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Abstract

In a recent paper, Petrov and Pohoata developed a new algebraic method which
combines the Croot-Lev-Pach Lemma from additive combinatorics and Sylvester’s
Law of Inertia for real quadratic forms. As an application, they gave a simple proof
of the Bannai-Bannai-Stanton bound on the size of s-distance sets (subsets A C R”
which determine at most s different distances). In this paper we extend their work
and prove upper bounds for the size of s-distance sets in various real algebraic sets.
This way we obtain a novel and short proof for the bound of Delsarte-Goethals-Seidel
on spherical s-distance sets and a generalization of a bound by Bannai-Kawasaki-
Nitamizu-Sato on s-distance sets on unions of spheres. In our arguments we use the
method of Petrov and Pohoata together with some Grobner basis techniques.
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1 Introduction

Let A C R" be an arbitrary set. Denote by d(A) the set of non-zero euclidean distances
among the points of A:

d(A) == {d(p1,p2); P1,P2 € A, p1 # P2}

An s-distance set is a subset A C R" such that |d(A)| < s. Here we mention just two
theorems from the rich area of sets with few distances, more information can be found for
example in [14], [3]. Bannai, Bannai and Stanton proved the following upper bound for
the size of an s-distance set in [4, Theorem 1].

Theorem 1. Let n,s > 1 be integers and suppose that A C R™ is an s-distance set. Then

Al < (n+s)‘
s

Delsarte, Goethals and Seidel investigated s-distance sets on the unit sphere "1 C
R"™. These are the spherical s-distance sets. They proved a general upper bound for the
size of a spherical s-distance set in [11]. In their proof they used Delsarte’s method (see
[3, Subsection 2.2]).

Theorem 2. (Delsarte, Goethals, and Seidel) Let n,s > 1 be integers and suppose that
A C S" ! is an s-distance set. Then

Al < (n—i—s—l)_i_(n—i-s—Q).
5 s—1

Before stating our results, we introduce some notation. Let F be a field. In the
following S = F|xy, ..., x,] = F[x] denotes the ring of polynomials in commuting variables
x1,...,%, over F. Note that polynomials f € S can be considered as functions on F".
For a subset Y of the polynomial ring S and a natural number s we denote by Y
the set of polynomials from Y with degree at most s. Let I be an ideal of S = F[x].
The (affine) Hilbert function of the factor algebra S/I is the sequence of non-negative
integers hg/r(0), hs/i(1),..., where hg/(s) is the dimension over F of the factor space
Flzy, ..., 2y)<s/I<s (see [8, Section 9.3]). Our main technical result gives an upper bound
for the size of an s-distance set, which is contained in a given real algebraic set.

Theorem 3. Let I C R[x] be an ideal in the polynomial ring, and let A C R"™ be an
s-distance set such that every polynomial from I vanishes on A. Then

‘A| < hR[x]/[(S).

The proof is based on Grobner basis theory and an improved version of the Croot-
Pach-Lev Lemma (see [9] Lemma 1) over the reals. Petrov and Pohoata proved this in
20, Theorem 1.2] and used it to give a new proof of Theorem 1. We generalize their result
to give a new upper bound for the size of an s-distance set, which is contained in a given
affine algebraic set in the real affine space R".

We give several corollaries, where Theorem 3 is applied to specific ideals of the poly-
nomial ring R[x], the first ones being the principal ideals [ = (F), with F' € R[x].
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Corollary 4. Let F € R[x] be a polynomial of degree d. Suppose that s > d. Let A be an
s-distance set such that F vanishes on A. Then

Al < (n—irs) B (n—l—s—d).
n n

For example, when n = 2, then F' defines a plane curve of degree d. Then for s > d
we obtain ) ) p dd 3
A< (FEH (7T _ g, dd=3)
2 2 2

In particular, when F(x,y) = y? — f(x) gives a Weierstrass equation of an elliptic curve,
then | A] < 3s for s > 3.

Remark 5. We can now easily derive Theorem 2 for s > 1. Indeed, consider the real
polynomial

F(xl,...,xn)zl—ZﬁER[ml,...,xn]
i=1

of degree 2 which vanishes on S"~!. Corollary 4 and the hockey-stick identity gives

Al < (n—i—s) B (n—i—s—Q) _ <n+s—1> N <n+s—2).
n n S s—1
Next, assume that V' = UP_|S;, where the S; are spheres in R”. E. Bannai, K.
Kawasaki, Y. Nitamizu, and T. Sato proved the following result in [5, Theorem 1] for the

case when the spheres S; are concentric. We have a much shorter approach to the same
bound, in a more general setting, without the assumption on the centers.

Corollary 6. Let A be an s-distance set on the union V' of p spheres in R™. Then
2p—1 .
n+s—i—1
A (")
i=0

Let T; € R be given finite sets, where |T;| = ¢ > 2 for each ¢ with 1 <i < n. A bozis
a direct product

B:= H T, C R™
i=1
We can easily apply Theorem 3 to obtain an upper bound for the size of s-distance sets
in boxes.

Corollary 7. Let B C R" be a box as above, and A C B an s-distance set. Then

n

Al < {23 .- 28m s 0< oy < q— 1 for each i, and Zai<3}|.
i
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Remark 8. In the special case ¢ = 2 we have

{xf*-...-20m 0 0 < oy <1 for each 4, and Zai<5}|—z<ﬁ),

A < (j) 1)

J

hence we obtain the upper bound

In the case when T; = T for 1 < i < n and |T| = 2, the Euclidean distance is essentially
the same as the Hamming distance. For this case (1) was proved by Delsarte [10], see also
[2, Theorem 1].

Remark 9. The bound is sharp, when ¢ = 2, n = 2m and s = m. Then the 0,1 vectors of
even Hamming weight give an extremal family A4 C R".

Remark 10. The bound of Corollary 7 can be nicely formulated in terms of extended
binomial coefficients (see [12, Example 8] or [7, Exercise 16]):

i n
|A|<Z<,).
§=0 J/q

Here (?) is an extended binomial coefficient giving the number of restricted compositions
q

of j with n terms (summands), where each term is from the set {0,1,...,¢ — 1}. In

particular, we have (?)2 = (?)

Remark 11. In [16] a weaker, but similar upper bound was given for the size of s-distance
sets in boxes:

n

Al < 2[{af . ..- 20 0< oy < ¢g— 1 for each i, and Zaigs}\.

The bound appearing in Corollary 7 presents an improvement by a factor of 2.

Let aq,. .., a, be n different elements of R, and X,, = X, (ay,...,a,) C R™ be the set
of permutations of «, ..., a,, where each permutation is considered as vector of length
n. It was proved in [17, Section 2] that for s > 0

th(S) = Z In('l),

where I,,(7) is the number of permutations of n symbols with precisely 7 inversions. Using
this, Theorem 3 implies the following bound:

Corollary 12. Let A C X,, be an s-distance set. Then
A< 100
i=0
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In [19, Section 5.1.1] Knuth gives a generating function for I,(i) and some explicit
formulae for the values 1,,(7), i < n.

Let 0 < d < n be integers and Y, 4 € R" denote the set of 0,1-vectors of length n
which have exactly d coordinate values of 1. The following (sharp) bound was obtained
by Ray-Chaudhuri and Wilson in [21, Theorem 3], formulated in terms of intersections
rather than distances.

Corollary 13. Let 0 < d < n and s be integers, with 0 < s < min(d,n — d). Suppose
that A C'Y,, 4 is an s-distance set. Then

Al < (Z)

In some cases data about the complexification of a real affine algebraic set can be used
to give a bound. We give next a statement of this type. For a subset X C F” of the affine
space we write I(X) for the ideal of all polynomials f € F[x] which vanish on X.

Corollary 14. Let V. C C" be an affine variety such that the projective closure V of
V' has dimension d and degree k. Suppose also that the ideal 1(V') of V is generated by
polynomials over R. Let A CV NR™ be an s-distance set. Then we have

od
hos +O(s%71).

Al < d!

For instance, when in Corollary 14 the projective variety V is a curve of degree k,
then the bound is ks + b for large s, where b is an integer. More specifically, when V is
an elliptic curve such that V' C C? is the set of zeroes of y? — f(z), where f(z) € R[z]
is a cubic polynomial without multiple roots, then in fact, the preceding bound becomes
|A| < 3s+ b for s large (see also the remark after Corollary 4).

The rest of the paper is organized as follows. Section 2 contains some preliminaries
on Grobner bases, Hilbert functions, and related notions. Section 3 contains the proofs
of the main theorem and the proof of the corollaries.

2 Preliminaries
A total ordering < on the monomials 2%z - - - z'» composed from variables x1, s, ..., T,
is a term order, if 1 is the minimal element of <, and uw < vw holds for any monomials
u, v, w with u < v. Two important term orders are the lexicographic order <; and the
deglex order <4. We have

x?x? . xf{” = x{lx? . xﬂf‘
iff i), < ji holds for the smallest index k such that i, # jx. As for the deglex order, we
have u <y v iff either degu < degwv, or deg(u) = deg(v), and u <; v.

ot
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Let < be a fixed term order. The leading monomial Im(f) of a nonzero polynomial
f from the ring S = F[x] is the largest (with respect to <) monomial which occurs with
nonzero coefficient in the standard form of f.

Let I be an ideal of S. A finite subset G C I is a Grobner basis of I if for every f € I
there exists a ¢ € G such that Im(g) divides Im(f). It can be shown that G is in fact
a basis of I. A fundamental result is (cf. [6, Chapter 1, Corollary 3.12] or [1, Corollary
1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a Grdébner basis with respect
to <.

A monomial w € S is a standard monomaal for I if it is not a leading monomial of any
f e l. Let Sm(=,,F) denote the set of all standard monomials of I with respect to the
term-order < over F. It is known (see [6, Chapter 1, Section 4]) that for a nonzero ideal
I the set Sm(=<,I,F) is a basis of the factor space S/I over F. Hence every g € S can
be written uniquely as ¢ = h + f where f € I and h is a unique F-linear combination of
monomials from Sm(=<, I, F).

If X C F” is a finite set, then an interpolation argument gives that every function
from X to [F is a polynomial function. The latter two facts imply that

[Sm(=, I(X), F)| = [X], (2)

where (X)) is the ideal of all polynomials from S which vanish on X, and < is an arbitrary
term order.
The initial ideal in(I) of I is the ideal in S generated by the set of monomials

{Im(f): fel}.
It is easy to see [8, Propositions 9.3.3 and 9.3.4] that the value at s of the Hilbert
function hg/; is the number of standard monomials of degree at most s, where the ordering

< is deglex:
hS/](S) = |Sm(<dl,l,]F) QF[X]<3|. (3)

In the case when I = I(X) for some X C F", then hx(s) := hg/;(s) is the dimension of
the space of functions from X to F which are polynomials of degree at most s.

Next we recall a known fact about the Hilbert function. It concerns the change of
the coefficient field. Let F C K be fields and let I C F[x] be an ideal, and consider the
corresponding ideal J = I - K[x] generated by [ in K[x].

Lemma 15. For the respective affine Hilbert functions for s > 0 we have
hip/r(s) = P (s).
For the convenience of the reader we outline a simple proof.

Proof. Tt follows from Buchberger’s criterion [8, Theorem 2.6.6] that a deglex Grébner
basis of I in F[x] will be a deglex Grobner basis of J in K[x], implying that the initial
ideals in(/) and in(J) contain exactly the same set of monomials, hence their respective
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factors have the same Hilbert function Ay jin( ) (5) = Ay /ing (s), see 8, Proposition
9.3.3]. Then by [8, Proposition 9.3.4] we have

hepayi(s) = hF[x]/iH([)(s) = h’K[x]/iIl(J)<8) = higx)/5(8),
for every integer s > 0. O

The projective (homogenized) version of the next statement is discussed in [13, Ex-
ample 6.10].

Proposition 16. Let F' € F[x| be a polynomial of degree d. Then for s > d we have

n-+s n+s—d
hF{x}/(FﬂS):( o )—( " >

n—+s
hrpay () (s) = < >

n

If0 < s <d, then

Proof. By definition
hepa/(r) (8) = dim Fx] <./ (F)<s =

= dim F[X]gs — dlm(F)gs

dim Fx]., = (”‘+ )

Clearly

n

Moreover
(F)<s = {G € F[x|<s : there exists an H € F[x| such that FH = G}.
Using the fact that F[x] is a domain, we see that the dimension of the latter subspace is

dim{H € Rx]: deg(H) < s — d} = dimF[x]<(s_q).
The statement now follows from the fact that if s > d, then

: n+s—d
dim F[x|<(s—a) = ( ),

n

while for s < d we have
dim F[X]g(s_d) = 0. ]
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3 Proofs

3.1 Proof of the main result

Petrov and Pohoata proved the following result [20, Theorem 1.2]. They used it to give
a short proof of Theorem 1. This improved version of the Croot-Lev-Pach Lemma has a
crucial role in the proof of our results.

Theorem 17. Let W be an n-dimensional vector space over a field F and let A C W be
a finite set. Let s > 0 be an integer an let p(x,y) € F|x,y| be a 2n-variate polynomial of
degree at most 2s + 1. Consider the matriz M (A, p)apbea, where

M(A,p)(a,b) = p(a,b).
This matriz corresponds to a bilinear form on A by the formula

®4,(f,9)= > pla,b)f(a)g(b),
a,bEA

for each f,g: A—TF. This CIDA’p defines a quadratic form @Ap(f, f). In the case F =R
denote by r (A, p) andr_(A, p) the inertia indices of the quadratic form (I)A,p(f> f). Then

(i) rank(M (A, p)) < 2h 4(s),
(ii) if F =R, then max(ry (A, p),r_(A,p)) < h g(s).

By combining Theorem 17 with facts about standard monomials, we have the following
simple and elegant upper bound for the degree of deglex standard monomials of an s-
distance set.

Theorem 18. Let A C R"™ be an s-distance set. Then
Sm(<dl, ](.A), F) - R[X]gs.

Proof. We follow the argument of [20, Theorem 1.1]. Let A C R™ denote an s-distance
set. Recall that d(.A) denotes the set of (non-zero) distances among points of A. Define
the 2n—variate polynomial by:

pxy) =TI (2= Ix-yl?) e Rix.y)
ted(A)

Then we can apply Theorem 17 for p(x,y) whose degree is 2s. The matrix M (A, p) is a
positive diagonal matrix, giving that

r+(A,p) = |A]
It follows from Theorem 17 (ii) that

|Al = (A, p) <hg(s).

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.27 8



But equations (3), (2) and the finiteness of A imply that
|A| < b g(s) = [Sm(=<a, [(A), R) NR[x]<| < [Sm(=<a, [(A),R)| = |Al.

We infer that
ISm(=<a, I(A), R) NR[x]<,| = [Sm(=a, [(A),R)],

and hence

Sm(<g, I(A),R) C R[x]<s. O
Proof of Theorem 3. Theorem 18 gives that

Sm(<a, I(A),R) € R[x]<,.
Since I vanishes on A, we have I C I(A), hence

Sm(<g, [(A),R) C Sm(<g4,I,R).
The preceding two relations imply that
Sm(=<a, I(A),R) € Sm(=<a, I, R) N R[x]<,.
Now it follows from (3) and (2) that
|A| = [Sm(=<a, I(A),R)] < [Sm(=<a, [,R) NR[x|<s| = hrxyi(s). U

3.2 Proofs of the Corollaries
Proof of Corollary 4. From Theorem 3 we obtain the bound |A| < hgpxj/(r)(s), therefore

for s > d we have
n+s n+s—d
< h x == - )
Al < hrpx/r) (5) ( N ) ( i )

by Proposition 16. O
Proof of Corollary 6. 1t is easy to verify that

2pz_1 n+s—i1—1\ (n+s n+s—2p
pas 5—1 N s n '
Let V = U_,S;, and assume, that the center of the sphere S; is the point (a4, ..., a,;) €

R", and the radius of S; is ; € R for i = 1,...,p. Next consider the polynomials

n

Fi(xy,. . wn) = (O (@m — ang)?) =] € Rlaa, ..., )

m=1

for each ¢ and put F':= [], F;. Then deg(F) = 2p and F vanishes on V. We may apply
Corollary 4 for the polynomial F'. Then for s > 2p we obtain the desired bound

Al < (n+s) B (n+s—2p)‘
n n

When s < 2p, the bound follows from the Bannai-Bannai-Stanton theorem. O
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Proof of Corollary 7. It is well-known and easily proved that the following set of polyno-
mials is a (reduced) Grobner basis of the ideal I(B) (with respect to any term order):

{H(mi—t): 1<z’<n}.
teT;
This readily gives the (deglex) standard monomials for (B):

Sm(<g, [(B),R) ={z{" ... 20" : 0< o < ¢— 1 for each i}.
It follows from Theorem 3 and equation (3) that

|Al < hpg(s) = |Sm(=a, [(B),R) NR[x]|<| =

n

={zf ..o a0m s 0< oy < ¢— 1 for each i, and Zaigs}\. O

Proof of Corollary 13. The statement follows at once from the result

)= (1) (@)

proved by Wilson in [22] (formulated there in the language of inclusion matrices, see also
[18, Corollary 3.1]), and Theorem 3. H

Proof of Corollary 14. Write I = I(V) N R[x] and J = I(V) C C|[x]. It follows from
Theorem 3 and Proposition 15 that

|A| < hrpxy1(8) = hepgy(s)-

From [8, Theorem 9.3.12] we obtain that the affine Hilbert function hcp/s(s) is the
same as the projective Hilbert function hi(s) of the projective variety V. Now [15,
Proposition 13.2] and the subsequent remark imply that for s large the Hilbert function
will be the same as the Hilbert polynomial: hy-(s) = py(s), moreover

pi(s) = I s® 4+ terms of degree at most d — 1 in s.

This proves the statement. [
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