
Rainbow Pancyclicity in Graph Systems

Yangyang Chenga,∗ Guanghui Wanga,† Yi Zhaob,‡

aSchool of Mathematics,
Shandong University, 250100, Jinan, Shandong, P. R. China

bDepartment of Mathematics and Statistics,
Georgia State University, Atlanta, GA 30303, U.S.A.

Submitted: Sep 25, 2019; Accepted: Jun 9, 2021; Published: Jul 16, 2021
c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let G1, . . . , Gn be graphs on the same vertex set of size n, each graph with
minimum degree δ(Gi) > n/2. A recent conjecture of Aharoni asserts that there
exists a rainbow Hamiltonian cycle i.e. a cycle with edge set {e1, . . . , en} such that
ei ∈ E(Gi) for 1 6 i 6 n. This can be viewed as a rainbow version of the well-known
Dirac theorem. In this paper, we prove this conjecture asymptotically by showing
that for every ε > 0, there exists an integer N > 0, such that when n > N for any
graphs G1, . . . , Gn on the same vertex set of size n with δ(Gi) > (12 + ε)n, there
exists a rainbow Hamiltonian cycle. Our main tool is the absorption technique.
Additionally, we prove that with δ(Gi) > n+1

2 for each i, one can find rainbow cycles
of length 3, . . . , n− 1.
Mathematics Subject Classifications: 05C38

Keywords: Dirac theorem; rainbow Hamiltonian cycle; absorption technique; pan-
cyclicity

1 Introduction

Let G1, . . . , Gt be t graphs on the same vertex set V of size n where t is a positive integer.
We denote the edge set of Gi by E(Gi) and assume that each edge in E(Gi) is coloured
by i for 1 6 i 6 t. Let S be an edge set that is a subset of ∪ti=1E(Gi) and we say S
is rainbow if any pair of edges in S have distinct colours. Rainbow Hamiltonian cycles
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have been studied by many authors. An edge-coloured graph G is k-bounded if no colour
appears more than k times. Erdős, Nešetřil and Rödl [7] studied the problem for which k
any k-bounded Kn contains a rainbow Hamiltonian cycle and they showed that k could be
any constant. Hahn and Thomassen [8] demonstrated that k could grow as fast as n

1
3 and

conjectured that the growth of k could in fact be linear. This was confirmed by Albert,
Frieze and Reed [4]. A recent result from Coulson and Perarnau [6] further strengthened
this by replacing the complete graph with any Dirac graph. More precisely, they proved
that there exists µ > 0 and positive integer n0 such that if n > n0 and G is a µn-bounded
edge-coloured graph on n vertices with minimum degree δ(G) > n

2
, then G contains a

rainbow Hamiltonian cycle. For rainbow Hamiltonian cycles in graph systems, Aharoni
et al. [3] recently gave the following elegant conjecture, which is a natural generalization
of Dirac’s theorem to the case of graph systems:

Conjecture 1. Given graphs G1, . . . , Gn on the same vertex set of size n, if each graph
has minimum degree at least n

2
, then there exists a rainbow Hamiltonian cycle.

There have been several papers studying other rainbow structures in graph systems.
For example, a well-known conjecture of Aharoni and Berger [1] asserts that ifM1, . . . ,Mn

are n matchings of size at least n+1 on the same vertex set V = X∪Y where X and Y are
disjoint and all edges of Mi are between X and Y , then there exists a rainbow matching
of size n. This conjecture generalizes the famous Brualdi-Stein Conjecture, which asserts
that every n× n Latin square has a partial transversal of size n− 1. The Aharoni-Berger
Conjecture has been confirmed asymptotically by Pokrovskiy [12]. For more details about
this topic, see [14].

In this paper, we prove an asymptotic version of Conjecture 1:

Theorem 2. For every ε > 0, there exists an integer N > 0, such that when n > N for
any graphs G1, . . . , Gn on the same vertex set of size n, each graph with minimum degree
δ(Gi) > (1

2
+ ε)n, there exists a rainbow Hamiltonian cycle.

After we submitted this paper, Joos and Kim in [10] proved Conjecture 1 using a
method different from ours. Nevertheless, we believe that our approach is of independent
interest and could be applied to attack similar problems in hypergraphs.

Furthermore, we show that given n graphs G1, . . . , Gn with δ(Gi) > n+1
2

for 1 6 i 6 n,
we can find rainbow cycles with all possible lengths except a Hamiltonian one:

Theorem 3. Given graphs G1, . . . , Gn on the same vertex set of size n, each graph with
minimum degree δ(Gi) > n+1

2
, there exist rainbow cycles of length 3, 4, . . . , n− 1.

Combining Theorem 3 with the result of Joos and Kim, we derive that any G1, . . . , Gn

satisfying the assumption of Theorem 3 indeed contain rainbow cycles of all possible
lengths 3, . . . , n. The lower bound of Theorem 3 is tight because one can take n copies of
Kn

2
,n
2
where n is even and there does not exist any odd rainbow cycle in such a system.

The main tool behind the proof of Theorem 2 is the absorbing method that was
introduced by Rödl, Ruciński and Szemerédi [13]. Here we apply a rainbow version of the
approach of Lo [11] by constructing a short rainbow cycle C such that for any rainbow
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path P = v1 · · · vp disjoint from C and a new colour s where the colour set of P is also
disjoint from that of C, we can absorb P into C. In other words, we replace some edge
uiui+1 of C by a path uiPui+1, where uiu1 is coloured with s and vpui+1 is coloured with
the colour of uiui+1 in C. Finally, we find a rainbow Hamiltonian path P on V (G)\V (C)
and absorb P into C by the property of C and thus obtain a rainbow Hamiltonian cycle.

2 Preliminaries and Notation

Let G1, . . . , Gn be n graphs on the same vertex set V where |V | = n. Let δ(Gi) be the
minimum degree of each Gi for 1 6 i 6 n. By our assumption, we identify this graph
system with an edge-coloured multigraph G where E(G) is the disjoint union of E(Gi)
for i ∈ [n] and each edge in E(Gi) is coloured by i. For any subgraph H of G, let Col(H)
be the set of colours used by the edges of H. For every vertex v ∈ V (G) and any colour
c ∈ [n], let Nc(v) be the set of neighbours of v that are adjacent to v by an edge coloured
by c. Let S be any subset of V , we denote Nc(v) ∩ S by Nc(v, S) and |Nc(v) ∩ S| by
dc(v, S). For each pair of vertices v1, v2 ∈ V (G), let Col(v1, v2) be the set of colours used
for the edges between v1 and v2 (Col(v1, v2) is empty if there are no edges between v1 and
v2). We will use the following version of Chernoff’s bound [9].

Lemma 4. Let X be a binomially distributed random variable and 0 < ε < 3
2
, then

P (|X − E(X)| > εE(X)) 6 2e−
ε2

3
E(X).

We first prove the following useful lemma:

Lemma 5. Let P = v1 · · · vp be a rainbow path and let c, c′ be two colours not used on P .
If dc(v1, V (P )) + dc′(vp, V (P )) > p, then there is a rainbow cycle of length p.

Proof. If {c, c′} ∩ Col(v1, vp) 6= ∅, then C = v1 · · · vpv1 is a rainbow cycle by choosing
the colour of v1vp to be an element in {c, c′} ∩ Col(v1, vp). So we assume that {c, c′} ∩
Col(v1, vp) = ∅. Suppose that there exists no rainbow cycle of length p. For each vertex
vi with vi+1 ∈ Nc(v1, V (P )) where 2 6 i 6 p − 2, we get that vi /∈ Nc′(vp, V (P )) since
otherwise the cycle v1v2 · · · vivpvp−1 · · · vi+1v1 must be a rainbow cycle where the colours
of v1vi+1 and vpvi are chosen to be c and c′. Thus we get dc(v1, V (P ))−1+dc′(vp, V (P )) 6
p− 2, which implies p 6 p− 1, a contradiction.

Our first result shows that a rainbow Hamiltonian path exists under a slightly weaker
condition than that of Conjecture 1:

Proposition 6. Given graphs G1, . . . , Gn on the same vertex set V of size n, where
δ(Gi) > n−1

2
for i ∈ [n], then there exists a rainbow Hamiltonian path.

Proof. Suppose not, let P = v1 · · · vk, where k 6 n − 1, be a rainbow path with the
maximum length. Thus there exist at least two colors c, c′ that are not used by the edges
in P . Now consider the neighbourhood Nc(v1) and Nc′(vk), we have

dc(v1) + dc′(vk) >
n− 1

2
+
n− 1

2
= n− 1.
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For each vertex u ∈ V −V (P ), we have u /∈ Nc(v1)∪Nc′(vk) and otherwise we can extend
P into a larger rainbow path, a contradiction. Thus we get Nc(v1), Nc′(vk) ⊆ V (P ).
However, since |V (P )| 6 n − 1 and dc(v1, V (P )) + dc′(vk, V (P )) > n − 1 > |V (P )|, by
Lemma 5 we get a rainbow cycle C of length k. Suppose that the colour c′′ is not used
by this cycle. Since the monochromatic graph coloured by c′′ is connected, at least one
edge e0 coloured by c′′ is between V (C) and V − V (C). Therefore, V (C) ∪ {e0} contains
a rainbow path with length k + 1, a contradiction.

The lower bound here is best possible. One can take n copies of Kn
2
−1,n

2
+1 where n

is even and there does not exist a rainbow Hamiltonian path since Kn
2
−1,n

2
+1 does not

contain a Hamiltonian path.

3 Proof of Theorem 3

In this section, we give a proof of Theorem 3. Let G = (V,
⋃n
i=1E(Gi)) be the edge-colored

multigraph with Gi as the graph of color i. We first find a rainbow cycle of length n− 1
by following a classical proof of Dirac theorem. Then we obtain a rainbow cycle of length
n− 2 or n− 3 and use it to build cycles of other lengths.

Claim 7. G contains a rainbow cycle of length n− 1.

Proof. By Proposition 6, we first find a rainbow Hamiltonian path P = v1v2 · · · vn. With-
out loss of generality, suppose the colour of edge vivi+1 is i for 1 6 i 6 n− 1 and the only
colour that does not appear in P is n. Now consider the subpath P ′ = v1v2 · · · vn−1.
Since |Nn−1(v1)\{vn}| > n−1

2
and |Nn(vn−1)\{vn}| > n−1

2
, we get dn−1(v1, V (P ′)) +

dn(vn, V (P ′)) > n − 1 = |V (P ′)|. By Lemma 5, we can find a rainbow cycle of length
n− 1.

Claim 8. G contains either a rainbow cycle of length n− 2 or a rainbow cycle of length
n− 3.

Proof. Suppose that G neither contains a cycle of size n − 3 nor n − 2. By Proposition
6, we can find a rainbow path P1 = v1v2 · · · vn−3 whose order is n − 3 and, without loss
of generality, suppose the colour of edge vivi+1 is i for 1 6 i 6 n − 4 and the set of
colours that are not used in P1 is S = {n − 3, n − 2, n − 1, n}. We can deduce that
Nn−1(v1)∩Nn(vn−3)∩ (V (G)\V (P1)) = ∅ since otherwise we already find a rainbow cycle
of length n− 2, a contradiction. Now we get dn−1(v1, V (P1))+ dn(vn−3, V (P1)) > n− 2 >
|V (P1)|. By Lemma 5, we can find a rainbow cycle of length n− 3, a contradiction.

Let C = v1 · · · vp be a rainbow cycle where p = n − 2 or n − 3. In the remainder of
the proof, we let vi = vi−p for i > p. We will use the following claim as a tool to analyse
the structure of G when it does not contain rainbow cycles of all length 3, . . . , p+ 1.

Claim 9. Let c, c′ be two colours not used on C and x ∈ V \ V (C). If dc(x, V (C)) +
dc′(x, V (C)) > p, then one of the following properties is true:
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(1) there exist rainbow cycles of length 3, . . . , p+ 1;

(2) dc(x, V (C))+dc′(x, V (C)) = p and we can partition V (C) into disjoint sets S1 and S2,
where S1 = {vi+j−2 : vj ∈ Nc(x, V (C))} and S2 = Nc′(x, V (C)) for some 3 6 i 6 p+1.

Proof. Suppose that dc(x, V (C)) + dc′(x, V (C)) > p and there is no rainbow cycle of
length i for some 3 6 i 6 p + 1, thus for each vertex vj ∈ Nc(x, V (C)) we have vi+j−2 /∈
Nc′(x, V (C)) since otherwise the cycle xvjvj+1 · · · vj+i−2x is a rainbow cycle of length i
by choosing the colours of xvj and xvj+i−2 to be c and c′. Therefore, we get S1 ∩ S2 = ∅
by definition. However, since |S1|+ |S2| > p and S1 ∪ S2 ⊆ V (C) it follows that V (C) is
partitioned into S1 and S2 and |S1|+ |S2| = p, which implies dc(x, V (C))+dc′(x, V (C)) =
p.

Case 1. p = n− 2.

Suppose V (G)\V (C) = {v′, v′′} and the colours not used by C are n − 1 and n.
Suppose that for some 3 6 j 6 n − 1, there does not exist a rainbow cycle of size j in
G. By Claim 9, we conclude that dn−1(v′, V (C)) + dn(v

′, V (C)) 6 n − 2, which implies
that dn−1(v′, v′′) + dn(v

′, v′′) > n+ 1− (n− 2) = 3. This is a contradiction. Therefore, G
contains rainbow cycles of all sizes 3, . . . , n− 1.

Case 2. p = n− 3.

Suppose V (G)\V (C) = {v′1, v′2, v′3} and the colours not used by C are n− 2, n− 1 and
n. Suppose that for some 3 6 i 6 n − 2, there does not exist a rainbow cycle of size i
in G. We know that dn−1(v′3, V (C)) + dn(v

′
3, V (C)) > 2(n+1

2
− 2) > n− 3, thus by Claim

9 we get dn−1(v′3, V (C)) + dn(v
′
3, V (C)) = n − 3. This implies that dn−1(v′3, {v′1, v′2}) =

dn(v
′
3, {v′1, v′2}) = 2 and hence {n− 1, n} ⊆ Col(v′3v′1) ∩ Col(v′3v′2).
By symmetry we now suppose that Col(v′av′b) = {n−2, n−1, n} for every 1 6 a < b 6 3.

Let T1 = {vj+i−3 | vj ∈ Nn−2(v
′
1, V (C))} and T2 = Nn−1(v

′
2, V (C)), by an analogy to the

proof of Claim 9, we find that T1 ∩ T2 = ∅, otherwise suppose that vj+i−3 ∈ T2 for some
j, we thus have v′2v′1vjvj+1 · · · vj+i−3v′2 is a rainbow cycle with length i by choosing the
colours of v′2v′1, v′1vj and vj+i−3v′2 to be n, n− 2 and n− 1, which is a contradiction. We
actually get:

n− 3 6
n+ 1

2
− 2 +

n+ 1

2
− 2 6 dn−2(v

′
1, V (C)) + dn−1(v

′
2, V (C)) 6 |V (C)| = n− 3,

thus all the inequalities above must be equalities and we get

|T1|+ dn−1(v
′
2, V (C)) = n− 3,

which implies that V (C) is partitioned into T1 and T2. Since all colours and vertices
are symmetric, the similar conclusion follows by considering T1 and Na(v

′
b, V (C)) for any

n − 1 6 a 6 n and 2 6 b 6 3. Thus, we finally obtain T2 = Na(v
′
b, V (C)) for any

n− 1 6 a 6 n and 2 6 b 6 3. Now let T ′1 = {vj+i−3 | vj ∈ Nn(v
′
1, V (C))} and recall that

T2 = Nn−1(v
′
2, V (C)). Therefore, we reach the similar conclusion that T2 = Na(v

′
b, V (C))

for any n − 2 6 a 6 n − 1 and 2 6 b 6 3 by considering T ′1 and T2. This implies
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T2 = Na(v
′
b, V (C)) for any n − 2 6 a 6 n and 2 6 b 6 3. By symmetry, we actually get

T2 = Na(v
′
b, V (C)) for any n− 2 6 a 6 n and 1 6 b 6 3.

Now we claim that there exists some vj0 ∈ T2 such that vj0−1 /∈ T2. Suppose not,
for each vj ∈ T2 we have vj−1 ∈ T2. This implies T2 = V (C) but this is impossible since
T1 6= ∅. Now since vj0−1 /∈ T2 we get vj0−1 ∈ T1 and there exists some vj1 ∈ Nn−2(v

′
1, V (C))

such that j0− 1 = j1+ i− 3, which implies j0 = j1+ i− 2. However, in this case the cycle
v′1vj1vj1+1 · · · vj0v′1 is a rainbow cycle of length i by choosing the colours of v′1vj1 and v′1vj0
to be n− 2 and n− 1, a contradiction. This concludes the proof.

4 Proof of Theorem 2

In this section, we give a proof of Theorem 2 by proving a rainbow type of absorbing
lemma. By 0 < α � β we mean that there exists an increasing function f : R → R
such that the subsequent argument is valid for any 0 < α 6 f(β). We first introduce the
absorbing lemma for Theorem 2:

Lemma 10. Let n, µ, ε be such that 1
n
� µ � ε. For any graphs G1, . . . , Gn on the

same vertex set of size n, each graph having minimum degree at least (1
2
+ ε)n, there

exists a rainbow cycle C with length at most µn such that for every rainbow path P with
V (P )∩ V (C) = ∅ and Col(P )∩Col(C) = ∅, if s is a colour that is not used by C and P ,
then there exists a rainbow cycle C ′ with

(i) V (C ′) = V (C) ∪ V (P );

(ii) Col(P ∪ C) ∪ {s}=Col(C ′).

Combining Lemma 10 and Proposition 6, we immediately reach a proof of Theorem 2
as follows:

Proof of Theorem 2. Let C be the absorbing cycle we given in Lemma 10. Now for each
i, let G′i = Gi − V (C), the subgraph of Gi induced on V (Gi) \ V (C). Then δ(G′i) >
1+ε
2
|V (G′i)|. Let W be the set of colours that do not appear on any edge of C. One

can thus construct a rainbow Hamiltonian path P1 = v0v1 · · · vt using exactly |W | − 1
colours of W by Proposition 6. Suppose s1 is the unique colour in W that is not used
by P1. By Lemma 10 there exists a rainbow cycle C ′ with V (C ′) = V (C) ∪ V (P ) and
Col(P ∪ C) ∪ {s1} = Col(C ′), which implies C ′ is a rainbow Hamiltonian cycle and thus
we conclude the proof.

In the remaining part of this section, we give a proof of Lemma 10. First we introduce
some notation and basic results. For any pair of two not necessarily distinct vertices
x1, x2 ∈ V (G) and four distinct colours 1 6 s, i, j, k 6 n, we define the set of absorbing
paths As,i,j,k(x1, x2) to be the family of edge-coloured 3-paths P that satisfy the following
conditions:

(i) P = v1v2v3v4 where {v1, v2, v3, v4} ∩ {x1, x2} = ∅;
(ii) the edges v1v2, v2v3, v3v4 are coloured respectively by i, j, k;
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(iii) s ∈ Col(x1v2) and j ∈ Col(x2v3).
For every path P in As,i,j,k(x1, x2), we say that P is an absorbing path for (x1, x2) with

colour pattern (s, i, j, k). In practice, we always choose x1 and x2 to be two endpoints of
some path Q.

Claim 11. For each pair (x1, x2) and four distinct colours s, i, j, k, we have |As,i,j,k(x1, x2)|
> εn4

8
when n is sufficiently large.

Proof. First, choose a vertex v2 ∈ Ns(x1)\{x2}. Pick another vertex v3 ∈ (Nj(v2)∩Nj(x2))
\{x1}. The total number of such v2, v3 is at least (n

2
+ εn− 1)(2εn− 1). Now fix v2 and

v3. Choose v1 ∈ Ni(v2)\{x1, x2, v3}. Choose another vertex v4 ∈ Nk(v3)\{x1, x2, v1, v2}.
Note that the total number of such v1, v4 is at least (n

2
+ εn− 3)(n

2
+ εn− 4) and hence

we derive that there exist at least(n
2
+ εn− 1

)
(2εn− 1)

(n
2
+ εn− 3

)(n
2
+ εn− 4

)
>
εn4

8

absorbing paths for (x1, x2) when n is sufficiently large.

Proof of Lemma 10. Let µ1 = µ/5 and ` be new constant such that dµ1ne − 1 6 ` 6
dµ1ne + 1 and ` is divisible by 3. For simplicity, we assume that ` = µ1n. We fix `/3
groups of colours Ci = {3i − 2, 3i − 1, 3i} where i = 1, . . . , `/3. Let PCi be the set of all
the paths P = v0v1v2v3 in G where the colours of v0v1, v1v2, v2v3 are 3i− 2, 3i− 1, 3i for
all 1 6 i 6 `/3.

Now consider a random set W by selecting an element from each PCi(i ∈ [`/3]) in-
dependently where every element in PCi is chosen with probability 1/|PCi |. For any
colour s and any pair (x1, x2), set As(x1, x2) =

⋃`/3
i=1(As,3i−2,3i−1,3i(x1, x2) ∩W ). Now for

each i ∈ [`/3], let the random variable Xi be the indicative variable of the event that
W ∩ As,3i−2,3i−1,3i(x1, x2) 6= ∅. Hence we get |As(x1, x2)| =

∑`/3
i=1Xi and all Xi’s are

independent. Using Claim 11, we get

P (Xi = 1) = |As,3i−2,3i−1,3i(x1, x2)|/|PCi | >
εn4

8
/n4 >

ε

8

for i ∈ [`/3] and hence

E(|As(x1, x2)|) =
`/3∑
i=1

E(Xi) >
ε`

24
.

By Lemma 4 with ε = 1/2, we see that

P

(
|As(x1, x2)| <

ε`

48

)
6 2e−

ε`
288 6 2e−

εµ1n

103 .

Now let Y be the number of pairs of 3-paths in W that intersect with each other. For
some distinct 1 6 i, j 6 `/3, let Yi,j be the indicative variable of the event that the path
we choose in ACi intersects with the path we choose in ACj . Thus we have Y =

∑
i,j Yi,j.
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We claim that the size of set {{P1, P2} | P1 ∈ ACi , P2 ∈ ACj , P1, P2 are intersecting with
each other} is at most 16n7 for fixed i, j. Since the number of P1 is at most n4, and
when P1 is fixed, the number of P2 that we can choose is at most 16n3. Besides, it is
obvious that when P1, P2 are fixed, the probability that we have chosen P1, P2 together is

1
|A(Ci)||A(Cj)| 6

1
(n4/8)2

because |ACi |, |ACj | > n4

8
when n is sufficiently large. Therefore, we

get

E(Y ) 6

(
`/3

2

)
· 16 · n7 · 1

(n4/8)2
6 103µ2

1n 6
εµ1n

200
.

Using Markov’s inequality, we get that

P
(
Y >

εµ1n

100

)
6

1

2
.

Now choose sufficiently large n such that

2n3e−
εµ1n

103 +
1

2
< 1.

Thus by the union bound, with positive possibility, for each s and any pair (x1, x2) we
have (i) |As(x1, x2)| > ε`

48
> εµ1n

48
, and (ii) Y < εµ1n

100
.

Fix such W , we delete one 3-paths in each intersecting pair of W . Suppose that the
remaining path family is W ′. Thus W ′ is a family containing mutually disjoint 3-paths
and for every s and any pair (x1, x2) we get that∣∣∣∣∣∣

`/3⋃
i=1

(As,3i−2,3i−1,3i(x1, x2) ∩W ′)

∣∣∣∣∣∣ > εµ1n

48
− εµ1n

100
>
εµ1n

100
.

Let W ′ = {P1, . . . , Pt} be the path family we found before and let S be the set of the
colours that do not appear in any path in W ′. Let V ′ = V (G) \

⋃t
i=1 V (Pi). Without

loss of generality, we suppose that Pi = v
(i)
1 v

(i)
2 v

(i)
3 v

(i)
4 for 1 6 i 6 t. Now for P1, P2, it

is obvious that we can find a vertex u1 ∈ V ′ such that u1v
(1)
4 and u1v

(2)
1 are two edges

coloured with distinct colours in S. Delete these two colours from S and the vertex u1 from
V ′. Repeat the above process for the path pair {P2, P3}, . . . , {Pt, P1}, and at last we find
u1, . . . , ut and a rainbow cycle C with size at most 5` = µn that contains all the vertices
in
⋃t
i=1 V (Pi) and those ui where 1 6 i 6 t. For every rainbow path P ⊆ V (G) − V (C)

such that the colour set of P is disjoint with the colour set of C, if x1, x2 are two endpoints
of P and s is a colour that does not appear in C and P , then the pair (x1, x2) has at least
one absorbing path P0 = u1u2u3u4 in C with colour pattern (s, 3i− 1, 3i− 2, 3i) for some
i ∈ [`/3] since εµ1n

100
> 1 when n is sufficiently large. Therefore, we insert the path P into

the cycle C to get a rainbow cycle {C − u2u3} ∪ u2Pu3 where x1u2 is coloured by s and
x2u3 is coloured by 3i− 2, which completes our proof.
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