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Abstract

We develop the theory of fractional revival in the quantum walk on a graph using
its Laplacian matrix as the Hamiltonian. We first give a spectral characterization
of Laplacian fractional revival, which leads to a polynomial time algorithm to check
this phenomenon and find the earliest time when it occurs. We then apply the
characterization theorem to special families of graphs. In particular, we show that
no tree admits Laplacian fractional revival except for the paths on two and three
vertices, and the only graphs on a prime number of vertices that admit Laplacian
fractional revival are double cones. Finally, we construct, through Cartesian prod-
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ucts and joins, several infinite families of graphs that admit Laplacian fractional
revival; some of these graphs exhibit polygamous fractional revival.

Mathematics Subject Classifications: 05C50, 81P68
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1 Introduction

The first use of quantum walks dates back to 1998, when Farhi and Gutmann proposed a
quantum walk based algorithm on decision trees, and proved its advantage over classical
algorithms [12]. Since then, quantum walks have found their applications in designing
algorithms (see, for example, [8]) and building quantum circuits (see, for example, [7]).
In particular, quantum walks that manifest certain state transfer properties are desirable
for transmitting quantum information [3].

Given a quantum spin network, we can represent its qubits, and the interaction be-
tween two qubits, by the vertices and edges of a graph X. The state of this system, when
restricted to the one-excitation subspace, is a complex-valued function on the vertices.
Over time, it evolves according to the operator

U(t) = exp(itH),
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where H is some Hermitian matrix associated with X. We call such evolution a quantum
walk on X.

We are particularly interested in generating a state that is supported by two vertices.
To be more specific, we say a graph admits fractional revival at time τ from vertex a to
vertex b if, for some complex numbers α and β,

U(τ)ea = αea + βeb.

Such a state has physical significance: if neither α nor β is zero, the two qubits at a and
b are entangled at time τ ; if β = 0, the system recovers its original state at qubit a after
time τ ; and if α = 0, the original state of qubit a is completely transferred to qubit b at
time τ . The last phenomenon is better known as perfect state transfer.

Naturally, one would wonder how these phenomena are determined by the underlying
graph, or more precisely, the Hermitian matrix H. There are two common choices for
H: the adjacency matrix A, which defines a spin network in the XY interaction model,
and the Laplacian matirx L, which defines a spin network in the XYZ interaction model
[3]. A lot of theory has been developed for the adjacency model; for example, there is
a complete characterization of adjacency perfect state transfer in terms of the spectrum
of A [13], and one can decide in polynomial time whether this phenomenon occurs on
a particular graph [10]. It is also known that both perfect state transfer and fractional
revival are rare with respect to the adjacency matrix [13, 6].

The Laplacian model is less understood despite its similarity. However, there are some
unique tools under this framework, such as the Matrix-Tree Theorem, that enable us to
prove statements whose adjacency analogs are not yet verified. For instance, Coutinho
and Liu showed that the only tree that admits Laplacian perfect state transfer is the path
on two vertices [11], while it still remains open to determine which trees admit adjacency
perfect state transfer. This class of graphs is important to the experimentalists, as they
prefer sparse graphs when implementing quantum walks.

In this paper, we study Laplacian fractional revival (LaFR) from an algebraic graph
theoretic perspective. Our theory relates properties of the walk to properties of the graph.
In particular, we are able to (i) characterize LaFR on a general graph (Theorem 26), (ii)
determine special classes of graphs on which LaFR occurs (Theorem 37, Theorem 46),
and (iii) construct infinite families of graph with LaFR (Theorem 11, Theorem 43 and
Theorem 48).

As a consequence of Part (i), we find a polynomial time algorithm that decides LaFR
(Theorem 34), and prove that only finitely many graphs with fixed maximum valency
can admit LaFR (Theorem 33). This confirms the intuition that LaFR is also a rare
phenomenon.

In Part (ii), we see that trees on more than three vertices are not candidates for proper
LaFR, which strengthens Coutinho and Liu’s result. We also completely characterize
graphs on a prime number of vertices that admit LaFR; such structural result is new in
the area of quantum walks.

Finally, in Part (iii), we utilize graph operations including Cartesian products, com-
plements and joins to build families of graphs that do admit LaFR. In stark contrast
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to perfect state transfer, which is known to be monogamous, one of our families exhibit
polygamous fractional revival. This unexpected result answers an open question in [6].

2 The Laplacian matrix

Let X be a graph. Let A be its adjacency matrix, and let D be the diagonal matrix whose
vv-entry is the degree of the vertex v. The Laplacian matrix of X, denoted L, is given by

L = D − A.

Our main tool is the spectral decomposition of L. In this section, we list some useful
facts about L; for proofs, see Godsil and Royle [14, Ch 8].

Lemma 1. The Laplacian matrix is positive semidefinite. Moreover, it has 0 as an
eigenvalue with eigenvector 1.

Next, we cite two upper bounds on the Laplacian eigenvalues due to Anderson and
Morley [2].

Theorem 2. [2] Let X be a connected graph on n vertices whose largest Laplacian eigen-
value is µ. Then µ 6 n and

µ 6 max{deg(u) + deg(v) : u ∼ v}.

Moreover, the multiplicity of µ is one less than the number of components of the comple-
ment X.

Given an orientation of X, the signed incidence matrix, denoted B, is the matrix
whose rows are indexed by the vertices and columns by the edges with

Bv,e =


1, if v is the head of the edge e

−1, if v is the tail of edge e

0, otherwise

The following lemma shows a connection between the Laplacian matrix and the signed
incidence matrices of a graph.

Lemma 3. Let X be a graph with Laplacian matrix L. Let B be the signed incidence
matrix of any orientation of X. Then

L = BBT .

Finally, we state a well-known result called the Matrix-Tree Theorem. Given a matrix
M , we let M [u|v] be the matrix obtained from M by deleting the u-th row and v-th
column.

Theorem 4 (Matrix-Tree Theorem). Let X be a graph on n vertices with Laplacian
matrix L. Let q be the number of spanning trees of X. If u is a vertex of X, then
det(L[u|u]) = q. Moreover, nq equals the product of non-zero eigenvalues of L.
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3 Laplacian fractional revival

Given a Hermitian matrix H, a quantum walk with respect to H is determined by the
following matrix, called the transition matrix:

U(t) = exp(itH).

Note that U(t) is a unitary matrix. If, in addition, H is real symmetric, then U(t) is also
symmetric.

There are two common choices for H associated with a graph: the adjacency matrix
A and the Laplacian matrix L. In this paper we will consider the latter. However, for a
d-regular graph, we have L = dI − A, and so

exp(itL) = eidt exp(−itA).

Therefore, some of our results apply to the adjacency model as well if the graph is regular.
We say a graph admits Laplacian fractional revival, or LaFR, from vertex a to vertex

b at time τ if the transition matrix with respect to L satisfies

U(τ)ea = αea + βeb

for some complex numbers α and β. As U(t) is unitary, it follows that |α|2 + |β|2 = 1. As
U(t) is unitary and symmetric, LaFR occurs if and only if U(τ) has the following block
diagonal form:

U(τ) =

α β
β γ

0

0 N

 . (1)

There are some special cases of LaFR. If β = 0, then the graph is said to be Laplacian
periodic at vertex a at time τ ; in this case, vertex b does not play a role. We will refer
to the case where β 6= 0 as proper LaFR. If, on the other hand, α = 0, then the graph is
said to admit Laplacian perfect state transfer, or LaPST, from vertex a to vertex b.

We can compute U(t) using the eigenvalues and eigenprojections of L. Let the spectral
decomposition of L be

L =
∑
r

µrFr,

where µr is an eigenvalue of L, and Fr is the orthogonal projection onto the eigenspace
of µr. Then we have

U(t) =
∑
r

eitµrFr.

This formula will be frequently used in the rest of the paper.
We list some examples that admit LaFR.

Example 5. K2 admits three types of LaFR:

(i) At time t ∈ πZ, it is Laplacian periodic at both vertices.
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(ii) At time t being an odd multiple of π
2
, it has LaPST from one vertex to the other.

(iii) At time t /∈ π
2
Z, it has proper LaFR from one vertex to the other.

Example 6. On P3, there is proper LaFR at time 2π/3 between the end vertices, and
periodicity at time 2π at all vertices.

The next example takes a look at four graphs that admit proper LaFR in a very
interesting way.

Example 7. In Figure 3, the vertices that are not black in each graph are the ones
between which proper LaFR occurs. For example, in the first graph, C6, proper LaFR
occurs between antipodal vertices. Comparing the first to the second graph, we can see
that adding an edge between two vertices that do not have LaFR destroys their LaFR
with their matching vertices. Going from the second to the fourth graph still preserves
the LaFR. Now, what is particularly interesting is the comparison between the second
and the third graph: Adding an edge between the two vertices admitting proper LaFR
still preserves the proper LaFR. All of these are just observations on these specific graphs
and do not apply to all graphs.

Figure 1: Example 7

4 Cartesian products

In this section, we discuss a graph operation that preserves LaFR.
Let X and Y be two graphs. The Cartesian product of X and Y , denoted X Y , is

the graph with vertex set V (X) × V (Y ), such that two vertices (x1, y1) and (x2, y2) are
adjacent if either x1 is adjacent to x2 in X and y1 = y2, or x1 = x2 and y1 is adjacent
to y2. Using the Kronecker product of matrices, we can express the Laplacian matrix of
X Y in terms of the Laplacian matrices of X and Y :

L(X Y ) = L(X)⊗ I + I ⊗ L(Y );

for details about this identity, see Godsil and Coutinho [9]. As L(X)⊗ I commutes with
I ⊗ L(Y ), it follows that

UX Y (t) = UX(t)⊗ UY (t).

We characterize proper LaFR on Cartesian products in terms of their base graphs.
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Theorem 8 (Proper LaFR in Cartesian Products). Let X and Y be two graphs. The
Cartesian product X Y has proper LaFR at time τ if and only if one of X and Y has
a periodic vertex at time τ and the other graph has proper LaFR at time τ .

Proof. First, suppose X Y has proper LaFR at time τ . Then, without loss of generality,

UX Y (τ) = UX(τ)⊗ UY (τ) =

α β
β γ

0

0 N


Let aij and bij be the ij-entries of UX(τ) and UY (τ), respectively. We have

a11b11 = α, a11b21 = β, a11b12 = β, a11b22 = γ, (2)

and for j > 3,
a11bj1 = 0, a11bj2 = 0, a11b1j = 0, a11b2j = 0. (3)

As LaFR on X Y is proper, β 6= 0, and so a11 6= 0. From (2) it follows that b12 6= 0 and
b21 6= 0. Further, from (3) we can conclude that for j > 3,

bj1 = 0, bj2 = 0, b1j = 0, b2j = 0. (4)

So, Y indeed has proper LaFR at time τ . Now, since b12 6= 0 and b21 6= 0, by similar
reasoning we have aj1 = a1j = 0 for all j 6= 1.Therefore, X must have a periodic vertex
at τ .

Conversely, suppose at time τ , X has a periodic vertex and Y has proper LaFR. Then

UX(τ) =


η 0 . . . 0
0
...
0

Nx


for some η 6= 0 and (n− 1)× (n− 1) matrix Nx, and

UY (τ) =

(
N 0
0 Ny

)
=

α β
β γ

0

0 Ny


for some (n− 2)× (n− 2) matrix Ny. It follows that

UX(τ)⊗ UY (τ) =

ηα ηβ
ηβ ηγ

0

0 Nx ⊗Ny


As LaFR on Y is proper, β 6= 0, and so LaFR on X Y is proper.
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5 Complements and joins

Under certain conditions, LaFR is also preserved by taking complements or joins. The
following result generalizes Theorem 2 of [1].

Theorem 9. Let X be a graph on n vertices. If X has LaPST or LaFR between two
vertices u and v at time τ , with nτ ∈ 2πZ, then the complement X has LaPST or LaFR,
respectively, between these two vertices at τ .

Proof. Let L be the Laplacian matrix of X, and L the Laplacian matrix of X. We have

L = nI − J − L.

Since L commutes with J ,

exp(itL) = eint exp(−itJ) exp(−itL)

= eint
(

(e−int − 1)
1

n
J + I

)
exp(−itL)

Thus, if nt ∈ 2πZ, we have exp(itL) = exp(−itL).

Given two graphs X and Y , the join of X and Y , denoted X+Y , is the graph obtained
from the disjoint union X∪Y by joining all vertices of X to all vertices of Y . Equivalently,

X + Y = X ∪ Y .

Corollary 10. Let X be a graph whose complement admits LaPST or LaFR between
vertex a and vertex b at time τ . For any graph Y , the join X + Y has LaPST or LaFR,
respectively, between these two vertices at time τ provided that τ(|V (X)|+ |V (Y )|) ∈ 2πZ.

Proof. This follows from the above identity and Theorem 9.

As a special case of joins, the graph K2 + Y is called the double cone over Y . We
will refer to the two vertices from K2 in a double cone as the conical vertices. Our next
result shows that double cones provide an infinite family of graphs on which proper LaFR
occurs.

Theorem 11. Let n > 3 be an integer. Then any double cone on n vertices admits proper
LaFR at time 2π/n between the conical vertices. Moreover, the LaFR is LaPST if and
only if n = 4.

Proof. Let K2 + Y be a double cone on n vertices, and let τ = 2π/n. As n > 3, we have
τ /∈ πZ, and so by Example 5, K2 has proper LaFR at time τ . Now apply Corollary 10
with X = K2.

Since LaPST occurs on K2 at odd multiples of π/2, the double cone K2 + Y admits
LaPST at time 2π/n if and only if n = 4.
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At the end of this section, we mention another infinite family of graphs, found by
Kirkland and Zhang [16], with LaFR.

Let On = Kn. The threshold graph, denoted Γ(m1,m2, . . . ,m2k), is the graph((((
(Om1 +Km2) ∪Om3

)
+Km4

)
∪ · · ·

)
Om2k−1

)
+Km2k

Theorem 12. [16] The threshold graph Γ(m1,m2, . . . ,m2k) admits LaFR between vertex
a and vertex b at time τ if and only if

(i) m1 = 2 and V (Om1) = {a, b},

(ii) τ is not an integer multiple of π/2, and

(iii) (m1 +m2)τ ≡ 0 (mod 2π), and mjτ ≡ 0 (mod 2π), for j = 3, . . . , 2k.

We will study LaFR on join graphs in greater depth in Section 11.

6 Laplacian strong cospectrality

In this section, we study a spectral property called Laplacian strong cospectrality. This
is a key property required by proper LaFR.

Let X be a graph. Let L be its Laplacian matrix with spectral decomposition

L =
∑
r

µrFr.

We say two vertices a and b are Laplacian strongly cospectral if for each r,

Frea = ±Freb.

This extends the notion of adjacency strong cospectrality due to Godsil and Smith [15].
It is proved that if a graph admits perfect state transfer between two vertices a and b,
then they must be strongly cospectral. In the next section, we will show that Laplacian
strong cospectrality is also a necessary condition for LaFR.

Given two strongly cospectral vertices a and b with respect to L, there is a natural
partition of the eigenvalues of L:

Φ+
ab = {µr : Frea = Freb 6= 0}

Φ−ab = {µr : Frea = −Freb 6= 0}
Φ0
ab = {µr : Frea = Freb = 0}

In all three sets, we have

(Fr)aa = eTaFrea = eTb Freb = (Fr)bb.

This leads to the following observation.
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Lemma 13. Let a and b be two Laplacian strongly cospectral vertices. Then deg(a) =
deg(b).

Proof. Let the spectral decomposition of L be

L =
∑
r

µrFr.

Then
Laa =

∑
r

µr(Fr)aa =
∑
r

µr(Fr)bb.

The result follows as the diagonal entries of L are degrees of the vertices.

Our next lemma gives the structure of the spectral idempotents summed over each
class.

Lemma 14. Let X be a graph. Let L be its Laplacian matrix with spectral decomposition

L =
∑
r

µrFr.

Suppose vertices a and b are strongly cospectral with respect to L. Then

∑
r:µr∈Φ+

ab

Fr =
1

2

1 1
1 1

0

0 ∗

 ,
∑

r:µr∈Φ−
ab

Fr =
1

2

 1 −1
−1 1

0

0 ∗′

 .

Proof. Define

v+ =
∑

r:µr∈Φ+
ab

Frea, v− =
∑

r:µr∈Φ−
ab

Frea.

As the spectral idempotents Fr sum to the identity, we have ea = v++v− and eb = v+−v−.
Hence

v+ =
1

2
(ea + eb), v− =

1

2
(ea − eb)

which corresponds to the first columns of
∑

r:µr∈Φ+
ab

Fr and
∑

r:µr∈Φ−
ab

Fr. The forms of their

second column and the rest of their first two rows follows from strong cospectrality and
that the matrices are symmetric.

If a and b are Laplacian strongly cospectral, then the eigenvalue 0 lies in Φ+
ab. By the

two identities in Lemma 14, Φ+
ab contains at least one non-zero eigenvalue, and Φ−ab cannot

be empty. Hence we have the following lower bounds.

Corollary 15. Let X be a graph with at least three vertices. If a, b are Laplacian strongly
cospectral vertices in X, then |Φ+

ab| > 2 and |Φ−ab| > 1.

We can say more about this partition.
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Theorem 16. Suppose a, b are strongly cospectral vertices. Then Φ+
ab,Φ

−
ab,Φ

0
ab are indi-

vidually closed under algebraic conjugation.

Proof. Let µ be an eigenvalue which is not an integer and v any of its eigenvectors. Let
µ′ be an algebraic conjugate of µ. There is a field automorphism Ψ of Q(µ) that maps µ
to µ′. It also maps v to a vector v′, which is an eigenvector for the eigenvalue µ′. As a
and b are strongly cospectral, it follows that

va = ±vb.

Now since Ψ(1) = 1 and Ψ(−1) = −1, we have

v′a = ±v′b

with the same sign. Hence Φ+
ab,Φ

−
ab,Φ

0
ab are closed under Ψ.

We have seen that Laplacian strongly cospectral vertices have the same degree. In the
following theorem, we give an upper bound and lower bound for this degree.

Theorem 17. Let X be a connected graph on n vertices. Let a and b be two strongly
cospectral vertices with respect to the Laplacian matrix. Let θ± denote the largest element
in Φ±ab, and λ± the smallest non-zero element in Φ±ab. Then the following hold.

(i) If a and b are not adjacent, then

max

{
n− 2

n
λ+, λ−

}
6 deg(a) 6 min

{
n− 2

n
θ+, θ−

}
(ii) If a and b are adjacent, then

max

{
n− 2

n
λ+ + 1, λ− − 1

}
6 deg(a) 6 min

{
n− 2

n
θ+ + 1, θ− − 1

}

Proof. Given a matrix M , let M̃ denote the {a, b} principal submatrix of M . As a and
b are Laplacian strongly cospectral, for each eigenvalue µr ∈ Φ+

ab, there is a non-zero
constant cr such that

F̃r = cr

(
1 1
1 1

)
,

and for each eigenvalue µr ∈ Φ−ab, there is a non-zero constant cr such that

F̃r = cr

(
1 −1
−1 1

)
.

On the other hand, if d = deg(a) then

L̃ =

(
d −σ
−σ d

)
,
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where σ = 1 if a and b are adjacent, and σ = 0 otherwise. We abuse notation and denote
r : µr ∈ Φ±ab by r ∈ Φ±ab for convenience. Hence by∑

r∈Φ+
ab

µrFr +
∑
r∈Φ−

ab

µrFr = L,

we obtain two equalities: ∑
r∈Φ+

ab

µrcr +
∑
r∈Φ−

ab

µrcr = d,

∑
r∈Φ+

ab

µrcr −
∑
r∈Φ−

ab

µrcr = −σ.

Thus ∑
r∈Φ+

ab

µrcr =
d− σ

2
, (5)

∑
r∈Φ−

ab

µrcr =
d+ σ

2
. (6)

Now, recall that 0 is an eigenvalue in Φ+
ab with eigenvector 1. Moreover, by Lemma 14,∑

r∈Φ+
ab

cr =
∑
r∈Φ−

ab

cr =
1

2
.

Therefore Equation 5 tells us that

d− σ
2

=
∑

r∈Φ+
ab\{0}

µrcr >
∑

r∈Φ+
ab\{0}

λ+cr = λ+

 ∑
r∈Φ+

ab\{0}

cr +
1

n

− 1

n
λ+ =

(
1

2
− 1

n

)
λ+.

It follows that

d >
n− 2

n
λ+ + σ.

Likewise, Equation (6) tells us that

d+ σ

2
>
∑
r∈Φ−

ab

λ−cr =
1

2
λ−.

Hence
d > λ− − σ.

The upper bound for d follows from a similar argument.
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Our next result links the integer eigenvalues in Φ−ab to the number of spanning trees
of the graph.

Lemma 18. Let X be a graph on n vertices with Laplacian strongly cospectral vertices a
and b. Let µ ∈ Φ−ab be an integer. Then any odd prime p that divides µ must divide the
number of spanning trees of X.

Proof. Let q be the number of spanning trees of X. By the Matrix-Tree Theorem, any
(n−1)× (n−1) minor of the Laplacian matrix L equals q. Therefore, for each odd prime
p not dividing q, the Laplacian matrix has rank n− 1 over Zp, with kernel being the span
of 1.

Now let a and b be two strongly cospectral vertices with respect to L. Suppose, for a
contradiction, that some integer eigenvalue µ ∈ Φ−ab has an odd prime factor p that does
not divide q. Let x be an eigenvector of µ, and assume without loss of generality that the
gcd of its entries is 1. Then since

Lx ≡ 0 (mod p),

there is an integer k such that
x ≡ k 1 (mod p).

As µ ∈ Φ−ab, the projection of ea and eb onto any subspace of the µ-eigenspace must be
opposites. Therefore xa = −xb. Hence k ≡ −k (mod p). But as p is an odd prime, k is
divisible by p. Hence p divides all entries of x. This contradicts the assumption that all
entries of x have gcd 1.

Finally, we show a connection between the size of Φ−ab and the distance between a
and b.

Theorem 19. Let a and b be Laplacian strongly cospectral vertices in X. If |Φ−ab| = k,
then any vertex at distance k from a is at distance at most k from b. In particular, the
distance between a and b is no more than 2k.

Proof. Define as in Lemma 14

v− :=
∑
r∈Φ−

ab

Frea =
1

2
(ea − eb),

and set
W =

∏
r∈Φ−

ab

(L− µrI).

Then we have Wv− = 0. Hence Wea = Web.
Now, notice that W is the product of k matrices in the form (Di−A), where A is the

adjacency matrix and each Di is some diagonal matrix. By the expanded form of W , the
ij-entry is non-zero only if d(i, j) 6 k, and is ±1 if d(i, j) = k. Since the a-th column and
the b-th column of W are identical, we conclude that any vertex at distance k from a is
at distance at most k from b.
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As a consequence, we have proved the following result due to Coutinho and Liu [11].
Two vertices are called twins if they have the same neighbors. We allow twins to be
adjacent.

Corollary 20. [11] Let a and b be Laplacian strongly cospectral vertices in X. If |Φ−ab| = 1,
then a and b are twin vertices.

7 Proper Laplacian fractional revival

We now characterize proper LaFR on connected graphs. The following lemma shows that
α = γ in Equation (1), provided β 6= 0. This is an important observation as it leads to
Laplacian strong cospectrality.

Lemma 21. If X admits proper LaFR between a and b at time τ , then U(τ)aa = U(τ)bb.
Moreover, each spectral idempotent Fr of L satisfies (Fr)aa = (Fr)bb.

Proof. We already know that

U(τ) =

α β
β γ

0

0 N

 .

Let M be the submatrix of U(τ) indexed by a and b. Since β 6= 0, M has two distinct
eigenvalues. Moreover, as 1 is an eigenvector of L, the eigenvectors of M must be(

1
1

)
,

(
1
−1

)
.

Therefore α = γ.
For the second statement, let the spectral decomposition of L be

L =
∑
r

µrFr.

Then ∑
r

eitµrFr =

(
M 0
0 N

)
.

Multiply both sides by Fr and we get

eitµrFr =

(
M 0
0 N

)
Fr.

As before, let F̃r denote the submatrix of Fr indexed by a and b. We have

eitµr F̃r = MF̃r,

from which it follows that the column space of F̃r is a subspace of an eigenspace of M .
Therefore, (Fr)aa = (Fr)bb.
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We are now ready to show that proper LaFR can only happen between Laplacian
strongly cospectral vertices.

Theorem 22. If X admits proper LaFR between a and b, then a and b are Laplacian
strongly cospectral.

Proof. Let L the Laplacian matrix of X with spectral decomposition

L =
∑
r

µrFr.

Suppose proper LaFR occurs between a and b at time τ . Then there are complex numbers
α and β, where β 6= 0, such that∑

r

eitµrFrea = αea + βeb.

For each r, multiplying both sides by Fr yields

eitµrFrea = αFrea + βFreb.

As β is non-zero, Freb is a scalar multiple of Frea. Finally, Lemma 21 tells us that
(Fr)aa = (Fr)bb. Hence it must be that Frea = ±Freb.

Our next result shows that each eigenvalue in Φ+
ab or Φ−ab respects the class it belongs

to. It becomes useful when we try to determine the time when proper LaFR occurs.

Lemma 23. Suppose proper LaFR occurs between a and b at time τ . Then the function
µr 7→ eiτµr is constant within each of Φ+

ab and Φ−ab.

Proof. We use a similar argument to the proof of Lemma 21. Let the spectral decompo-
sition of L be

L =
∑
r

µrFr.

Assuming the first two rows of L are indexed by a and b, we have∑
r

eitµrFr =

(
M 0
0 N

)
,

Since the LaFR proper, M is non-diagonal, and so it has two distinct eigenvalues with
eigenvectors (

1
1

)
,

(
1
−1

)
,

respectively. Now for each r,

eitµrFr =

(
M 0
0 N

)
Fr.
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If F̃r denotes the submatrix of Fr indexed by a and b, then

eitµr F̃r = MF̃r,

that is, the column space of F̃r is a subspace of an eigenspace of M . On the other hand,
we know from the proof of Theorem 17 that each F̃r is rank-one; more specifically, if
µr ∈ Φ+

ab,

F̃r = cr

(
1 1
1 1

)
and if µr ∈ Φ−ab.

F̃r = cr

(
1 −1
−1 1

)
.

Thus, if µr and µs both lie in Φ+
ab or both lie in Φ−ab, then F̃r and F̃s are scalar multiples

of each other, and so eiτµr = eiτµs .

As a consequence, we get a ratio condition on the eigenvalues when proper LaFR
occurs.

Corollary 24. Suppose X admits proper LaFR between a and b. Then

µi − µj
µr − µs

∈ Q

for all µi, µj, µr, µs ∈ Φ+
a,b, or for all µi, µj, µr, µs ∈ Φ−a,b, with µr 6= µs.

Proof. For µi, µj in the same Φ+
ab and Φ−ab class, eiτµi = eiτµj . Hence

τ(µi − µj) ∈ 2πZ.

The result follows by taking the ratio of τ(µi − µj) and τ(µr − µs).

We cite a powerful result due to Godsil [13, Theorem 6.1]; it bounds the algebraic
degrees of the elements in Φ+

ab and Φ−ab.

Theorem 25. [13] Let Φ be a set of real algebraic integers which is closed under taking
algebraic conjugates. Suppose for all µi, µj, µr, µs ∈ Φ with µr 6= µs, we have

µi − µj
µr − µs

∈ Q.

Then the elements of Φ are either integers or quadratic integers, and, moreover, if |Φ| = n,
then there are integers a, ∆ (square-free), and {br}nr=1 such that µ ∈ Φ implies that, for
some r,

µ =
a+ br

√
∆

2
.
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With all the theory we developed so far, we are now ready to give a characterization
of proper LaFR.

Theorem 26. (Characterization Theorem for proper LaFR) Let X be a graph on at least
three vertices. For vertices a and b, let

g = gcd
{
µr − µs : µr, µs ∈ Φ+

ab or µr, µs ∈ Φ−ab
}
.

proper LaFR occurs between a and b if and only if the following conditions hold:

(i) a and b are strongly cospectral vertices.

(ii) Φ+
ab ∪ Φ−ab ⊆ Z>0

(iii) There is some element in Φ−ab that is not divisible by g.

Moreover, if proper LaFR occurs between a and b at time τ , then τ is an integer multiple
of 2π/g.

Proof. We first prove the if direction. Let τ = 2π/g. By the definition of g, the function
µr 7→ eiτµr is constant within Φ+

ab and within Φ−ab. Let µs be an element in Φ−ab that is not
divisible by g. Then eiτµs 6= 1. Now, noticing 0 ∈ Φ+

ab and using Lemma 14,

U(τ) = eiτ ·0

 ∑
u:µu∈Φ+

ab

Fu

+ eiτµs

 ∑
u:µu∈Φ−

ab

Fu

+

(
0 0
0 ∗

)

=
1

2


1 1 0 . . . 0
1 1 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗

+
e−iτµs

2


1 −1 0 . . . 0
−1 1 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗

 .

Hence we have proper LaFR at time τ .
For the only if direction, suppose proper LaFR occurs between a and b. Condition

(i) follows from Theorem 22. Using Corollary 24, Theorem 16 and Theorem 25, we have
integers a+, a−, and square free integers ∆+, ∆−, and {br}dr=0, such that, for all r = 0, .., d,

(1) if µr ∈ Φ+
ab, then µr =

a+ + br
√

∆+

2
, and

(2) if µr ∈ Φ−ab, then µr =
a− + br

√
∆−

2
.

Define

g+ = gcd

{
µr − µs√

∆+
: µr, µs ∈ Φ+

ab

}
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and

g− = gcd

{
µr − µs√

∆−
: µr, µs ∈ Φ−ab

}
.

Then τ is an integer multiple of 2π/g+
√

∆+ and also an integer multiple of 2π/g−
√

∆−.
Therefore ∆+ = ∆−. Let ∆ = ∆+.

We now prove Condition (ii). By Corollary 15, Φ+
ab contains at least two elements.

Since 0 ∈ Φ+
a,b, we must have a+ = 0. As Φ+

ab is closed under taking algebraic conjugates,
if ∆ 6= 1, then for any

0 + br
√

∆

2
∈ Φ+

a,b,

we have
0− br

√
∆

2
∈ Φ+

a,b.

However, this contradicts the fact L is positive semidefinite, as all eigenvalues of L should
be non-negative. Therefore ∆ = 1, and so Φ+

a,b ∪ Φ−a,b ⊆ Z>0.

Finally, by Lemma 23, LaFR can only occur at at times 2π
g
Z, where g is defined as in

this theorem. If µr 7→ eiτµr is constant on the entire set Φ+
ab ∪Φ−ab, then the X is periodic

with respect to L. Hence, there must be some eigenvalue in Φ−a,b that is not divisible by
g.

A direct consequence of this result is that the vertices involved in proper LaFR must
have degree at least two, unless the graph has fewer than five vertices.

Corollary 27. On a connected graph with n > 5 vertices, if proper LaFR occurs between
vertices a, b, then deg(a) = deg(b) > 2.

Proof. Since a and b are Laplacian strongly cospectral, by Theorem 17, we have

n− 2

n
λ+ + σ 6 d,

where λ+ is the smallest element in Φ+
ab, and σ = 1 if a is adjacent to b and σ = 0

otherwise. As the LaFR is proper, g 6= 1, and so λ > 2. The result then follows when
n > 5.

8 Laplacian periodicity

In this section, we characterize Laplacian periodicity at a vertex a of a graph. This can
be viewed as non-proper LaFR; however, it is also a necessary condition for proper LaFR
to occur from a to another vertex.

As before, let X be a graph with Laplacian matrix L, and suppose the spectral de-
composition is

L =
∑
r

µrFr.
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The eigenvalue support of a vertex a, denoted Φa, is the set

Φa = {µr : Frea 6= 0}.

Since Fr is positive semidefinite, equivalently,

Φa = {µr : (Fr)aa 6= 0.}

We will let Φ0
a denote the complement of Φa.

Define two polynomials
ψ(t) = det(tI − L)

and
ψa(t) = det((tI − L)[a|a]).

We can compute Φa using ψ and ψa. By Cramer’s Rule and the spectral decomposition
of L,

ψa(t)

ψ(t)
= (tI − L)−1

aa =
∑
r

1

t− µr
Fr.

This leads to the following observation.

Lemma 28. The elements in Φa are precisely the poles of ψa(t)/ψ(t).

We also note an interesting connection between Φa and the spanning trees of X.
Suppose X has n vertices and deg(a) = d. Let µr be an eigenvalue of L with eigenvector
x. If xa = 0, then we may put the Laplacian matrix in the form

L =

(
L[a|a] ∗
∗ d

)
,

where the last row is indexed by a. Then the restriction of x to X \ a, denoted x̂,
is an eigenvector of L[a|a] with eigenvalue µr. Hence, the restriction of vectors in the
µr-eigenspace to X\a, if non-zero, is an eigenvector for L[a|a] with eigenvalue µr.

On the other hand, if we let W denote the subspace Rn−1 × {0}, then µ ∈ Φ0
a if and

only if the µr-eigenspace is a subspace of W , and so

dim(col(Fr) ∩W ) = dim(col(Fr)) + dimW − dim(col(Fr) +W )

=

{
dim(col(Fr)), if µ ∈ Φ0

a

dim(col(Fr))− 1, if µ ∈ Φa

Therefore, if µr ∈ Φ0
a, then µr is an eigenvalue of L[a|a] of same or higher multiplicity,

and if µr ∈ Φa, then µr is an eigenvalue of L[a|a] with multiplicity at least one less. By
the Matrix-Tree theorem, we arrive at the following.

Theorem 29. Let X be a graph and let a be a vertex. The product of elements in Φ0
a

divides the number of spanning trees of X.
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Theorem 26 gives a characterization of proper LaFR between a and b using Φ+
ab and

Φ−ab. We now use Φa to characterize Laplacian periodicity. The proof is very similar, so
we omit it here.

Theorem 30. (Characterization Theorem For Laplacian Periodicity) A graph is Lapla-
cian periodic at a vertex a if and only if Φa contains only integers. Moreover, if Laplacian
periodicity occurs at time τ , then τ is an integer multiple of 2π/G, where

G = gcd Φa.

Clearly, if a is strongly cospectral to b, then

Φa = Φ+
ab ∪ Φ−ab,

and
Φ0
a = Φ0

ab.

Thus we have the following corollary.

Corollary 31. If X admits proper LaFR between a and b, then it is periodic at both a
and b.

In [13], Godsil showed that for any integer k, there are only finitely many connected
graphs with maximum valency at most k that admit adjacency perfect state transfer. We
extend his result to Laplacian periodicity.

Given a graph X and a vertex a, the eccentricity of a, denoted ecc(a), is the maximum
distance from a to any other vertex in X. We show that the size of Φa determines an
upper bound for ecc(a).

Lemma 32. Let Φa be the eigenvalue support of a with respect to the Laplacian matrix.
Then |Φa| > ecc(a) + 1.

Proof. Let ` = ecc(a). Let d be the maximum valency of the graph, and define

M = dI − L.

Then M is a weighted adjacency matrix of the graph with non-negative entries. Thus,
for any i < j, the support of M iea is a proper subset of the support of M jea, and so the
vectors

ea,Mea,M
2ea, · · · ,M `ea

are linearly independent. On the other hand, M is a linear combination of the spectral
idempotents Fr of L, so

span{ea,Mea,M
2ea, · · · ,M `ea} ⊆ span{Frea : r ∈ Φa}.

Thus, 1 + ` 6 |Φa|.
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Using the second upper bound in Theorem 2, we are able to prove the following
theorem. It explains why Laplacian periodicity, and hence LaFR, is a rare phenomenon.

Theorem 33. Given an integer k, there are only finitely many connected graphs with
maximum valency at most k that are Laplacian periodic at a vertex.

Proof. Let X be a graph with maximum valency k. Suppose X is Laplacian periodic at
a vertex a. Then Φa contains only integers. By Theorem 2, the eigenvalues of L are no
greater than 2k. Hence,

2k + 1 > |Φa| > ecc(a) + 1,

from which we have ecc(a) 6 2k, and only finitely many graphs satisfy this constraint.

9 Laplacian fractional revival is polynomial time

Using the theory we developed so far, we show that LaFR can be decided in polynomial
time.

Theorem 34. Deciding whether a graph has proper LaFR, and the earliest time when it
occurs, can be done in polynomial time.

Proof. We prove this by showing that all three conditions in Theorem 26 can be checked
in polynomial time.

By Lemma 2.4 in [10], Laplacian strong cospectrality, which is Condition (i), can be
checked in polynomial time.

Now we adapt Lemma 2.5 in [10] to proper LaFR. By Lemma 28, the elements in Φa

are precisely the poles of ψa(t)/ψ(t), which are all simple. Equivalently, Φa consists of
simple roots of

f(x) =
ψ(x)

gcd(ψ(x), ψa(x))

To find integer eigenvalues in Φa, recall that all eigenvalues of L lie in [0, n], so we
simply check whether 0, 1, · · · , n are roots of f(x), which can be done in polynomial time.
Moreover, if f(x) has degree k, then the coefficient of (−x)k−1 is the sum of the roots of
f(x). By comparing the sum of the roots we found with the coefficient of (−x)k−1, we
can decide whether all eigenvalues in Φa are integers.

We then use Gaussian elimination to calculate the corresponding eigenvectors in poly-
nomial time. This means we can decide in polynomial time how to partition Φa into Φ+

ab

and Φ−ab. Therefore, Condition (ii) can be checked in polynomial time.
Finally, let

g = gcd
{
µr − µs : µr, µs ∈ Φ+

ab or µr, µs ∈ Φ−ab
}
.

Since there are at most n eigenvalues in Φ+
ab ∪ Φ−ab, the set over which we take the gcd

has size at most
(
n
2

)
= O(n2). Moreover, as all elements in the set live in [0, n], we can

compute g in polynomial time. It remains to check no element in Φ−ab, which has size less
than n, is divisible by g. Hence, Condition (iii) can be checked in polynomial time.
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10 No proper Laplacian fractional revival on trees

In this section, we show that proper LaFR does not occur on trees except for K2 and P3.
An earlier result about LaPST on trees, due to Coutinho and Liu [11], can be viewed as
a consequence.

We first prove a technical lemma on the signed incidence matrices of trees.

Lemma 35. Let T be a tree on n vertices. Fix an orientation of T , and let B be the
signed incidence matrix. If µ > 2 is an integer, then any solution to

By ≡ 0 (mod µ)

must satisfy
y ≡ 0 (mod µ).

Proof. If T = K2, then

B =

(
1
−1

)
,

and from By ≡ 0 (mod µ) it follows that both entries of y are divisible by µ.
Now let T be a general tree on n > 3 vertices. Let v be a leaf of the tree, and e the

edge incidence to v. Then By ≡ 0 (mod µ) implies that ye is divisible by µ. Thus, if y′

denotes the restriction of y to T\v, then

B[v|e]y′ ≡ 0 (mod µ).

Note that B[v|e] is the signed incidence matrix of some orientation of T\v. By induction,
we see that y ≡ 0 (mod µ).

As L = BBT , the above lemma imposes number theoretic conditions on the eigenvec-
tors of L associated with integer eigenvalues.

Corollary 36. Let T be a tree with Laplacian matrix L. Let µ be an integer eigenvalue
of L with eigenvector x. Suppose the entries of x are integers. Then the difference of any
two entries of x is divisible by µ.

Proof. Let B be the signed incidence matrix of any orientation of T . Then L = BBT .
Define a new vector y = BTx. The condition Lx = µx is equivalent to By = µx, and so

By ≡ 0 (mod µ).

By Lemma 35, all entries of y are divisible by µ.
On the other hand, for every edge e = (u, v) of X, we have ye = xu−xv. Thus xu−xv

is divisible by µ. As T is connected, the difference of any two entries of x are divisible
by µ.

We now prove the main non-existence result about proper LaFR on trees.
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Theorem 37. The only trees the admit proper LaFR are K2 and P3.

Proof. Let T be a tree with proper LaFR between a and b. If |Φ−ab| = 1, then a and b are
twin vertices by Corollary 20. As T is a tree, there can only be one common neighbor of
a and b, and so they are leaves. Thus by Corollary 27, T has at most four vertices. It is
easy to check that only K2 and P3 admit LaFR.

Now suppose |Φ−ab| > 2. Let µ ∈ Φ−ab be an eigenvalue of L with eigenvector x. Since
µ is an integer, we may assume without loss of generality that x has integer entries, and
that the gcd of these entries is 1. By Corollary 36,

xu ≡ xv (mod µ).

However, as µ ∈ Φ−ab, we also have xu = −xv. Hence µ divides 2xu. Moreover, if gcd(µ, xu)
were not 1, then it would appear as a common factor of all entries of x, which contradicts
our assumption. Therefore µ divides 2. Since |Φ−ab| > 2, we must have Φ−ab = {1, 2}. By
Theorem 26, LaFR occurs at time 2π/g with g = 1, and this cannot be proper.

11 Laplacian fractional revival on joins

We derive more results about proper LaFR on join graphs, in addition to those in Section
5. In particular, we determine when and where LaFR can occur on a join graph.

Theorem 38. Let Z be a join graph on n > 3 vertices. Suppose Z admits LaFR at time
τ . Then τ is an integer multiple of 2π/n.

Proof. Let L be the Laplacian matrix of Z, and L the Laplacian matrix of Z. Recall from
the proof of Theorem 9 that

exp(iτL) = einτ
(

(e−inτ − 1)
1

n
J + I

)
exp(−iτL)

=
1− einτ

n
J + einτ exp (−iτL)

Assume, for a contradiction, that τ is not an integer multiple of 2π/n. Then in the above
formula, the coefficient before J is non-zero. Since X has at least three vertices, this
can only happen if X is connected. However, that contradicts the fact that X is a join
graph.

We saw in Theorem 9 that, under a mild conditon, LaFR is preserved by taking the
complement of the graph. As a direct consequence of Theorem 38, we can drop this
condition when the graph is a join.

Corollary 39. Let Z be a connected join graph. Then Z admits LaFR between a and b
if and only if Z admits LaFR between a and b at the same time.

The following result determines where LaFR can occur on a join graph.
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Corollary 40. Let Z = X + Y be a join graph on at least three vertices. Suppose proper
LaFR occurs between a and b at time τ . Then a and b are either both in X or both in Y .
Moreover, the component of Z containing a admits proper LaFR between a and b at time
τ .

Proof. By Corollary 39, the complement of Z admits LaFR between a and b at time
τ . Hence a and b are in the same component of Z. It follows from the definition of a
join graph that a and b are either both in X or both in Y . The second statement is a
consequence of Corollary 39.

Our theory enables us to build infinite families of join graphs that admit proper LaFR.
Unlike those constructed in Theorem 11, these graphs do not have to be double cones.
To start, we cite a spectral result from [1].

Lemma 41. [1] Let X and Y be two graphs on m and n vertices, respectively. Then
m+ n is an eigenvalue of X + Y with an eigenvector being(

n1m
−m1n

)
.

We remark an immediate consequence of the structure of the eigenvectors of a join.

Corollary 42. Let X + Y be a join graph on ` vertices, and let a and b be two Laplacian
strongly cospectral vertices.

(i) If a and b both lie in X or both lie in Y , then ` ∈ Φ+
ab.

(ii) If a lies in X and b lies in Y , then ` ∈ Φ−ab.

We now show that any graph with proper LaFR at a special time yields an infinite
family of graphs with LaFR.

Theorem 43. Let X be a graph on m > 3 vertices. Suppose for some factor g of m,
proper LaFR occurs on X bewteen a and b at time 2π/g. Let Y be any graph on n vertices
such that g divides n. Then the join graph X + Y admits proper LaFR between a and b
at time 2π/g.

Proof. Since g divides m, by Theorem 9, there is proper LaFR at time 2π/g between a
and b on X, and thus on X ∪ Y . As g also divides n, applying Theorem 9 yields the
result.

The rest of this section is devoted to LaFR on double cones. In Theorem 11, we
showed that every double cone on n > 4 vertices have proper LaFR at time 2π/n. Here,
we prove that the converse is also true. Our result uses the following simple observation.

Lemma 44. Let X be a graph on n vertices. If n is an eigenvalue of L(X), then X is a
join graph.
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Proof. By Theorem 2, X has at least two components.

With this, we are able to prove the converse of Theorem 11.

Theorem 45. Let Z be a graph on n > 3 vertices that admit proper LaFR at time 2π/n.
Then Z is a double cone.

Proof. Define
g = gcd

{
µr − µs : µr, µs ∈ Φ+

ab or µr, µs ∈ Φ−ab
}
.

By Theorem 2, the eigenvalues L(Z) are no greater than n, and as 0 ∈ Φ+
ab, we must have

g 6 n. On the other hand, Theorem 26 says that proper LaFR must occur at times that
are integer multiples of 2π/g. Hence g = n. Now, as Φ+

ab contains at least two elements,
it can only be that Φ+

ab = {0, n}. Therefore, Z is a join graph.
By Corollary 40, there is an induced subgraph X of Z containing a and b such that

(i) Z = X + Y for some induced subgraph Y of Z, and

(ii) X admits proper LaFR between a and b at time 2π/n.

We claim that X has no other vertices than a and b. Suppose otherwise, and let m be
the number of vertices in X. Since m > 3, by Theorem 26, the earliest time when proper
LaFR could occur on X is 2π/m. However, as m < n, this contradicts the fact that X
admits proper LaFR at time 2π/n. Therefore, m = 2 and Z is indeed a double cone.

We reach the same conclusion if the graph with proper LaFR has an prime number of
vertices.

Theorem 46. Let p be an odd prime. Let X be a graph on p vertices. Suppose proper
LaFR occurs on X. Then X is a double cone.

Proof. Suppose X admits proper LaFR between vertices a and b. Let q be the number of
spanning trees of X. By Lemma 29, q is divisible by the product of elements in Φ0

a. On
the other hand, the Matrix-Tree Theorem states that pq equals the product of non-zero
eigenvalues of L(X). Hence p divides ∏

r

Φa\{0}.

As p is a prime, it lies in Φa and in particular, it is an eigenvalue of L(X). Therefore, X
is a join graph.

By Theorem 26, the earliest time when proper LaFR occurs is 2π/g, where

g = gcd
{
µr − µs : µr, µs ∈ Φ+

ab or µr, µs ∈ Φ−ab
}
.

From Corollary 42 we see that p ∈ Φ+
ab, and so g divides p. However g 6= 1. It follows

that g = p, and by Theorem 45, X is a double cone.

We noticed, from the data on small graphs, that most examples with proper LaFR
are double cones. This is partially explained by the above two results.
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12 Polygamy of proper fractional revival

It is known that perfect state transfer, with respect to either the Laplacian matrix or the
adjacency matrix, is monogamous: if a graph admits perfect state transfer from a to b
and from a to c, then b = c. In contrast, we show that LaFR can be polygamous: a vertex
may be paired with two different vertices for proper LaFR. The following trick enables us
to construct an infinite family of examples.

Lemma 47. Let X and Y be two graphs on at least three vertices. Suppose X admits
proper LaFR from a to b at time 2π/g, and Y admits proper LaFR from c to d at time
2π/h, where g and h are the gcds defined in Theorem 26. Let

G = gcd Φa, H = gcd Φc.

Further assume that G is not divisible by gcd(g,H), and H is not divisible by gcd(h,G).
Then X Y admits LaFR from (a, c) to (b, c), from (a, d) to (b, d), from (a, c) to (a, d),
and from (b, c) to (b, d).

Proof. By Theorem 26 and Theorem 30, the following phenomena occur.

(i) At time 2π/ gcd(g,H), X has proper LaFR between a and b, and Y is Laplacian
periodic at c and d.

(ii) At time 2π/ gcd(h,G), X is Laplacian periodic at a and b, and Y has proper LaFR
between c and d.

The result now follows from Theorem 8.

We use this lemma to build an infinite family of graphs on which LaFR is polygamous.
Our construction involves two types of distance regular graphs: Hadamard graphs, and
distance regular double covers of complete graphs. The eigenvalues of both types of graphs
can be found in the table of [5, Sec 3]. Since these graphs are regular, fractional revival
with respect to the Laplacian matrix is equivalent to fractional revival with respect to the
adjacency matrix.

Given an n × n Hadamard matrix H, we define 4n symbols r+
i , r

−
i , c

+
i , c

−
i , where

i = 1, 2, · · · , n. The Hadamard graph is a graph with these symbols as vertices, such
that r±i is adjacent to r±j if Hij = 1, and r±i is adjacent to r∓j if Hij = −1. It is shown
in [5] that the Hadamard graph has proper fractional revival between antipodal vertex a
and b with

Φ+
ab = {0, n2, 2n2}, Φ−ab = {n2 − n, n2 + n}.

In [5], the author also characterized fractional revival on distance regular double cover
of Km. If m = 4p2 for some odd prime p and δ = 2, then the double cover has proper
LaFR between the antipodal vertices c and d with

Φ+
cd = {0, 4p2}, Φ−cd = {4p2 − 2− 2p, 4p2 − 2 + 2p}.

It is known that there exist distance regular antipodal covers of K36 with δ = 2. Thus
we have the following.
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Theorem 48. Let n = 6q for some odd positive integer q. Let X be a Hadamard graph
on 4n2 vertices. Let Y be a distance regular double cover of K36 with δ = 2. If a and b
are antipodal vertices in X, and c and d are antipodal vertices in Y , then the following
occur.

(i) X Y admits LaPST from (a, c) to (b, c) and from (a, d) to (b, d) at time π/2.

(ii) X Y admits proper LaFR from (a, c) to (a, d) and from (b, c) to (b, d) at time π/3.

Proof. Define

g = gcd
{
µr − µs : µr, µs ∈ Φ+

ab or µr, µs ∈ Φ−ab
}

h = gcd
{
µr − µs : µr, µs ∈ Φ+

cd or µr, µs ∈ Φ−cd
}

and
G = gcd Φa, H = gcd Φc.

Then
g = 12q, h = 12, G = 6q, H = 4.

Thus gcd(g,H) does not divide G, and gcd(h,G) does not divide H. Now apply Lemma
47.

We remark that, as these graphs are regular, they are also the first infinite family of
unweighted graphs that admit polygamous adjacency fractional revival. This answers an
open question in [6].
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