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Abstract

A planar hypermap with a boundary is defined as a planar map with a boundary,
endowed with a proper bicoloring of the inner faces. The boundary is said alternating
if the colors of the incident inner faces alternate along its contour. In this paper we
consider the problem of counting planar hypermaps with an alternating boundary,
according to the perimeter and to the degree distribution of inner faces of each
color. The problem is translated into a functional equation with a catalytic variable
determining the corresponding generating function.

In the case of constellations—hypermaps whose all inner faces of a given color
have degree m > 2, and whose all other inner faces have a degree multiple of m—we
completely solve the functional equation, and show that the generating function is
algebraic and admits an explicit rational parametrization.

We finally specialize to the case of Eulerian triangulations—hypermaps whose all
inner faces have degree 3—and compute asymptotics which are needed in another
work by the second author, to prove the convergence of rescaled planar Eulerian
triangulations to the Brownian map.
Mathematics Subject Classifications: 05A15, 05C10
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1 Introduction

Context and motivations. The enumerative theory of planar maps has been an active
topic in combinatorics since its inception by Tutte in the sixties [28]. A recent account of
its developments may be found in the review by Schaeffer [26]. Many such developments
were motivated by connections with other fields: theoretical physics, algebraic and enu-
merative geometry, computer science, probability theory... In this paper, we consider a
specific question of map enumeration which finds its origin in the work [14] of the second
author on the scaling limit of random planar Eulerian triangulations. In fact, we establish
key asymptotic estimates which are needed in the proof that these maps converge to the
Brownian map.

Eulerian triangulations are part of a more general family of maps which, following [5],
we call hypermaps. These are maps whose faces are bicolored (say, in black and white) in
such a way that no two faces of the same color are adjacent. They correspond through
duality to bipartite maps. A fairly general enumeration problem consists in counting
planar hypermaps with a given degree distribution of faces of each color. This problem is
intimately connected [9] with the Ising model on random maps, first solved by Kazakov
and Boulatov [23, 6]. It received a lot of attention in the physics literature, due to its
rich critical behavior and its connection with the so-called two-matrix model [20]. A nice
account of the enumerative results coming from this approach may be found in the last
chapter of the book by Eynard [21]. Let us also mention the many recent papers [3, 17,
18, 27] devoted to the local limits of the Ising model on random maps.

To enumerate maps, the standard approach [28] consists in studying the effect of the
removal of an edge. Nowadays, this operation is often called “peeling” [19]. In order to turn
the peeling into equations, one needs to keep track of one or more auxiliary parameters,
called catalytic variables [7], and typically corresponding to boundary lengths. In the
context of hypermaps, a further complication occurs, since one needs to keep track of
boundary conditions : colloquially speaking, these encode the colors of the faces incident
to the boundary. The most tractable boundary condition is the so-called Dobrushin
boundary condition, which consists in having the boundary made of two parts: one part
will be incident to white faces, and the other to black faces. The Dobrushin boundary
condition has the key property that it is invariant under peeling, provided that we always
peel an edge at the white-black interface. The resulting equations are solved in [21, 17],
see also [4] for a probabilistic interpretation in the context of site percolation. Knowing
how to treat Dobrushin boundary conditions, one may then consider “mixed” boundary
conditions [21], where there is a prescribed number of white-black interfaces. However,
this approach seems to become intractable when the number of interfaces gets large. Here,
we are considering the extreme situation where the number of interfaces is maximal, that
is to say when white and black faces alternate along the boundary. We call this situation
the alternating boundary condition. It arises when considering the layer decomposition of
Eulerian triangulations [14]. The alternating boundary condition is not invariant under
peeling, but can be made so by adding a monochromatic boundary part, and peeling
at the first alternating edge. Through this method, we obtain a functional equation
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amenable to the kernel method [25, 7]. We do not attempt to solve this equation in
general, but we concentrate on the specific case of constellations1 (encompassing Eulerian
triangulations). Thanks to a shortcut, we directly obtain a rational parametrization of
the generating function of constellations with an alternating boundary, and having this
parametrization at hand is very convenient to compute asymptotics.

Before presenting our results in more detail, let us mention that there exists several
bijective approaches to the enumeration of hypermaps [9, 10, 11, 12, 5, 2], but we have
not succeeded so far in adapting them to the case of alternating boundary conditions. We
leave this as an open problem.

Main results. Recall that a planar map is a connected multigraph drawn on the sphere
without edge crossings, and considered up to continuous deformation. It consists of ver-
tices, edges, faces, and corners. A boundary is a distinguished face, which we often choose
as the infinite face when drawing the map on the plane. It is assumed to be rooted, that
is to say there is a distinguished corner along the boundary. The other faces are called
inner faces.

Figure 1: Left: a hypermap with a white monochromatic boundary (w = ◦◦◦◦), with its
root corner marked by a gray arrow. Right: a hypermap with an alternating boundary
(w = ◦•◦•). We paint in black the external sides of the boundary edges with wi = •,
since the boundary is considered black at these edges.

A hypermap with a boundary is a planar map with a boundary, where every inner face
is colored either black or white, in a such a way that adjacent inner faces have different
colors. Note that the boundary does not have a specified color: it may be incident to
faces of both colors. Let w be a word on the alphabet {•, ◦}, and ` be the length of w.
A hypermap with boundary condition w is a hypermap with a boundary of length ` such
that, when walking in clockwise direction around the map (starting at the root corner),

1. if the i-th edge that we visit (i = 1, . . . , `) is incident to an inner face, then this face
is white if wi = • and black if wi = ◦,

1We follow the terminology of [8]. Even though we view constellations as instances of hypermaps,
they can also be viewed as more general objects [24, 16], but we do not consider this setting here.
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2. if an edge is incident to the boundary on both sides, and is then visited twice, say
at steps i and j, then wi 6= wj.

In other words, wi codes for the color of the boundary face as seen from the i-th edge. A
hypermap with a white (resp. black) monochromatic boundary is a hypermap with bound-
ary condition ◦ ◦ · · · ◦ (resp. • • · · · •). These are just hypermaps in the sense of [5]. A
hypermap with an alternating boundary is a hypermap with boundary condition ◦•◦•· · ·◦•.
See Figure 1 for an illustration.

Let m be an integer not smaller than 2. A hypermap (with a boundary) is called
an m-constellation if every black (inner) face has degree m, and every white (inner) face
has degree multiple of m. The enumeration of m-constellations with a monochromatic
boundary and a prescribed degree distribution for the white faces has been considered in
previous works [8, 1], and we review the results in Section 2. Our main result concerns
the enumeration of m-constellations with an alternating boundary:

Theorem 1. Given a nonnegative integer r, let Ar denote the generating function of
m-constellations with an alternating boundary of length 2r, counted with a weight t per
vertex and a weight xi per white inner face of degree mi for every i > 1. By convention,
we have A0 = t, corresponding to the vertex-map. Let d be a positive integer and assume
that xi = 0 for i > d. Then, the series

A(w) :=
∑
r>0

Arw
r+1 (1)

is algebraic and admits a rational parametrization: for s a formal variable we have

A(w(s)) = 1− (1 +
∑d

k=1 αks
k)m−1

1 + V s
, w(s) := s

(1 +
∑d

k=1 αks
k)m−2

(1 + V s)2
(2)

where V is the series in t, x1, . . . , xd such that

V = t+
d∑

i=1

(
mi− 1

i

)
xiV

(m−1)i (3)

and

αk :=
d∑

i=k

(
mi− 1

i− k

)
xiV

(m−1)i+k−1, k = 1, . . . , d. (4)

Note that w(s) is a series in s whose coefficients are polynomials in V, α1, . . . , αd,
with w(s) = s + O(s2). Therefore, the substitution A(w(s)) is well-defined and, by
reversion of series, we see that Ar is a polynomial in V, α1, . . . , αd, hence in V, x1, . . . , xd.
In particular we have A0 = V −(m−1)α1 = t as wanted. We give the expression for A1 in
Appendix A, and we also check that it is consistent with the generating function of rooted
m-constellations computed by another approach. In principle, we may express Ar via the
Lagrange inversion formula, but we do not expect to obtain a practical formula in this
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way. Still, as we shall see below, the rational parametrization contains all the information
needed to compute asymptotics.

In the case m = 2, through a classical identification between 2-constellations and
planar bipartite maps, Ar should be the generating function of planar bipartite maps
with a boundary of length 2r. This is indeed the case, as we will see in Remark 3 below.

We now focus on the case of Eulerian m-angulations (with a boundary), i.e. m-
constellations whose white (inner) faces all have degree m. By specializing Theorem 1 to
d = 1 and x1 = 1, we obtain:

Corollary 1. For (planar) Eulerian m-angulations with an alternating boundary, counted
with a weight t per vertex, the rational parametrization takes the form

A(w(s)) = 1− (1 + V m−1s)m−1

1 + V s
, w(s) := s

(1 + V m−1s)m−2

(1 + V s)2
(5)

where V is the series in t such that V = t+ (m− 1)V m−1.

From this we may compute the first few terms of A(w), namely

A(w) = tw +

(
V 2 + (2m− 3)V m +

(m− 1)(m− 2)

2
V 2m−2

)
w2+(

2V 3 + (6m− 10)V m+1 + (m− 2)(4m− 5)V 2m−1 − (m−1)(m−2)(2m−3)
3

V 3m−3
)
w3 + · · · ,

(6)

and the coefficient of wr is a polynomial in V . Note that we may apply again Lagrange
inversion, this time on the variable t, to get that V k =

∑
n>0

k(m−1)n
mn+k

(
mn+k

n

)
t(m−1)n+k for

any k > 1. Plugging this into (6) allows to extract the coefficient of tnwr in A(w).

Figure 2: Left: an Eulerian triangulation with a semi-simple alternating boundary. Right:
an Eulerian triangulation with an alternating, but not semi-simple boundary: the vertex
that violates the semi-simplicity condition is indicated with a red cross.

Let us emphasize that the above results concern maps whose boundary is not necessar-
ily simple. It is however not difficult to deduce a rational parametrization for maps with
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a simple boundary via a substitution argument. In fact, the layer decomposition intro-
duced in [14] involves Eulerian triangulations with a semi-simple alternating boundary:
the external face can have separating vertices, but only on every other boundary vertex.
More precisely, if we number the boundary corners 0, 1, . . . , 2r−1 in clockwise direction, 0
being the root corner, then the boundary is said semi-simple if there is no separating ver-
tex incident to an odd-numbered corner. See Figure 2 for an illustration. Note that this
definition allows for separating boundary edges, but such edges are necessarily “pendant”,
i.e. incident to a vertex of degree one. From the case m = 3 of Corollary 1 and through
substitution and singularity analysis, we obtain the following results, needed in [14]:

Theorem 2. For n, p nonnegative integers, denote by Bn,p the number of Eulerian trian-
gulations with a semi-simple alternating boundary of length 2p and with n black triangles.
Then, the corresponding generating function reads

B(t, z) :=
∑
n>0

∑
p>0

Bn,pt
nzp =

1

16t

(
8t+ 8z +

(
1−
√
1− 8t− 4z

)√ (1+
√
1−8t)2−4z
1−z

)
. (7)

For fixed z ∈ [0, 1
4
), we have the asymptotics

[tn]B(t, z) =
∑
p>0

Bn,pz
p ∼

n→∞

3

2

z√
π(z − 1)(4z − 1)3

8nn−5/2 (8)

and, for any fixed p,
Bn,p ∼

n→∞
C(p)8nn−5/2, (9)

with

C(p) ∼
p→∞

√
3

2π
4p
√
p. (10)

Moreover, the quantity Z(p) :=
∑

nBn,p8
−n = B (1/8, z) is finite for all p > 0, and

satisfies ∑
p>0

Z(p)zp =
1

2

(
1 + 8z +

(1− 4z)3/2

(1− z)1/2
)
, (11)

Z(p) ∼
p→∞

1

4

√
3

π
4pp−5/2, Z(0) = 1. (12)

Note that B(0, z) = 1
1−z , i.e. B0,p = 1 for all p > 0: this corresponds to the “star”

formed by p edges, the root corner being incident to the central vertex.
The quantity Z(p) can be understood as the partition function of the probability mea-

sure on all Eulerian triangulations of the disk having a semi-simple alternating boundary
of length 2p, that assigns a weight 8−n/Z(p) to each such triangulation that has n black
triangles. In particular, a random Eulerian triangulation sampled according to this law
has a fixed perimeter, but not a fixed size, and the variance of that size is infinite. By
analogy with similar families of random maps, we therefore call Z(p) the partition function
of critical Boltzmann Eulerian triangulations with a semi-simple alternating boundary of
length 2p.
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Outline. In Section 2, we review enumerative results about m-constellations with a
monochromatic boundary. In Section 3, we derive a functional equation determining the
generating function of hypermaps with an alternating boundary of prescribed length. We
explain in Section 4 how to solve this equation in the case of m-constellations, which
leads to the proof of Theorem 1. We consider Eulerian triangulations with a semi-simple
alternating boundary in Section 5, and establish Theorem 2. Concluding remarks are
gathered in Section 6.

Auxiliary material is left in the appendices: in Appendix A we compute the generat-
ing function of rooted m-constellations via two approaches; Appendix B deals with the
rational parametrization of the generating function of hypermaps with a monochromatic
boundary of prescribed length.

2 Reminders on the enumeration of constellations

In this section we review enumerative results about m-constellations with a monochro-
matic boundary. Note that an m-constellation with a white monochromatic boundary is
just a rooted constellation in the classical sense, since the boundary is a white face just
like the others, except that one of its corners is distinguished.

Proposition 1 ([8, Theorem 3]). Let (ni)i>1 be a sequence of nonnegative integers such
that 0 <

∑
ni < ∞. Then, the number of rooted m-constellations having ni white faces

of degree mi for every i > 1 is equal to

m

m− 1
· (v +

∑
ni − 2)!

v!
·
∏
i>1

1

ni!

(
mi− 1

i

)ni

(13)

where v =
∑

(mi− i− 1)ni + 2 is the number of vertices.

The above formula is closely related to the series V of (3). Indeed, by the Lagrange
inversion formula, or equivalently by the cyclic lemma, we have

[xn1
1 · · ·xnd

d ]V = tv−1
(v +

∑
ni − 2)!

(v − 1)!
·

d∏
i=1

1

ni!

(
mi− 1

i

)ni

(14)

for v =
∑

(mi − i − 1)ni + 2. The right-hand side is precisely equal to m−1
m
vtv−1 times

(13), assuming d large enough. Removing the spurious term t in V , we may interpret
m

m−1(V − t) as the generating function of pointed rooted constellations, with no weight for
the marked vertex. See also the discussion in [13, pp. 130-132]. The generating function
of rooted constellations may be deduced by integrating with respect to t: we perform this
computation in Appendix A.

Let us now consider m-constellations with a white monochromatic boundary of pre-
scribed length mp, and denote by F ◦p the corresponding generating function, with no
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weight for the boundary. It was shown in [1]2 that
dF ◦p
dt

=

(
mp

p

)
V (m−1)p (15)

and, by integrating and performing the change of variable t→ V using (3), we get

F ◦p =

(
mp

p

)(
V (m−1)p+1

(m− 1)p+ 1
−

d∑
i=1

i

p+ i

(
mi− 1

i

)
xiV

(m−1)(p+i)

)
(16)

which coincides with [1, Proposition 10] up to an hypergeometric identity.
Interestingly, it is possible to collect all the (F ◦p )p>0 into a single grand generating

function which admits a rational parametrization. This property holds at the more gen-
eral level of hypermaps, as we explain in Appendix B by restating the results from [21,
Chapter 8] in our present setting. Let us just state here the result for m-constellations:
Proposition 2. Let X(y) be the formal Laurent series in y−1 defined by

X(y) :=
d∑

i=1

xiy
mi−1 +

∞∑
p=0

F ◦p
ymp+1

(17)

and let x(z) and y(z) be the Laurent polynomials

x(z) := z +
d∑

k=1

αkz
1−mk, y(z) :=

V

z
+ zm−1, (18)

where the αk and V are as in Theorem 1. Then, we have

X(y(z)) = x(z) (19)

which should be understood as a substitution of series in z, y(z)−1 being a formal power
series in z without constant term.

It may be shown [2] that this proposition is equivalent to the general expression (16)
for (F ◦p )p>0. Remarkably, the same Laurent polynomials x(z) and y(z) provide a rational
parametrization for the generating function of m-constellations with a black monochro-
matic boundary (see again Appendix B for the derivation):
Proposition 3. Let F •p denote the generating function of m-constellations with a black
monochromatic boundary of length mp, p > 1, with no weight for the boundary. Let Y (x)
be the formal Laurent series in x−1 defined by

Y (x) = xm−1 +
∞∑
p=0

F •p
xmp+1

. (20)

Then, we have
Y (x(z)) = y(z) (21)

which should be understood as a substitution of series in z−1, x(z)−1 being a formal power
series in z−1 without constant term.

2In this reference the weight per vertex t is set to 1, but it is not difficult to check that it can be taken
arbitrary.
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p

2r

Figure 3: To obtain a functional equation for the enumeration of bicolored maps with an
alternating boundary, we consider a more general boundary condition, with a monochro-
matic part (of length denoted by p) and an alternating one (of length denoted by 2r).

3 A functional equation for hypermaps with an alternating
boundary

In this section we consider the general setting of hypermaps: our purpose is to establish
a functional equation determining, for all r > 0, the generating function Ar of hypermaps
with an alternating boundary of length 2r, counted with a weight t per vertex and weight
ti (resp. t̃i) per black (resp. white) inner face of degree i for every i > 1.

As it is often the case in map enumeration, it is not obvious how to write a recursion
determining the family (Ar)r>0 directly, but we can obtain a recursion determining the
more general family (Mp,r)p,r>0, where Mp,r is the generating function of hypermaps with
“mixed” boundary condition of the form

• • · · · •︸ ︷︷ ︸
length p

◦ • ◦ • · · · ◦ •︸ ︷︷ ︸
length 2r

, (22)

see Figure 3 for an illustration. We then have Ar = M0,r, while Mp,0 is equal to the
generating function Wp of hypermaps with a black monochromatic boundary of length
p. In view of Theorem 3 in Appendix B below, Wp can be considered as known, since
(when degrees are bounded) we have a rational parametrization for the grand generating
function

W (x) :=
∞∑
p=0

Wp

xp+1
. (23)

Let us introduce the corresponding generating functions for Ar and Mp,r:

A(w) :=
∞∑
r=0

Arw
r+1, M(x,w) :=

∞∑
p=0

∞∑
r=1

Mp,r
wr

xp+1
. (24)
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p′

p− p′
2(r − 1) 2r′

p

2(r − r′ − 1)

Figure 4: Recursive decomposition of a hypermap with mixed boundary condition, as
counted by Mp,r. We “peel” the first white edge of the alternating part of the boundary,
and the three situations illustrated in the top row may occur: we may either discover a
new black inner face (left)—which will increase the length of the black monochromatic
boundary—or the white edge may be identified to a black edge, either in the monochro-
matic (middle) or the alternating (right) boundary. The bottom row displays the lengths
of the different boundary parts in the second and third cases (we exclude by convention
the case r′ = r − 1 on the right since it is the same as the case p′ = p on the left).

Our reason for working with series in x−1 and w, and for shifting some exponents by
1, is that it will lead to more compact expressions below. Note that, conventionally,
A0 =M0,0 = W0 = t.

Lemma 1. For p > 0 and r > 1, we have the recursion relation

Mp,r =
∑
i>1

tiMp+i,r−1 +

p∑
p′=0

Wp′Mp−p′,r−1 +
r−2∑
r′=0

Ar′Mp,r−r′−1. (25)

Proof. See Figure 4.

The above recursion translates into the functional equation

M(x,w) = w
∑
i>1

ti
[
xi(M(x,w) +W (x))

]
x<0

+ wxW (x)(M(x,w) +W (x)) + A(w)M(x,w) (26)
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where the notation [·]x<0 means that we keep only terms with negative powers of x (since
in the sum over i we “miss” some initial terms of M(x,w) +W (x)). We may rewrite the
functional equation in the form

K(x,w)M(x,w) = R(x,w) (27)

with

K(x,w) := 1− A(w)− wxY (x)

R(x,w) := wxW (x)Y (x)− w
∑
i>1

ti
[
xi(M(x,w) +W (x))

]
x>0

(28)

where the notation [·]x>0 should be self-explanatory and

Y (x) :=
∑
i>1

tix
i−1 +W (x) (29)

is the same as in Theorem 3.
We recognize a functional equation in one catalytic variable x, which is linear in

M(x,w) and thus amenable to the kernel method. When the ti vanish for i large enough,
we may rewrite the equation in a form which allows to apply [7, Theorem 3] and conclude
that M(x,w), hence A(w), is algebraic in w, x, W (x) and the ti. We will however
not attempt to work out an explicit expression for A(w) in general, but we will rather
concentrate on the case of m-constellations for which there is a simplification, and which
is sufficient for the application we have in mind.

4 Simplification in the case of m-constellations

We now specialize the face weights to

ti =

{
1 if i = m,
0 otherwise,

t̃i =

{
xi/m if m divides i,
0 otherwise.

(30)

A simplification occurs due to the following:

Lemma 2. In the case of constellations, we have Mp,r = 0 unless m divides p.

Proof. A hypermap with a boundary can be endowed with a canonical orientation of it
edges, by orienting each edge in order to have, say, white on its right (using the boundary
condition for the boundary edges). Assume that the hypermap is an m-constellation,
and consider a cycle, not necessarily oriented: we denote by a (resp. b) the number of
clockwise-oriented (resp. counterclockwise-oriented) edges along it. We claim that m
divides a− b, which may be checked by induction on the number of faces encircled by the
cycle. Applying this property to the contour of the boundary (or rather, of each of its
simple components), the result follows.
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The above lemma implies that

M(x,w) +W (x) =
A(w)

wx
+O

(
1

xm+1

)
(31)

which allows to rewrite the quantity R(x,w) of (28) as

R(x,w) = wxW (x)Y (x)− xm−1A(w) = wxY (x)2 − wxmY (x)− xm−1A(w). (32)

We now apply the kernel method, or rather a slight variant as we explain in Remark 2
below. We claim that there exists a unique formal power series ω(x) in x−1 without
constant term such that

K(x, ω(x)) = 0. (33)

Indeed, this condition can be rewritten

ω(x) =
1− A(ω(x))
xY (x)

= x−m
1− A(ω(x))

1 + x1−mW (x)
(34)

which fixes inductively all the coefficients of ω(x), that turns out to be a series in x−m.
Then, by (27) and since the substitution M(x, ω(x)) is well-defined, we deduce that

R(x, ω(x)) = 0. (35)

This gives a linear system of two equations determining ω(x) and A(ω(x)) as

ω(x) =
xm−2

Y (x)2
, A(ω(x)) = 1− xm−1

Y (x)
. (36)

At this stage, we assume that there exists d such that xi = 0 for i > d (note that we
have not used this assumption so far). This allows to plug in the rational parametrization
of Y (x) given by Proposition 3. We find

ω(x(z)) =
x(z)m−2

y(z)2
, A(ω(x(z))) = 1− x(z)m−1

y(z)
(37)

with x(z) and y(z) given by (18). We now observe that both right-hand sides are actually
series in s = z−m and, setting w(s) = ω(x(z)), we obtain the rational parametrization
announced in Theorem 1, which is thereby established. We conclude this section by some
remarks.

Remark 1. Even though we assume that there is a bound on faces degrees in Theorem 1,
we may take formally the limit d → ∞: by reversion we find that Ar is a polynomial in
V, α1, . . . , αr+1, and each of these quantities is a well-defined series in t, x1, x2, . . ..

Remark 2. In the usual kernel method, one would rather look for series ξ(w) such that
K(ξ(w), w) = 0. This would certain succeed but at the price of some complications,
since we would find m different Puiseux series in w1/m, namely the roots of the equation
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Figure 5: Bijection between 2-constellations with an alternating boundary and bipartite
planar maps with a boundary.

ω(ξ(w)) = w. The reason why our variant works is that K and R involve only one
unknown series A(w). This property seems specific to the case ofm-constellations: indeed,
the simplification hinges upon the relation (31), which would fail if we allowed for faces
of degree not divisible by m, and upon the fact that the sum over i in (28) involves only
a single nonzero term for i = m, which would not be the case if we allowed for black faces
of degree higher than m.

Remark 3. Considering the case m = 2 provides a nontrivial consistency check. Indeed,
as displayed on Figure 5, 2-constellations with an alternating boundary may be identified
with bipartite planar maps with a boundary, whose enumeration is well-known. The
rational parametrization (37) takes the form

A

(
1

y(z)2

)
= 1− x(z)

y(z)
. (38)

To match this expression with known formulas, we shall consider the modified generating
function Ã(y) =

∑
r>0

Ar

y2r+1 = yA
(

1
y2

)
. It then admits the rational parametrization

Ã(y(z)) = y(z)− x(z) = V

z
−
∑
k>1

αk

z2k−1
(39)

which matches that given in [21, Theorem 3.1.3], up to the change of variable z → γz,
V = γ2.
Remark 4. Taking x = x1 and w = ω(x2) in (27), and using (32) and (36), we find that the
generating function M(x,w) of m-constellations with a mixed boundary condition (22)
takes the parametric form

M(x1, ω(x2)) =
1

x1

(
(x1/x2)

m − 1

x1Y (x1)− x2Y (x2)
(x2Y (x2))

2 + xm1 − x1Y (x1)− x2Y (x2)

)
(40)

and a rational parametrization follows by further substituting x1 = x(z1) and x2 = x(z2).
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5 Asymptotics for Eulerian triangulations

The purpose of this section is to establish Theorem 2. Let us denote by Tn,r the number
of Eulerian triangulations with a (non necessarily semi-simple) alternating boundary of
length 2r having n black triangles. We form the generating function

T (t, u) :=
∑
n>0

∑
r>0

Tn,rt
nur. (41)

In the seriesA of Theorem 1, we rather attach a weight t to vertices. But, in a triangulation
counted by Tn,r, the number of vertices v is given by

v = n+ r + 1 (42)

(observe that there are n white triangles and 3n + r edges, then apply Euler’s relation).
Thus, the series A specialized to the case of Eulerian triangulations satisfies

A(w) = twT (t, tw) (43)

and it follows from the case m = 3 of Corollary 1, upon taking w = w(W/V ) with W a
new variable, that T admits the rational parametrization

T

(
V − 2V 2,

W (1− 2V )(1 + VW )

(1 +W )2

)
=

(1 +W )(1− 2V − V 2W )

(1− 2V )(1 + VW )
. (44)

Let us now make the connection with the generating function B(t, z) of Eulerian trian-
gulations with a semi-simple alternating boundary, as defined in Theorem 2. Considering
that a triangulation with a general boundary can be decomposed into a semi-simple
“core” (which is the semi-simple component containing the root) and general components
attached to every other vertex on the boundary, we obtain the substitution relation

T (t, u) = B(t, uT (t, u)). (45)

Combining with (44), we obtain that B(t, z) admits the rational parametrization

B

(
V − 2V 2,

W (1− 2V − V 2W )

1 +W

)
=

(1 +W )(1− 2V − V 2W )

(1− 2V )(1 + VW )
. (46)

By eliminating V and W , we find that B(t, z) must be a root of the algebraic equation:

16t3(z − 1)2B4 − 32t2(z − 1)2(t+ z)B3

+ t(z − 1)(24t2z + 32tz2 + 16z3 − 16t2 − 52tz − 16z2 − z)B2

− z(z − 1)(8t2 − 20t− 1)(t+ z)B + z2(t+ 1)3 = 0. (47)
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By solving this quartic equation and picking the unique solution which is a formal power
series in t (the others being Laurent series with negative order), we obtain the expres-
sion (7) for B(t, z). The first few terms read

B(t, z) =
(
1 + z + z2 + z3 + z4 + z5 + · · ·

)
+ t
(
z + 2z2 + 3z3 + 4z4 + 5z5 + · · ·

)
+t2

(
3z + 8z2 + 15z3 + 24z4 + 35z5 + · · ·

)
+t3

(
12z + 38z2 + 83z3 + 152z4 + 250z5 + · · ·

)
+ t4

(
56z + 199z2 + 486z3 + 988z4 + 1790z5 + · · ·

)
+

+ t5
(
288z + 1112z2 + 2958z3 + 6536z4 + 12822z5 + · · ·

)
+ · · · . (48)

The asymptotics are then deduced by standard methods of analytic combinatorics.
For fixed z ∈ (0, 1/4), the dominant singularity of B(t, z) is at t = 1/8 with

B(t, z)− c0(z)− c1(z)t ∼
2z√

(z − 1)(4z − 1)3
(1− 8t)3/2, t→ 1

8
(49)

for some functions c0(z) and c1(z). We then use the transfer theorem [22, Corollary VI.1]
to obtain (8), which immediately yields (9). Then, as the function of z appearing in
(8) is algebraic and has a unique dominant singularity at z = 1/4, we can apply the
transfer theorem once again to get (10). The asymptotics (11) for Z(p) are obtained by
a similar reasoning. All these computations may be checked using the companion Maple
file available on the web page of the second author, and the proof of Theorem 2 is now
complete.

6 Conclusion

In this paper, we have shown how to enumerate hypermaps with an alternating bound-
ary, explicited the solution in the case of m-constellations, and obtained explicit and
asymptotic results in the case of Eulerian triangulations with a semi-simple alternating
boundary, crucial in the analysis of the layer decomposition of Eulerian triangulations [14].

Our approach relies on the framework of functional equations with catalytic variables
arising from the recursive “peeling” decomposition of maps. This framework is closely
related to the so-called topological recursion for maps: in a nutshell, the core idea is that,
given a family of maps defined by some “bulk” conditions (degree-dependent weights,
etc), the corresponding generating functions for all sorts of topologies and boundary
conditions can be constructed as functions defined on a common algebraic curve known
as the “spectral curve”. In the context of hypermaps (or equivalently the Ising model on
maps), this idea is discussed in [21, Chapter 8], and the spectral curve is nothing but the
algebraic curve (x(z), y(z))z∈C∪{∞} of genus zero that we have been using in this paper.
Our results show that alternating boundaries fit nicely in this context, at least in the
case of m-constellations, since we see from (37) that our series A(w) “lives” on the same
spectral curve.

Let us now list some possible directions for future research. First, we have explicited
the solution of the functional equation of Section 3 only in the case of m-constellations:
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it might be instructive to treat other cases, such as the Ising model on four-regular maps,
which would correspond to taking t2 = t̃2 and t4 = t̃4 nonzero, and all others ti and t̃i
zero.

Second, one may of course study other types of boundary conditions for hypermaps.
In fact, it is widely believed that, in order to understand the metric properties of random
maps decorated with an Ising model, one should be able to handle general—or at least
“typical”—boundary conditions. Besides this ambitious research program, some specific
cases are of interest. As discussed in [15, Chapters 8 and 9], considering alternating bound-
aries with defects is relevant to the study of metric balls in the Upper Half-Plane Eulerian
Triangulation, and our approach extends nicely to this setting. In another direction, if one
tries to extend the layer decomposition to, say, Eulerian quadrangulations, then one is led
to consider boundary conditions which are obtained by repeating two possible patterns,
namely ◦• and ◦◦••. Handling these generalized alternating boundaries represents a new
technical challenge, as one should embed them in a family of peeling-invariant boundary
conditions extending (22).

Finally, as mentioned in the introduction, and in view of the quite simple rational
parametrization of Corollary 1, it is natural to ask whether our results could be derived
by a bijective approach.

A The generating function of rooted m-constellations

Let C denote the generating function of rooted m-constellations (i.e., m-constellations
with a white monochromatic boundary of arbitrary length), counted with a weight t per
vertex and a weight xi per white face of degree mi for every i > 1 (including the boundary
face). As discussed in Section 2, we have

C =
m

m− 1

∫
(V − t)dt. (50)

Here and in the following, there are no integration constants since [t0]C = 0. On the
other hand, recalling the definition of A1 in Theorem 1, we have

C = A1 − t2, (51)

since there is an obvious bijection between rooted m-constellations and m-constellations
with boundary condition •◦ not reduced to a single edge. From the rational parametriza-
tion, we find that

A1 = V 2 − (2m− 3)V α1 +
m− 1

2

(
(m− 2)α2

1 − 2α2

)
. (52)

Using
t = V − (m− 1)α1, (53)

we deduce that

C =
mα1

2
(2V − (m− 1)α1)− (m− 1)(V α1 + α2). (54)
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Let us check the consistency of this expression with (50). For this, we write∫
V dt =

∫
V dV − (m− 1)

∫
V dα1 (55)

and hence

m

m− 1

∫
(V − t)dt = m

2(m− 1)
(V 2 − t2)−m

∫
V dα1

=
m

2
α1 (2V − (m− 1)α1)−m

∫
V dα1.

(56)

Thus, comparing with (54), we should have

m

∫
V dα1 = (m− 1)(V α1 + α2). (57)

This is easy to check using the definition (4) of the αk, performing the integration term
by term and doing simple manipulations of binomial coefficients.

Remark 5. The expression (54) is “canonical” as V, α1, . . . , αd are algebraically indepen-
dent. Indeed, the formal variables t, x1, . . . , xd are by definition independent and they can
be recovered polynomially from V, α1, . . . , αd.

B Rational parametrizations for monochromatic boundaries

Hypermaps and the Ising model. We consider generating functions of hypermaps,
counted with a weight t per vertex and a weight ti (resp. t̃i) per black (resp. white) inner
face of degree i for every i = 2, . . . , d (resp. i = 2, . . . , d̃), where d and d̃ are fixed integers
larger than 1. In order to stick with the setting of [21], inner faces of degree one are
forbidden, but there would be no problem allowing them.

We denote by Wp (resp. W̃p) the generating function of hypermaps with a black (resp.
white) monochromatic boundary of length p, p > 0. We have conventionallyW0 = W̃0 = t.

Theorem 3 (reformulation of [21, Theorem 8.3.1]). Let Y (x) and X(y) be the formal
Laurent series in x−1 and y−1, respectively, defined by

Y (x) :=
d∑

i=2

tix
i−1 +

∞∑
p=0

Wp

xp+1
, X(y) :=

d̃∑
i=2

t̃iy
i−1 +

∞∑
p=0

W̃p

yp+1
(58)

and let x(z) and y(z) be the Laurent polynomials

x(z) := z +
d̃−1∑
k=0

akz
−k, y(z) :=

V

z
+

d−1∑
k=0

bkz
k (59)
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where V, a0, . . . , ad̃−1, b0, . . . , bd−1 are the series in t, t2, . . . , td, t̃2, . . . , t̃d̃ determined by the
conditions

y(z)−
d∑

i=2

tix(z)
i−1 = tz−1 +O(z−2), x(z)−

d̃∑
i=2

t̃iy(z)
i−1 =

tz

V
+O(z2). (60)

Then, we have
X(y(z)) = x(z), Y (x(z)) = y(z) (61)

which should be understood as substitutions of series in z and z−1 respectively, y(z)−1
(resp. x(z)−1) being a formal power series in z (resp. z−1) without constant term.

Since we have reformulated slightly the statement given in [21], let us explain the
connection. Eynard does not quite consider hypermaps, but rather planar maps whose
faces have degree at least 3 and carry Ising (+ or −) spins, and where each edge receives
a weight c++ (resp. c−−, c+−) if it is incident to two + faces (resp. two − faces, one +
and one − face). There is a standard one-to-many correspondence between such maps
and hypermaps, obtained by “collapsing” the bivalent (degree 2) faces of the hypermaps
and attaching a spin + (resp. −) to the remaining black (resp. white) faces. In this
correspondence, two adjacent + faces were necessarily separated by an odd number of
bivalent faces, with one more white than black bivalent face. Thus, the effective weight
per ++ edge is

c++ =
t̃2

1− t2t̃2
. (62)

Similarly, for the −− and +− edges we get effective weights

c−− =
t2

1− t2t̃2
, c+− =

1

1− t2t̃2
. (63)

All these relations can be put in matrix form(
c++ c+−
c+− c−−

)
=

(
−t2 1
1 −t̃2

)−1
(64)

and we get the following identification with the notations from [21, Theorem 8.1.1] (which
deals with yet another reformulation of hypermaps):

c = −1, a = −t2, b = −t̃2. (65)

Plugging into [21, Theorem 8.3.1], Y (x)matches our present definition (58), and we obtain
the form (59) for x(z) and y(z) through the change of variable z → z/γ, with γ2 = V .
The relation X(y(z)) = x(z) is obtained by exchanging the roles of white and black faces,
and reparametrizing z → V/z.

Remark 6. Theorem 3 can be given a combinatorial interpretation, as will be explained
in [2].
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Specialization to constellations. Let us change the d and d̃ of Theorem 3 into m
and md, respectively, and set the face weights to

ti =

{
1 if i = m,
0 otherwise,

t̃i =

{
xi/m if m divides i,
0 otherwise.

(66)

It is not difficult to check that, with such weights, the conditions (60) imply that the series
ak and bk vanish unless m divides k+1. Thus, x(z) and y(z) can be put in the form (18),
the first condition (60) implying that bm−1 = 1. By extracting the coefficient of z1−km
for k > 1 in the second condition (60), we find that αk = amk−1 is given by (4), while
extracting the coefficient of z yields an equation equivalent to (3). Identifying F ◦p = W̃mp

and F •p = Wmp, we obtain Propositions 2 and 3 as specializations of Theorem 3.
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