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Abstract

Consider the following game between Builder and Painter. We take some families
of graphs G1, . . . ,Gt and an integer n such that n > R(G1, . . . ,Gt). In each turn,
Builder picks an edge of initially uncoloured Kn and Painter colours that edge with
some colour i ∈ {1, . . . , t} of her choice. The game ends when a graph Gi in colour
i for some Gi ∈ Gi and some i is created. The restricted online Ramsey number
R̃(G1, . . . ,Gt;n) is the minimum number of turns that Builder needs to guarantee
the game to end.

In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers
of matchings and determined a general upper bound for them. They proved that for
n = 3r−1 = R2(rK2) we have R̃2(rK2;n) 6 n−1 and asked whether this was tight.
In this short note, we provide a general lower bound for these Ramsey numbers. As a
corollary, we answer this question of Briggs and Cox, and confirm that for n = 3r−1
we have R̃2(rK2;n) = n− 1. We also show that for n′ = 4r− 2 = R3(rK2) we have
R̃3(rK2;n

′) = 5r − 4.

Mathematics Subject Classifications: 05C57

1 Introduction

For families of graphs G1, . . . ,Gt, the Ramsey number R(G1, . . . ,Gt) is the smallest integer
n such that any colouring of edges of Kn with colours 1, . . . , t contains a graph Gi in colour
i for some Gi ∈ Gi and some i ∈ {1, . . . , t}. When each family Gi contains a single graph
Gi, we instead use the notation R(G1, . . . , Gt) for the corresponding Ramsey number.
When moreover we have G1 = · · · = Gt, we use the notation Rt(G1) for R(G1, . . . , Gt).
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The Ramsey numbers of graphs have been studied extensively, see for instance a survey
of Conlon, Fox and Sudakov [6].

Many variants of the Ramsey numbers have been considered. One of them are the
so-called online Ramsey numbers, introduced by Beck [1] and later independently by
Kurek and Ruciński [12]. For families of graphs G1, . . . ,Gt, the online Ramsey number
R̃(G1, . . . ,Gt) is the smallest integer k for which Builder can always guarantee a win within
the first k moves of the following game between Builder and Painter. Initially, we are given
an infinite set of vertices, with every two vertices connected by an uncoloured edge. In
each turn, Builder picks an edge between some two vertices in our set and Painter chooses
any colour out of 1, . . . , t and colours the edge with this colour. Builder wins once there
is a graph Gi in colour i for some Gi ∈ Gi and some i ∈ {1, . . . , t}. For various results
about online Ramsey numbers, see [4, 5, 8, 9, 11, 13, 14].

In 2008, Pra lat [15] also introduced the restricted online Ramsey numbers (under
different name, the name restricted online Ramsey numbers was first used for these by
Conlon, Fox, Grinshpun and He [5]). These correspond to the same game as the online
Ramsey numbers, but this game is now instead played on a finite board. To define this
formally, for families of graphs G1, . . . ,Gt and an integer n such that n > R(G1, . . . ,Gt),
the restricted online Ramsey number R̃(G1, . . . ,Gt;n) is the smallest integer l for which
Builder can always guarantee a win within the first l moves of the following game between
Builder and Painter. In each turn, Builder picks an edge of initially uncoloured Kn and
Painter chooses any colour out of 1, . . . , t to colour this edge. Builder wins once there
appears a graph Gi in colour i for some Gi ∈ Gi and some i ∈ {1, . . . , t}. We note that
the definitions of R̃(G1, . . . ,Gt;n) differ slightly between the previous papers on this topic
[2, 5, 7, 10, 15], but it is easy to see that all are equivalent.

Analogously to the usual Ramsey numbers, when each family Gi contains a single graph
Gi, we use the notation R̃(G1, . . . , Gt;n) for the corresponding restricted online Ramsey
number. And when we further have G1 = · · · = Gt, we use the notation R̃t(G1;n) for
R̃(G1, . . . , Gt;n).

Briggs and Cox [2] studied the restricted online Ramsey numbers of matchings and
trees. Before stating their results, recall the following well-known result of Cockayne and
Lorimer [3] about the Ramsey numbers of matchings.

Theorem 1. For any t > 2 and positive integers r1, . . . , rt, we have

R(r1K2, . . . , rtK2) = max
i

ri + 1 +
t∑

i=1

(ri − 1).

Hence in particular, Rt(rK2) = r + 1 + t(r − 1).

When r is fixed, we will denote by nt for t > 2 the number Rt(rK2) = r+ 1 + t(r− 1).
So in particular we have n2 = 3r − 1, n3 = 4r − 2 and n4 = 5r − 3. Now we are ready to
state the result of Briggs and Cox [2].

Theorem 2. Fix t > 2 and positive integers r1, . . . , rt. If n > R(r1K2, . . . , rtK2), then
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R̃(r1K2, . . . , rtK2;n) 6
2t− 1 + (t− 3) log2(t− 2)

t + 1
n

with the convention that log2 0 = 0.
Moreover, if we fix r > 1, then R̃2(rK2;n2) 6 3r − 2 = n2 − 1, R̃3(rK2;n3) 6 5r − 4

and R̃4(rK2;n4) 6 7r − 5.

They ask whether we have R̃2(rK2;n2) = n2 − 1. The aim of this short note is to
verify that this indeed holds. We also show that the bound R̃3(rK2;n3) 6 5r − 4 is tight
and that the bound R̃4(rK2;n4) 6 7r − 5 is tight except possibly for the exact value of
the additive constant.

By describing a suitable strategy of Painter, we prove the following more general
lower bound and a corollary about restricted online Ramsey numbers of matchings with
few colours. This in particular answers the question of Briggs and Cox [2].

Theorem 3. Fix t > 2 and positive integers r1, . . . , rt. If n > R(r1K2, . . . , rtK2), then
R̃(r1K2, . . . , rtK2;n) > 3(

∑t
i=1 ri − t + 1)− n.

Hence if we fix r > 1, then R̃2(rK2;n2) = 3r − 2 = n2 − 1, R̃3(rK2;n3) = 5r − 4 and
R̃4(rK2;n4) ∈ {7r − 6, 7r − 5}.

It remains unclear whether for t and r large, the magnitude of R̃t(rK2;nt) is closer to
the upper bound from Theorem 2 or to the lower bound from Theorem 3.

2 Proof of Theorem 3

Consider the game played with t colours on the edges of an initially uncoloured Kn. To
prove Theorem 3, we will describe a strategy of Painter that ensures that after T =
3(
∑t

i=1 ri − t + 1)− n− 1 moves (where by a move we mean Builder choosing some still
uncoloured edge and Painter colouring it), there is no riK2 of colour i for i = 1, . . . , t.

While taking her turns (and to help her with her colouring decisions), Painter will
moreover assign the following states to the coloured edges of Kn and to all the vertices
of Kn. Coloured edges are either free, or rooted. Every rooted edge is characterized by
its root, which is one of its endpoints. Painter will assign (and update) the states of the
coloured edges according to the strategy described below.

Vertices are of three types, characterized in the following way.

• If a vertex v is a root of at least one coloured edge, it is of type I.

• If a vertex v is not of type I, but there is at least one free edge with endpoint v, it
is of type II.

• If a vertex v is neither of type I nor of type II, it is of type III.

In particular, note that initially all the vertices are of type III, since no edges are
coloured at the start of the game.
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For 0 6 j 6
(
n
2

)
and i = 1, . . . , t, let Aj(i) be a number of type I vertices that are

roots to at least one edge of colour i after j moves and let Bj(i) be a number of free edges
of colour i after j moves. Let Aj =

∑t
i=1 Aj(i) and Bj =

∑t
i=1Bj(i).

Assume Builder chooses the edge ab in (k + 1)st turn of his (where 0 6 k 6
(
n
2

)
−1).

Without loss of generality (as we could otherwise switch a and b), we can assume that if
b is of type I, then a is also of type I; and if b is of type II, then a is of type I or of type
II. Painter chooses the colour of an edge and updates the states of the coloured edges as
follows.

(i) If a is a vertex of type I, we declare the edge ab to be rooted at a. By definition,
there exists at least one other edge rooted at a, of some colour c1 (if there are more
edges rooted at a, pick one arbitrarily). We colour ab by colour c1.

(ii) If a is a vertex of type II, there exists by definition a free edge ac for some c, of
some colour c2 (if there are more free edges with endpoint a, pick one arbitrarily).
We declare both edges ab, ac to be rooted at a and colour ab in c2.

(iii) If a is a vertex of type III, then the edge ab is declared to be free. It is coloured in
any colour c3 such that Ak(c3) + Bk(c3) 6 rc3 − 2 if at least one such colour exists,
and if not in an arbitrary colour.

The next two observations are straightforward.

Observation 4. The number of vertices of type III:

• stays the same during move (i)

• increases by 1 or stays the same during move (ii)

• decreases by 2 during move (iii)

Observation 5. If move j was (i) or (ii), we have Aj(i) + Bj(i) = Aj−1(i) + Bj−1(i)
for i = 1, . . . , t. If move j was (iii) and Painter used colour c, we have Aj(c) + Bj(c) =
Aj−1(c) + Bj−1(c) + 1 and for any c′ 6= c we have Aj(c

′) + Bj(c
′) = Aj−1(c

′) + Bj−1(c
′).

Using Observation 4 and Observation 5, we prove the key lemma.

Lemma 6. We have AT + BT 6
∑t

i=1 ri − t.

Proof. Let C2 be the number of moves (ii) up to time T , and let C3 be the number of
moves (iii) up to time T . At time T , by Observation 4 we have at most n + C2 − 2C3

vertices of type III. That implies n + C2 − 2C3 > 0. Since we further have C2 + C3 6 T ,
we must have C3 6 n+T

3
.

Now by Observation 5, AT +BT 6 C3 6 n+T
3

=
∑t

i=1 ri− t+ 2
3
, and since AT +BT is

an integer, we have AT + BT 6
∑t

i=1 ri − t as required.
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Continuing the proof of Theorem 3, we are now ready to show that after T moves,
there is no riK2 of colour i for i = 1, . . . , t.

Note that the existence of rmK2 of colour m would in particular imply that AT (m) +
BT (m) > rm. Because of the strategy of Painter and Observation 5, that would imply
that AT (i) + BT (i) > ri − 1 for i = 1, . . . , t. Hence we would have AT + BT > (r1 − 1) +
· · · + rm + · · · + (rt − 1) =

∑t
i=1 ri − t + 1, contradicting Lemma 6. Thus the proof of

Theorem 3 is finished.

Acknowledgements

The author would like to thank his PhD supervisor Professor Béla Bollobás and anony-
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