4} is in E(A) and the other is in E(B), and

• exactly one of the edges in {vivi−3, vivi−4} is in E(A) and the other is in E(B).

Proof. By Lemma 13, at least one of vivi+3, vivi+4 is in E(A). Similarly, by applying
Lemma 13 on B, at least one of these two edges is also in E(B). Since vivi+3, vivi+4 /∈
E(Cn) = E(A) ∩ E(B), we can conclude that exactly one of them is in A and the other
in B. By symmetry, we have that exactly one of the edges in {vivi−3, vivi−4} is in E(A)
and the other is in E(B).

Lemma 15. Let Cn = A ∩B, for some n > 7, where A and B are cographs. If for some
i ∈ {1, 2, . . . , n}, the edge vivi+4 ∈ E(A), then vi+1vi+5 is in E(A).

the electronic journal of combinatorics 28(3) (2021), #P3.11 9



Proof. Suppose that vivi+4 ∈ E(A). From Corollary 14, exactly one of the edges in
{vi+1vi+4, vi+1vi+5} ∈ E(A). If vi+1vi+4 ∈ E(A), then the vertex vi+4 is adjacent to both
the vertices v(i+4)−3 and v(i+4)−4 in A, which contradicts Corollary 14. Thus, vi+1vi+4 /∈
E(A), which by Corollary 14 means that vi+1vi+5 ∈ E(A).

Theorem 16. There does not exist two cographs A and B such that A ∩ B = Cn, when
n > 7. In other words, dimCOG(Cn) > 2, when n > 7.

Proof. Suppose such cographs A and B exist. From Corollary 14, we may assume without
loss of generality that v1v5 ∈ E(A). Then by applying Lemma 15 repeatedly, we can
conclude that for every i ∈ {1, 2, . . . , n}, vivi+4 ∈ E(A). By Corollary 14, this implies
that for every i ∈ {1, 2, . . . , n}, vivi+3 /∈ E(A). If vivi+2 /∈ E(A) for some i ∈ {1, 2, . . . , n},
then vivi−1vi+3vi+2 will form an induced P4 in A, contradicting the fact that A is a cograph.
Therefore, we can conclude that for every i ∈ {1, 2, . . . , n}, vivi+2 ∈ E(A). Let us consider
the path v1v3v4v6 in A. Since v1v5 ∈ E(A), we have v1v5 /∈ E(B). If n > 8, then we
can apply Lemma 13 on B to get that v1v6 ∈ E(B), which implies that v1v6 /∈ E(A).
Thus, if n > 8, we have the induced P4 v1v3v4v6 in A, which contradicts the fact that A
is a cograph. We can therefore conclude that n = 7. Then since vivi+4 ∈ E(A) for each
i ∈ {1, 2, . . . , n}, we have v1v5, v4v1 ∈ E(A). This contradicts Corollary 14.

Figure 2 shows that every cycle on less than 7 vertices is the intersection of at most
two cographs (note that cycles on less than 5 vertices are themselves cographs).

= ⋂

= ⋂

Figure 2: Cycles with less than 7 vertices are the intersection of at most two cographs.

Remark 17. dimCOG(Cn) 6 2, when n 6 6.
It is easy to see that any cycle C is the intersection of at most three threshold graphs

as follows. Let v be any vertex on the cycle. Then C − v is a path and therefore, by
Corollary 10, there exist two threshold graphs G1 and G2 such that G1 ∩ G2 = C − v.
Let G′1 and G′2 be obtained from G1 and G2 respectively by adding v as a universal
vertex. Since the graph obtained by adding a universal vertex to any threshold graph is
again a threshold graph, G′1 and G′2 are threshold graphs. Let G3 be the graph obtained
from C by making every pair of vertices from V (C) \ {v} adjacent to each other (thus,
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V (C) \ {v} is a clique in G3). It is easy to verify that G3 is a threshold graph and that
C = G′1 ∩G′2 ∩G3. Therefore, we have the following result.
Remark 18. For any cycle C, dimCOG(C) 6 dimTH(C) 6 3.

It is easy to see that a C4 is a cograph but not a threshold graph. However, it
can be represented as the intersection of 2 threshold graphs as shown in Figure 3. The
graph C5 can be seen to have threshold dimension at least 3 as follows. Suppose for
the sake of contradiction that dimTH(C5) 6 2. Since C5 is isomorphic to C5, we have
t(C5) = t(C5) 6 2, which means that the edges of a C5 can be covered by at most two
threshold graphs. Let H1 and H2 be two threshold graphs that cover the edges of a C5. If
Hi, for some i ∈ {1, 2}, contains three edges, then it contains either an induced P4 or an
induced 2K2, which is a contradiction to the fact that Hi is a threshold graph. So each of
H1 and H2 can cover at most two edges of the C5, which contradicts the fact that every
edge of the C5 is contained in at least one of H1 or H2.

= ⋂

Figure 3: The threshold dimension of C4 is 2.

We can see that the threshold dimension of a C6 is also at least 3 as follows. Suppose
for the sake of contradiction that dimTH(C6) 6 2. Consider the cycle C = v1v2 . . . v6v1
on 6 vertices. Let G = C. From our assumption, we have t(G) 6 2. Thus there exist two
threshold graphs H1 and H2 such that E(G) = E(H1) ∪ E(H2). Now consider the edges
v1v4, v2v5 and v3v6 in E(G). If any two of them belong to Hi, for some i ∈ {1, 2}, then Hi

would contain an induced 2K2, P4 or C4, which is a contradiction (to see this, note that
for any two of these edges, their endpoints induce a C4 in G). Therefore at least one of
the edges v1v4, v2v5, v3v6 is not contained in either H1 or H2, contradicting the fact that
E(G) = E(H1) ∪ E(H2).

Note that we could also have used Theorem 11 to show that C5 and C6 are not the
intersection of two threshold graphs. We thus get the values shown in Table 2 for the
cograph dimension and threshold dimension of cycles of every size.

n dimCOG(Cn) dimTH(Cn)
3 1 1
4 1 2
5 2 3
6 2 3

> 7 3 3

Table 2: Cograph and threshold dimensions of cycles
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7 Threshold dimension, boxicity and chromatic number

A k-dimensional box, or k-box for short, is defined as the Cartesian product of k closed
intervals in R. The boxicity of a graph G, denoted by box(G), is the minimum integer k
for which there is an assignment of k-boxes to the vertices of G such that for u, v ∈ V (G),
uv ∈ E(G) if and only if the k-boxes corresponding to u and v intersect. It is known
that for any graph G, box(G) = dimINT (G), where INT denotes the class of interval
graphs [14]. The chromatic number of a graph G, denoted as χ(G), is the minimum
number of colours required to colour the vertices of G such that no two adjacent vertices
receive the same colour.

We shall now prove the main result of this section.

Theorem 19. Let G be any graph. Then, dimTH(G) 6 χ(G)box(G).

Proof. Let box(G) = k. Then there exists a collection of k-boxes {Bu}u∈V (G) such that
for u, v ∈ V (G), uv ∈ E(G) ⇔ Bu ∩ Bv 6= ∅. For u ∈ V (G), let Bu = [l1(u), r1(u)] ×
[l2(u), r2(u)] × · · · × [lk(u), rk(u)]. Note that this means that uv /∈ E(G) if and only if
there exists j ∈ {1, 2, . . . , k} such that rj(u) < lj(v) or rj(v) < lj(u).

Let c : V (G)→ {1, 2, . . . , χ(G)} be a proper vertex colouring of G.
Now, for each i ∈ {1, 2, . . . , χ(G)} and j ∈ {1, 2, . . . , k}, we construct a graph Gij on

vertex set V (G) as follows. Define E(Gij) = {uv | c(u) 6= i, c(v) 6= i} ∪ {uv | c(u) =
i, c(v) 6= i and rj(u) > lj(v)}. Note that each Gij is a split graph (the vertices with colour
i form an independent set and all other vertices form a clique). We shall now show that

G =
⋂

16i6χ(G)
16j6k

Gij

If uv ∈ E(G), then clearly c(u) 6= c(v) and for each j ∈ {1, 2, . . . , k}, we have rj(u) > lj(v)
and rj(v) > lj(u). It follows that each Gij is a supergraph of G. So we only need to
show that for each u, v ∈ V (G) such that uv /∈ E(G), there exists i ∈ {1, 2, . . . , χ(G)}
and j ∈ {1, 2, . . . , k} such that uv /∈ E(Gij). Consider uv /∈ E(G) (where u 6= v). If
c(u) = c(v) = i, then clearly, uv /∈ E(Gij), for all 1 6 j 6 k. So let us assume that
c(u) 6= c(v). As uv /∈ E(G), we can assume without loss of generality that there exists
j ∈ {1, 2, . . . , k} such that rj(u) < lj(v). Let c(u) = i, which means that c(v) 6= i. It now
follows from the definition of Gij that uv /∈ E(Gij).

To complete the proof, we shall show that each Gij is a cograph, which would imply
that it is also a threshold graph, as every split graph that is also a cograph is a threshold
graph [8]. In particular, we show that no Gij contains an induced P4. Suppose for
the sake of contradiction that there exists i ∈ {1, 2, . . . , χ(G)} and j ∈ {1, 2, . . . , k}
such that Gij contains an induced path wxyz. As {u ∈ V (Gij) | c(u) = i} forms an
independent set in Gij and {u ∈ V (Gij) | c(u) 6= i} forms a clique in Gij, we can conclude
that c(w) = c(z) = i, c(x) 6= i and c(y) 6= i. Since wx ∈ E(Gij) and wy /∈ E(Gij),
we get lj(y) > rj(w) > lj(x). Similarly, since yz ∈ E(Gij) and xz /∈ E(Gij), we get
lj(x) > rj(z) > lj(y). We now have both lj(y) > lj(x) and lj(x) > lj(y), which is a
contradiction.
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Since threshold graphs form a subclass of cographs, we have the following corollary.

Corollary 20. Let G be any graph. Then, dimCOG(G) 6 dimTH(G) 6 χ(G)box(G).

A grid intersection graph is a graph whose vertices can be mapped to horizontal and
vertical line segments in the plane in such a way that two vertices are adjacent in the
graph if and only if the line segments corresponding to them intersect and no two parallel
line segments intersect. Clearly, every grid intersection graph has boxicity at most 2,
since horizontal and vertical line segments are just degenerate 2-boxes. We shall use the
following theorem of Hartman et al. [23].

Theorem 21 (Hartman et al.). Every planar bipartite graph is a grid intersection graph.

From Theorem 21 and Theorem 19, we now have the following corollary.

Corollary 22. For any planar bipartite graph G, dimCOG(G) 6 dimTH(G) 6 4.

Note that the above corollary is a strengthening of Theorem 3.10 of [26] which states
that for every planar bipartite graph G, dimPER(G) 6 4, where PER denotes the class of
permutation graphs (note that cographs, and therefore threshold graphs, form a subclass
of permutation graphs). Using the Four Colour Theorem [31] and the fact that the boxicity
of any planar graph is at most 3 [35], Theorem 19 also implies the following strengthening
of Corollary 3.11 of [26] which states that dimPER(G) 6 12 for every planar graph G.

Corollary 23. For any planar graph G, dimTH(G) 6 12.

Since every triangle-free planar graph has a 3-colouring (Grötzsch’s Theorem), we also
get the following.

Corollary 24. For any triangle-free planar graph G, dimTH(G) 6 9.

Since for any outerplanar graph G, we have χ(G) 6 3 (folklore) and box(G) 6 2 [33],
we get the following result as a corollary of Theorem 19.

Corollary 25. For any outerplanar graph G, dimTH(G) 6 6.

Partial 2-trees are also 3-colourable, but there exist partial 2-trees that have boxic-
ity 3 [5]. Thus we have the following.

Corollary 26. For any partial 2-tree G, dimTH(G) 6 9.

Adiga, Bhowmick and Chandran [1] showed that the boxicity of any graph with maxi-
mum degree ∆ isO(∆ log2 ∆). This means, by Theorem 19 and the fact that χ(G) 6 ∆+1,
that dimTH(G) is O(∆2 log2 ∆) for any graph G with maximum degree ∆.
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8 Upper bounds using treewidth and pathwidth

A tree decomposition of a graph G is a pair (T, f), where f : V (T )→ 2V (G) is an assign-
ment of subsets of V (G) to the vertices of a tree T , satisfying the following properties:

1. For every vertex u ∈ V (G), the subgraph induced in T by the set {x ∈ V (T ) : u ∈
f(x)} is connected (note that this implies that every vertex u ∈ V (G) is contained
in f(x) for some x ∈ V (T )). Observe that this means that if u ∈ f(x) ∩ f(y), for
some x, y ∈ V (T ), then for every z ∈ V (T ) that lies on the path between x and y
in T , u ∈ f(z).

2. For every edge uv ∈ E(G), there exists x ∈ V (T ) such that u, v ∈ f(x).

The width of a tree decomposition (T, f) of a graph G is defined as maxx∈V (T ){|f(x)|−1}.
The treewidth of G, denoted by tw(G), the minimum width of a tree decomposition of G.

Chandran and Sivadasan [10] showed that for any graph G, box(G) 6 tw(G)+2. Com-
bining this with Theorem 19 and the fact that χ(G) 6 tw(G)+1 (folklore), we get that for
every graph G, dimTH(G) 6 χ(G)(tw(G) + 2) 6 (tw(G) + 1)(tw(G) + 2). As shown in [3],
the fact that the star chromatic number of a graphG is at most (tw(G)+1)(tw(G)+2)

2 [17] can be
combined with Theorem 35 from Section 9 to deduce that dimCOG(G) 6 (tw(G)+1)(tw(G)+2)

2
for any graph G. In this section we show that this upper bound can be improved.

We would like to note here that though the general strategy used in the theorem below
is similar to that in the proof of Theorem 14 in [10], the details in the two proofs are very
different.

Theorem 27. Let (T, f) be a tree decomposition of a graph G having width k − 1. Then
there exist cographs G0, G1, . . . , Gk such that G = G0 ∩G1 ∩ · · · ∩Gk.

Proof. As (T, f) is a tree decomposition of G having width k − 1, we have that for each
x ∈ V (T ), |f(x)| 6 k.

Let G′ be the graph with V (G′) = V (G) and E(G′) = {uv : ∃x ∈ V (T ) such that
u, v ∈ f(x)}. Note that G′ is a supergraph of G and also that G′ is a chordal graph
(folklore; to see this, note that the intersection graph of subtrees of a tree is a chordal
graph [20]). Note that (T, f) is a tree decomposition of G′ as well. Since G′ is a chordal
graph, χ(G′) = ω(G′) = tw(G′) + 1 [22, 32]. Therefore, there exists a proper vertex
colouring c : V (G′) → {1, 2, . . . , k} of G′. It is easy to see that c is proper vertex
colouring of G too. In particular, we have the stronger property that if u, v ∈ V (G) such
that there exists x ∈ V (T ) having u, v ∈ f(x), then c(u) 6= c(v).

Choose an arbitrary vertex r ∈ V (T ) as the root of T and define the ancestor-
descendant relation among the vertices of T in the usual way (i.e., for x, y ∈ V (T ), x
is an ancestor of y if and only if x lies on the path between r and y in T ). For every
vertex u ∈ V (G), define h(u) to be that vertex in f−1(u) = {x ∈ V (T ) : u ∈ f(x)} that
is an ancestor of every other vertex in f−1(u) (it is easy to see, using property 1 of tree
decompositions, that there is always exactly one such vertex). We shall now construct a
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binary relation R on V (G) as follows. Let < be an arbitrarily chosen linear ordering of
the vertices in V (G). For two vertices u, v ∈ V (G) such that h(u) 6= h(v), we have uRv
if and only if h(u) is an ancestor of h(v) in T . If h(u) = h(v), then we have uRv if and
only if u < v. Note that R is a partial order on V (G).

We now construct the k+ 1 cographs G0, G1, . . . , Gk such that G = ⋂k
i=0 Gi as follows.

Define V (G0) = V (G) and E(G0) = {uv : uRv}. By property 2 of tree decompositions,
we have that for any edge uv ∈ E(G), one of h(u) or h(v) is an ancestor of the other (this
includes the case h(u) = h(v)). Therefore, G0 is a supergraph of G.

For each i ∈ {1, 2, . . . , k}, define V (Gi) = V (G) and E(Gi) = E(G)∪{uv : (u, v), (v, u)
/∈ R} ∪ {uv : uRv and c(u) 6= i}. Clearly, Gi is a supergraph of G.

First, we shall show that G = ⋂k
i=0 Gi. For this, we only need to show that for any

uv /∈ E(G), there exists i ∈ {0, 1, . . . , k} such that uv /∈ E(Gi). Let uv /∈ E(G). If
(u, v), (v, u) /∈ R, then uv /∈ E(G0). So let us assume without loss of generality that uRv.
Then from the definition of Gc(u), it is clear that uv /∈ E(Gc(u)).

It only remains to be proven that each Gi, 0 6 i 6 k, is a cograph.
Suppose for the sake of contradiction that G0 is not a cograph. Then there exists an

induced path (on four vertices) P = abcd in G0. From the definition of G0, uv ∈ E(G0)
if and only if either uRv or vRu. Let us orient the edges of P such that an edge uv of
P gets oriented from u to v if and only if uRv. Let P̂ be the path P together with the
orientations on its edges. Suppose that there is a directed path of length 2 in P̂ , which
we will assume without loss of generality to be a → b → c. Recalling that R is a partial
order, aRb and bRc together imply aRc, which contradicts the fact that ac /∈ E(G0).
Thus, there is no directed path of length 2 in P̂ . We can therefore assume without loss
of generality that P̂ is the path a→ b← c→ d. We then have both aRb and cRb, which
implies by the definition of R that either aRc or cRa. But then ac ∈ E(G0), which is a
contradiction.

Now let us suppose for the sake of contradiction that Gi is not a cograph, for some
i ∈ {1, 2, . . . , k}. Then there exists an induced path (on four vertices) P = abcd in Gi.
Let Q be the path bdac in Gi. From the definition of Gi, it is clear that if uv ∈ E(Gi),
then either uRv and c(u) = i or vRu and c(v) = i. Now let us orient the edges of Q such
that an edge uv ∈ E(Q) gets oriented from u to v if and only if uRv. Let Q̂ be the path
Q together with the orientations on its edges. Suppose that there is a directed path of
length 2 in Q̂, which we will assume without loss of generality to be b→ d→ a. By our
observation above, we have that bRd, dRa, and c(b) = c(d) = i. This means that bRa and
that h(d) lies on the path between h(b) and h(a) in T . Since ab ∈ E(G), the former and
the definition of h together implies that b ∈ f(h(a)). By property 1 of tree decompositions,
the latter now implies that b ∈ f(h(d)). Since d ∈ f(h(d)), this contradicts the fact that
c(b) = c(d). Therefore, we can assume that there is no directed path of length 2 in Q̂.
Then we can assume without loss of generality that Q̂ is b → d ← a → c. This means
that we have bRd, aRd, and c(b) = c(a) = i. By the definition of R, we then have that
either bRa or aRb. Since c(a) = c(b), we have ab /∈ E(G). As c(a) = c(b) = i, we further
have ab /∈ E(Gi), which is a contradiction.

Corollary 28. For any graph G, dimCOG(G) 6 tw(G) + 2.
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Corollary 29. For every partial 2-tree G, dimCOG(G) 6 4.

Since outerplanar graphs are partial 2-trees, this means that every outerplanar graph
is the intersection of at most 4 cographs.

A tree decomposition (T, f) of a graph G is said to be a path decomposition of G if T
is a path. The pathwidth of G, denoted by pw(G), is defined as the minimum width of a
path decomposition of G. Clearly, for any graph G, tw(G) 6 pw(G).

Theorem 30. For every graph G, dimTH(G) 6 pw(G) + 1.

Proof. Let (T, f) be a path decomposition of G of width pw(G). Following the proof of
Theorem 27, we can select an endvertex of the path T to be the root r and construct
the graphs G0, G1, . . . , Gpw(G)+1. Then, the relation R defined on V (G) has the property
that for any two vertices u, v ∈ V (G), we have either uRv or vRu. Therefore, the graphs
G0, G1, . . . , Gpw(G)+1 have the following properties:

(a) G0 is a complete graph, and
(b) for each i ∈ {1, 2, . . . , pw(G) + 1}, Gi is a split graph (the vertices in {u : c(u) = i}

form an independent set and the rest form a clique in Gi), and therefore a threshold
graph.

From (a), we have that G = G1 ∩G2 ∩ · · · ∩Gpw(G)+1 and so by (b), we conclude that the
graph G can be represented as the intersection of pw(G) + 1 threshold graphs. Thus, we
have the theorem.

Although Corollary 25 says that every outerplanar graph is the intersection of at
most 6 threshold graphs, we are not aware of any outerplanar graph that has threshold
dimension more than 3 (cycles of more than 6 vertices have threshold dimension equal to
3 as shown in Section 6). Using Theorem 30, we can get upper bounds better than 6 for
the threshold dimension for a special kind of outerplanar graph.

The weak dual G∗ of an outerplanar graph G, given some planar embedding of G, is
its dual graph with the vertex corresponding to the outer face removed. That is, V (G∗)
is the set of internal faces of G and there is an edge between two internal faces f and f ′

in G∗ if and only if they share an edge in G. Let G be a 2-connected outerplanar graph
whose weak dual is a path. Construct another outerplanar graph G′ by adding edges to
G such that every internal face of G′ is a triangle and the weak dual of G′ is also a path.
It can be seen that if we arrange the internal faces of G′ in the order in which they appear
on this path, then every vertex appears in a consecutive set of faces in that order. It then
follows that G′ is an interval graph (see Theorem 8.1 in [22]) with no clique of size more
than 3 (as G′ is outerplanar). This implies that pw(G) 6 pw(G′) 6 2 (see Theorem 29
in [4]). Then we can use Theorem 30 to get the following result, which is a generalization
of Remark 18.

Corollary 31. If G is a 2-connected outerplanar graph whose weak dual is a path, then
dimCOG(G) 6 dimTH(G) 6 3.
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9 Upper bounds for cograph dimension using vertex partitions

In this section, we borrow a technique from [26] which can be used for graphs whose vertex
set can be partitioned in such a way that each pair of parts induces a subgraph with a
bounded cograph dimension. The following lemma that we use is a slight variation of a
lemma that appears in [26]. This technique and its role in connecting certain intersection
dimensions of a graph with its acyclic and star chromatic numbers also appears in [3].

Recall that G1 +G2 denotes the join of two graphs G1 and G2.

Let α : N+ → N+ be the function α(x) =
{
x if x is odd
x− 1 if x is even .

Lemma 32. Let H be a hereditary class of graphs which is closed under the join operation.
If G is a graph whose vertices can be partitioned into k parts V1, V2, . . . , Vk in such a way
that for any i, j ∈ {1, 2, . . . , k}, dimH(G[Vi ∪ Vj]) 6 t, then dimH(G) 6 α(k)t.

Proof. We begin by noting that asH is hereditary, for any i ∈ {1, 2, . . . , k}, dimH(G[Vi]) 6
t. Consider the complete graph Kk whose vertices are labelled from c1 to ck. For an edge
e = cicj in this complete graph, we denote by Ge the graph G[Vi∪Vj]. For a matching M
in the complete graph, let UM denote the set of vertices of the complete graph that are
not matched by M , i.e, the set of vertices of the complete graph that have no edge of M
incident on them. We also define GM = Σe∈MGe + Σci∈UM

G[Vi]. Since H is closed under
the join operation, it follows by Observation 5 that dimH(GM) 6 t. It is also easy to see
that GM is a supergraph of G. Now consider a proper edge colouring of the complete
graph Kk using χ′(Kk) colours. This colouring can be seen as a partitioning of the edge
set of the complete graph into matchings M1,M2, . . . ,Mχ′(Kk). Consider uv /∈ E(G). If
there exists i such that u, v ∈ Vi, then uv /∈ E(GMj

) for any j. If there is no such i, then
surely there exists i, j such that u ∈ Vi and v ∈ Vj. Let Mr be the matching that contains
the edge cicj of the complete graph. Then, it can be seen that uv /∈ E(GMr). This allows
us to conclude that G = ⋂

16i6χ′(Kk) GMi
. This implies that dimH(G) 6 χ′(Kk)t. The

proof is completed by noting the well known fact that χ′(Kk) = α(k).

The acyclic chromatic number of a graph G, denoted by χa(G), is the minimum
number of colours required to properly vertex colour G such that the union of any two
colour classes induces a forest in G.

We would like to note that some generalized variants of Theorems 33 and 35 appear
in the work of Aravind and Subramanian [3]. Theorem 9 and Corollary 11(b) of that
paper give upper bounds on the intersection dimension of a graph G with respect to any
hereditary class that is closed under the disjoint union and join operations. We note here
that any such class A has to contain the class of cographs and therefore any upper bound
on the cograph dimension of a graph G is also an upper bound on dimA(G). The following
theorem essentially follows from Theorem 9 of [3] and Corollary 9 in this paper.

Theorem 33. For any graph G, dimCOG(G) 6 2 · α(χa(G)).

Proof. Let k = χa(G). Consider an acyclic vertex colouring of G using k colours. Let
V1, V2, . . . , Vk denote the colour classes into which V (G) gets partitioned by the colouring.
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Note that since for any i, j ∈ {1, 2, . . . , k}, G[Vi∪Vj] is a forest, we have from Corollary 9
that dimCOG(G[Vi ∪ Vj]) 6 2. Now from Lemma 32, we have the theorem.

By Borodin’s Theorem [6], the acyclic chromatic number of any planar graph is at
most 5. Therefore, we have the following corollary.

Corollary 34. For any planar graph G, dimCOG(G) 6 10.

A star colouring of a graph G is a proper vertex colouring of G such that the union of
any two colour classes induces in G a forest whose every component is a star (such a forest
is called a “star forest”). In other words, it is a proper vertex colouring of G such that
every path on 4 vertices in G needs at least three colours. The minimum number of colours
required in any star colouring of a graph G is called its star chromatic number, denoted by
χs(G). It follows from Corollary 11(b) of [3] that for any graph G, dimCOG(G) 6 χs(G).
The following theorem essentially states this, with the small improvement that χs(G) is
replaced with α(χs(G)).

Theorem 35. For any graph G, dimCOG(G) 6 α(χs(G)).

Proof. Let k = χs(G). Therefore, V (G) can be partitioned into k sets V1, V2, . . . , Vk such
that for any i, j ∈ {1, 2, . . . , k}, G[Vi ∪ Vj] is a star forest. Since star forests are cographs,
we have that for any i, j ∈ {1, 2, . . . , k}, dimCOG(G[Vi ∪ Vj]) = 1. Now from Lemma 32,
we have the theorem.

We note here that every planar graph G has χs(G) 6 20 and there exists a planar
graph having star chromatic number 10 [2]. For planar graphs with lower bounds on
girth, better bounds on the acyclic vertex colouring number and star chromatic number
are known. Every planar graph of girth at least 5 and 7 can be acyclically vertex coloured
with 4 and 3 colours respectively [7], implying that the cograph dimension of these graphs
is at most 8 and 6 respectively. Further, every planar graph with girth at least 6, 7, 8,
9 and 13 can be star coloured with 8, 7, 6, 5 and 4 colours respectively [36, 27, 9]. We
therefore can use Theorems 33 and 35 to get the following.

Corollary 36. For any planar graph G with girth g:

(i) if g > 5, then dimCOG(G) 6 8

(ii) if g > 6, then dimCOG(G) 6 7,

(iii) if g > 7, then dimCOG(G) 6 6,

(iv) if g > 8, then dimCOG(G) 6 5, and

(v) if g > 13, then dimCOG(G) 6 3.
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As there exist planar bipartite graphs with star chromatic number at least 8 [25],
we cannot hope to use this technique to get an improvement over the bound given in
Corollary 22.

A number of upper bounds are known for the acyclic chromatic number and star
chromatic number of various special classes of graphs. These bounds can be used with
Theorems 33 and 35 to establish upper bounds on the cograph dimension of graphs be-
longing to these classes.

A note on the tightness of the upper bound of Fertin et al. The results of Fertin,
Raspaud and Reed [17] and also those of Albertson et al. [2] imply that for outerplanar
graph (in fact, any partial 2-tree) G, χs(G) 6 6. Thus Theorem 35 does not give us a
bound better than the one given by Corollary 29. An upper bound better than 6 for
the star chromatic number of outerplanar graphs would have been helpful, but there
are outerplanar graphs with star chromatic number equal to 6, and an example is given
in [17]. However, that example contains 48 vertices and 93 edges, and was shown to have
star chromatic number 6 using a computer check. Later, Albertson et al. [2] presented a
construction using which graphs with treewidth t and star chromatic number

(
t+1

2

)
can

be constructed for any t > 1. For t = 3, their construction gives an outerplanar graph on
41 vertices and 71 edges having star chromatic number at least 6. We give an outerplanar
graph with 20 vertices and 33 edges for which it can be proven that the star chromatic
number is at least 6.

x y

wz

Px Py

PwPz

︷ ︸︸
︷ ︷ ︸︸ ︷

︸ ︷︷
︸︸ ︷︷ ︸

Figure 4: The graph G.

Theorem 37. The outerplanar graph G shown in Figure 4 has star chromatic number at
least 6.

Proof. Suppose for the sake of contradiction that G has a star colouring c using the colours
1, 2, 3, 4 and 5. Since every star coloring is also a proper vertex coloring, we can assume
without loss of generality that c(x) = 1, c(y) = 2 and c(z) = 3, and further that no vertex
in Px has color 1. As c is a star coloring, the vertices in Px receive at least 3 different
colors, implying that at least one of the colors 2 or 3 is present in the path Px. Let us
assume without loss of generality that one of the vertices in Px, which we shall denote by
x2, is colored 2. We now get that c(w) 6= 1, as otherwise, x2xyw would be a bicolored P4.
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So we can assume without loss of generality that c(w) = 4. If a vertex y1 in Py is colored
1, then we would have the bicolored P4 x2xyy1. Since Py also cannot be bicolored, we get
that there is a vertex yi in Py that is colored i, for each i ∈ {3, 4, 5}. Now if there is a
vertex w2 in Pw that is colored 2, then we will have a bicolored P4 y4yww2, which is a
contradiction. This implies that there is a vertex w3 in Pw that is colored 3. Similarly,
since if there is a vertex z2 in Pz that is colored 2, there will be the bicolored P4 y3yzz2, we
get that there is a vertex z4 in Pz that is colored 4. Now the path w3wzz4 is a bicolored
P4, contradicting the fact that c is a star coloring.

10 Conclusion

We end with some open questions.
Question. Can the upper bounds shown for the cograph dimension and threshold di-
mension for any of the classes of graphs studied be improved?
Question. Does there exist a linear upper bound on the threshold dimension in terms of
the treewidth of the graph?
Question. Does there exist a planar graph whose cograph dimension is more than 3?

Dujmović et al. [16] formally defined the notion of layered treewidth (this idea also
appears implicitly in the work of Shahrokhi [34]) and showed that the layered treewidth
of every planar graph is at most 3. It could be possible that an upper bound on the
cograph dimension of a graph in terms of its layered treewidth can be obtained, and this
could lead to an improvement to the upper bound on the cograph dimension of planar
graphs.

Acknowledgements. The authors would like to thank T. Karthick for his help in sim-
plifying the proof of Theorem 37.
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