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Abstract

We derive a formula for the entries in the change-of-basis matrix between Young’s
seminormal and natural representations of the symmetric group. These entries are
determined as sums over weighted paths in the weak Bruhat graph on standard
tableaux, and we show that they can be computed recursively as the weighted sum
of at most two previously-computed entries in the matrix. We generalize our results
to work for affine Hecke algebras, Ariki-Koike algebras, Iwahori-Hecke algebras, and
complex reflection groups given by the wreath product of a finite cyclic group with
the symmetric group.

Mathematics Subject Classifications: 05E10, 05E18, 20C15

1 Introduction

Young [You] defined three bases of the complex irreducible symmetric group module
Sλn for each integer partition λ ` n. The corresponding representations are now called
Young’s natural, seminormal, and orthogonal representations (see [Rut], [JK], and [Sag]
for modern accounts). The seminormal and orthogonal representations are related by
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a diagonal transition matrix known to Rutherford [Rut] (and, likely, Young), whereas
the seminormal and natural representations are related by a triangular transition matrix
[Ram3, Sec. 5] whose entries are previously unknown rational expressions involving the
contents of the boxes in the tableaux of shape λ (see [RH]). In this paper, we compute
these change-of-basis coefficients as sums of weights on paths in the weak Bruhat graph
on standard tableaux of shape λ (see Theorem 4.2).

Our methods work equally well for skew-shape representations [JP, GW, Ram3], and
we derive them in that context. For each skew partition shape λ/µ with n boxes, the

skew-shape module Sλ/µn has dimension equal to the number of standard tableaux of shape
λ/µ, and the module Sλ/µn is irreducible if and only if µ = ∅ and λ = λ/∅ is a partition
of n.

To compute our change-of-basis we use the weak Bruhat graph B
λ/µ
n , which is the Hasse

diagram of weak order on standard tableaux [BW]. The vertices of B
λ/µ
n are indexed by

the standard tableaux SYT(λ/µ) of shape λ/µ, and for S, T ∈ SYT(λ/µ) there is an edge

S
si−→ T, labeled by the simple (adjacent) transposition si = (i, i + 1) ∈ Sn, if si(S) = T.

The weight on S
si−→ T is the reciprocal of the “axial” distance between i and i + 1 in

S, or, equivalently, the difference between the content of the box containing i in S and
the content of the box containing i in T. The weights on B

λ/µ
n encode the seminormal

matrix entries, illustrated in Example 3.1, as was observed by Lascoux [Las]. Russell and

Tymoczko [RT] use B
(n,n)
2n to study properties of the change-of-basis between the natural

basis and the web basis in the case where λ = (n, n).
The seminormal basis {vT | T ∈ SYT(λ/µ)} and the natural basis {nT | T ∈ SYT(λ/µ)}

satisfy three properties that are the key ingredients to our work: (1) The action of a simple
transposition si on the seminormal basis satisfies sivT = aivT + bivsi(T) for scalars ai, bi;
(2) the action of σ ∈ Sn on the natural basis satisfies σnT = nσ(T) when σ(T) is standard;
and (3) the seminormal and natural basis vectors are equal (up to a scalar) at the column
reading tableau C (the minimal element in Bruhat order), i.e., nC = vC.

Ram [Ram3] observed that with these three properties the natural basis is completely
derivable (up to a scalar) from the seminormal basis, and it is this technique that we use
to derive our transition coefficients. Furthermore, Ram proved that generalized versions
of these same three properties hold for the calibrated skew-shape representations of affine
Hecke algebras. Using this fact we extend our result to give the transition matrix between
the natural and seminormal representations, in the semisimple cases, of the following alge-
bras: (1) affine Hecke algebras of type A; (2) cyclotomic Hecke algebras (i.e., Ariki-Koike
algebras), (3) Iwahori-Hecke algebras of type A and B; and (4) the group algebras of the
complex reflection groups Gr,n = Zr o Sn. The proof of our result for the symmetric group
(Theorem 4.2) generalizes essentially identically to work for all of these other algebras.
We could have proved the result for the affine Hecke algebra and then specialized it to
work in the other cases, including the symmetric group algebra. However, we chose to
organize this paper with the symmetric group first in order to get to this fundamental
result in an accessible way without the extra notation needed to describe Hecke algebra
representations.

For each of these algebras, the transition matrix is upper triangular under any linear
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ordering on tableaux that extends Bruhat order. In Proposition 4.9, we show that the
diagonal entries of this matrix have a nice form as a product over inversions in the cor-
responding tableau. In Theorem 7.1, we give the diagonal transition matrix between the
seminormal and orthogonal representations, also as a product over the inversions in the
tableaux.

In Corollary 4.6 and Remark 5.3, we show that the transition matrix entries can be
computed recursively in such a way that each entry is the weighted sum of at most two
entries in a previous column. In this way, it takes O((fλ/µ)2) operations to compute
the transition matrix, where fλ/µ is the number of standard tableaux of shape λ/µ, as
discussed in Remark 4.7. This is useful in computing the fast Fourier transform (FFT) on
these algebras. The seminormal basis is well adapted to the FFT, because the matrices
of the generators are sparse and restrict nicely to subgroups (see, for example, [CB, DR]).
However, applications may demand using the natural basis, and, in this event, one can
compute the FFT in the seminormal basis and convert the final result to the natural basis
by conjugating by the transition matrix.

For the cyclotomic Hecke algebras and complex reflection groups Gr,n, skew shapes
are identified with r-tuples of partitions having a total of n boxes. In this case, the
transition matrix decomposes as the direct sum of identical copies of an r-fold tensor
product of symmetric group transition matrices (see Corollary 6.6 and Example 6.7). In
Section 8, we give the Bruhat graphs and all of the nontrivial transition matrices for the
irreducible symmetric group modules for Sn with n 6 5, along with a transition matrix
for an irreducible Hecke algebra module.

2 The Bruhat Graph on Standard Tableaux

The symmetric group Sn of permutations on {1, 2, . . . , n} is generated by the simple
(adjacent) transpositions si = (i, i+ 1), which swap i and i+ 1 for 1 6 i 6 n− 1, subject
to the relations,

(a) sisj = sjsi, |i− j| > 1,
(b) sisi+1si = si+1sisi+1, 1 6 i 6 n− 2,
(c) s2i = 1, 1 6 i 6 n− 1.

(2.1)

Each permutation w ∈ Sn can be written as a product (a word) w = si1si2 · · · sit of simple
transpositions. The product w = si1si2 · · · sit is a reduced word if t is minimal, and in this
case the length of w is `(w) = t.

2.1 Young tableaux

A partition of n ∈ Z>1 is a sequence λ = (λ1, λ2, . . . , λ`) such that λ1 > λ2 > · · · > λ` > 0
and |λ| := λ1+· · ·+λ` = n. We write λ ` n to signify that λ is a partition of n and identify
λ with its diagram consisting of λi boxes left-justified in row i. If µ = (µ1, µ2, . . . , µk) and
λ = (λ1, λ2, . . . , λ`) are partitions of m and m+ n respectively, then µ ⊆ λ if 0 < µi 6 λi
for i = 1, 2, . . . , k, and the skew shape λ/µ consists of the boxes that are in λ but not in
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µ. If µ = ∅, then λ = λ/∅. If λ/µ is a skew shape with n boxes, then a Young tableau
of shape λ/µ is a filling of the boxes of λ/µ with the integers 1, . . . , n such that each
integer appears exactly once. In a standard Young tableau the entries increase from left
to right in each row and from top to bottom in each column. We denote the set of Young
tableaux of shape λ/µ by YT(λ/µ) and the set of standard Young tableaux of shape λ/µ
by SYT(λ/µ), so for example,

SYT((3, 2)) =

{
1
2

3
4

5

,
1
3

2
4

5

,
1
2

3
5

4

,
1
3

2
5

4

,
1
4

2
5

3

}
and

SYT((3, 3, 1)/(2, 1)) =

{
1

2
3
4

, 1
3

2
4

, 2
1

3
4

, 2
3

1
4

, 3
1

2
4

, 3
2

1
4

, 4
1

2
3

, 4
2

1
3

}
.

The number of standard Young tableaux of shape λ/µ is denoted by fλ/µ = #SYT(λ/µ).
The numbers fλ and fλ/µ can be computed using the hook formula and skew-hook formula,
respectively (see for example [Sta, 7.16.3, 7.21.6]).

The column reading tableau C of shape λ/µ is the standard tableau obtained by entering
1, 2, . . . , n consecutively down the columns of λ/µ, beginning with the southwest most
connected component and filling the columns from left to right. The row reading tableau
R of shape λ/µ is the standard tableau obtained by entering 1, 2, . . . , n left to right across
the rows of λ/µ, beginning with the northeast most connected component and filling the
rows from top to bottom. In the examples above, the column reading tableau is listed
first and the row reading tableau is listed last. If T is any tableau of shape λ/µ with
n boxes and σ ∈ Sn, then σ(T) is the tableau of shape λ/µ obtained by permuting the
entries of T according to σ.

2.2 Bruhat and weak order on the symmetric group

Bruhat order (see for example [BB]) is the partial order 6 on Sn generated by the covering
relation l given on permutations σ, τ ∈ Sn by

σ l τ if τ = (i, j)σ, for some 1 6 i < j 6 n, and `(σ) < `(τ). (2.2)

Thus σ 6 τ in Bruhat order if there exist σ0, . . . , σk ∈ Sn such that σ = σ0 l σ1 l
· · · l σk = τ. The subword property (see [BB, Thm. 2.2.2]) says that σ 6 τ if and only
if a subword of some reduced word for τ is a word for σ. That is, σ 6 τ if and only if
τ = si1si2 · · · sik is a reduced word and there exists a reduced word σ = sia1sia2 · · · sia`
such that 1 6 a1 < · · · < a` 6 k.

Weak Bruhat order (see [BB]) is the partial order 6W on Sn generated by the covering
relation lW on permutations σ, τ ∈ Sn given by

σ lW τ if τ = siσ = (i, i+ 1)σ, for some 1 6 i 6 n− 1, and `(σ) < `(τ). (2.3)

Thus σ 6W τ if there exist σ0, . . . , σk ∈ Sn such that σ = σ0 lW σ1 lW · · · lW σk = τ.
Observe that σ 6W τ implies σ 6 τ , and thus Bruhat order is an extension of weak order.
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2.3 Bruhat and weak order on standard tableaux

Let λ/µ be a skew shape with |λ/µ| = n. Following [BW] we use Bruhat and weak
order on Sn to induce corresponding partial orders on SYT(λ/µ). For T ∈ YT(λ/µ)
the word of T is the unique permutation wT ∈ Sn such that wT(C) = T. For example,
if λ/µ = (4, 4, 2, 1)/(2, 2), then below are the column reading tableau C of shape λ/µ,
another standard tableau T of shape λ/µ, and the word wT ∈ S7 of T:

C =

4
5

6
7

1 3
2

, T =

1
5

3
6

2 4
7

, wT =

(
1 2 3 4 5 6 7
2 7 4 1 5 3 6

)
.

For S, T ∈ SYT(λ/µ), define S 6 T if and only if wS 6 wT. It follows from (2.2) (see
[BW, Sec. 7]) that Bruhat order 6 on SYT(λ/µ) is generated by the following covering
relation for S, T ∈ SYT(λ/µ):

Sl T if T = (i, j)(S), for some 1 6 i < j 6 n, and i is in a lower row of S than j.
(2.4)

Thus S 6 T if there exist S0, . . . , Sk ∈ SYT(λ/µ) such that S = S0 l S1 l · · ·l Sk = T.
Similarly, define S 6W T if and only if wS 6W wT. Then weak Bruhat order 6W on

SYT(λ/µ) is generated by the covering relation

SlW T if T = si(S), for 1 6 i 6 n− 1, and i is in a lower row of S than i+ 1.
(2.5)

Thus S 6W T if there exist S0, . . . , Sk ∈ SYT(λ/µ) such that S = S0lW S1lW · · ·lW Sk = T.
Again, S 6W T implies S 6 T, so Bruhat order is an extension of weak order on SYT(λ/µ).
We will use the following theorem which relates weak order on SYT(λ/µ) to an interval
in weak order on Sn.

Theorem 2.1. ([BW, Thm. 7.2]) The map T 7→ wT is a bijection from weak order on
SYT(λ/µ) to the interval [wC, wR] in weak order on Sn.

2.4 The weak Bruhat graph

For a skew shape λ/µ with n boxes, the weak Bruhat graph B
λ/µ
n is the Hasse diagram

of weak order on SYT(λ/µ). That is, B
λ/µ
n is the simple graph with vertices SYT(λ/µ)

such that for S, T ∈ SYT(λ/µ) there is a labeled edge S
si−→ T if T = si(S). Since

T = si(S) if and only if S = si(T), we draw the graph B
λ/µ
n with undirected edges. Since

weak order on SYT(λ/µ) is isomorphic to the interval [wC, wR] in weak order on Sn, the
weak Bruhat graph has a unique minimal element C and a unique maximal element R.
Figure 1 displays the weak Bruhat graph Bλ

5 for the partition shape λ = (3, 2) and the

corresponding interval in weak order on S5. Figure 2 displays the weak Bruhat graph B
λ/µ
4

for the skew shape λ/µ = (3, 3, 1)/(2, 1) and the corresponding interval in weak order on
S4. Figure 3 displays the weak Bruhat graph Bλ

6 for the partition shape λ = (3, 2, 1).

The depth of the tableau T ∈ B
λ/µ
n is the length of a shortest path from the root C

to T. By Theorem 2.1, the depth of T is equal to the length `(wT) of the word of T. An
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1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

s2 s4

s4 s2

s3

1 = ( 1 2 3 4 5
1 2 3 4 5 )

s2 = ( 1 2 3 4 5
1 3 2 4 5 ) s4 = ( 1 2 3 4 5

1 2 3 5 4 )

s2s4 = ( 1 2 3 4 5
1 3 2 5 4 )

s3s2s4 = ( 1 2 3 4 5
1 4 2 5 3 )

s2 s4

s4 s2

s3

Figure 1: The weak Bruhat graph B
(3,2)
5 on standard Young tableaux of shape (3, 2) and

the corresponding interval [1, s3s2s4] in weak order on S5.

1
2
3
4

2
1
3
4

1
3
2
4

3
1
2
4

2
3
1
4

3
2
1
4

4
1
2
3

4
2
1
3

s1 s2

s2 s1

s1
s2s3

s1
s3

1 = ( 1 2 3 4
1 2 3 4 )

s1 = ( 1 2 3 4
2 1 3 4 ) s2 = ( 1 2 3 4

1 3 2 4 )

s2s1 = ( 1 2 3 4
3 1 2 4 ) s1s2 = ( 1 2 3 4

2 3 1 4 )

s1s2s1 = ( 1 2 3 4
3 2 1 4 )s3s2s1 = ( 1 2 3 4

4 1 2 3 )

s1s3s2s1 = ( 1 2 3 4
4 2 1 3 )

s1 s2

s2 s1

s1 s2s3

s1 s3

Figure 2: The weak Bruhat graph B
(3,3,1)/(2,1)
4 on standard Young tableaux of skew shape

(3, 3, 1)/(2, 1) and the corresponding interval [1, s1s3s2s1] in weak order on S4.
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1 4 6
2 5
3

1 3 6
2 5
4

1 4 5
2 6
3

1 2 6
3 5
4

1 3 6
2 4
5

1 3 5
2 6
4

1 2 6
3 4
5

1 2 5
3 6
4

1 3 5
2 4
6

1 3 4
2 6
5

1 2 5
3 4
6

1 2 4
3 6
5

1 3 4
2 5
6

1 2 4
3 5
6

1 2 3
4 6
5

1 2 3
4 5
6

T1 =

T2 = T3 =

T4 = T5 = T6 =

T7 = T8 = T9 = T10 =

T11 = T12 = T13 =

T14 = T15 =

T16 =

s3 s5

s2 s4 s5 s3

s4
s5 s2

s5 s2 s4

s5
s4 s2

s4 s2 s5

s4 s5
s3 s2

s3 s5

Figure 3: The weak Bruhat Graph B
(3,2,1)
5 on standard Young tableaux of shape (3, 2, 1).

inversion in T is a pair (i, j) such that i > j and i is strictly south and strictly west of j
in T. An inversion in a permutation w ∈ Sn is a pair (i, j) such that i > j and i appears
left of j in the one-line notation for w. By definition of wT, (i, j) is an inversion in T if and
only if (i, j) is an inversion in wT. Thus, the depth of T equals the number of inversions
in T. For example,

if T =
1 2 4
3 6
5

then wT =

(
1 2 3 4 5 6
1 3 5 2 6 4

)
= 135264.

We see that T and wT have 4 inversions: (3, 2), (5, 2), (5, 4), and (6, 4). Thus T has depth
4 (as can be seen in Figure 3) and wT has length 4; indeed, wT = s4s5s2s3 is a reduced
expression for wT.

Lemma 2.2. If T ∈ SYT(λ/µ) and si(T) l T, then inv(T) = si(inv(si(T))) ∪ {(i + 1, i)},
where inv(T) is the set of inversions in T.

Proof. It is helpful to compare with Example 2.3 below. Since only i and i + 1 are
exchanged, inversions in T and si(T) that do not involve i or i + 1 are exactly the same.
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Inversions that involve i or i + 1 and another entry j are in bijection by swapping i and
i + 1 (using the fact that j cannot be between i and i + 1). The only new inversion is
(i+ 1, i) ∈ inv(T).

Example 2.3. In the example below s10(T) = T′ and inv(T) = s10(inv(T
′)) ∪ {11, 10}.

That is, the inversions of T are obtained by exchanging 10 and 11 in the inversions of T′

and then adding the inversion (11, 10). Note that under this pairing, the corresponding
inversions are in the same positions in T as in T′.

T =

1 4 6 7 9
2 5 8 10
3 1113
12

s10−→ T′ =

1 4 6 7 9
2 5 8 11
3 1013
12

{(8, 7), (10, 9), (11, 6), (11, 7), (11, 8),
(11, 9), (11, 10), (12, 4), (12, 5), (12, 6),
(12, 7), (12, 8), (12, 9), (12, 10), (12, 11),
(13, 7), (13, 9), (13, 10)}

s10−→

{(8, 7), (11, 9), (10, 6), (10, 7), (10, 8),
(10, 9),����(10, 11), (12, 4), (12, 5),
(12, 6), (12, 7), (12, 8), (12, 9), (12, 11),
(12, 10), (13, 7), (13, 9), (13, 11)}

3 Representations of the Symmetric Group

For a skew shape λ/µ with n boxes, we follow [Ram3] and define CSn-modules Sλ/µn

such that, when µ = ∅ and λ = λ/∅ is a partition of n, the module Sλn is irreducible.
In this section, we describe the natural, seminormal, and orthogonal representations of
Sλ/µn , originally due to Young [You] for partition shapes. For skew shapes, the natural

representations of Sλ/µn are described in [JP, GW] and the seminormal representations in
[Ram3].

3.1 Content and axial distance

Let λ/µ be a skew shape with |λ/µ| = n. If b is a box in λ/µ, we define the content of
the box b as

ct(b) = y − x, if b is in position (x, y) of the partition λ (i.e., row x and column y).
(3.1)

Note that for b ∈ λ/µ, we use its position in the outer partition λ. For example, the
following skew diagram has shape λ/µ = (9, 7, 7, 4, 2, 2, 1)/(4, 3, 2, 2, 2), and we have filled
each box with its content:

4 5 6 7 8

0 1 2 3 4
-1 0

2 3 4 5

-5 -4
-6 .
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For T ∈ SYT(λ/µ), let T(i) be the box of T containing i and define

ai,j(T) =
1

ct(T(j))− ct(T(i))
and ai(T) = ai,i+1(T) =

1

ct(T(i+ 1))− ct(T(i))
.

(3.2)
Observe that ct(T(j))− ct(T(i)) equals the number of steps in a walk from from i to j in
the tableau T counted positively in the northeast direction and negatively in the southwest
direction, known as the axial distance from i to j in T. For example, the axial distance
from 10 to 11 in the tableaux T of Example 2.3 is −3 and a10(T) = 1

−1−2 = −1
3
.

3.2 Seminormal basis

Let Vλ/µ = {vT | T ∈ SYT(λ/µ)} be a set of vectors indexed by the standard Young

tableaux of shape λ/µ, and define Sλ/µn = C-span {vT | T ∈ SYT(λ/µ)}, a C-vector space
with basis Vλ/µ. For 1 6 i 6 n − 1, define the action of the simple transposition si on
this basis by

sivT = ai(T)vT + (1 + ai(T)) vsi(T), where vsi(T) = 0 if si(T) is nonstandard. (3.3)

This action is extended linearly to all of Sλ/µn , and one can check by direct calculation that
it respects the relations (2.1) and thus affords a representation ρV, called the seminormal
representation of CSn, whose matrix entries are rational numbers. See Example 3.1 below
for an example of computing the seminormal matrix entries using the corresponding weak
Bruhat graph.

The seminormal representation gives explicit matrix entries for ρV(si) on the generating
set of simple transpositions si, 1 6 i 6 n − 1. To produce the matrix ρV(σ) of a general
permutation σ ∈ Sn, one must decompose σ into a product of simple transpositions and
multiply the corresponding matrices. Upon restriction from Sn to the subgroup Sn−1
the matrices ρV(σ) block-diagonalize into irreducible Sn−1 seminormal matrices. This is
a key ingredient in the algorithm for computing the fast Fourier transform on Sn (see
[CB, DR]), and it makes the seminormal representation well-adapted to the Okounkov-
Vershik [OV] and [Ram1] approaches to symmetric group representations via the tower
S0 ⊆ S1 ⊆ · · · ⊆ Sn. Furthermore, the matrices ρV(si) have at most one off-diagonal entry
in each row and column, and sparse matrix techniques can be used to get computational
speedups.

3.3 Orthogonal basis

Young’s orthogonal representation closely resembles the seminormal representation, but
the off-diagonal entries are chosen to make the matrices orthogonal. In Section 7 we
show that the seminormal and orthogonal representations differ by a diagonal change-
of-basis matrix, and we compute these diagonal entries in Theorem 7.1. Let Oλ/µ =
{uT | T ∈ SYT(λ/µ)} and define the action of a simple transposition on this basis by

siuT = ai(T)uT +
√

1− ai(T)2 usi(T), where usi(T) = 0 if si(T) is nonstandard. (3.4)
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Again, the action extends to a representation ρO of CSn. In this case, the matrix entries
are in a finite field extension of the rationals (to include the square-roots in (3.4)). The
matrices of the generators are symmetric and, in general, ρO(σ)−1 = ρO(σ)T for σ ∈ Sn
(where T denotes matrix transpose). The orthogonal representation shares the same block-
diagonal property under the restriction Sn−1 ⊆ Sn and the same sparseness properties as
the seminormal representation, making it equally well-adapted to computing the fast
Fourier transform.

3.4 Natural basis

We follow Ram [Ram3] and derive Young’s natural basis from the seminormal basis. Let
vC be the seminormal basis vector indexed by the column reading tableau C ∈ SYT(λ/µ),
and for each tableau T ∈ YT(λ/µ) (not necessarily standard) define the following vector

in Sλ/µn :

nT := wTvC, where wT ∈ Sn such that wT(C) = T (i.e., wT is the word of T). (3.5)

It follows that for any σ ∈ Sn and T ∈ YT(λ/µ), we have σnT = σwTvC = wσ(T)vC = nσ(T).
We then define Young’s natural basis as the subset Nλ/µ = {nT | T ∈ SYT(λ/µ)} indexed
by standard tableaux. Then, we have

nC = vC, and σnT = nσ(T), for all σ ∈ Sn and all T ∈ SYT(λ/µ). (3.6)

When σ(T) is nonstandard, the vector nσ(T) can be re-expressed as an integer linear combi-
nation of basis vectors corresponding to standard tableaux using a straightening algorithm
such as Garnir relations (see, for example, [Gar, JK, Sag, Ram3]), turbo straightening
[CLL], or tableaux intersection [GM]. Indeed, Ram [Ram3] proves that if nT is defined
according to (3.6) up to scalar multiple, then these vectors satisfy the classical Garnir
relations of [Gar, JK, Sag]. The straightening algorithms can be done over the integers,
so that the corresponding natural representation ρN(σ) is an integral representation.

The natural basis is not well-adapted to the fast Fourier transform, but as discussed
in [DR], applications may demand using the natural form. In this case, one can first
compute the fast Fourier transform in the seminormal basis and then convert the final
result to the natural basis by conjugating by the transition matrix Aλ/µ determined in
the next section.

Example 3.1. The weak Bruhat graph can be used to read off the entries in the semi-
normal representation. For example, consider S(3,2,1)

6 whose Bruhat graph B
(3,2,1)
5 is given

in Figure 3. The axial distance between 5 and 6 in T11 is −4, and s5(T11) = T7, so using
the seminormal basis,

s5vT11 = −1
4
vT11 + (1− 1

4
)vT7 ,

and T11
s5−→ T7 is an edge in B

(3,2,1)
5 . The axial distance between 3 and 4 in T11 is 1, but

s3(T11) is nonstandard, so
s3vT11 = vT11 ,
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and there is no edge labeled by s3 incident to T11 in B
(3,2,1)
5 . In the natural basis, we

have s5nT11 = ns5(T11) = nT7 , but s3(T11) is nonstandard so s3nT11 = ns3(T11) must be
re-expressed in the basis of standard tableaux using Garnir relations (e.g., see [JK, Sag,
Ram3]) which, in this case, after several recursive computations, turns out to be: ns3(T11) =
nT11 − nT9 − nT8 + nT6 − nT3 .

4 Transition Matrices for the Symmetric Group

For a skew shape λ/µ with n boxes, let Nλ/µ = {nT | T ∈ SYT(λ/µ)} and Vλ/µ =

{vT | T ∈ SYT(λ/µ)} be the natural and seminormal bases of Sλ/µn defined in Section
3. The goal of this section is to compute AS,T ∈ C for S, T ∈ SYT(λ/µ), uniquely defined
by the following change-of-basis equation:

nT =
∑

S∈SYT(λ/µ)

AS,T vS. (4.1)

As in Section 2.3, for S, T ∈ SYT(λ/µ) write S
si−→ T if T = si(S) for a simple

transposition si. A path of length k in the weak Bruhat graph B
λ/µ
n is a sequence of the

form
π = (T0

si1−→ T1
si2−→ T2

si3−→ · · ·
sik−→ Tk) (4.2)

such that Tj ∈ SYT(λ/µ) for 0 6 j 6 k. The corresponding word w = siksik−1
· · · si1 ∈ Sn

satisfies w(T0) = Tk. The path π is minimal if siksik−1
· · · si1 is a reduced word for the

permutation w ∈ Sn that sends T0 to Tk. Since B
λ/µ
n corresponds to an interval in weak

order on Sn, a path π is minimal if and only if it is a shortest path from T0 to Tk in B
λ/µ
n .

Additionally, we write T
e−→ T for the identity element e ∈ Sn and any T ∈ SYT(λ/µ).

A subpath of the path π in (4.2) is a path of the form

ω = (T0 = S0
z1−→ S1

z2−→ S2
z3−→ · · · zk−→ Sk) (4.3)

where Sj ∈ SYT(λ/µ) for 0 6 j 6 k, and zj ∈ {sij , e}. Thus, a subpath is a path in B
λ/µ
n

where one waits at node Sj−1 when zj = e and moves from Sj−1 to Sj when zj = sij . Let
ω ⊆ π denote that ω is a subpath of π, and say that the subpath ω terminates at Sk.
Since the zj’s can be identity elements, the subpath ω need not terminate at the same
tableau as the path π. Examples 4.1 and 4.3 give examples of paths and subpaths. If π is
a path with word w = siksik−1

· · · si1 and ω ⊆ π is a subpath with word w′ = zkzk−1 · · · z1,
with zj ∈ {sij , e} for each j, then w′ is a subword of w. However, not every subword of w
corresponds to a subpath, since it is possible that not every tableau in the corresponding
path is standard, as seen in the case of ν in Example 4.1.

Example 4.1. Below is a minimal path π in B
(3,2,1)
6 (see Figure 3) and two subpaths
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ω1, ω2 ⊆ π.

π =

(
1
2
3

4
5

6
s3−→

1
2
4

3
5

6
s2−→

1
3
4

2
5

6
s5−→

1
3
4

2
6

5
s4−→

1
3
5

2
6

4
s3−→

1
4
5

2
6

3
)

ω1 =

(
1
2
3

4
5

6
s3−→

1
2
4

3
5

6
e−→

1
2
4

3
5

6
s5−→

1
2
4

3
6

5
s4−→

1
2
5

3
6

4
e−→

1
2
5

3
6

4
)

ω2 =

(
1
2
3

4
5

6
s3−→

1
2
4

3
5

6
e−→

1
2
4

3
5

6
e−→

1
2
4

3
5

6
e−→

1
2
4

3
5

6
s3−→

1
2
3

4
5

6
)

The sequence ν, below, is not a path in B
(3,2,1)
6 , and thus not a subpath of π, because at

the last step the tableau is not standard.

ν =

(
1
2
3

4
5

6
s3−→

1
2
4

3
5

6
s2−→

1
3
4

2
5

6
s5−→

1
3
4

2
6

5
e−→

1
3
4

2
6

5
s3−→

1
4
3

2
6

5
)

Given a path π = (T0
si1−→ T1

si2−→ T2
si3−→ · · ·

sik−→ Tk) and a subpath ω = (T0 = S0
z1−→

S1
z2−→ S2

z3−→ · · · zk−→ Sk) of π in B
λ/µ
n , we define the π-weight of ω to be

wtπ(ω) =
k∏
j=1

bj, where bj =

{
aij(Sj−1), if Sj−1

e−→ Sj, i.e., if Sj = Sj−1,

aij(Sj−1) + 1, if Sj−1
sij−→ Sj, i.e., if Sj = sij(Si−1),

(4.4)
with wt∅(∅) = 1. Alternatively, we can describe wtπ(ω) with a Kronecker delta:

wtπ(ω) =
k∏
j=1

aij(Sj−1) + 1− δSj−1,Sj . (4.5)

The following is our main theorem.

Theorem 4.2. For a skew shape λ/µ with n boxes, the change-of-basis expressing the

natural basis Nλ/µ in terms of the seminormal basis Vλ/µ of Sλ/µn satisfies

nT =
∑
S6T

AS,T vS with coefficients AS,T =
∑
ω⊆π

wtπ(ω),

where the first sum is over standard tableaux S 6 T in (strong) Bruhat order; π is any

fixed path from C to T in B
λ/µ
n ; and the second sum is over all subpaths ω ⊆ π which

terminate at S.

Proof. Let T ∈ SYT(λ/µ) and let π = (C = T0
si1−→ T1

si2−→ T2
si3−→ · · ·

sik−→ Tk = T) be a
path to T (not necessarily minimal). We prove the result by induction on the length k of
π. If k = 0, then π = ∅ is the empty path. In this case, T = C, nC = vC, there are no
subpaths of π other than π itself, and AC,C = wt∅(∅) = 1.
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Now assume π has length k > 1. Let T′ = Tk−1 so that sik(T′) = T and π′ = (C =

T0
si1−→ T1

si2−→ · · ·
sik−1−→ Tk−1 = T′) is a path to T′. We have

nT = nsik (T′) = siknT′ = sik
∑

U∈SYT(λ/µ)

AU,T′vU =
∑

U∈SYT(λ/µ)

AU,T′ (sikvU)

=
∑

U∈SYT(λ/µ)

AU,T′

(
avU + (1 + a)vsik (U)

)
=

∑
U∈SYT(λ/µ)

AU,T′avU + AU,T′(1 + a)vsik (U),

where a = aik(U) and where vsik (U) = 0 if sik(U) is nonstandard. The terms which con-
tribute to AS,T are those where vS = vU and those where vS = vsik (U) when sik(S) = U is
standard. Thus,

AS,T =

{
aik(S)AS,T′ + (1 + aik(S′))AS′,T′ if sik(S) = S′ is standard,

aik(S)AS,T′ if sik(S) is nonstandard.
(4.6)

By the inductive hypothesis,

AS,T′ =
∑
ω′1⊆π′

wtπ′(ω
′
1) and AS′,T′ =

∑
ω′2⊆π′

wtπ′(ω
′
2),

where the first sum is over subpaths ω′1 ⊆ π′ which terminate at S and the second is over
subpaths ω′2 ⊆ π′ which terminate at S′ = sik(S). In the first case, we append the edge

S
e−→ S to ω′1 to obtain ω1 ⊆ π and in the second case we append the edge S′

sik−→ S to ω′2
to obtain ω2 ⊆ π as seen here:

ω1 = (C = S0
z1−→ S1

z2−→ S2
z3−→ · · · zk−1−→ S︸ ︷︷ ︸

ω′1

e−→ S),

ω2 = (C = S0
z1−→ S1

z2−→ S2
z3−→ · · · zk−1−→ S′︸ ︷︷ ︸

ω′2

sik−→ S).

In the first case, wtπ(ω1) = wtπ′(ω
′
1)aik(S) and in the second case wtπ(ω2) = wtπ′(ω

′
2)(1 +

aik(S′)). Moreover, every subpath of π must end with an edge weighted by sik or e and

therefore is of the form ω1 = ω′1
e−→ S or ω2 = ω′2

sik−→ S, where ω′1 is a subpath of π′

ending at S and ω′2 is a subpath of π′ ending at S′. Thus, the sum over π-weights on all
subpaths of π equals AS,T.

Notice that by construction, the definition of AS,T is independent of the particular path

π to T. Thus we can choose a minimal path π = (C = T0
sj1−→ T1

sj2−→ · · · sjm−→ Tm = T)
from C to T so that its corresponding word w = sjmsjm−1 · · · sj1 is a reduced word for wT.

If ω = (C = S0
z1−→ S1

z2−→ · · · zm−→ Sm = S) is a subpath of π which terminates at S, then
w′ = zmzm−1 · · · z1 is a permutation such that w′(C) = S. Since zi ∈ {sji , e} for each i,
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w′ = zmzm−1 · · · z1 is a subword of w. It follows from the subword property (see Section
2.3) that w′ 6 w, and thus S 6 T. Therefore, the only S ∈ SYT(λ/µ) for which AS,T

is nonzero are those for which S 6 T in Bruhat order, so that nT =
∑

S6TAS,T vS, where
AS,T =

∑
ω⊆π wtπ(ω).

Example 4.3. We illustrate Theorem 4.2 for λ = (3, 2, 1). The weak Bruhat graph

B
(3,2,1)
6 is shown in Figure 3 and the transition matrix A(3,2,1) is given in Example 4.11.

We compute the matrix entry AS,T for

T =
1
4
5

2
6

3
and S =

1
2
4

3
6

5
.

Start with a path π in B
(3,2,1)
6 from C to T (our path is minimal, but as noted, this is not

necessary):

π =

(
C =

1
2
3

4
5

6
s3−→

1
2
4

3
5

6
s2−→

1
3
4

2
5

6
s5−→

1
3
4

2
6

5
s4−→

1
3
5

2
6

4
s3−→

1
4
5

2
6

3

= T

)
.

There are the two subpaths ω1 and ω2 of π which terminate at S. Below each subpath we
show its π-weight.

ω1 =

(
C =

1
2
3

4
5

6
s3−→

1
2
4

3
5

6
e−→

1
2
4

3
5

6
s5−→

1
2
4

3
6

5
e−→

1
2
4

3
6

5
e−→

1
2
4

3
6

5

= S

)
,

1+ 1
3

1
2

1+ 1
2

1
4

−1
3

ω2 =

(
C =

1
2
3

4
5

6
e−→

1
2
3

4
5

6
e−→

1
2
3

4
5

6
s5−→

1
2
3

4
6

5
e−→

1
2
3

4
6

5
s3−→

1
2
4

3
6

5

= S

)
.

1
3

−1 1+ 1
2

1 1+ 1
3

Thus, the AS,T entry is the sum of these two weights:

AS,T =
(
1 + 1

3

)
· 1
2
·
(
1 + 1

2

)
· 1
4
·
(
−1

3

)
+ 1

3
· (−1) ·

(
1 + 1

2

)
· 1 ·

(
1 + 1

3

)
= − 1

12
− 2

3
= −3

4
,

which is the (6,15) entry in Example 4.11.

Remark 4.4. Let Aλ/µ = (AS,T)S,T∈SYT(λ) denote the transition matrix defined in (4.1)
whose entries are computed in Theorem 4.2. This matrix satisfies the following properties:

(a) Since AS,T = 0 if S 66 T in Bruhat order, Aλ/µ is upper-triangular under any linear
ordering of standard tableaux that extends Bruhat order.

(b) If π is a minimal path from C to T of length k, then the only subpath of π that reaches
depth k in the weak Bruhat graph is π itself, so AS,T = 0 if S has depth k and S 6= T.
It follows that if the standard tableaux are grouped by depth, the matrix Aλ/µ has
diagonal matrix blocks on the main diagonal. Bruhat order respects depth, so any
linear extension of Bruhat order will exhibit this phenomenon. See Example 4.11.
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Example 4.5. The weak Bruhat graph B
(3,2)
5 and the corresponding transition matrix

A(3,2) between Young’s natural and seminormal representations of S(3,2)
5 .

B
(3,2)
5 =

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

s2 s4

s4 s2

s3

A(3,2) =

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5



1 3 5
2 4

1 1
2

1
2

1
4

−1
4

1 2 5
3 4

0 3
2

0 3
4

3
4

1 3 4
2 5

0 0 3
2

3
4

3
4

1 2 4
3 5

0 0 0 9
4

3
4

1 2 3
4 5

0 0 0 0 3

Corollary 4.6. If S, T ∈ SYT(λ/µ) and T′ = s`(T) is standard, then

AS,T =

{
a`(S)AS,T′ + (1− a`(S))AS′,T′ if s`(S) = S′ is standard,

a`(S)AS,T′ if s`(S) is nonstandard.

Proof. This follows from equation (4.6) in the proof of Theorem 4.2, and from the fact
that a`(S

′) = −a`(S) since S′ = s`(S).

Remark 4.7. Corollary 4.6 says that the entries of the T-th column of the matrix Aλ/µ

equal a weighted sum of at most two entries of the T′-th column. For T 6= C, we can choose
` so that s`(T)lW T (i.e., choose T′ immediately above T in the weak Bruhat graph). Thus,
each entry of Aλ/µ is a weighted sum of two entries in a column to its its left (under any
ordering on tableaux that respects Bruhat order). Since Aλ/µ is upper-triangular with
fλ/µ rows and columns, computing the columns of Aλ/µ in any order that respects Bruhat
order requires a maximum of 2(1 + 2 + · · · + fλ/µ) = (fλ/µ)2 + fλ/µ operations once the
contents of the boxes of the tableaux have been computed (which takes n opertations for
each tableau). At the time of the writing of this paper, we were able to compute the
transition matrices for the 42 irreducible representations of S10 (3.6 million elements) in
a total of 24 minutes using Mathematica on a laptop computer.

Example 4.8. We illustrate Corollary 4.6 with λ = (3, 2, 1) and compute two of the
entries of Example 4.11. To compute the entry AT1,T16 = 1

12
we use ` = 5, since s5(T16) =

T15. Thus,

A 1 4 6
2 5
3

, 1 2 3
4 5
6

=
1

2
A 1 4 6

2 5
3

, 1 2 3
4 6
5

+

(
1− 1

2

)
A 1 4 5

2 6
3

, 1 2 3
4 6
5

=
1

2
· 1

6
+

(
1

2

)
· 0 =

1

12
.
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We could also have chosen ` = 3, since s3(T16) = T14. In this case,

A 1 4 6
2 5
3

, 1 2 3
4 5
6

=
1

3
A 1 4 6

2 5
3

, 1 2 4
3 5
6

+

(
1− 1

3

)
A 1 3 6

2 5
4

, 1 2 4
3 5
6

=
1

3
·
(
−1

6

)
+

2

3
· 5

24
=

1

12
.

Similarly, to compute the entry AT2,T13 = 5
12

, we choose ` = 4 since s4(T13) = T9, and get

A 1 3 6
2 5
4

, 1 3 4
2 5
6

=
1

2
A 1 3 6

2 5
4

, 1 3 5
2 4
6

+

(
1− 1

2

)
A 1 3 6

2 4
5

, 1 3 5
2 4
6

=
1

2
· 1

3
+

1

2
· 1

2
=

5

12
.

As in Section 2.3, we define an inversion in a standard tableau T to be a pair (i, j)
such that i > j and i is strictly south and strictly west of j in T, and we let inv(T) be
the set of inversions in T. Then, the diagonal entries of the transition matrix satisfy the
following formula.

Proposition 4.9. For any T ∈ SYT(λ/µ), we have AT,T =
∏

(i,j)∈inv(T)

(1 + ai,j(T)).

Proof. Let T ∈ SYT(λ/µ), let wT = sik · · · si2si1 be a reduced word, and proceed by
induction on k. When k = 0, AT,T = AC,C = 1 is the product over the empty inversion set.
For k > 1, let sik = s` and T′ = s`(T) so that T′ l T. By Corollary 4.6,

AT,T = a`(T)AT,T′ + (1− a`(T))AT′,T′ = (1− a`,`+1(T))AT′,T′

= (1 + a`+1,`(T))
∏

(i,j)∈inv(T′)

(1 + ai,j(T
′)),

where the second equality uses the fact that AT,T′ = 0 since T 66 T′, and the third equality
uses the inductive hypothesis.

From Lemma 2.2, inv(T) = s`(inv(T)) ∪ {(`+ 1, `)}, and in this pairing, the inversions
in T correspond to inversions in the same position in the tableau T′. Thus, the axial
distances (and therefore the values of ai,j) between the corresponding boxes are the same,
and the result follows:

AT,T = (1 + a`+1,`(T))
∏

(i,j)∈inv(T′)

(1 + ai,j(T
′)) =

∏
(i,j)∈inv(T)

(1 + ai,j(T)).

Example 4.10. The tableau T12 from Example 4.11 has four inversions: (3,2), (5,2),
(5,4), (6,4), and by Proposition 4.9, the matrix entry AT12,T12 is the given product over
those inversions,

T12 = 1 2 4
3 6
5

AT12,T12 = (1 + a3,2(T12))(1 + a5,2(T12))(1 + a5,4(T12))(1 + a6,4(T12))

= (1 + 1
2
)(1 + 1

3
)(1 + 1

4
)(1 + 1

2
) = 3

2
· 4
3
· 5
4
· 3
2

= 15
4
.
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Example 4.11. To demonstrate Remark 4.4(b), if we order the standard tableaux of
shape (3, 2, 1) according to their depth in the weak Bruhat graph as follows:

T1 =
1 4 6
2 5
3
, T2 =

1 3 6
2 5
4
, T3 =

1 4 5
2 6
3
, T4 =

1 2 6
3 5
4
, T5 =

1 3 6
2 4
5
, T6 =

1 3 5
2 6
4
, T7 =

1 2 6
3 4
5
, T8 =

1 2 5
3 6
4
,

T9 =
1 3 5
2 4
6
, T10 =

1 3 4
2 6
5
, T11 =

1 2 5
3 4
6
, T12 =

1 2 4
3 6
5
, T13 =

1 3 4
2 5
6
, T14 =

1 2 4
3 5
6
, T15 =

1 2 3
4 6
5
, T16 =

1 2 3
4 5
6
,

then with this indexing, A(3,2,1) has a diagonal submatrix for each distinct row in the weak

Bruhat graph B
(3,2,1)
6 , as shown below.

A(3,2,1) =



1 1
3

1
2
−1

3
−1

3
1
6

1
3
−1

6
−1

6
−1

6
1
6

1
6

1
6
−1

6
1
6

1
12

0 4
3

0 2
3

2
3

2
3

1
3

1
3

1
3

1
3

1
6

1
6

5
12

5
24

1
6
− 7

24

0 0 3
2

0 0 1
2

0 −1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2

0 1
4

0 0 0 2 0 0 1 1 0 0 1
2

1
2

0 5
8
−1

2
−5

8

0 0 0 0 2 0 1 0 1
2

1 1
4

1
2

1
4

1
8
−1

2
−1

8

0 0 0 0 0 2 0 1 1 1
2

1
2

1
4

1
4

1
8
−3

4
5
8

0 0 0 0 0 0 3 0 0 0 3
4

3
2

0 3
8

3
2

3
8

0 0 0 0 0 0 0 3 0 0 3
2

3
4

0 3
8
−3

4
−3

8

0 0 0 0 0 0 0 0 5
2

0 5
4

0 5
4

5
8

0 −5
8

0 0 0 0 0 0 0 0 0 5
2

0 5
4

5
4

5
8

5
4

5
8

0 0 0 0 0 0 0 0 0 0 15
4

0 0 15
8

0 15
8

0 0 0 0 0 0 0 0 0 0 0 15
4

0 15
8

5
4

5
8

0 0 0 0 0 0 0 0 0 0 0 0 15
4

15
8

0 15
8

0 0 0 0 0 0 0 0 0 0 0 0 0 45
8

0 15
8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
2


5 Affine Hecke Algebras

In this section, we follow the notations and definitions of [Ram3, Ram2, RR]. Fix an
element q ∈ C∗ that is not a root of unity. The affine Hecke algebra H̃n of type A is the
associative algebra with 1 over C generated by Ti, 1 6 i 6 n − 1, and Xεi , 1 6 i 6 n,
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subject to the following relations:

(a) TiTj = TjTi, |i− j| > 1,
(b) TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 2,
(c) T 2

i = (q − q−1)Ti + 1, 1 6 i 6 n− 1,
(d) TiX

εj = XεjTi, |i− j| > 1,
(e) Xε1s1X

ε1s1 = s1X
ε1s1X

ε1 ,
(f) Xεi+1 = TiX

εiTi, 1 6 i 6 n− 1.

If w ∈ Sn with reduced word w = si1si2 · · · sik , then we define Tw = Ti1Ti2 · · ·Tik ∈ H̃n.
Since the Ti satisfy the braid relations (a) and (b), the definition of Tw is independent of
the reduced expression for w.

The irreducible, calibrated (see [Che, Ram3, Ram2, RR]) H̃n-modules are indexed by
placed skew shapes . These are created by decomposing a skew shape λ/µ into a disjoint
union of skew shapes,

λ/µ =
⊔
β

(
λ(β)/µ(β)

)
, indexed by β ∈ [0, 1) + i[0, 2π/ ln(q2)), (5.1)

where β is called the page number of the skew shape λ(β)/µ(β). The corresponding content
function (see [Ram3, RR]) is the function c : {boxes of λ/µ} → R+ i[0, 2π/ ln(q2)), given
by

c(b) = β + ct(b) = β + y − x, if b is in row x and column y of λ(β)/µ(β), (5.2)

where ct(b) is the content (3.1) of the box b used in the seminormal representations of Sn,
except we now allow each skew shape to be placed arbitrarily, so that the top left box
need not lie in position (1,1) (see, in particular, [RR, (3.5)]). The pair (c, λ/µ) determines
the corresponding placed skew shape λ/µ =

⊔
β

(
λ(β)/µ(β)

)
.

For a skew shape λ/µ with n boxes, Ram [Ram3] proves that the irreducible, calibrated

H̃n-module corresponding to the placed skew shape (c, λ/µ), is the vector space H̃(c,λ/µ)
n =

C-span {vT | T ∈ SYT(λ/µ)} , with H̃n-action given by the formulas

XεivT = q2c(T(i))vT and TivT = ãi(T)vT +
(
q−1 + ãi(T)

)
vsi(T), (5.3)

where vsi(T) = 0 if si(T) is nonstandard, T(i) is the box of T containing i, and

ãi(T) =
q − q−1

1− q2(c(T(i))−c(T(i+1))
. (5.4)

This is the seminormal basis Ṽ(c,λ/µ) = {vT | T ∈ SYT(λ/µ)} of H̃(c,λ/µ)
n , and the natural

basis Ñ(c,λ/µ) = {nT | T ∈ SYT(λ/µ)} is defined ([Ram3, (5.2)]) from the seminormal
basis analogously to how it is done for the symmetric group; namely,

nT := TwT
vC, where C is the column reading tableau and wT ∈ Sn such that wT(C) = T.

(5.5)
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Analogous to (4.4), for a path π = (T0
si1−→ T1

si2−→ T2
si3−→ · · ·

sik−→ Tk) and a subpath

ω = (T0 = S0
z1−→ S1

z2−→ S2
z3−→ · · · zk−→ Sk) of π in B

λ/µ
n , define the q-weight of ω as

w̃tπ(ω) =
k∏
j=1

b̃j, where b̃j =

{
ãij(Sj−1), if Sj−1

e−→ Sj, i.e., if Sj = Sj−1,

ãij(Sj−1) + q−1, if Sj−1
sij−→ Sj, i.e., if Sj = sij(Si−1),

(5.6)
or, equivalently, w̃tπ(ω) =

∏k
j=1 ãij(Sj−1) + q−1 − q−1δSj−1,Sj .

Since the natural basis is related to the seminormal basis (5.5) in the same way that
they are related for the symmetric group, and since the seminormal representation satisfies
(5.3), the following change-of-basis theorem for H̃n is identical to that of Sn except that
weights are updated with the values from (5.6).

Theorem 5.1. For a placed skew shape (c, λ/µ) with n boxes, the change-of-basis for

H̃(c,λ/µ)
n expressing the natural basis in terms of the seminormal basis satisfies

nT =
∑
S6T

ÃS,T vS with coefficients ÃS,T =
∑
ω⊆π

w̃tπ(ω),

where the first sum is over standard tableaux S 6 T in (strong) Bruhat order; the coefficient

ÃS,T is defined using any path π from C to T in B
λ/µ
n ; and the second sum is over all subpaths

ω ⊆ π which terminate at S.

Proof. By comparing (5.3) with (3.3) we see that Ti acts on vT the same as si acts on vT

except that the diagonal entry ai(T) is replaced by ãi(T) and the off-diagonal entry 1+ai(T)
is replaced by q−1 + ãi(T). Moreover, if wT = sj1sj2 . . . sj` is any reduced expression for
the word of T, then TwT

= Tj1Tj2 · · ·Tj` . Thus, the vector nT = TwT
vc for the affine Hecke

algebra is the same as nT = wTvc for the symmetric group, except that the aji(T) are
replaced by ãji(T) and 1 + aji(T) is replaced by q−1 + ãji(T). The proof is then identical
to the proof of Theorem 4.2.

Corollary 5.2. For any T ∈ SYT(λ/µ),

ÃT,T =
∏

(i,j)∈inv(T)

(q−1 + ãi,j(T)), where ãi,j(T) =
q − q−1

1− q2(c(T(i))−c(T(j))
.

Proof. As in the proof of Theorem 5.1, notice that Ti acts on vT the same as si acts on
vT, except that the weights in (3.3) are replaced by the weights given in (5.3). Thus the
same inductive proof of Proposition 4.9 gives the desired result.

Remark 5.3. The transition matrix A(c,λ/µ), defined by Theorem 5.1, satisfies the same
upper triangular properties as in the symmetric group case, discussed in Remark 4.4.
The recursive formula of Corollary 4.6 also holds for ÃS,T after replacing a` with ã` and
replacing 1− a` with q−1 − ã`.
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6 Cyclotomic Hecke Algebras Hr,n and the Wreath Product
Group Gr,n

6.1 r-tableaux

An r-partition of n is an ordered r-tuple λ = (λ(1) . . . , λ(r)) such that each λ(i) is a partition
and |λ(1)|+ · · ·+ |λ(r)| = n. An r-tableau of shape λ is a filling of the boxes of λ with the
integers 1, 2, . . . , n such that each integer appears exactly once. An r-tableau is standard
if, for each 1 6 i 6 r, the entires of λ(i) increase from left to right in each row and from
top to bottom in each column. We denote the set of r-tableaux of shape λ by YT(λ)
and the set of standard r-tableaux by SYT(λ). The number of standard r-tableaux of

shape λ is given by fλ =
(

n
|λ(1)|,...,|λ(r)|

)
fλ

(1) · · · fλ(r) , where
(

n
|λ(1)|,...,|λ(r)|

)
is the multinomial

coefficient (choose the entries for each λ(i)) and fλ
(i)

is the number of standard tableaux
of shape λ(i) discussed in Section 2.1.

The column reading tableau C of shape λ is the standard r-tableau obtained by entering
1, 2, . . . , n consecutively down the columns of λ, beginning with the leftmost component
and filling in the columns from left to right. The row reading tableau R of shape λ is
the standard r-tableau obtained by entering 1, 2 . . . , n consecutively across the rows of
λ, beginning with the first row of λ(r) and filling in the rows from top to bottom, then
continuing the process from right to left. If T ∈ YT(λ) then the word of T is the unique
permutation wT ∈ Sn such that wT(C) = T, and an inversion in T is a pair (i, j) such that
i > j and either (1) i and j are in the same component and i is strictly south and strictly
west of j, or (2) i is in a component left of the component containing j. In this way, (i, j)
is an inversion in T if and only if (i, j) is an inversion in wT.

Example 6.1. If λ = ((3, 2), ∅, (2), (2, 1)), then

C = ( 2
1

4
3 5

, ∅ ,
6 7

, 9
8 10 ) , R = ( 9

6
10
7 8

, ∅ ,
4 5

, 3
1 2 ) ,

and

if T = ( 4
3

8
5 7

, ∅ ,
1 6

, 10
2 9 ) then wT =

(
1 2 3 4 5 6 7 8 9 10
3 4 5 8 7 1 6 2 10 9

)
.

Furthermore, the inversions in T are inv(T) = {(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2), (8, 7),
(8, 1), (8, 6), (8, 2), (7, 1), (7, 6), (7, 2), (6, 2), (10, 9)}.

Let S, T ∈ SYT(λ). As in the case of standard tableaux of partition shape (Section
2.3), we define Bruhat and weak order on SYT(λ) by defining S 6 T if and only if wS 6 wT

and S 6W T if and only if wS 6W wT. The weak Bruhat graph Bλ
n is the Hasse diagram

of weak order on SYT(λ), which corresponds to the interval [wC, wR] in weak order on Sn
under the map T 7→ wT.
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6.2 Cyclotomic Hecke algebras

Let u1, . . . , ur, q ∈ C∗, q not a root of unity. The cyclotomic Hecke algebra Hr,n =
Hr,n(u1, . . . , ur; q) of Ariki and Koike [AK] is the associative C-algebra with 1 generated
by Ti, 0 6 i 6 n− 1, subject to the relations

(a) TiTj = TjTi, |i− j| > 1,
(b) TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 1, (b′) T0T1T0T1 = T1T0T1T0,
(c) T 2

i = (q − q−1)Ti + 1, 1 6 i 6 n− 1, (c′) (T0 − u1) · · · (T0 − ur) = 0.
(6.1)

If ξ ∈ C is a primitive r-th root of unity, then upon letting ui → ξi−1 and q → 1, the
cyclotomic Hecke algebra Hr,n becomes the group algebra CGr,n, where Gr,n = Zr o Sn is
the wreath product group discussed in Section 6.4, and dim(Hr,n) = |Gr,n| = rnn!.

Let u1, . . . , ur, q be chosen so that Hr,n is semisimple. By [Ari] this requires that
uiu
−1
j 6∈ {1, q2, . . . , q2n} for i 6= j and [n]q! 6= 0, where [n]q! = [n]q[n − 1]q · · · [1]q and

[k]q = (qk − q−1)/(q − q−1). The irreducible representations of Hr,n and Gr,n are indexed
by r-partitions λ = (λ(1), . . . , λ(r)) with a total of n boxes.

There is a surjective algebra homomorphism H̃n → Hr,n from the affine Hecke algebra
to the cyclotomic Hecke algebra given by sending Ti → Ti and Xε1 → T0. Ram and
Rammage [RR, Thm. 3.18] use this mapping to show that the irreducible modules for cy-
clotomic Hecke algebras Hr,n are inherited from those for the affine Hecke algebra H̃n. The
r-partition λ = (λ(1), . . . , λ(r)) corresponds to the placed skew shape (c, λ/µ) which has
r connected components equal to λ(1), . . . , λ(r) where λ(k) is placed on page βk, satisfying
q2βk = uk. Under this identification, for a box b ∈ λ the content function satisfies

q2c(b) = ukq
2(y−x), where b is in position (x, y) of the k-th component λ(k) of λ.

(6.2)
For an r-partition λ = (λ(1), . . . , λ(r)), the irreducible Hr,n-module indexed by λ is the

vector space Hλ
r,n = C-span {vT | T ∈ SYT(λ)} , with Hr,n-action given by the formulas

T0vT = uivT, if 1 ∈ T(i),

TivT = ãi(T)vT +
(
q−1 + ãi(T)

)
vsi(T),

(6.3)

where vsi(T) = 0 if si(T) is nonstandard, T(i) is the component of T containing i, and the
coefficient ãi(T) defined in (5.4) simplifies as

ãi(T) =
q − q−1

1− q2(c(T(i))−c(T(i+1))
=

q − q−1

1− uki
uki+1

q2(ct(T(i))−ct(T(i+1)))
, (6.4)

such that i is in position (xi, yi) of λ(ki) with ct(T(i)) = yi − xi and i + 1 is in position
(xi+1, yi+1) of λ(ki+1) with ct(T(i+ 1)) = yi+1 − xi+1.

The basis Ṽλ = {vT | T ∈ SYT(λ)} is the seminormal basis of Hλ
r,n and the represen-

tation in (6.3) is due to [AK]. Ram defines the natural basis Ñλ = {nT | T ∈ SYT(λ)} of
Hλ
r,n from the seminormal basis as:

nT := TwT
vC, where C is the column reading tableau and wT ∈ Sn such that wT(C) = T.

(6.5)
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The following change-of-basis theorem follows from (6.5) and (6.3).

Theorem 6.2. For an r-partition λ with n boxes and the content function c determined
in (6.2), the change-of-basis for Hλ

r,n expressing the natural basis Ñλ in terms of the

seminormal basis Ṽλ satisfies

nT =
∑
S6T

ÃS,T vS with coefficients ÃS,T =
∑
ω⊆π

w̃tπ(ω),

where the first sum is over standard tableaux S 6 T in Bruhat order; the coefficient ÃS,T

is defined using any path π from C to T in Bλ
n; the second sum is over all subpaths ω ⊆ π

which terminate at S; and the weight w̃tπ(ω) of the subpath ω ⊆ π is given by (5.6) but
with the coefficients ãi(T) as in (6.4).

Proof. The result follows from Theorem 5.1 using the surjective algebra homomorphism
H̃n → Hr,n of Ram and Rammage [RR, (2.2)]. Alternatively, by comparing (6.3) with (3.3)
we see that Ti acts on vT the same as si acts on vT except that the diagonal entry ai(T) is
replaced by ãi(T) and the off-diagonal entry 1 +ai(T) is replaced by q−1 + ãi(T). Moreover
if wT = sj1sj2 . . . sj` is any reduced expression for the word of T, then TwT

= Tj1Tj2 · · ·Tj` .
Thus, the natural basis vector nT = TwT

vc for the cyclotomic Hecke algebra is the same as
nT = wTvc, for the symmetric group, except that the weights aji(T) are replaced by those
ãji(T) in 6.4 and 1 + aji(T) is replaced by q−1 + ãji(T). The proof is then identical to the
proof of Theorem 4.2.

6.3 Iwahori-Hecke algebras of type A and B

The Iwahori-Hecke algebra Hn(q) = H1,n of type A is the special case of cyclotomic Hecke
algebra when r = 1, u1 = 1, and T0 = 1. Its irreducible modules Hλ

n are labeled by
partitions λ ` n, and Theorem 6.2 gives the change-of-basis between the seminormal and
natural bases. In this case, with only one component to λ, the seminormal action reduces
to the one defined in (6.3) with the weight ãi(T) given by

ãi(T) =
q − q−1

1− q2(ct(T(i))−ct(T(i+1))
. (6.6)

This is precisely the seminormal action of Hoefsmit [Hoe], and the corresponding natural
representation, defined using (6.5), was given by Ram [Ram3]. In the q → 1 limit, the
coefficients ãi(T) become the coefficients of the symmetric group; that is, limq→1 ãi(T) =
ai(T) defined in (3.2). Thus, if Aλ(q) is the transition matrix between the natural and
seminormal bases of Hλ

n, then limq→1Aλ(q) = Aλ, the transition matrix for the symmetric
group module Sλn, as seen in Example 6.3.
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Example 6.3. If λ = (3, 2) then the transition matrix Aλ(q) = (AS,T)S,T∈SYT(λ) between
the natural and seminormal bases of Hλ

n is given by

Aλ(q) =

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5



1 3 5
2 4

1 q3

q2+1
q3

q2+1
q6

(q2+1)2
− q5

(q2+1)2

1 2 5
3 4

0 q3+q+q−1

q2+1
0 q6+q4+q2

(q2+1)2
q7+q5+q3

(q2+1)2

1 3 4
2 5

0 0 q3+q+q−1

q2+1
q6+q4+q2

(q2+1)2
q7+q5+q3

(q2+1)2

1 2 4
3 5

0 0 0
(
q3+q+q−1

q2+1

)2
q5

q2+q+1
·
(
q3+q+q−1

q2+1

)2
1 2 3
4 5

0 0 0 0 q5+q+1+q−1

q2+q+1
·
(
q3+q+q−1

q2+1

)2
and one can verify that limq→1Aλ(q) = Aλ, which is shown in Example 4.5.

The Iwahori-Hecke algebra HBn(q) = H2,n of type B is the special case of cyclotomic
Hecke algebra with r = 2 and u1 = u−12 . Its irreducible modules are labeled by pairs of
partitions λ = (λ(1), λ(2)) with a total of n boxes, and Theorem 6.2 gives the change basis
between the seminormal and natural bases. As in type A, the seminormal and natural
bases of HBλn were defined by Hoefsmit [Hoe] and Ram [Ram3], respectively.

6.4 The complex reflection group Gr,n

The group Gr,n = Zr o Sn is the wreath product of the symmetric group Sn and the finite
cyclic group Zr of order r. It has order rnn! and is generated by si, 0 6 i 6 n− 1, subject
to the relations

(a) sisj = sjsi, |i− j| > 1,
(b) sisi+1si = si+1sisi+1, 1 6 i 6 n− 2, (b′) s0s1s0s1 = s1s0s1s0,
(c) s2i = 1, 1 6 i 6 n− 1, (c′) sr0 = 1.

(6.7)

This group is denoted by Gr,n = Gr,1,n in the Shepard and Todd classification of complex
reflection groups, and it contains the symmetric group Sn ⊆ Gr,n as the subgroup gener-
ated by s1, . . . , sn−1. Upon letting q → 1 and identifying Ti with si for 0 6 i 6 n− 1, the
cyclotomic Hecke algebra Hr,n of Section 6.2 specializes to the group algebra CGr,n.

For an r-partition λ = (λ(1), . . . , λ(r)), define the irreducible Gr,n-module indexed by
λ as the vector space Gλ

r,n = C-span {vT | T ∈ SYT(λ)} , with Gr,n-action given by the
formulas

s0vT = ξi−1vT, if 1 ∈ T(i),

sivT = vsi(T), if i, i+ 1 are in different components of T,

sivT = ai(T)vT + (1 + ai(T)) vsi(T), if i, i+ 1 are in the same component of T,
(6.8)
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where vsi(T) = 0 if si(T) is nonstandard, and ai(T) is the same coefficient as defined
for the symmetric group in (3.2). This representation is obtained from (6.3) by letting
q → 1, ui → ξi−1, where ξ is a complex rth root of unity, and identifying Ti with si for
0 6 i 6 n− 1. The basis Vλ = {vT | T ∈ SYT(λ)} is the seminormal basis of Gλ

r,n.
The natural basis Nλ = {nT | T ∈ SYT(λ)} of Gλ

r,n is defined from the seminormal
basis by

nT := wTvC, where wT ∈ Sn such that wT(C) = T (i.e., wT is the word of T), (6.9)

and C is the column reading tableau of shape λ. The change-of-basis coefficients from
the natural basis to the seminormal basis are given by sending q → 1 and ui → ξi−1 in
Theorem 6.2.

Upon specializing to the group Gr,n, the transition matrix takes an especially nice
form that can be understood in terms of the alphabet of entries in each component of
the underlying tableaux. Let λ = (λ(1), . . . , λ(r)) be an r-partition with n boxes, and let
ni = |λ(i)|. A λ-alphabet is an ordered set partition of {1, . . . , n} of the form

A =
{
a
(1)
1 , . . . , a(1)n1

| a(2)1 , . . . , a(2)n2
| · · · | a(r)1 , . . . , a(r)nr

}
,

where
a
(i)
1 < a

(i)
2 < · · · < a(i)ni

for each 1 6 i 6 r.

The corresponding permutation (in two-line notation),

β =

(
1 · · · n1 n1 + 1 · · · n1 + n2 · · · n− nr + 1 · · · n

a
(1)
1 · · · a

(1)
n1 a

(2)
1 · · · a

(2)
n2 · · · a

(r)
1 · · · a

(r)
nr

)
∈ Sn,

is the alphabetizer corresponding to A. The standard alphabet of λ is

A0 = {1, . . . , n1 | n1 + 1, . . . , n1 + n2 | · · · | n1 + · · ·+ nr−1 + 1, . . . , n} ,

whose alphabetizer is the identity permutation. If T = (T(1), . . . , T(r)) ∈ SYT(λ), then the
λ-alphabet of T is given by partitioning {1, . . . , n} according to the entries of each T(i).
For instance, if T is the standard 4-tableau in Example 6.1 then

A = {3, 4, 5, 7, 8 || 1, 6 | 2, 9, 10} and β =

(
1 2 3 4 5 6 7 8 9 10
3 4 5 7 8 1 6 2 9 10

)
.

The alphabetizer is a minimal-length representative of the left coset containing β corre-
sponding to the Young subgroup Sn1 × Sn2 × · · · × Snr ⊆ Sn.

Lemma 6.4. If λ is an r-partition of n, T ∈ SYT(λ) has the standard alphabet, and
β ∈ Sn is an alphabetizer, then βvT = vβ(T).

Proof. We proceed by induction on the length of β. If `(β) = 0, then β is the identity and
the result is immediate. If `(β) > 1, then inv(β) is nonempty, so pick an inversion (i+1, i)
such that i + 1 lies in a component to the left of the component containing i. Such an
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inversion must exist, for if the only inversions in β(T) occur within a single component,
then β(T) has the standard alphabet, which is impossible since β 6= e is an alphabetizer
and the alphabetizer of the standard alphabet is the identity. It follows that `(siβ) < `(β)
since siβ(T) has fewer inversions than β(T). By the Exchange Condition (see, for example,
[Hum, (1.7)]) β = siβ

′ for some β′ ∈ Sn with `(β′) < `(β). Furthermore, we claim that β′

is also an alphabetizer. We have

β =

(
· · · · · · p− 1 p p+ 1 · · · · · · · · · q − 1 q q + 1 · · · · · ·
· · · · · · a

(x)
c−1 i+ 1 a

(x)
c+1 · · · · · · · · · a

(y)
d−1 i a

(y)
d+1 · · · · · ·

)
and

β′ =

(
· · · · · · p− 1 p p+ 1 · · · · · · · · · q − 1 q q + 1 · · · · · ·
· · · · · · a

(x)
c−1 i a

(x)
c+1 · · · · · · · · · a

(y)
d−1 i+ 1 a

(y)
d+1 · · · · · ·

)
.

Since β is an alphabetizer we have a
(x)
c−1 < i+ 1 < a

(x)
c+1 and a

(y)
d−1 < i < a

(y)
d+1. But as there

are no numbers between i and i + 1 we have a
(x)
c−1 < i < a

(x)
c+1 and a

(y)
d−1 < i + 1 < a

(y)
d+1.

Thus β′ is also an alphabetizer since all other entries of β and β′ agree. As `(β′) < `(β),
we have by induction β′vT = vβ′(T), and therefore

βvT = siβ
′vT = sivβ′(T) = vsiβ′(T) = vβ(T),

where the second-to-last equality holds by (6.8) since i and i+1 are in different components
of β′(T).

Theorem 6.5. For an r-partition λ = (λ(1), . . . , λ(r)) with n boxes, the change-of-basis
for Gλ

r,n expressing the natural basis Nλ in terms of the seminormal basis Vλ satisfies

nT =
∑
S6T

AS,TvS with coefficients AS,T =
r∏
i=1

AS(i),T(i)

where the first sum is over standard tableaux S 6 T in Bruhat order which have the
same alphabet as T and AS(i),T(i) is the coefficient from the symmetric group Sn defined in
Theorem 4.2.

Proof. Let T ∈ SYT(λ) have the standard alphabet and fix a component λ(i) of λ. The
entries in T(i) are A(i) = {mi + 1,mi + 2, . . . ,mi + ni}, where ni = |λ(i)| and mi =
n1 + · · ·+ ni−1. We have a natural bijection A(i) → {1, . . . , ni} given by mi + j 7→ j, and
it follows from Theorem 4.2 that

n(C(1),...,C(i−1),T(i),C(i+1),...,C(r)) =
∑

S(i)6T(i)

AS(i),T(i)v(C(1),...,C(i−1),S(i),C(i+1),...,C(r)).

where the sum is over all S(i) 6 T(i) in Bruhat order which have the alphabet A(i) and
C = (C(1), . . . , C(r)) is the column reading tableau of shape λ. By applying the same
argument in each component, we obtain

n(T(1),...,T(r)) =
∑
S6T

(
r∏
i=1

AS(i),T(i)

)
v(S(1),...,,S(r)),
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where by construction each S 6 T has the same alphabet as T.
Now let T ∈ SYT(λ) have partitioned alphabet A (not necessarily standard), and let

β ∈ Sn be its alphabetizer. Then T′ := β−1(T) is a standard tableau with the standard
alphabet and

nT′ =
∑
S′6T′

AS′,T′vS′ with coefficients AS′,T′ =
r∏
i=1

AS′(i),T′(i) ,

where the sum is over S′ 6 T′ with the standard alphabet. By Lemma 6.4 we have
βvS′ = vβ(S′), so

βnT′ =
∑
S′6T′

AS′,T′(βvS′)
∑
S′6T′

AS′,T′vβ(S′) = nβ(T′).

Let S = β(S′) for all S′ 6 T′ with the standard alphabet. Then S 6 T if and only if S′ 6 T′

since wS = βwS′ and wT = βwT′ , so we obtain nT =
∑

S6TAS′,T′vS, where the sum is over
all S 6 T with partitioned alphabet A.

Corollary 6.6. For an r-partition λ = (λ(1), . . . , λ(r)) of n with ni = |λ(i)|, the transition
matrix Aλ = (AS,T)S,T∈SYT(λ) is of the form

Aλ = (Aλ(1) ⊗ · · · ⊗Aλ(r))
⊕( n

n1,...,nr
) .

That is, Aλ is the direct sum of multinomial
(

n
n1,...,nr

)
identical copies (one for each choice

of alphabet) of the tensor product Aλ(1) ⊗ · · · ⊗Aλ(r) such that each Aλ(i) is the symmetric
group Sni

transition matrix as described in Theorem 4.2. In particular, the matrix blocks
are independent of the choice of alphabet.

Example 6.7. If λ = ((2, 1), (3, 1)) then the change-of-basis matrix Aλ is given as the
direct sum over fλ =

(
7
3,4

)
· f (2,1) · f (3,1) = 35 · 2 · 3 = 210 copies of the tensor product of

A(2,1) and A(3,1). The first block of this matrix, Aλ |A0 , corresponding to the r-tableaux
with the standard alphabet A0, looks like this:

( 1 3
2
, 4 6 7

5
) ( 1 3

2
, 4 5 7

6
) ( 1 3

2
, 4 5 6

7
) ( 1 2

3
, 4 6 7

5
) ( 1 2

3
, 4 5 7

6
) ( 1 2

3
, 4 5 6

7
)



( 1 3
2
, 4 6 7

5
) 1 1

2
1
2

1
2

1
4

1
4

( 1 3
2
, 4 5 7

6
) 0 3

2
1
2

0 3
4

1
4

( 1 3
2
, 4 5 6

7
) 0 0 2 0 0 1

( 1 2
3
, 4 6 7

5
) 0 0 0 3

2
3
4

3
4

( 1 2
3
, 4 5 7

6
) 0 0 0 0 9

4
3
4

( 1 2
3
, 4 5 6

7
) 0 0 0 0 0 3
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=

1 3
2

1 2
3( )

1 3
2

1 1
2

1 2
3

0 3
2

⊗

1 3 4
2

1 2 4
3

1 2 3
4


1 3 4
2

1 1
2

1
2

1 2 4
3

0 3
2

1
2

1 2 3
4

0 0 2

= A(2,1) ⊗A(3,1).

7 Transition Between Orthogonal and Seminormal Representa-
tions

In this section we define a new basis of H̃(c,λ/µ)
n that is derived from the seminormal basis

by a diagonal transition matrix. In Theorem 7.1 we give the action of the generators on
this basis that holds for all of the algebraic structures of this paper. When the change-
of-basis formula (7.1) is specialized to Sn by letting q → 1 and ãi,j → ai,j, the action is
the same as that of the symmetric group on Young’s orthogonal basis (3.4).

For a placed skew shape (c, λ/µ) with n boxes, define a basis Õ(c,λ/µ) = {uT | T ∈
SYT(λ/µ)} for the H̃n-module H̃(c,λ/µ)

n given by the formula

uT = DT,TvT, where DT,T =
∏

(i,j)∈inv(T)

q−1 + ãi,j(T)√
q−2 − (ãi,j(T))2

, (7.1)

where ãi,j(T) is defined in Corollary 5.2.

Theorem 7.1. For a placed skew shape (c, λ/µ) with n boxes, the H̃n-action on the basis
Õ(c,λ/µ) satisfies

XεiuT = q2c(T(i))uT and TiuT = ãi(T)uT +
√
q−2 − ãi(T)2usi(T),

where usi(T) = 0 if si(T) is nonstandard.

Proof. The first equality is easily verified, so it suffices to prove the second. For any
generator Ti, 1 6 i 6 n− 1, we have

TiuT = DT,TTivT = DT,T

(
ãi,i+1(T)vT + (q−1 + ãi,i+1(T))vsi(T)

)
= ãi,i+1(T)DT,TvT + (q−1 + ãi,i+1(T))DT,Tvsi(T)

= ãi,i+1(T)uT + (q−1 + ãi,i+1(T))
DT,T

Dsi(T),si(T)

usi(T).

If si(T) is nonstandard, we are done. If si(T) is standard, then it suffices to prove that

q−1 + ãi,i+1(T)√
q−2 − (ãi,i+1(T))2

DT,T = Dsi(T),si(T). (7.2)
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The inversions in T and si(T) that do not involve i or i + 1 are exactly the same. The
inversions that involve i or i + 1 and another entry j are in bijection by swapping i and
i+1, and the differences in content do not change, since they depend only on the positions
of i, i+1 and j. The only inversion that changes is between i and i+1. If (i+1, i) 6∈ inv(T),
then (i + 1, i) ∈ inv(si(T)). In this case, ãi,i+1(T) = ãi+1,i(si(T)) and the leftmost term in
(7.2) is exactly what is needed to be multiplied by DT,T to get to Dsi(T),si(T).

Conversely, if (i + 1, i) ∈ inv(T), then (i + 1, i) 6∈ inv(si(T)). In this case, (q−1 +

ãi+1,i(T))/
√
q−2 − (ãi+1,i(T))2 is the factor of DT,T corresponding to (i + 1, i) ∈ inv(T), so

that

DT,T =
q−1 + ãi+1,i(T)√
q−2 − (ãi+1,i(T))2

Dsi(T),si(T).

When we multiply this factor by the leftmost term in (7.2) it cancels, as seen here:

q−1 + ãi,i+1(T)√
q−2 − (ãi,i+1(T))2

q−1 + ãi+1,i(T)√
q−2 − (ãi+1,i(T))2

=
q−1 + ãi,i+1(T)√
q−2 − (ãi,i+1(T))2

q−1 − ãi,i+1(T)√
q−2 − (−ãi,i+1(T))2

=
q−2 − (ãi,i+1(T))2

q−2 − (ãi,i+1(T))2
= 1.

Remark 7.2. For the irreducible symmetric group module Sλn, the diagonal change-of-
basis matrix was known to Rutherford [Rut], but he used a slightly different seminormal
representation, whose off-diagonal entries are 1 and 1− ai(T)2 rather than 1− ai(T) and
1 + ai(T) as used in (3.3). His diagonal change-of-basis entries are of the form

√
ψT for

a tableau function which depends on the inversions in T ∈ SYT(λ). For the symmetric
group, the diagonal entry (7.1) specializes to

lim
q→1

DT,T =
∏

(i,j)∈inv(T)

1 + ai,j(T)√
1− (ai,j(T))2

, (7.3)

and is the same as
√
ψT modulo the conversion between the two seminormal representa-

tions.

8 Examples

8.1 Symmetric group transition matrices

Below are the nontrivial transition matrices for irreducible Sn-modules for n = 3, 4, 5.
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λ = (2, 1)

1 2
3

1 3
2

s2

1 3
2

1 2
3( )

1 3
2

1 1
2

1 2
3

0 3
2

λ = (3, 1)

1 3 4
2

1 2 4
3

1 2 3
4

s2

s3

1 3 4
2

1 2 4
3

1 2 3
4


1 3 4
2

1 1
2

1
2

1 2 4
3

0 3
2

1
2

1 2 3
4

0 0 2

λ = (2, 2)

1 3
2 4

1 2
3 4

s2

1 3
2 4

1 2
3 4( )

1 3
2 4

1 1
2

1 2
3 4

0 3
2

λ = (2, 1, 1)

1 4
2
3

1 3
2
4

1 2
3
4

s3

s2

1 4
2
3

1 3
2
4

1 2
3
4


1 4
2
3

1 1
3

−1
3

1 3
2
4

0 4
3

2
3

1 2
3
4

0 0 2

λ = (4, 1)

1 3 4 5
2

1 2 4 5
3

1 2 3 5
4

1 2 3 4
5

s2

s3

s4

1 3 4 5
2

1 2 4 5
3

1 2 3 5
4

1 2 3 4
5


1 3 4 5
2

1 1
2

1
2

1
2

1 2 4 5
3

0 3
2

1
2

1
2

1 2 3 5
4

0 0 2 1
2

1 2 3 4
5

0 0 0 5
2
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λ = (3, 2)

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

s2 s4

s4 s2

s3

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5



1 3 5
2 4

1 1
2

1
2

1
4

−1
4

1 2 5
3 4

0 3
2

0 3
4

3
4

1 3 4
2 5

0 0 3
2

3
4

3
4

1 2 4
3 5

0 0 0 9
4

3
4

1 2 3
4 5

0 0 0 0 3

λ = (3, 1, 1)

1 4 5
2
3

1 3 5
2
4

1 2 5
3
4

1 3 4
2
5

1 2 4
3
5

1 2 3
4
5

s3

s2 s4

s4 s2

s3

1 4 5
2
3

1 3 5
2
4

1 2 5
3
4

1 3 4
2
5

1 2 4
3
5

1 2 3
4
5



1 4 5
2
3

1 1
3

−1
3

1
3

−1
3

0

1 3 5
2
4

0 4
3

2
3

1
3

1
6

−1
2

1 2 5
3
4

0 0 2 0 1
2

−1
2

1 3 4
2
5

0 0 0 5
3

5
6

5
6

1 2 4
3
5

0 0 0 0 5
2

5
6

1 2 3
4
5

0 0 0 0 0 10
3
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λ = (2, 2, 1)

1 4
2 5
3

1 3
2 5
4

1 2
3 5
4

1 3
2 4
5

1 2
3 4
5

s3

s2 s4

s4 s2

1 4
2 5
3

1 3
2 5
4

1 2
3 5
4

1 3
2 4
5

1 2
3 4
5



1 4
2 5
3

1 1
3
−1

3
−1

3
1
3

1 3
2 5
4

0 4
3

2
3

2
3

1
3

1 2
3 5
4

0 0 2 0 1

1 3
2 4
5

0 0 0 2 1

1 2
3 4
5

0 0 0 0 3

λ = (2, 1, 1, 1)

1 5
2
3
4

1 4
2
3
5

1 3
2
4
5

1 2
3
4
5

s4

s3

s2

1 5
2
3
4

1 4
2
3
5

1 3
2
4
5

1 2
3
4
5



1 5
2
3
4

1 1
4
−1

4
1
4

1 4
2
3
5

0 5
4

5
12

− 5
12

1 3
2
4
5

0 0 5
3

5
6

1 2
3
4
5

0 0 0 5
2

8.2 Transition matrices for Hecke algebras

Here we give change-of-basis matrix between the natural and seminormal representations
of the irreducible H2,4-module H((2,1),(1))

2,4 , which continues on the next page.
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( 1 3
2
, 4 ) ( 1 2

3
, 4 ) ( 1 4

2
, 3 ) ( 1 2

4
, 3 ) ( 1 4

3
, 2 )



( 1 3
2
, 4 ) 1 q3

q2+1
u1−q2u1
q3u2−qu1 − q2(q2−1)u1

(q2+1)(q2u2−u1) − q2(q2−1)u1
(q2+1)(q2u2−u1)

( 1 2
3
, 4 ) 0 q4+q2+1

q3+q
0

(q6−1)u2
(q2+1)(q2u2−u1)

u1−q6u1
q2(q2+1)(q2u2−u1)

( 1 4
2
, 3 ) 0 0 q(u2−u1)

q2u2−u1 − q4(u1−u2)
(q2+1)(q2u2−u1) − q2(q2−1)u2(u1−u2)

(u1−q2u2)2

( 1 2
4
, 3 ) 0 0 0

(q4+q2+1)(q4u2−u1)
q2(q2+1)(q2u2−u1) 0

( 1 4
3
, 2 ) 0 0 0 0

(u1−u2)(u1−q4u2)
(u1−q2u2)2

( 1 3
4
, 2 ) 0 0 0 0 0

( 2 3
4
, 1 ) 0 0 0 0 0

· · ·

· · ·

( 1 3
4
, 2 ) ( 2 4

3
, 1 ) ( 2 3

4
, 1 )



q(q2−1)
2
u12

(q2+1)(u1−q2u2)2
q(q2−1)u1

(q2+1)(q2u2−u1) − (q2−1)
2
u12

(q2+1)(u1−q2u2)2

−(q2−1)
2
(q4+q2+1)u1u2

(q3+q)(u1−q2u2)2
u1−q6u1

q(q2+1)(q2u2−u1) −(q2−1)
2
(q4+q2+1)u1u2

(q2+1)(u1−q2u2)2

−(q2−1)
2
(u1−u2)(q4u22+u12)
q(q2u2−u1)3

− q5(q2−1)u2(u1−u2)
(q2+1)(u1−q2u2)2

−(q2−1)(u1−u2)(q2u1+u2)
(q2+1)(u1−q2u2)2

−(q2−1)(q4+q2+1)u1(q4u2−u1)
q3(q2+1)(u1−q2u2)2

0 −(q2−1)(q4+q2+1)u1(q4u2−u1)
(q2+1)(qu1−q3u2)2

− q3(u1−u2)(q4u2−u1)
(q2+1)(u1−q2u2)2

(q2−1)u2(q4u2−u1)
q(u1−q2u2)2

q2(q2−1)u2(q4u2−u1)
(q2+1)(u1−q2u2)2

−(q4+q2+1)(u1−u2)(q4u2−u1)
(q3+q)(u1−q2u2)2

0
(q2−1)u2(u1−u2)(q4u2−u1)

(u1−q2u2)3

0 u1−q4u2
qu1−q3u2

q2(q4u2−u1)
(q2+1)(q2u2−u1)

0 0
(q4+q2+1)(q4u2−u1)
q2(q2+1)(q2u2−u1)

By sending u1 → 1, u2 → −1, q → 1 in the matrix above we obtain the change-of-basis
matrix between the natural and seminormal representations of the irreducible G2,4-module
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G((2,1),(1))
2,4 :

( 1 3
2
, 4 ) ( 1 2

3
, 4 ) ( 1 4

2
, 3 ) ( 1 2

4
, 3 ) ( 1 4

3
, 2 ) ( 1 3

4
, 2 ) ( 2 4

3
, 1 ) ( 2 3

4
, 1 )



( 1 3
2
, 4 ) 1 1

2
0 0 0 0 0 0

( 1 2
3
, 4 ) 0 3

2
0 0 0 0 0 0

( 1 4
2
, 3 ) 0 0 1 1

2
0 0 0 0

( 1 2
4
, 3 ) 0 0 0 3

2
0 0 0 0

( 1 4
3
, 2 ) 0 0 0 0 1 1

2
0 0

( 1 3
4
, 2 ) 0 0 0 0 0 3

2
0 0

( 2 4
3
, 1 ) 0 0 0 0 0 0 1 1

2

( 2 3
4
, 1 ) 0 0 0 0 0 0 0 3

2

which is the direct sum over four copies (one for each possible partitioned alphabet) of
the tensor product A(2,1) ⊗A(1) = A(2,1), as given in Section 8.1.
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