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Abstract

Let Γ be the graph whose vertices are the chambers of the finite projective
space PG(3, q) with two vertices being adjacent when the corresponding chambers
are in general position. It is known that the independence number of this graph
is (q2 + q + 1)(q + 1)2. For q > 43 we determine the largest independent set of
Γ and show that every maximal independent set that is not a largest one has at
most constant times q3 elements. For q > 47, this information is then used to show
that Γ has chromatic number q2 + q. Furthermore, for many families of generalized
quadrangles we prove similar results for the graph that is built in the same way on
the chambers of the generalized quadrangle.

Mathematics Subject Classifications: 51E20, 05B25, 51E12

1 Introduction

A chamber of a projective 3-space is a set consisting of a point P , a line ` and a plane π
that are mutually incident. Two chambers {P, `, π} and {P ′, `′, π′} are called opposite, if
P does not lie in π′, if ` is skew to `′ and if P ′ does not lie in π. We are interested in the
graph whose vertices are chambers of a three dimensional projective space of finite order
q where two vertices are adjacent, if the corresponding chambers are opposite. It was
shown in [6] that the independence number of this graph is (q2 + q+ 1)(q+ 1)2. For each
point or plane x the set of all chambers whose line is incident with x is an independent
set of this size. We denote this independent set by C(x).

A chamber of a generalized quadrangle is a set consisting a point P and a line ` that
are incident. Two chambers {P, `} and {P ′, `′} are called opposite, if ` and `′ have no
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common point and if there is no line containing P and P ′. A generalized quadrangle of
order (s, t) is called thick, if s, t > 2. Again, we are interested in the graph whose vertices
are chambers of a finite thick generalized quadrangle where two vertices are adjacent,
if the corresponding chambers are opposite. We will determine the largest independent
sets of these graphs and for many families of finite thick generalized quadrangles we also
determine the chromatic number of this graph.

More generally one can consider flags of a certain type S ⊆ {1, 2, . . . , n} of a finite
building of rank n and define the graph whose vertices are these flags with two vertices
being adjacent when the corresponding flags are in general position. For many buildings
and many types S, neither the independence number nor the chromatic number of these
graphs are known. Here we focus on results on projective spaces or, equivalently, vector
spaces. For |S| = 1 one obtains the so called q-Kneser graphs and for these there are
results on the independence number and the chromatic number, see [8] and [3, 2]. For
|S| > 1, the chromatic number is known only in a few cases, see [1, 7] and the references
therein. For many sets S with |S| > 1, the independence number was determined in [6]
but neither the chromatic number nor the structure of the largest independent sets is
known. This also applies to the graph defined above whose vertices are chambers of a
projective 3-space of order q.

The independence number (q2+q+1)(q+1)2 of this graph was obtained using algebraic
considerations. Here we use a geometric approach. This has the advantage, as is quite
typical, that we do not only determine the independence number but also classify the
largest independent sets and moreover obtain a Hilton-Milner type result (a bound for
the second largest maximal independent sets). The drawback is that our proof only gives
interesting results for q > 43. One consequence of the Hilton-Milner type result in (b) of
our first theorem below is that it enables us to determine the chromatic number of the
graph in part (c).

Theorem 1. Let Γ be the graph whose vertices are the chambers of a projective 3-space
of finite order q with two vertices being adjacent when the corresponding chambers are in
general position. Suppose that q > 43. Then we have.

(a) The largest independent sets of Γ are the sets C(x) for points and planes x.

(b) Every maximal independent set that is not of the form C(x) for a point or plane x
has at most 9(q + 1)(5q2 + 1) elements.

(c) If q > 47, then the chromatic number of Γ is q2 + q.

Our second result is on finite generalized quadrangles [10]. An ovoid of a generalized
quadrangle is a subset of its point set that meets every line in a unique point, and, dually,
a spread of a generalized quadrangle is a subset of its line set that partitions the point
set. For a generalized quadrangle of finite order (s, t) we use the following notation. If
P is a point, then C(P ) denotes the set of all chambers whose line is incident with P .
Dually, if ` is a line, then C(`) denotes the set of all chambers whose point is incident
with `. Clearly, these are independent sets of cardinality (s+ 1)(t+ 1).
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We remark that there is exactly one generalized quadrangle of order (2, 2). Its points
and lines are the points and lines of the (unique) non-degenerate quadric of the 4-
dimensional projective space PG(4, 2) of order 2.

Example 2. Consider the graph Γ obtained from a generalized quadrangle of order (2, 2)
embedded in PG(4, 2) and consisting of the points and lines of a parabolic quadric Q(4, 2)
of PG(4, 2). Consider a hyperbolic quadric Q+(3, 2) contained in Q(4, 2) obtained by
intersecting Q(4, 2) with a suitable 3-space of PG(4, 2). Then the set X consisting of the
nine chambers {P, `} with P a point of Q+(3, 2) and ` the unique line of Q(4, 2) on P that
is not contained in Q+(3, 2) is an independent set of Γ, since for any two such chambers
{P, `} and {P ′, `′} either P and P ′ lie on a line of Q+(3, 2) or otherwise ` is the unique
line of Q(4, 2) on P that meets `′.

Theorem 3. Let Γ be the graph whose vertices are the chambers of a finite thick gen-
eralized quadrangle of order (s, t) with two vertices being adjacent if the corresponding
chambers are in general position. Then we have.

(a) The independence number of Γ is α(Γ) = (s+ 1)(t+ 1).

(b) The independent sets of Γ of cardinality α(Γ) are the sets C(x) for a point or line x
and, if (s, t) = (2, 2), the independent sets constructed in Example 2.

(c) Every maximal independent set with less than (s + 1)(t + 1) elements has at most
max{1 + s+ 2t, 1 + t+ 2s} elements.

(d) If the generalized quadrangle has an ovoid or a spread, then Γ has chromatic number
st+ 1, otherwise it has chromatic number at least st+ 2.

Several families of classical generalized quadrangles have an ovoid or a spread and
hence the chromatic numbers of the corresponding graphs are known.

Remark 4. The independent sets of graphs arising from flags in buildings, especially in
projective spaces, are often called Erdős-Ko-Rado sets for historical reason. Information
can be obtained from our reference list.

2 Generalized quadrangles

In this section we prove Theorem 3. Recall that a generalized quadrangle has order (s, t),
if every line has exactly s+1 points and if every point lies on exactly t+1 lines. We recall
that C(x), for a point or a line x of a generalized quadrangle, is a set of (s + 1)(t + 1)
chambers, no two of which are opposite. We call two lines of a generalized quadrangle
skew if they have no common point.

We remark that the generalized quadrangle in Example 2 is self-dual as is the set of
the independent sets constructed there. Using the notation of the example, this follows
easily from the fact that Q(4, 2) has six points that do not lie in Q+(3, 2), each lying on
exactly three lines, which all meet Q+(3, 2) in three mutually non-collinear points.
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Theorem 5. Let X be a maximal set of mutually non-opposite chambers of a finite thick
generalized quadrangle of order (s, t). Then we have

1. |X| 6 (t+ 1)(s+ 1).

2. If |X| = (t + 1)(s + 1), then either X = C(x) for a point or line x, or otherwise
s = t = 2 and X is as in Example 2.

3. If X is a maximal set of chambers no two of which are opposite and if |X| 6=
(t+ 1)(s+ 1), then |X| 6 max{1 + s+ 2t, 1 + t+ 2s}.

Proof. For convenience we denote chambers in this proof by (P, `) where P is a point and
` a line on P . We distinguish three cases.

Case 1. In this case we consider the situation when there exists a point or a line that
occurs in at least two chambers of X.

Since the class of finite thick generalized quadrangles is self-dual and since the assertion
of the theorem is self-dual, we may assume that there exists a line `0 that occurs in two
chambers (P0, `0) and (P ′

0, `0) of X. If (P, `) is any chamber with ` ∩ `0 = ∅, then P can
be collinear to at most one of the two points P0 and P ′

0, hence (P, `) is opposite to (P0, `0)
or (P ′

0, `0), and thus (P, `) is not a chamber of X. It follows that `0 meets the lines of
all chambers of X. Let L be the set of all lines that are distinct from `0 and occur in a
chamber of X. Then every line of L meets `0 in a unique point.

Case 1a. We assume that some line h ∈ L occurs in two chambers of X.
Let Q be the point in which h and `0 meet. As before we see h meets the line of every

chamber of X. Since there are no triangles and since the line of every chamber of X meets
h and `0, then Q lies in the line of every chamber of X. This implies that X ⊆ C(Q), so
maximality of X implies that X = C(Q). In this case we are done.

Case 1b. Now we consider the situation when every line h of L occurs in a unique
chamber of X.

For h ∈ L we denote by Ph the point of h with (Ph, h) ∈ X. If Ph ∈ `0 for all h ∈ L,
then X ⊆ C(`0), so maximality of X implies that X = C(`0). We may therefore assume
that there exists h1 ∈ L with Ph1 6∈ `0. Let X1 be the point in which h1 and `0 meet.
If the lines of L meet `0 either in X1 or a second point of `0, then |L| 6 2t, and hence
|X| 6 s+ 1 + 2t, since `0 can occur in s+ 1 flags of X. In this case we are done. We may
therefore assume that there are lines h2, h3 ∈ L such that the points X2 = h2 ∩ `0 and
X3 = h3 ∩ `0 are distinct and distinct from X1. Then any two of the lines h1, h2 and h3
are skew and since no two of the chambers (Phi , hi), i = 1, 2, 3, are opposite, the points
Ph1 , Ph2 and Ph3 are mutually collinear. Since a generalized quadrangle has no triangle,
this implies that these three points are collinear, that is there exists a line g containing
these three points. As Ph1 is not on `0, then g and `0 are skew lines. If h is any line
of L, then h meets `0 and hence meets at most one of lines h1, h2, h3, and consequently
Ph is collinear with at least two points of g, which implies Ph ∈ g. Hence Ph ∈ g for all
h ∈ L. Therefore each line of L meets g and `0 and consequently |L| 6 s + 1. It follows
|X| 6 s+ 1 + |L| = 2s+ 2 and we are done.
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Case 2. In this case we consider the situation that every point and every line occurs
in at most one chamber of X, and that there exist flags (P1, `1), (P2, `2) ∈ X with P1 ∈ `2
and P2 6∈ `1.

Consider (P, `) ∈ X. If ` is skew to `i for some i ∈ {1, 2}, then P and Pi are collinear.
Since a generalized quadrangle contains no triangles, this shows that ` can not be skew
to `1 and `2.

Let P ′
1 be a point of `1 with P ′

1 6= P1. The hypothesis of the present case says that
(P ′

1, `1) /∈ X. Maximality of X implies therefore that there exists a chamber (Q, h) ∈ X
that is opposite to (P ′

1, `1) and hence h is skew to `1. Then h meets `2 in a point and since
(Q, h) and (P1, `1) are not opposite we have that Q = `2 ∩ h. Similarly every chamber of
X whose line is skew to `1 has its point on `2, and since every point of `2 occurs in at
most one chamber of X, we see that X contains at most s− 1 chambers whose lines are
skew to `1; here we use that the line `2 has s + 1 points and that its two points P1 and
P2 lie in chambers whose lines are not skew to `1.

Now we estimate the number of chambers of X whose lines meet `1 and which are
distinct from (P1, `1) and (P2, `2). Let (R, g) be such a chamber. Then R 6= P1, P2 and
g 6= `1, `2. Assume that P1 ∈ g. Since `2 is the line on P1 that meets h, then g and h are
skew. But then (Q, h) and (R, g) are opposite, which is impossible. Hence g meets `1 in
a point U other than P1. Then g and `2 are skew and since (R, g) and (P2, `2) are not
opposite, it follows that R is the unique point on g that is collinear to P2. Then R is not
collinear to Q and since (Q, h) and (R, g) are not opposite, it follows that g meets h. It
follows that (R, g) is the only chamber of X \{(P1, `1), (P2, `2)} whose line passes through
U , namely g is the line on U that meets h, and R is the point on g collinear to P2. Since
`1 has only s points U other than P1, this argument shows that X \ {(P1, `1), (P2, `2)}
contains at most s chambers whose lines meet `1.

We have shown that |X| 6 2s+ 1 so we are done.
Case 3. In this case we consider the situation that for any two distinct chambers

(P1, `1), (P2, `2) ∈ X we have that P1 6∈ `2 and P2 6∈ `1 (and hence P1 6= P2 and `1 6= `2).
This implies for any two distinct flags of X that either their lines are skew and their

points are collinear or otherwise that their lines meet and their points are not collinear
(that is, they are distinct from the intersection point of the two lines).

Consider (P, `) ∈ X, let X1 be the set of chambers of X whose lines are skew to ` and
whose points are collinear with P , and let X2 be the set of chambers of X whose lines
meet ` and whose points are not collinear with P . Then X = X1 ∪X2 ∪ {(P, `)}.

Let n1 be the number of lines on P that contain the point of a chamber of X1, and
dually let n2 be the number of points of `1 that lie on the line of a chamber of X2. Then
n1 6 t and |X1| 6 n1s and, dually, n2 6 s and |X2| 6 n2t.

We now improve this bound in the situation n2 > 3. In fact, if n2 > 3, then let
(Qi, hi), i = 1, 2, 3, be in X2 such that the three points hi ∩ ` are distinct. Then the lines
hi are mutually skew, so the points Qi are mutually collinear and hence lie on a common
line g. Clearly g is skew to `. In this case for any (Q, h) ∈ X2 we have that h is skew
to at least two of the lines hi, hence Q is collinear with at least two of the points Qi and
thus Q ∈ g and h is the unique line on Q that meets `. Since every point of g lies on a
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unique line that meets ` and for one point of g the intersection point with ` is the point
P , we see that |X2| 6 s in this case.

Hence we have |X2| 6 2t or |X2| 6 s. If X1 = ∅, then |X| = 1 + |X2| and we are
done. We may thus assume that X1 6= ∅.

We now improve the bound |X2| 6 2t when n2 = 2. Assume for this that n2 = 2, so
there are two points H1, H2 on ` distinct from P such that the line of every chamber of X2

meets ` in H1 or H2. Also, both points H1 and H2 lie on the line of at least on chamber
of X2. For i ∈ {1, 2} let ci be the number of chambers in X2 whose lines pass through Hi

and let these chambers be (Pij, hij) with j = 1, . . . , ci. Each line h1j is skew to each line
h2k and therefore each point P1j is collinear with each point P2k. Consider (R, g) ∈ X1.
Then for each i ∈ {1, 2} the line g meets at most one line hij and hence R is collinear
to at least ci − 1 of the points Pij. If R is collinear with P1j and P2k, then these three
points are pairwise collinear and hence there exists a line containing these three points.
It follows that it is impossible that c1 > 3 and c2 > 2 or that c1 > 2 and c2 > 3. In fact,
if c1 were at least 3 and c2 were at least two, then R would be collinear with at least two
points P1j and P1j′ and at least one point P2k, so the three points R,P1j, P2k as well as
the three points R,P1j′ , P2k were collinear, which is impossible as P1j and P1j′ are not
collinear. Therefore either c1 = c2 = 2 or c1 = 1 or c2 = 1. As ci 6 t, this implies that
|X2| = 4 or |X2| 6 t+ 1.

Reviewing the bounds on |X2| for n2 equal to 1, 2 or at least 3, we have |X2| 6 max{t+
1, 4, s}. Dually we have |X1| 6 max{s + 1, 4, t}. It follows that |X| = 1 + |X1| + |X2| 6
max{2s+ t+ 1, 2t+ s+ 1} except when |X1| = |X2| = 4 and s = t = 2.

Suppose finally that |X1| = |X2| = 4 and s = t = 2. Then |X| = 9 = (s + 1)(t + 1).
It follows that the four points that are collinear to P but not on ` all occur as points of
chambers of X, whereas the two points of ` other than P do not occur in chambers of X.
As (P, `) was any chamber of X, the same holds for all chambers of X. Hence, if T is the
set of the nine points that occur in chambers of X, then each point of T lies on exactly
two lines all of whose points are contained in T . Since |T | = |X| = 9, it follows that the
points of T must be the points of the six lines of a 3 by 3 grid. Since the six lines have
more than one point in T , these lines do not occur in chambers of X, and hence X consists
of the nine chambers (P, `) with P ∈ T and ` the line on P that is not in the grid. As
the generalized quadrangle has order (2, 2) and is thus the parabolic quadrangle related
to Q(4, 2), any 3 by 3 grid is an embedded hyperbolic quadric Q+(3, 2). This shows that
X is as described in Example 2.

Remark 6. There exist finite thick generalized quadrangles for which the bound in Theo-
rem 5 (c) is sharp. To see this consider the parabolic quadrangle of order (s, t) = (q, q),
an embedded hyperbolic quadrangle of order (q, 1), let Q be one of the points and h, h′

the two lines of the hyperbolic quadrangle on this point. Let X be the set of all chambers
(P, `) where either P = Q or otherwise P is a point other than Q on h or h′ and ` is the
line of the hyperbolic quadric on P that is distinct from h and h′. Then no two chambers
of X are opposite and |X| = t+ 1 + 2s.

We recall that ovoids and spreads of generalized quadrangles G have been defined in
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the introduction. If G has finite order (s, t), then it has (s + 1)(st + 1) points and since
every line has s+ 1 points, it follows that spreads of G have st+ 1 lines. Dually, an ovoid
of G consists of st+ 1 points.

Corollary 7. Let G be a finite thick generalized quadrangle of order (s, t) and let Γ be
the graph whose vertices are the chambers of G with two vertices adjacent if and only if
the corresponding chambers are opposite. Then we have.

(a) The independence number of Γ is (s+ 1)(t+ 1).

(b) The chromatic number of Γ is at least st+ 1.

(c) The chromatic number of Γ is st+1 if and only if G possesses a spread or an ovoid.

Proof. (a) Theorem 5 shows that the independence number of Γ is at most (s+ 1)(t+ 1).
Since the set C(P ) for a point P is an independent set with (s + 1)(t + 1) elements, this
proves (a).

(b) and (c) The number of points of G is (s + 1)(st + 1) and hence the number of
chambers of G is (s + 1)(t + 1)(st + 1), that is Γ has this many vertices. Therefore (a)
implies that the chromatic number of Γ is at least st + 1 with equality if and only if Γ
has st+ 1 mutually disjoint independent sets of cardinality (s+ 1)(t+ 1).

If G has an ovoid O, then the independent sets C(P ) with P ∈ O are mutually disjoint
and hence the chromatic number is st+ 1. Dually, if G has a spread, then the chromatic
number is st+ 1.

Conversely assume that the chromatic number of Γ is st + 1, that is Γ has mutually
disjoint independent sets Fi, i = 1, . . . , st + 1, of cardinality (s + 1)(t + 1). We have to
show that G has a spread or an ovoid. As the unique generalized quadrangle of order
(2, 2) has an ovoid, we may assume that (s, t) 6= (2, 2). Then Theorem 5 shows for
1 6 i 6 st + 1 that there exists a point or line xi with Fi = C(xi). However, for any
choice of a point P and a line `, there exists a line h on P that contains a point Q of `,
and hence (Q, h) ∈ C(P )∩ C(`). Since the independent sets Fi are mutually disjoint, this
shows that the xi are all points or they are all lines. If they are all points, then these
points are mutually non-collinear, since the sets C(xi) are disjoint. In this case, the set
T := {xi | 1 6 i 6 st+ 1} is an ovoid. Dually, if all xi are lines, then T is a spread.

Remark 8. For most known finite generalized quadrangles it is known that they either
have a spread or an ovoid, for information we refer to [10]. This is true for all families
of classical generalized quadrangles related to finite polar spaces of rank two with one
exception. For the generalized quadrangle of order (q2, q3) consisting of the points and
lines of a hermitian polar space H(4, q2) it is known that this generalized quadrangle has
no ovoid. Brouwer [4] showed that it has no spread when q = 2, so the related graph
whose vertices are the chambers of H(4, 4) as above has chromatic number χ at least
2 + q2 · q3 = 34. We mention that χ 6 36, since given a point p of H(4, 4), then the union
of the (q3 + 1)q2 = 36 independent sets C(x) with x 6= p and x collinear with p contains
all chambers of H(4, 4). Hence χ ∈ {34, 35, 36}. For q > 2 the existence of spreads of
H(4, q2) is open and therefore the chromatic number of the related graph remains open.
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3 A stability result

In this section we prove parts (a) and (b) of Theorem 1. Therefore we consider chambers
of the finite projective 3-space PG(3, q) of order q and we are interested in large sets of
chambers that are mutually non-opposite. As already mentioned in the introduction, it
follows from [6] that such a set has at most (q2 + q + 1)(q + 1)2 elements. Moreover, for
each point or plane x of PG(3, q), the set C(x) consisting of all chambers whose line is
incident with x is such a set and has exactly (q2 + q + 1)(q + 1)2 elements. We shall see
for q > 43 that these are the only examples meeting the bound.

Theorem 9. Let X be a maximal family of pairwise non-opposite chambers of PG(3, q),
q > 43. Then either X = C(x) for a point or plane x, or |X| 6 9(q + 1)(5q2 + 1).

The proof will be prepared in several lemmata. Throughout this section we assume
that X is a maximal set of mutually non-opposite chambers of PG(3, q). For simplicity,
we denote a chamber in this section as an ordered triple (P, `, π) with a point P , a line `
and a plane π of PG(3, q) that are pairwise incident.

Lemma 10. Let R be a point or a plane with X 6= C(R). Then |X ∩ C(R)| 6 (q + 1)3 +
q2(2q + 1).

Proof. As X is maximal, there exists a chamber (Q, h, τ) in X \ C(R). Then R is not
incident with h and hence R is incident with q2 lines ` that are skew to h. Each such line
` lies in q planes π that do not contain the point Q, and each such line ` contains q points
P that do not lie in τ . This gives q2 ·q ·q = q4 chambers (P, `, π) of C(R) that are opposite
to (Q, h, τ) and hence do not lie in X. Therefore |X∩C(R)| 6 (q2+q+1)(q+1)2−q4.

Lemma 11. Let ` be a line.

(a) At most (q + 1)3 chambers (Q, h, τ) of X satisfy Q ∈ ` ⊆ τ .

(b) At most (q + 1)q2 chambers (Q, h, τ) of X satisfy Q /∈ ` and ` ⊆ τ .

(c) At most (q + 1)q2 chambers (Q, h, τ) of X satisfy Q ∈ ` and ` 6⊆ τ .

Proof. (a) There are only (q + 1)3 chambers (Q, h, τ) with Q ∈ ` ⊆ τ , so at most this
many in X.

(b) Consider the chambers (Q, h, τ) ∈ X with Q /∈ ` and ` ⊆ τ . For any two such
chambers, their two lines h must meet (this is clear if the two chambers have the same
plane, and otherwise it follows from the fact that the two chambers are not in general
position). Hence all these lines lie in the same plane π on ` or pass through the same
point P of `. In either case, there are at most q2 + q distinct possible lines h and thus at
most (q2 + q)q such chambers.

(c) This is the statement dual to the one in (b).

Lemma 12. Let `0 be a line and let T be the set consisting of all chambers (Q, h, τ) of
X that satisfy h ∩ `0 6= ∅, Q /∈ `0 and `0 6⊆ τ . Suppose that q > 5 and that X 6= C(x) for
every point and every plane x. Then |T | 6 (q + 1)(8q − 6)q.
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Proof. For each P ∈ `0 let us denote by Tp the subset of T that consists of those chambers
of T whose line contains P . Then T is the disjoint union of the sets TP with P ∈ `0. We
distinguish two cases.

Case 1. We assume for every point P of `0 that there exist two chambers (Qi, hi, τi) ∈
T , i = 1, 2, with h1 ∩ h2 = ∅ and P /∈ h1, h2.

Let P be a point of `0 and let (Q1, h1, τ1) and (Q2, h2, τ2) be chambers of T with
h1 ∩ h2 = ∅ and P /∈ h1, h2. Since h1 and h2 are skew and both meet `0, we see that h1
and h2 span distinct planes with `0. We first determine an upper bound for the number
of chambers (Q, h, τ) in TP for which h∩h2 6= ∅. For such a chamber we have h∩h1 = ∅
and therefore either Q1 ∈ τ or Q ∈ τ1. If Q1 ∈ τ , then τ is the plane spanned by h and
Q1, and Q can be any of the q points of h that are distinct from P . If Q1 /∈ τ , then Q ∈ τ1
and hence Q is the intersection point of h and τ1. In this case τ can be any of the q − 1
planes on h that contain neither `0 nor Q1. Since P lies on q lines other than `0 that meet
h2, it follows that at most q(2q− 1) chambers of TP have a line that meets h2. The same
argument shows that TP contains at most q(2q − 1) chambers whose line meets h1.

Now we consider only the chambers (Q, h, τ) ∈ TP for which h misses h1 and h2. Since
(Q, h, τ) is not in general position to (Qi, hi, τi) we must have Qi ∈ τ or Q ∈ τi for i = 1
and i = 2.

If Q1, Q2 ∈ τ , then h meets the line Q1Q2, and τ is the plane spanned by the lines h
and Q1Q2. There are at most (q− 1)q chambers in TP with this property, since there are
only q − 1 lines h on P that meet Q1Q2 and miss h1 and h2, and for each line h there
are q choices for Q. Dually, there are at most (q− 1)q chambers in TP whose point Q lies
in τ1 ∩ τ2. If Q1 ∈ τ and Q ∈ τ2, then Q = h ∩ τ2 and τ is the plane spanned by h and
Q1. There are at most q2 − q such chambers in TP , since this is the number of lines h
on P that miss h1 and h2. The same argument gives the bound q2 − q for the number of
chambers (Q, h, τ) under consideration with Q2 ∈ τ and Q ∈ τ1.

We have shown that |TP | 6 2q(2q − 1) + 4q(q − 1) = (8q − 6)q for all P ∈ `. Hence
|T | 6 (q + 1)(8q − 6)q.

Case 2. We assume that there exists a point P ∈ `0 that does not have the property of
Case 1. Hence, if we consider all chambers (Q, h, τ) ∈ T with P /∈ h, then the lines of these
chambers mutually meet. Consequently there exists a plane or a point that is incident
with all these lines. Therefore Lemma 10 shows that |T |−|TP | 6 (q+1)3+q2(2q+1). The
same lemma shows that |TP | 6 (q+ 1)3 + q2(2q+ 1). Hence |T | 6 2(q+ 1)3 + 2q2(2q+ 1).
Since q > 5, this bound is better than the one in the statement.

Lemma 13. Suppose that q > 5 and X 6= C(x) for every point and every plane x. Then
for every line ` there exist at most c := 11q3 + 7q2 − 3q + 1 chambers in X whose lines
meet `.

Proof. Let ` be a line. Lemma 11 shows that at most 2(q+ 1)q2 + (q+ 1)3 chambers of X
have their point on ` or their plane through `. This number is equal to 3q3 + 5q2 + 3q+ 1.
Therefore Lemma 12 proves the statement.

Lemma 14. If q > 5 and if X contains two chambers whose lines are skew, then |X| 6
9(q + 1)(5q2 + 1).
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Proof. Suppose that q > 5 and X has two chambers (P1, `1, π1) and (P2, `2, π2) with
`1 ∩ `2 = ∅. Then X 6= C(y) for every point and every plane y. Defining the number c
as in Lemma 13, it follows that every line meets the line of at most c chambers of X. In
view of the bound that we want to show for |X|, we may assume that |X| > 2c. Then
there exists a chamber (P3, `3, π3) in X such that `3 is skew to `1 and to `2. Lemma 13
shows that X contains at most 3c chambers whose lines meet at least one of the lines
`1, `2, and `3. Now we will determine an upper bound for the number of chambers of X
whose lines are skew to `1, `2 and `3.

Let (P, `, π) be such a chamber of X. For each i ∈ {1, 2, 3} we have that P ∈ πi or
Pi ∈ π. Hence π contains at least two of the points Pi, or P lies in at least two of the
planes πi. Notice that the fact that the lines `1, `2, and `3 are pairwise skew implies that
the points P1, P2, P3 are pairwise distinct and that the planes π1, π2, and π3 are pairwise
distinct.

The number of chambers of X whose planes contain two given points of {P1, P2, P3}
is at most d := (q + 1)q2 + (q + 1)3 by Lemma 11. Hence there are at most 3d chambers
in X whose plane contains two of the points Pi. Dually, there exist at most 3d chambers
in X whose point is contained in two of the planes πi.

Therefore |X| 6 3c+ 6d = 9(q + 1)(5q2 + 1). This proves the lemma.

Proof of Theorem 9. Let X be a maximal family of pairwise non-opposite chambers of
PG(3, q) with q > 43. If X contains two chambers, whose lines are skew, then Lemma
14 shows that |X| 6 9(q + 1)(5q2 + 1). If the lines of the chambers of X mutually meet,
then they all pass through a common point P or all lie in a common plane π. In this
case we have X ⊆ C(P ) or X ⊆ C(π) and maximality of X shows that X = C(P ) or
X = C(π).

Corollary 15. If q > 43, then every maximal set of chambers of PG(3, q) that are mu-
tually not opposite has either (q2 + q + 1)(q + 1)2 elements or at most 9(q + 1)(5q2 + 1)
elements.

These results become in a way more natural when translated by the Klein-correspon-
dence to the hyperbolic quadric Q+(5, q). Here a chamber is a triple (P, π, τ) consisting
of a point P , a Greek plane π and a Latin plane τ such that P lies in the planes π and
τ . Two chambers (Pi, πi, τi) are opposite, if the points P1 and P2 are non-collinear and
if π1 ∩ τ2 = π2 ∩ τ1 = ∅. Since points and planes of projective 3-space translate by
Klein-correspondence both to planes, the results of Theorem 9 and Corollary 15 translate
into the following slightly more pleasant formulation.

Corollary 16. If q > 43, then a set of chambers of Q+(5, q) that are mutually not opposite
has at most (q2 + q+ 1)(q+ 1)2 elements and equality occurs if and only if the set consists
of all chambers whose point is contained in a given plane.
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4 The chromatic number

In this section we prove part (c) of Theorem 1 and for this we use the following notation.
Let Γ be the graph whose vertices are the chambers of PG(3, q) with two vertices being
adjacent when the corresponding chambers are opposite. Let V be the vertex set of Γ.

First we give an example to show that the chromatic number is at most q2 + q.

Example 17. Let ` be a line of PG(3, q), let π be a plane on `, and let C be the set
consisting of the q2 points of π that do not lie on ` and of the q planes on ` that are
distinct from π. Then every line of PG(3, q) is incident with at least one element of C.
Hence every chamber of PG(3, q) lies in C(x) for at least one element x of C. This shows
that the vertex set of Γ can be covered with |C| = q2 + q independent sets of Γ. This
implies that the chromatic number of Γ is at most q2 + q.

Theorem 18. For q > 47 the chromatic number of the graph Γ defined in the beginning
of this section is q2 + q.

Proof. Let χ be the chromatic number of Γ. Then there exist independent sets G1, . . . , Gχ

that partition the vertex set V of Γ. From the above example we know that χ 6 q2+q. For
i = 1, . . . , χ let Fi be a maximal independent set of Γ with Gi ⊆ Fi. Put θ2 = q2 + q + 1,
e0 = θ2(q + 1)2 and e1 = 9(q + 1)(5q2 + 1). From Corollary 15 we know for each i that
|Fi| = e0 or |Fi| 6 e1.

Let I be the set of indices i with |Fi| = e0. For i ∈ I, Theorem 9 shows that there
exists a point or plane xi such that Fi = C(xi). Put A = {xi | i ∈ I, xi is a point} and
B = {xi | i ∈ I, xi is a plane}. It follows from Theorem 2.2 of [9] that the number of
lines of PG(3, q) that contain a point of A is at most θ2 + |A|q2. Dually the number of
lines of PG(3, q) that are contained in a plane of B is at most θ2 + |B|q2. Since the line of
every chamber of C(x) with x ∈ A contains x, it follows that at most (θ2 + |A|q2)(q + 1)2

chambers are contained in C(x) for some x ∈ A, and similarly at most (θ2 + |B|q2)(q+ 1)2

chambers are contained in C(x) for some x ∈ B. Since the total number of chambers is
(q2 + 1)θ2(q+ 1)2 and since every chamber lies in at least one set Fi, 1 6 i 6 χ, it follows
that

(q2 + 1)θ2(q + 1)2 6

∣∣∣∣∣
χ⋃
i=1

Fi

∣∣∣∣∣ 6 (2θ2 + |A|q2 + |B|q2)(q + 1)2 + (χ− |A| − |B|)e1. (1)

Since q > 47, then q2(q + 1)2 > e1. Since |A|+ |B| = |I| 6 χ, it follows that

(q2 + 1)θ2(q + 1)2 6 (2θ2 + χq2)(q + 1)2.

This implies that χ > q2 + q − 1 and hence χ = q2 + q.

Remark 19. The proof shows slightly more for q > 47. In fact using χ = q2 + q it follows
from (1) that |A| + |B| > q2 + q − 1. Therefore every coloring with χ = q2 + q colors
comes from a covering of the set of chambers with q2 + q sets C(xi), i = 1, . . . , q2 + q,
where each xi is a point or a plane. It follows that each line of PG(3, q) is incident with
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one element xi. If L(xi) is the set of lines incident with xi, it follows that the sets L(xi)
provide a covering of the Kneser graph of lines by independent sets. These Kneser graphs
have been studied in [5] where it was shown that also they have chromatic number q2 + q.
Clearly every coloring of the Kneser graph of lines of PG(3, q) provides a coloring of the
graph of chambers studied in the present paper, by replacing each color class C by the
set of all chambers whose line lies in C. Therefore the optimal colorings in both graphs
correspond to one another and therefore we refer to [5] for further information.
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