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Abstract

In a recent paper, Petrov and Pohoata developed a new algebraic method which
combines the Croot-Lev-Pach Lemma from additive combinatorics and Sylvester’s
Law of Inertia for real quadratic forms. As an application, they gave a simple proof
of the Bannai-Bannai-Stanton bound on the size of s-distance sets (subsets A ⊆ Rn
which determine at most s different distances). In this paper we extend their work
and prove upper bounds for the size of s-distance sets in various real algebraic sets.
This way we obtain a novel and short proof for the bound of Delsarte-Goethals-Seidel
on spherical s-distance sets and a generalization of a bound by Bannai-Kawasaki-
Nitamizu-Sato on s-distance sets on unions of spheres. In our arguments we use the
method of Petrov and Pohoata together with some Gröbner basis techniques.
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1 Introduction

Let A ⊆ Rn be an arbitrary set. Denote by d(A) the set of non-zero euclidean distances
among the points of A:

d(A) := {d(p1,p2); p1,p2 ∈ A, p1 6= p2}.

An s-distance set is a subset A ⊆ Rn such that |d(A)| 6 s. Here we mention just two
theorems from the rich area of sets with few distances, more information can be found for
example in [14], [3]. Bannai, Bannai and Stanton proved the following upper bound for
the size of an s-distance set in [4, Theorem 1].

Theorem 1. Let n, s > 1 be integers and suppose that A ⊆ Rn is an s-distance set. Then

|A| 6
(
n+ s

s

)
.

Delsarte, Goethals and Seidel investigated s-distance sets on the unit sphere Sn−1 ⊆
Rn. These are the spherical s-distance sets. They proved a general upper bound for the
size of a spherical s-distance set in [11]. In their proof they used Delsarte’s method (see
[3, Subsection 2.2]).

Theorem 2. (Delsarte, Goethals, and Seidel) Let n, s > 1 be integers and suppose that
A ⊆ Sn−1 is an s-distance set. Then

|A| 6
(
n+ s− 1

s

)
+

(
n+ s− 2

s− 1

)
.

Before stating our results, we introduce some notation. Let F be a field. In the
following S = F[x1, . . . , xn] = F[x] denotes the ring of polynomials in commuting variables
x1, . . . , xn over F. Note that polynomials f ∈ S can be considered as functions on Fn.
For a subset Y of the polynomial ring S and a natural number s we denote by Y6s
the set of polynomials from Y with degree at most s. Let I be an ideal of S = F[x].
The (affine) Hilbert function of the factor algebra S/I is the sequence of non-negative
integers hS/I(0), hS/I(1), . . ., where hS/I(s) is the dimension over F of the factor space
F[x1, . . . , xn]6s/I6s (see [8, Section 9.3]). Our main technical result gives an upper bound
for the size of an s-distance set, which is contained in a given real algebraic set.

Theorem 3. Let I ⊆ R[x] be an ideal in the polynomial ring, and let A ⊆ Rn be an
s-distance set such that every polynomial from I vanishes on A. Then

|A| 6 hR[x]/I(s).

The proof is based on Gröbner basis theory and an improved version of the Croot-
Pach-Lev Lemma (see [9] Lemma 1) over the reals. Petrov and Pohoata proved this in
[20, Theorem 1.2] and used it to give a new proof of Theorem 1. We generalize their result
to give a new upper bound for the size of an s-distance set, which is contained in a given
affine algebraic set in the real affine space Rn.

We give several corollaries, where Theorem 3 is applied to specific ideals of the poly-
nomial ring R[x], the first ones being the principal ideals I = (F ), with F ∈ R[x].
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Corollary 4. Let F ∈ R[x] be a polynomial of degree d. Suppose that s > d. Let A be an
s-distance set such that F vanishes on A. Then

|A| 6
(
n+ s

n

)
−
(
n+ s− d

n

)
.

For example, when n = 2, then F defines a plane curve of degree d. Then for s > d
we obtain

|A| 6
(

2 + s

2

)
−
(

2 + s− d
2

)
= ds− d(d− 3)

2
.

In particular, when F (x, y) = y2 − f(x) gives a Weierstrass equation of an elliptic curve,
then |A| 6 3s for s > 3.

Remark 5. We can now easily derive Theorem 2 for s > 1. Indeed, consider the real
polynomial

F (x1, . . . , xn) = 1−
n∑
i=1

x2i ∈ R[x1, . . . , xn]

of degree 2 which vanishes on Sn−1. Corollary 4 and the hockey-stick identity gives

|A| 6
(
n+ s

n

)
−
(
n+ s− 2

n

)
=

(
n+ s− 1

s

)
+

(
n+ s− 2

s− 1

)
.

Next, assume that V = ∪pi=1S i, where the S i are spheres in Rn. E. Bannai, K.
Kawasaki, Y. Nitamizu, and T. Sato proved the following result in [5, Theorem 1] for the
case when the spheres S i are concentric. We have a much shorter approach to the same
bound, in a more general setting, without the assumption on the centers.

Corollary 6. Let A be an s-distance set on the union V of p spheres in Rn. Then

|A| 6
2p−1∑
i=0

(
n+ s− i− 1

s− i

)
.

Let Ti ⊆ R be given finite sets, where |Ti| = q > 2 for each i with 1 6 i 6 n. A box is
a direct product

B :=
n∏
i=1

Ti ⊆ Rn.

We can easily apply Theorem 3 to obtain an upper bound for the size of s-distance sets
in boxes.

Corollary 7. Let B ⊆ Rn be a box as above, and A ⊆ B an s-distance set. Then

|A| 6 |{xα1
1 · . . . · xαn

n : 0 6 αi 6 q − 1 for each i, and
∑
i

αi 6 s}|.
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Remark 8. In the special case q = 2 we have

|{xα1
1 · . . . · xαn

n : 0 6 αi 6 1 for each i, and
∑
i

αi 6 s}| =
s∑
j=0

(
n

j

)
,

hence we obtain the upper bound

|A| 6
s∑
j=0

(
n

j

)
. (1)

In the case when Ti = T for 1 6 i 6 n and |T | = 2, the Euclidean distance is essentially
the same as the Hamming distance. For this case (1) was proved by Delsarte [10], see also
[2, Theorem 1].

Remark 9. The bound is sharp, when q = 2, n = 2m and s = m. Then the 0,1 vectors of
even Hamming weight give an extremal family A ⊆ Rn.

Remark 10. The bound of Corollary 7 can be nicely formulated in terms of extended
binomial coefficients (see [12, Example 8] or [7, Exercise 16]):

|A| 6
s∑
j=0

(
n

j

)
q

.

Here
(
n
j

)
q

is an extended binomial coefficient giving the number of restricted compositions

of j with n terms (summands), where each term is from the set {0, 1, . . . , q − 1}. In
particular, we have

(
n
j

)
2

=
(
n
j

)
.

Remark 11. In [16] a weaker, but similar upper bound was given for the size of s-distance
sets in boxes:

|A| 6 2|{xα1
1 · . . . · xαn

n : 0 6 αi 6 q − 1 for each i, and
∑
i

αi 6 s}|.

The bound appearing in Corollary 7 presents an improvement by a factor of 2.

Let α1, . . . , αn be n different elements of R, and Xn = Xn(α1, . . . , αn) ⊆ Rn be the set
of permutations of α1, . . . , αn, where each permutation is considered as vector of length
n. It was proved in [17, Section 2] that for s > 0

hXn(s) =
s∑
i=0

In(i),

where In(i) is the number of permutations of n symbols with precisely i inversions. Using
this, Theorem 3 implies the following bound:

Corollary 12. Let A ⊆ Xn be an s-distance set. Then

|A| 6
s∑
i=0

In(i).
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In [19, Section 5.1.1] Knuth gives a generating function for In(i) and some explicit
formulae for the values In(i), i 6 n.

Let 0 6 d 6 n be integers and Yn,d ⊆ Rn denote the set of 0,1-vectors of length n
which have exactly d coordinate values of 1. The following (sharp) bound was obtained
by Ray-Chaudhuri and Wilson in [21, Theorem 3], formulated in terms of intersections
rather than distances.

Corollary 13. Let 0 6 d 6 n and s be integers, with 0 6 s 6 min(d, n − d). Suppose
that A ⊆ Yn,d is an s-distance set. Then

|A| 6
(
n

s

)
.

In some cases data about the complexification of a real affine algebraic set can be used
to give a bound. We give next a statement of this type. For a subset X ⊆ Fn of the affine
space we write I(X) for the ideal of all polynomials f ∈ F[x] which vanish on X.

Corollary 14. Let V ⊆ Cn be an affine variety such that the projective closure V of
V has dimension d and degree k. Suppose also that the ideal I(V ) of V is generated by
polynomials over R. Let A ⊆ V ∩ Rn be an s-distance set. Then we have

|A| 6 k · sd

d!
+O(sd−1).

For instance, when in Corollary 14 the projective variety V is a curve of degree k,
then the bound is ks + b for large s, where b is an integer. More specifically, when V is
an elliptic curve such that V ⊆ C2 is the set of zeroes of y2 − f(x), where f(x) ∈ R[x]
is a cubic polynomial without multiple roots, then in fact, the preceding bound becomes
|A| 6 3s+ b for s large (see also the remark after Corollary 4).

The rest of the paper is organized as follows. Section 2 contains some preliminaries
on Gröbner bases, Hilbert functions, and related notions. Section 3 contains the proofs
of the main theorem and the proof of the corollaries.

2 Preliminaries

A total ordering ≺ on the monomials xi11 x
i2
2 · · ·xinn composed from variables x1, x2, . . . , xn

is a term order, if 1 is the minimal element of ≺, and uw ≺ vw holds for any monomials
u, v, w with u ≺ v. Two important term orders are the lexicographic order ≺l and the
deglex order ≺dl. We have

xi11 x
i2
2 · · ·xinn ≺l x

j1
1 x

j2
2 · · ·xjnn

iff ik < jk holds for the smallest index k such that ik 6= jk. As for the deglex order, we
have u ≺dl v iff either deg u < deg v, or deg(u) = deg(v), and u ≺l v.

the electronic journal of combinatorics 28(3) (2021), #P3.27 5



Let ≺ be a fixed term order. The leading monomial lm(f) of a nonzero polynomial
f from the ring S = F[x] is the largest (with respect to ≺) monomial which occurs with
nonzero coefficient in the standard form of f .

Let I be an ideal of S. A finite subset G ⊆ I is a Gröbner basis of I if for every f ∈ I
there exists a g ∈ G such that lm(g) divides lm(f). It can be shown that G is in fact
a basis of I. A fundamental result is (cf. [6, Chapter 1, Corollary 3.12] or [1, Corollary
1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a Gröbner basis with respect
to ≺.

A monomial w ∈ S is a standard monomial for I if it is not a leading monomial of any
f ∈ I. Let Sm(≺, I,F) denote the set of all standard monomials of I with respect to the
term-order ≺ over F. It is known (see [6, Chapter 1, Section 4]) that for a nonzero ideal
I the set Sm(≺, I,F) is a basis of the factor space S/I over F. Hence every g ∈ S can
be written uniquely as g = h + f where f ∈ I and h is a unique F-linear combination of
monomials from Sm(≺, I,F).

If X ⊆ Fn is a finite set, then an interpolation argument gives that every function
from X to F is a polynomial function. The latter two facts imply that

|Sm(≺, I(X),F)| = |X|, (2)

where I(X) is the ideal of all polynomials from S which vanish on X, and ≺ is an arbitrary
term order.

The initial ideal in(I) of I is the ideal in S generated by the set of monomials
{lm(f) : f ∈ I}.

It is easy to see [8, Propositions 9.3.3 and 9.3.4] that the value at s of the Hilbert
function hS/I is the number of standard monomials of degree at most s, where the ordering
≺ is deglex:

hS/I(s) = |Sm(≺dl, I,F) ∩ F[x]6s|. (3)

In the case when I = I(X) for some X ⊆ Fn, then hX(s) := hS/I(s) is the dimension of
the space of functions from X to F which are polynomials of degree at most s.

Next we recall a known fact about the Hilbert function. It concerns the change of
the coefficient field. Let F ⊂ K be fields and let I ⊆ F[x] be an ideal, and consider the
corresponding ideal J = I ·K[x] generated by I in K[x].

Lemma 15. For the respective affine Hilbert functions for s > 0 we have

hF[x]/I(s) = hK[x]/J(s).

For the convenience of the reader we outline a simple proof.

Proof. It follows from Buchberger’s criterion [8, Theorem 2.6.6] that a deglex Gröbner
basis of I in F[x] will be a deglex Gröbner basis of J in K[x], implying that the initial
ideals in(I) and in(J) contain exactly the same set of monomials, hence their respective
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factors have the same Hilbert function hF[x]/in(I)(s) = hK[x]/in(J)(s), see [8, Proposition

9.3.3]. Then by [8, Proposition 9.3.4] we have

hF[x]/I(s) = hF[x]/in(I)(s) = hK[x]/in(J)(s) = hK[x]/J(s),

for every integer s > 0.

The projective (homogenized) version of the next statement is discussed in [13, Ex-
ample 6.10].

Proposition 16. Let F ∈ F[x] be a polynomial of degree d. Then for s > d we have

hF[x]/(F )(s) =

(
n+ s

n

)
−
(
n+ s− d

n

)
.

If 0 6 s < d, then

hF[x]/(F )(s) =

(
n+ s

n

)
.

Proof. By definition
hF[x]/(F )(s) = dimF[x]6s/(F )6s =

= dimF[x]6s − dim(F )6s.

Clearly

dimF[x]6s =

(
n+ s

n

)
.

Moreover

(F )6s = {G ∈ F[x]6s : there exists an H ∈ F[x] such that FH = G}.

Using the fact that F[x] is a domain, we see that the dimension of the latter subspace is

dim{H ∈ R[x] : deg(H) 6 s− d} = dimF[x]6(s−d).

The statement now follows from the fact that if s > d, then

dimF[x]6(s−d) =

(
n+ s− d

n

)
,

while for s < d we have
dimF[x]6(s−d) = 0.
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3 Proofs

3.1 Proof of the main result

Petrov and Pohoata proved the following result [20, Theorem 1.2]. They used it to give
a short proof of Theorem 1. This improved version of the Croot-Lev-Pach Lemma has a
crucial role in the proof of our results.

Theorem 17. Let W be an n-dimensional vector space over a field F and let A ⊆ W be
a finite set. Let s > 0 be an integer an let p(x,y) ∈ F[x,y] be a 2n-variate polynomial of
degree at most 2s+ 1. Consider the matrix M(A, p)a,b∈A, where

M(A, p)(a,b) = p(a,b).

This matrix corresponds to a bilinear form on FA by the formula

ΦA,p(f, g) =
∑

a,b∈A
p(a,b)f(a)g(b),

for each f, g : A → F. This ΦA,p defines a quadratic form ΦA,p(f, f). In the case F = R
denote by r+(A, p) and r−(A, p) the inertia indices of the quadratic form ΦA,p(f, f). Then

(i) rank(M(A, p)) 6 2hA(s),

(ii) if F = R, then max(r+(A, p), r−(A, p)) 6 hA(s).

By combining Theorem 17 with facts about standard monomials, we have the following
simple and elegant upper bound for the degree of deglex standard monomials of an s-
distance set.

Theorem 18. Let A ⊆ Rn be an s-distance set. Then

Sm(≺dl, I(A),F) ⊆ R[x]6s.

Proof. We follow the argument of [20, Theorem 1.1]. Let A ⊆ Rn denote an s-distance
set. Recall that d(A) denotes the set of (non-zero) distances among points of A. Define
the 2n–variate polynomial by:

p(x,y) =
∏

t∈d(A)

(
t2 − ‖x− y‖2

)
∈ R[x,y].

Then we can apply Theorem 17 for p(x,y) whose degree is 2s. The matrix M(A, p) is a
positive diagonal matrix, giving that

r+(A, p) = |A|.

It follows from Theorem 17 (ii) that

|A| = r+(A, p) 6 hA(s).

the electronic journal of combinatorics 28(3) (2021), #P3.27 8



But equations (3), (2) and the finiteness of A imply that

|A| 6 hA(s) = |Sm(≺dl, I(A),R) ∩ R[x]6s| 6 |Sm(≺dl, I(A),R)| = |A|.

We infer that
|Sm(≺dl, I(A),R) ∩ R[x]6s| = |Sm(≺dl, I(A),R)|,

and hence
Sm(≺dl, I(A),R) ⊆ R[x]6s.

Proof of Theorem 3. Theorem 18 gives that

Sm(≺dl, I(A),R) ⊆ R[x]6s.

Since I vanishes on A, we have I ⊆ I(A), hence

Sm(≺dl, I(A),R) ⊆ Sm(≺dl, I,R).

The preceding two relations imply that

Sm(≺dl, I(A),R) ⊆ Sm(≺dl, I,R) ∩ R[x]6s.

Now it follows from (3) and (2) that

|A| = |Sm(≺dl, I(A),R)| 6 |Sm(≺dl, I,R) ∩ R[x]6s| = hR[x]/I(s).

3.2 Proofs of the Corollaries

Proof of Corollary 4. From Theorem 3 we obtain the bound |A| 6 hR[x]/(F )(s), therefore
for s > d we have

|A| 6 hR[x]/(F )(s) =

(
n+ s

n

)
−
(
n+ s− d

n

)
,

by Proposition 16.

Proof of Corollary 6. It is easy to verify that

2p−1∑
i=0

(
n+ s− i− 1

s− i

)
=

(
n+ s

s

)
−
(
n+ s− 2p

n

)
.

Let V = ∪pi=1S i, and assume, that the center of the sphere S i is the point (a1,i, . . . , an,i) ∈
Rn, and the radius of S i is ri ∈ R for i = 1, . . . , p. Next consider the polynomials

Fi(x1, . . . , xn) = (
n∑

m=1

(xm − am,i)2)− r2i ∈ R[x1, . . . , xn]

for each i and put F :=
∏

i Fi. Then deg(F ) = 2p and F vanishes on V . We may apply
Corollary 4 for the polynomial F . Then for s > 2p we obtain the desired bound

|A| 6
(
n+ s

n

)
−
(
n+ s− 2p

n

)
.

When s < 2p, the bound follows from the Bannai-Bannai-Stanton theorem.
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Proof of Corollary 7. It is well-known and easily proved that the following set of polyno-
mials is a (reduced) Gröbner basis of the ideal I(B) (with respect to any term order):{∏

t∈Ti

(xi − t) : 1 6 i 6 n

}
.

This readily gives the (deglex) standard monomials for I(B):

Sm(≺dl, I(B),R) = {xα1
1 · . . . · xαn

n : 0 6 αi 6 q − 1 for each i}.

It follows from Theorem 3 and equation (3) that

|A| 6 hB(s) = |Sm(≺dl, I(B),R) ∩ R[x]6s| =

= |{xα1
1 · . . . · xαn

n : 0 6 αi 6 q − 1 for each i, and
∑
i

αi 6 s}|.

Proof of Corollary 13. The statement follows at once from the result

hYn,d
(s) =

(
n

s

)
(4)

proved by Wilson in [22] (formulated there in the language of inclusion matrices, see also
[18, Corollary 3.1]), and Theorem 3.

Proof of Corollary 14. Write I = I(V ) ∩ R[x] and J = I(V ) ⊆ C[x]. It follows from
Theorem 3 and Proposition 15 that

|A| 6 hR[x]/I(s) = hC[x]/J(s).

From [8, Theorem 9.3.12] we obtain that the affine Hilbert function hC[x]/J(s) is the
same as the projective Hilbert function hV (s) of the projective variety V . Now [15,
Proposition 13.2] and the subsequent remark imply that for s large the Hilbert function
will be the same as the Hilbert polynomial: hV (s) = pV (s), moreover

pV (s) =
k

d!
· sd + terms of degree at most d− 1 in s.

This proves the statement.
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[16] G. Hegedüs. A new upper bound for the size of s-distance sets in boxes. Acta Math-
ematica Hungarica, 160, 168–174 (2020).
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