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Abstract

In the homomorphism order of digraphs, a duality pair is an ordered pair of
digraphs (G,H) such that for any digraph, D, G → D if and only if D 6→ H. The
directed path on k+1 vertices together with the transitive tournament on k vertices
is a classic example of a duality pair.

In this work, for every undirected cycle C we find an orientation CD and an
oriented path PC , such that (PC , CD) is a duality pair. As a consequence we obtain
that there is a finite set, FC , such that an undirected graph is homomorphic to C, if
and only if it admits an FC-free orientation. As a byproduct of the proposed duality
pairs, we show that if T is an oriented tree of height at most 3, one can choose a
dual of T of linear size with respect to the size of T .

Mathematics Subject Classifications: 05C60, 05C75

1 Introduction

We consider graphs and digraphs with neither loops nor parallel arcs. For a digraph D, we
use VD to denote its vertex set and AD to denote its arc set. For undefined terms we refer
the reader to [7]. In the homomorphism order of digraphs, a duality pair is an ordered
pair of digraphs (G,H) such that for any digraph, D, G→ D if and only if D 6→ H.

Our main result can be considered in three different contexts. We now present a brief
introduction to each of them.

The Roy-Gallai-Hasse-Vitaver Theorem [3, 5, 14, 16] states that a graph is k-colourable
if and only if it admits an orientation with no directed path on more than k vertices. This
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result is a consequence of the fact that a digraph D is homomorphic to the transitive

tournament on k vertices, TTk, if and only if the directed path on k + 1 vertices,
−→
P k+1,

is not homomorphic to D. In terms of duality pairs, (
−→
P k+1, TTk) is a duality pair in the

homomorphism order of digraphs. In [12] Nešetřil and Tardif proved that if (A,B) is a
duality pair in the homomorphism order of digraphs, then A is an oriented tree. Moreover,
for any oriented tree, T , there is a digraph DT (the dual of T ), such that (T,DT ) is a
duality pair in the homomorphism order of digraphs. Their result is actually more general,
dealing with relational structures, so, as other authors have done, we consider a restriction
for the context of this work. In fact, in [11], the same authors consider the problem
restricted to digraphs and, for a given oriented tree T , they construct a digraph DT such
that (T,DT ) is a duality pair. Their construction is simple, but of size exponential on
|VT |, raising the following question: Can one choose DT to be of polynomial size with
respect to |VT |? (Proposed as Problem 1 in [11].) In general, this question has a negative
answer [13], but there are some examples where one can pick DT to be of polynomial size
with respect to |VT |. For instance, for the family of directed paths, one can choose DT to
be the corresponding dual transitive tournament, and thus DT is of linear size when T is
a directed path.

Similar notions of duality have been studied also in the context of digraph homomor-
phisms. In [9], Hell and Zhu defined the class of B-cycles as special orientations of cycles,
and showed that for a fixed B-cycle, C, a digraph D is not homomorphic to C, if and
only if there exists a path P homomorphic to D, which is not homomorphic to C. They
call this notion of duality path duality.

For a set of oriented graphs F the class of F -graphs is the class of undirected graphs
that admit an F -free orientation. In [15], Skrien found a structural characterization for
the class of F -graphs when F is a set of oriented paths on 3 vertices. Some of these
are proper interval graphs, proper circular-arc graphs and comparability graphs. In [4],
Skrien’s study of F -graphs is extended to any set of oriented graphs on 3 vertices. Two of
these classes are still lacking a complete structural characterization; the so-called perfectly
orientable graphs [15], and the transitive-perfectly orientable graphs [4]. In terms of F -
graphs, the Roy-Gallai-Vitaver-Hasse Theorem states that, when F is the set of oriented
graphs on k + 1 vertices with a hamiltonian directed path, the class of F -graphs is the
class of k-colourable graphs. In this case, one can assume that such an orientations is
also acyclic. The class of graphs that admit an acyclic F -free orientation is the class of
F ∗-graphs [15]. Another example of such classes are chordal graphs: when F consists of
the orientation of the path on 3 vertices such that one vertex has 2 out-neighbours, the
class of F ∗-graphs is the class of chordal graphs. This statement follows from the fact
that a graph is chordal if and only if it admits a perfect elimination ordering [2].

Even though we mainly deal with duality pairs in the homomorphism order of digraphs,
the whole paper is motivated by the study of characterizations of graph classes as F -
graphs, for a finite set F . For each positive integer n, n > 3, we present a finite set of
oriented graphs Fn such that Fn-graphs are precisely Cn-colourable graphs, i.e., graphs
that admit a homomorphism to the n-cycle. In a way similar to the Roy-Gallai-Vitaver-
Hasse Theorem, we use duality pairs as a tool to find such a set Fn.
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From the viewpoint of oriented cycles and path dualities, it turns out that our result
yields another class of cycles, in addition to the B-cycles studied in [9], having path
duality. The class we propose, AC-cycles, is somewhat more restrictive, but the result
can be strengthened: for any AC-cycle, C, we obtain an oriented path PC , such that a
digraph D is not homomorphic to C, if and only if PC is homomorphic to D.

The class of AC-cycles corresponds to the family of duals, DP , for oriented paths P
in a special set, for the moment the set Q. Moreover, these AC-cycles are duals of linear
size with respect to their corresponding path P . In [8] Hell and Nešetřil showed that the
core of any oriented tree of height 3 is a path in Q. Hence, we conclude that for any tree
T of height at most 3, one can choose a dual DT of linear size with respect to the core of
T , and thus of linear size with respect to T .

The rest of this work is structured as follows. In Section 2, we introduce basic nota-
tion, concepts and results needed for later developments. Our main result is stated and
proved in Section 3. Finally, in Section 4 we consider the different interpretations of our
main result in the three contexts introduced above. Conclusions are briefly presented in
Section 5.

2 Preliminary results

When G and H are graphs, we write G → H to denote that G is homomorphic to H.
When x and y are vertices of a digraph D, we write x→ y to denote that (x, y) is an arc
of D. It should always be clear from the context to which interpretation of the symbol→
we are referring to. Nonetheless, when speaking of homomorphisms, we will use capital
letters for digraphs, and when dealing with arcs in a digraph, we will use small-case letter
for vertices.

An oriented path P is a sequence of distinct vertices (p0, . . . , pn) such that, for each
i ∈ {0, . . . , n − 1}, either (pi, pi+1) ∈ AP , or (pi+1, pi) ∈ AP (but not both), and P has
no more arcs. If pi → pi+1 we say that (pi, pi+1) is a forward arc; if pi+1 → pi the arc
(pi+1, pi) is a backward arc. The direction in which P is traversed is emphasized by saying
that the initial vertex of P is p0 and the terminal vertex of P is pn. If all arcs in P
are forward (backward) arcs, we say that P is a directed path, with forward (backward)

direction and denote it by
−→
P n+1 (

←−
P n+1), where n is the number or arcs of P . An oriented

path is alternating if every two successive arcs are oppositely oriented. We denote by
An, the alternating path on n vertices that begins with a forward arc, if n = 1, then
An denotes the single vertex with no arcs. A semi-walk on a digraph D, is a sequence
v1a1v2a2 . . . an−1vn, where vi ∈ VD for i ∈ {1, . . . , n}, and ai is an arc with endpoints vi
and vi+1, for i ∈ {1, . . . , n−1}. An arc ai in a semi-walk is a forward arc if ai = (vi, vi+1);
otherwise, we say it is a backward arc. A semi-walk is closed if v1 = vn. The pattern of
the semi-walk v1a1v2a2 . . . vn, is a sequence l1 . . . ln−1 of symbols in {→,←}, where li =→
if ai is a forward arc; li =← otherwise.

An oriented cycle C is an oriented graph obtained by identifying the initial and ter-
minal vertex of an oriented path P . If all arcs have the same direction, we speak of a

directed cycle, and denote it by
−→
C n.
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The net length `(X) of an oriented path or oriented cycle, X, is the number of forward
arcs minus the number of backward arcs in X, note that the net lentgh may be negative.
The following statement if proved in [6], but we use the restatement found in [10] for its
simplicity.

Theorem 1. [10] For n > 1, an oriented graph G is homomorphic to
−→
P n, if and only if,

every oriented path homomorphic to G has net length at most n.

Theorem 1 shows that directed paths have path duality. Now we introduce another
family of oriented graphs, proposed by Hell and Zhu in [9], that have path duality. An
oriented path P is minimal if it contains no proper oriented path P ′ such that `(P ′) =
`(P ). An oriented cycle C = (c0, . . . , cn, . . . , cm−1, c0) is a B-cycle, if (c0, . . . , cn) is a
forward directed path, and (c0, cm−1, . . . , cn) is a minimal oriented path of net length
n− 1. As mentioned in Section 1, B-cycles have path duality.

Theorem 2. [9] Let C be a B-cycle. A digraph D is homomorphic to C if and only if
every oriented path homomorphic to D is also homomorphic to C.

A digraph G is balanced if every oriented cycle in G has net length zero. A digraph

on n vertices is balanced if and only if D →
−→
P n−1 (see [7]). Since every directed cycle has

non-null net length, every balanced digraph must be acyclic, and thus there is at least one
vertex with no in-neighbours. Let G be a connected balanced digraph and x ∈ VG such
that d−(x) = 0. We define the level of vertex v ∈ VG as the net length of any oriented
path from x to v. The fact that the level of every vertex is well-defined follows from the
choice of G, i.e. connected and balanced. The maximum level of the vertices in G is called
the height of G. For two digraphs G and H, the interval [G,H] consists on all digraphs
M such that G → M → H. The following statement is a useful and well-known result
about the homomorphism order of digraphs.

Proposition 3. [8] If G is a balanced digraph of height 3, then G ∈ [
−→
P 3,
−→
P 4].

Two oriented graphs G and H are homomorphically equivalent, if and only if G→ H,
and H → G. Thus, it follows that G and H are homomorphically equivalent, if and only
if, for any digraphs L and R, L → G if and only if L → H, and, G → R if and only
if H → R. An ordered pair of digraphs (G,H) is a duality pair, if for any digraph L,
G 6→ L if and only if L→ H. In this case, we say that H is a dual of G. It is not hard to
notice that if such a dual exists, then it is unique up to homomorphic equivalence. The
transitive tournament on n vertices is denoted by TTn. A classic example of a family of
duality pairs, is given by the following theorem.

Theorem 4. [1] For n > 2, an oriented graph G is homomorphic to TTn if and only if
−→
P n+1 is not homomorphic to G, i.e., for every n > 2, (

−→
P n+1, TTn) is a duality pair.

We conclude this section with the following straightforward observation that we will
use more than once in this work.

Observation 5. Let G,H and R, S be pairs of homomorphically equivalent oriented
graphs, then (G,R) is a duality pair if and only if (H,S) is a duality pair.
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3 Main results

We first define the family of oriented paths for which we will find a family of duals. For
n > 3 we denote by Qn the oriented path on n vertices (q0, . . . , qn−1) with the following
properties: the first two arcs are forward arcs, the suboriented path (q1, . . . , qn−2) is an
alternating path, and the two final arcs have the same direction. Note that, by the first

two conditions, (q1, . . . , qn−k) = An−(k+1) for 1 6 k 6 (n− 3), and (qn−3, qn−2, qn−1) =
−→
P 3

or (qn−3, qn−2, qn−1) =
←−
P 3, depending on the parity of n. This is illustrated in Figure 1.

In particular, Q3 and Q4 are the directed paths on 3 and 4 vertices respectively.

Q5 Q6

Figure 1: The oriented paths Qn+2 with the vertices of their mid-section, An, coloured
black (n ∈ {3, 4}). In Q5 the three final vertices induce a directed path with all arcs
backward, while in Q6 the three final vertices induce a directed path with all arcs forward.

Observation 6. For every integer n, n > 5, Qn is homomorphic to Qn−2. In particular,

if n is even then Qn →
−→
P 4, and if n is odd then Qn →

−→
P 3.

Proof. Let n be an integer, n > 5, and let Qn = (q0, . . . , qn). By identifying q3 with q1,
and q4 with q2, we obtain a homomorphism from Qn to Qn−2.

It is also straightforward to calculate the net length of the oriented paths Qn.

Observation 7. For every positive integer n, n > 3, the net length of Qn is described by
the equations

`(Qn) =


2 if n = 3,

3 if n is even,

0 if n is odd and greater than 3.

It is clear that
−→
P 3 maps to Qn for all n at least 3. Now, if n is even, by Observation 7,

`(Qn) = 3 and since `(
−→
P 3) = 2, Theorem 1 ensures that Qn does not map to

−→
P 3. On

the other hand, if n is odd, we know that Qn →
−→
P 3 by Observation 6. So the following

statement holds.

Lemma 8. For every integer n, n > 4, Qn is homomorphically equivalent to
−→
P 3 if and

only if n is odd.

For n > 3, we denote by ACn the oriented cycle obtained from identifying the initial
and terminal vertices of the alternating path An+1. For this work we will denote the
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a0 a1 a2 a3 a4

A5

a0 a1 a2 a3 a4 a5

A6

a4

a0 a1

a2
AC4

a3a2

a1a0a4

AC5

Figure 2: The oriented paths An+1 and oriented cycles ACn for n ∈ {4, 5}.

vertices of ACn as (a0, a1, . . . , an−1, a0). Note that, if n is even, every two consecutive
arcs have opposite direction, and if n is odd, every pair of consecutive arcs, except for
an−1 → a0 → a1, have opposite direction. In Figure 2 we illustrate A4, AC4, A5 and AC5.

Lemma 9. For every integer n, n > 4, the cycle ACn is homomorphically equivalent to−→
P 2 if and only if n is even.

Proof. Since
−→
P 2 is an asymmetric arc, then

−→
P 2 is homomorphic to any non-trivial oriented

graph. If n is even, every two consecutive arcs of ACn have opposite direction, thus, the

largest directed path of ACn is
−→
P 2. But if n is odd, there is a copy of

−→
P 3 contained in

ACn. Therefore, by Theorem 4, ACn is homomorphic to P2 if and only if n is even.

In order to avoid a very long proof for our main result, we attempt to break it down
in a reasonable amount of statements. We start with the following one.

Proposition 10. For every integer n, n > 3, the oriented path Qn+1 is not homomorphic
to ACn.

Proof. First note that when n = 3 then AC3
∼= TT3 and Q4

∼=
−→
P 4. So by Theorem 4,

Q4 6→ AC3. For the remaining cases, i.e., n > 4, we will proceed by contradiction. If n is

even, notice that
−→
P 3 maps to Qn+1. Thus, if Qn+1 maps to ACn we obtain a mapping of−→

P 3 to ACn. But as n is even, by Lemma 9 ACn maps to
−→
P 2, and since

−→
P 2
∼= TT2, this

contradicts the fact that (
−→
P 3, TT2) is a duality pair.

Now suppose that there is an odd integer n > 5 and a homomorphism ϕ : Qn+1 →
ACn. We first show that ϕ is not a surjective mapping. Recall that the only vertex in
ACn with in-degree and out-degree greater that 0 is a0. Note that the only vertices in
Qn+1 = (q0 . . . qn) with in-degree and out-degree greater than 0, are q1 and qn−1. Thus,
ϕ(q1) = a0 = ϕ(qn−1), and hence ϕ(q0) = an−1 = ϕ(qn−2) and ϕ(q2) = a1 = ϕ(qn).
Since |VQn − {q0, q1, q2, qn−2, qn−1, qn}| = n − 5, and (n − 5) + 3 < n = |VACn|, ϕ is not
surjective. Now we observe that the existence of such a non-surjective homomorphism
leads to a contradiction. First, it is not hard to verify that ACn − ai is homomorphic
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to
−→
P 3 for any i ∈ {2, . . . , n − 2}. Since ϕ is not surjective, and by previous arguments

{an−1, a0, a1} ⊆ ϕ[VQn+1 ], then by composing homomorphisms, Qn+1 is homomorphic to
−→
P 3. This contradicts the fact that `(Qn+1) = 3 (Observation 7) and Theorem 1.

Proposition 10 implies that if D is a digraph and Qn+1 → D then D 6→ ACn. The
following lemma asserts that the converse implication holds when n is odd.

Lemma 11. For any odd integer n, n > 3, and any digraph D, if Qn+1 6→ D then
D → ACn.

Proof. Let D be a digraph such that Qn+1 6→ D and let G be the underlying graph of
D. Since our goal is to construct a homomorphism D → ACn we may assume that D is
connected (and so is G).

Let X be the set of vertices of D having positive in- and out-degrees. If X is an empty
set, then D → TT2 and so D trivially maps to ACn. From now on we will assume that X is
a non-empty set. The remaining vertices of D can be partitioned into two sets: the set of
vertices I having only in-neighbours and the set of vertices O having only out-neighbours.
It is straightforward to verify that I and O are independent sets. Moreover, X is also an
independent set; otherwise there is a pair of vertices x1, x2 ∈ X such that (x1, x2) ∈ AD

and since x1 has an in-neighbour u and x2 had an out-neighbour v, then
−→
P 4 → D. Recall

that by Observation 6, Qn+1 →
−→
P 4 and thus Qn+1 → D which is a contradiction. We

now refine our partition (X, I,O) with respect to the distance in G of vertices to X. For
i ∈ {1, . . . , diam(G)} we define Ii = {v ∈ I : d(v,X) = i} and Oi = {v ∈ O : d(v,X) = i}.

By construction of the sets X, Ii and Oi for i ∈ {1, . . . , diam(G)}, it is not a hard task
to verify that for every arc (u, v) ∈ AD one of the following statements holds:

• u ∈ O1 and v ∈ X or u ∈ X and v ∈ I1,

• there is a positive integer i such that u ∈ Oi and v ∈ Ii−1 ∪ Ii+1, or

• there is a positive integer i such that u ∈ Oi and v ∈ Ii.

If the third case does not hold, then the overall structure of D can be depicted as follows

· · · I4 ← O3 → I2 ← O1 → X → I1 ← O2 → I3 ← O4 · · · .

Noticing that in this case D →
−→
P 3 is no more than routine work. Since

−→
P 3 → ACn, then

D → ACn.
Now suppose that there is a positive integer i such that there is an arc from Oi to Ii

in D, and let i0 be the minimum of all such integers. We depict the structure of D with
respect to the previously defined partition in Figure 3.

Note that if i0 > n−1
2

we can map D to ACn. Indeed, first consider the relation x ∼ y
defined by the following conditions:

• x, y ∈ X,

• x, y ∈ Ii or x, y ∈ Oi for some i ∈ {1, . . . , n−1
2
− 1}, or
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X I1O1

I2O2

I3O3

Ii0−1Oi0−1

Ii0Oi0

Figure 3: The overall structure of D with respect to the proposed partition.

• x ∈ Ii and y ∈ Ij for some i, j ∈ {n−1
2
, . . . , diam(G)} or x ∈ Oi and y ∈ Oj for some

i, j ∈ {n−1
2
, . . . , diam(G)}.

Then, by identifying the vertices in the same ∼-equivalence class we obtain an oriented
graph isomorphic to ACn.

In order to conclude our proof we show that if i0 <
n−1
2

, then there is a homomorphism
from Qn+1 to D which contradicts the choice of D, and so the claim of this lemma will
follow. Consider an arc (u, v) from Oi0 to Ii0 . By construction of our partition, there are
two alternating paths of length i0, one from u to some vertex xu ∈ X and another one
from v to some vertex xv ∈ X. By the choice of X, xu has an in-neighbour yu and xv an
out-neighbour yv. Since the previously described uyu- and vyv-paths can be concatenated
with the arc (u, v), we obtain a path in D isomorphic to Q2i0+4. Recall that i0 6 n−1

2
− 1

so 2i0 + 4 6 n− 1 and both quantities are even. Hence, by Observation 6, Qn+1 maps to
Q2i0+4 and thus to D. We have reached the anticipated contradiction and thus the lemma
follows.

It is straightforward to verify that if a digraph D has a symmetric arc, then every
oriented tree is homomorphic to D. Also, if G is an oriented graph, then D is not
homomorphic to G. So if T is an oriented tree, and DT is any of its duals, then DT is an
oriented graph, T → D, and D 6→ DT . For this reason, we state and prove the following
theorem for oriented graphs only, but clearly it also holds for general digraphs.

Theorem 12. For any integer n, n > 3, an oriented graph G is homomorphic to ACn if
and only if Qn is not homomorphic to G. In other words, the ordered pair (Qn+1, ACn)
is a duality pair.

Proof. If n is even, by Lemma 8, Qn+1 is homomorphically equivalent to
−→
P 3, and by

Lemma 9, ACn is homomorphically equivalent to
−→
P 2. Thus, by Observation 5, if n is

even, (Qn+1, ACn) is a duality pair if and only if (
−→
P 3,
−→
P 2) is a duality pair. The latter
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statement holds since
−→
P 2
∼= TT2, and (

−→
P 3, TT2) is duality pair (Theorem 4). Finally, if

n is odd, by Proposition 10 we know that if Qn+1 → D then D 6→ ACn. On the other
hand, if Qn+1 6→ D, by Lemma 11 then D → ACn. Therefore, (Qn+1, ACn) is a duality
pair for every positive integer n, n > 3.

In Figure 4 we exhibit two of the duality pairs described in Theorem 12.

Q6
AC5

Q8

AC7

Figure 4: Two duality pairs (Q6, AC5) and (Q8, AC7).

4 Implications

We say that an oriented cycle C is an AC-cycle if C ∼= ACn for some positive integer n.
The following result is a weaker version of Theorem 12.

Corollary 13. Let C be an AC-cycle. A digraph D is homomorphic to C, if and only if
every oriented path homomorphic to D is also homomorphic to C.

Thus, in terms of path dualities, we can extend Theorem 2 with this corollary as
follows.

Theorem 14. Any oriented cycle C that is a B-cycle or an AC-cycle, has path duality,
i.e., a digraph G is homomorphic to C, if and only if every path homomorphic to G is
also homomorphic to C.

Recall that a digraph is a core, if and only if it is not homomorphic to any proper
subgraph. The following statement is a well-known result in homomorphism order of
digraphs.

Proposition 15. [8] Let G be a digraph in [
−→
P 3,
−→
P 4], then G is homomorphically equiva-

lent to Qn for some even integer n > 4. Moreover for every even integer, n > 4, the path
Qn is a core.
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Now, we give a partial answer to the problem of determining if one can choose a dual,
DT , of an oriented tree, T , of polynomial size with respect to |VT |.

Theorem 16. Let T be an oriented tree of positive height at most 3, and PT its core.
One can choose a dual DT of T of linear size with respect to |VPT

|. Since |VPT
| 6 |VT |,

then DT is of linear size with respect to |VT |.

Proof. If T1 is a tree of height 1, then
−→
P 2 is homomorphically equivalent to T1. When

T2 is a tree of height 2, then T2 is homomorphically equivalent to
−→
P 3. So by Theorem 4,

(T1, TT1) and (T2, TT2) are duality pairs.
If T3 is a tree of height 3, then by Propositions 3 and 15, T3 is homomorphically

equivalent to a path P , and P ∼= Qn+1 for an odd integer n, n > 3. Thus, by Theorem 12,
(T3, ACn) is a duality pair. For a tree T in any of these cases, the size of the chosen dual
is linear with respect to the core of T .

Finally, we connect our result to the study of hereditary graph properties characterized
as the class of F -graphs for a finite set F . For n > 4 an even integer, denote by Fn, the
set of surjective homomorphic images of Qn. Clearly, Fn is a finite set since the order
of any oriented graph in Fn is bounded by n. Notice that the last three results of this
section deal with (undirected) graphs.

Theorem 17. Let G be a graph and let n be an even integer. If n > 4, then G is Cn−1-
colourable if and only if G is an Fn-graph. That is, there is an orientation of G with no
induced oriented graph in Fn.

By Observation 6, the directed path on 4 vertices belongs to Fn for an even integer
n > 4. Thus, it is straightforward to notice that the directed 3- and 4-cycles also belong
to Fn. Thus, from the previous corollary we obtain the following one.

Corollary 18. Let G be a graph and let n be an even integer. If n > 4, then G is Cn−1-

colourable if and only if G is an (Fn − {
−→
C 3,
−→
C 4})∗-graph. That is, there is an acyclic

orientation of G with no induced oriented graph in Fn − {
−→
C 3,
−→
C 4}.

In particular, F6 consists of the eight oriented graphs depicted in Figure 5.

Corollary 19. The following statements are equivalent for a graph G.

• G is homomorphic to the 5-cycle,

• G admits an orientation that has no semi-walk with pattern →→←→→,

• G admits an {
−→
C 3, TT3,

−→
P 4,
−→
C 4, C

′
4, Q6, D5,

←−
D 5}-free orientation, and

• G admits an acyclic {TT3,
−→
P 4, C

′
4, Q6, D5,

←−
D 5}-free orientation.
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−→
C 3

TT3

−→
P 4

−→
C 4

C ′4

Q6

D5
←−
D 5

Figure 5: The eight oriented graphs in F6.

5 Conclusions

Consider an odd integer n, n > 5, and an oriented graph G. Note that a polynomial-
time certifying algorithm that determines if an oriented graph G is homomorphic to ACn

can be obtained from the proof of Lemma 11. The yes-certificate is the refined partition
X, {Oi}, {Ii} that induces a homomorphism ϕ : G → ACn, and the no-certificate is the
semi-walk constructed when i0 <

n−1
2

.
As a nice consequence, we obtain that graphs admitting a homomorphism to an odd

cycle can be characterized as those graphs having an orientation avoiding a well defined
finite set of oriented graphs.

As previously mentioned, Nešetřil and Tardif exhibited a family of oriented paths Pn

such that any dual of Pn is of exponential size with respect to |VPn| [13]. It is not hard
to observe that the net length of Pn increases as n increases. Theorem 16 shows that for
every oriented tree T of height at most 3 there is a dual of polynomial size with respect
to |VT |. We finish this work by proposing the following questions.

Question 20. Is it true that for any positive integer k, there is a polynomial pk(x) such
that for any oriented tree T , if `(T ) 6 k then there is a dual DT of T such that its size is
bounded by pk(|VT |)?

In the event that the answer to Question 20 results negative, from the results obtained
in the present work, the following question still makes sense.

Question 21. Which is the maximum integer k, for which one can find a polynomial
pk(x) such that for any oriented tree T , if `(T ) 6 k then there is a dual DT of T such
that its size is bounded by pk(|VT |)?
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