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Abstract

The classification of complete multipartite graphs whose edge rings are nearly
Gorenstein as well as that of finite perfect graphs whose stable set rings are nearly
Gorenstein is achieved.

Mathematics Subject Classifications: 13H10, 05E40, 05C17, 05C69, 14M25,
06A11

Gorenstein graded algebras associated to combinatorial objects like graphs or simpli-
cial complexes have attracted a lot of interest. See, e.g., [5], [16], [2]. Recently several
extensions of the class of Gorenstein rings (inside the class of Cohen–Macaulay rings)
have been discussed in, e.g., [6], [7], hence it is natural to search for the combinatorial
counterpart.

According to [7], when R is a Cohen–Macaulay graded K-algebra over the field K with
canonical module ωR, it is called nearly Gorenstein if the canonical trace ideal tr(ωR)
contains the maximal graded ideal mR of R. Here tr(ωR) is the ideal generated by the
image of ωR through all homomorphism of R-modules into R. As tr(ωR) describes the
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non-Gorenstein locus of R ([7, Lemma 2.1]), one has tr(ωR) = R if and only if R is a
Gorenstein ring.

In the present paper we initiate the study of nearly Gorenstein rings belonging to two
classes of algebras associated to graphs. Throughout, K is any field. Assume G is a simple
graph (it possesses no loops or multiple edges) with vertex set V (G) = [d] := {1, . . . , d}.

The edge ring K[G] is the K-subalgebra of the polynomial ring K[x1, . . . , xd] generated
by the monomials xixj for all edges {i, j} ∈ E(G). When V (G) can be partitioned
V (G) = tnk=1Vk with n > 2 and |Vk| = rk for k = 1, . . . , n such that E(G) consists
of all the pairs {i, j} with i ∈ Va and j ∈ Vb for 1 6 a < b 6 n, we say that G is a
complete multipartite graph of type r1, . . . , rn which is denoted Kr1,...,rn . Related algebraic
properties for these graphs have been recently studied in [10] and [11]. In Proposition 5
and in Theorem 6 we prove the following result.

Theorem A. Assume G = Kr1,...,rn . Set R = K[G]. Then

1. if n = 2 and 1 6 r1 6 r2, the ring R is nearly Gorenstein if and only if r1 = 1, or
r2 ∈ {r1, r1 + 1}.

2. if n > 3 the ring R is nearly Gorenstein if and only if R is Gorenstein.

Since Ohsugi and Hibi in [14] have explicitly listed the complete multipartite graphs whose
edge ring is Gorenstein (see Theorem 1 below), Theorem A offers a full description for
the nearly Gorenstein property, as well.

The other class of algebras we consider deals with the stable sets in G. A nonempty set
W of vertices is called stable (or independent) if there is no edge {i, j} in G with i, j ∈ W .
The stable set ring of G denoted StabK(G) is the K-subalgebra in the polynomial ring
K[x1, . . . , xd, t] generated by those monomials (

∏
i∈W xi) · t with W any stable set in G.

When G is a perfect graph, it is known [15] that StabK(G) is Cohen–Macaulay, and that
it is Gorenstein if and only if all maximal cliques of G have the same cardinality [16].
Recall that a set C ⊂ V (G) is called a clique if the subgraph induced by C is a complete
graph.

The size of the maximal cliques in G is also relevant to describe in Theorem 13 for
which perfect graphs the algebra StabK(G) is nearly Gorenstein. We prove the following.

Theorem B. Let G be a perfect graph and G1, . . . , Gs its connected components. Let δi
denote the maximal cardinality of cliques of Gi. Then StabK(G) is nearly Gorenstein if
and only if for each Gi its maximal cliques have the same cardinality and |δi− δj| 6 1 for
1 6 i < j 6 s.

To prove Theorems A and B we observe that the algebras R which occur are Cohen–
Macaulay domains, so ωR can be identified with an ideal in R. By [7, Lemma 1.1], its
trace can be computed as

tr(ωR) = ωR · ω−1R , where

ω−1R = {x ∈ Q(R) : x · ωR ⊆ R}

is the anti-canonical ideal of R and Q(R) denotes the field of fractions of R.
We refer the reader to [1] and [2] for the undefined graph or algebraic notions.
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1 Edge rings

In this section unless stated otherwise G = Kr1,...rn is the complete multipartite graph on
[d] with vertices partitioned V (G) = V1t· · ·tVn, n > 2, |Vk| = rk for all k. In this context
d =

∑n
k=1 rk and without loss of generality, we will always assume that 1 6 r1 6 . . . 6 rn.

The graph G satisfies the so called odd cycle condition, i.e. for any two odd cycles in G
which have no common vertex there is a bridge between them. Indeed, when n = 2 there
is no odd cycle and anything to prove. Assume n > 3, and C1 and C2 be two disjoint odd
cycles in G. Since G is multipartite, each of these contains vertices from at least two of
the components V1, . . . , Vn, so one finds v ∈ C1 ∩ Va and w ∈ C2 ∩ Vb with a 6= b. Then
vw is an edge in G and a bridge between C1 and C2. Consequently, by [13] the edge ring

R = K[G] = K[xixj : i ∈ Va, j ∈ Vb, 1 6 a < b 6 n] ⊂ K[x1, . . . , xd]

is normal, hence a Cohen–Macaulay domain ([12]). Before we address the nearly Goren-
stein property, we recall that Ohsugi and Hibi [14] classified the complete multipartite
edge rings which are Gorenstein. With notation as above, their result is the following.

Theorem 1. (Ohsugi, Hibi [14, Remark 2.8]) The edge ring of the complete multipartite
graph Kr1,...,rn is Gorenstein if and only if

1. n = 2 and (r1, r2) ∈ {(1,m), (m,m) : m > 1}, or

2. n = 3 and 1 6 r1 6 r2 6 r2 6 2, or

3. n = 4 and r1 = r2 = r3 = r4 = 1.

For some complete multipartite graphs the edge ring fits into classes of algebras for
which the nearly Gorenstein property is already understood.

Example 2. When r1 = · · · = rn = 1, the edge ring R is the squarefree Veronese
subalgebra of degree 2 in the polynomial ring K[x1, . . . , xn], and according to [7, Theorem
4.14], R is nearly Gorenstein if and only if it is Gorenstein. The latter property holds if
and only if n 6 4, by using work of De Negri and Hibi [5], or Bruns, Vasconcelos and
Villarreal [3].

Example 3. According to Higashitani and Matsushita [10, Proposition 2.2], when n = 2,
or when n = 3 and r1 = 1, the corresponding edge ring is isomorphic to a Hibi ring,
and for the latter the nearly Gorenstein property is described in [7]. We refer to [9] for
background on Hibi rings.

Theorem 4 ([7, Theorem 5.4], [9]). Let P be a finite poset. Then the Hibi ring R of the
distributive lattice of the order ideals in P is nearly Gorenstein if and only if P is the
disjoint union of pure connected posets P1, . . . , Pq such that | rank(Pi)− rank(Pj)| 6 1 for
1 6 i < j 6 q.

In particular, R is a Gorenstein ring if and only if P is pure.
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Based on that, when G is a complete bipartite graph we obtain the following classifi-
cation.

Proposition 5. Let G = Kr1,r2 be the complete bipartite graph with 1 6 r1 6 r2. Then the
edge ring K[G] is nearly Gorenstein if and only if r1 = 1, or r1 > 2 and r2 ∈ {r1, r1 + 1}.

When 2 6 r1 = r2 − 1, the ring K[G] is nearly Gorenstein and not Gorenstein.

Proof. By [10, Proposition 2.2], K[G] is isomorphic to the Hibi ring associated to the
distributive lattice of order ideals in the poset P which consists of two disjoint chains
with r1 − 1 and r2 − 1 elements, respectively. By Theorem 4, K[G] is nearly Gorenstein
if and only if r1 = 1, or r1 > 2 and r2 ∈ {r1, r1 + 1}.

For non-bipartite graphs we prove the following result.

Theorem 6. Let R be the edge ring of a complete multipartite graph Kr1,...,rn with n > 3.
The following statements are equivalent:

(i) R is a Gorenstein ring;

(ii) R is a nearly Gorenstein ring.

Proof. Clearly, (i)⇒ (ii). We’ll prove the converse.
When n = 3 and r1 = 1 6 r2 6 r3, by [10, Proposition 2.2] the ring R is isomorphic to

the Hibi ring associated to the distributive lattice of order ideals in a posetQ with maximal
chains q1 < · · · < qr1 , qr1+1 < · · · < qr1+r2 and q1 < qr1+r2 . The poset Q is connected,
hence R is nearly Gorenstein if and only if it is Gorenstein, i.e. 1 = r1 6 r2 6 r3 6 2.

We now consider the remaining cases: either n = 3 and r1 > 2, or n > 4. Assume, by
contradiction that R is nearly Gorenstein and not Gorenstein, i.e.

tr(ωR) = mR. (1)

The monomials in R and ωR have a nice combinatorial description as feasable integer
solutions to some systems of inequalities. This can be described as follows. We denote
H =

∑
{i,j}∈E(G) N(ei + ej) ⊂ Nd the affine semigroup generated by the columns of the

vertex-edge incidence matrix for G, and C = R+H the rational cone over H.
For u = (u1, . . . , ud) ∈ Nd, it follows from [13] and [18, Proposition 3.4] that u ∈ H

(equivalently, xu ∈ R) if and only if

d∑
i=1

ui ≡ 0 mod 2, (2)

u1, . . . , ud > 0, and∑
i/∈Vk

ui >
∑
j∈Vk

uj for all k = 1, . . . , n.

The latter inequalities are equivalent to

d∑
i=1

ui > 2
∑
j∈Vk

uj, for k = 1, . . . , n. (3)
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Since R is normal, by [4], [17] (see also [2, Theorem 6.3.5(b)]), a K-basis for ωR is
given by the monomials xu where u = (u1, . . . , ud) ∈ Zd satisfies

d∑
i=1

ui ≡ 0 mod 2, (4)

u1, . . . , ud > 1, and (5)
d∑
i=1

ui > 2 + 2
∑
j∈Vk

uj, for k = 1, . . . , n. (6)

From the equations above it is easy to see that if the monomial xu is in R or in ωR,
we can permute the exponents xi and xj whenever i, j ∈ Vk for some k, and we obtain
another monomial in R, or in ωR, respectively.

In what follows u = (u1, . . . , ud) and v = (v1, . . . , vd).
For a monomial xu ∈ ωR and 1 6 k 6 n we say that Vk (or simply, k) is a heavy

component in u if
d∑
i=1

ui = 2 + 2
∑
j∈Vk

uj. (7)

Claim 7. For any xu ∈ ωR there exist at most two heavy components in u. In particular,
there is at least one non-heavy component in u.

Proof. Indeed, if k1 < k2 < k3 are heavy components in u, then by adding the equations
(7) for these indices we get

3
d∑
i=1

ui = 6 +
∑

j∈Vk1∪Vk2∪Vk3

2uj,

If n = 3, then
∑d

i=1 ui = 6. Since ui > ri > 2 for all i, we infer that r1 = r2 = r3 = 2,
and K[G] is a Gorenstein ring (by Theorem 1), which is not the case.

If n > 4, then
∑d

i=1 ui < 6. As
∑d

i=1 ui is even, we get that n = 4 and r1 = r2 = r3 =
r4 = 1. Example 2 implies that R is a Gorenstein ring, which is false.

Claim 8. For any 1 6 i 6 d there exists a monomial xu ∈ ωR such that ui = 1.

Proof. We fix i and we denote ai = min{ui :
∏
xuii ∈ ωR}. By (5), ai > 1. Assume ai > 2,

and say i ∈ Vk.
If rk > 1, we may pick j ∈ Vk, j 6= i. Then it is easy to check that the monomial

m = xu

xi
xj ∈ ωR and degxi(m) = ai − 1, a contradiction.

When rk = 1, then n > 4 and by the previous claim there is at least one non-heavy
component Vk1 in u which is different from Vk. We pick j ∈ Vk1 and since the monomial
m = xu

xi
xj ∈ ωR and degxi(m) = ai − 1 we obtain a contradiction.
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It follows at once that

gcd(xu : xu ∈ ωR) =
d∏
i=1

xi,

where the greatest common divisor is computed in the polynomial ring S = K[x1, . . . , xd].
Since ωR is generated by monomials, one gets that ω−1R is also generated by monomials

in K[x±11 , . . . , x±1d ]. If f = xu/xv ∈ ω−1R with xu and xv coprime monomials in S, then xv

divides the greatest common divisor of the monomials in ωR. Hence, in order to determine
a system of generators for the R-module ω−1R it is enough to scan among the (non-reduced)
fractions f = xu/(x1 . . . xd), where xu is in the set

B =

{
xu ∈ S :

d∑
i=1

ui ≡ 0 mod 2, xu · ωR ⊆ x1 . . . xdR

}
.

A monomial xu is in B if and only if
∑d

i=1 ui ≡ 0 mod 2 and

xu1+v1−11 · · · xud+vd−1d ∈ R

for all xv11 · · · x
vd
d in ωR. That is equivalent, via (2), (4), (3), to the fact that

d∑
i=1

ui ≡ dmod 2, and (8)

d∑
i=1

ui +
d∑
i=1

vi > d− rk + 2
∑
j∈Vk

uj + 2
∑
j∈Vk

vj, (9)

for k = 1, . . . , d, and any xv ∈ ωR.

For k = 1, . . . , n we set

Ek = min

{
d∑
i=1

vi − 2
∑
j∈Vk

vk : xv ∈ ωR

}
.

Therefore, (9) is equivalent to

d∑
i=1

ui > d− rk − Ek + 2
∑
j∈Vk

uj for k = 1, . . . , n. (10)

Before computing Ek we make a simple observation regarding d and the ri’s.

Claim 9. 2ri + 2 6 d for all i = 1, . . . , n− 1.

Proof. Indeed, if that were not the case, then 2rn + 2 > 2rn−1 + 2 > d, hence 2rn >
2rn−1 > d − 1. This implies rn + rn−1 > d − 1, equivalently that 1 =

∑n−2
i=1 ri, which is

not possible in our setup.
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Next we show that Ek does not depend on k.

Claim 10. Ek = 2 for k = 1, . . . , n.

Proof. We fix 1 6 k 6 n. Clearly, Ek > 2, by (6). Then Ek = 2 once we find

xv ∈ ωR such that
d∑
i=1

vi = 2 + 2
∑
j∈Vk

vj. (11)

Using Eqs. (4), (5), (6), and translating vi = ri + si for i = 1, . . . , n, we observe that
finding v as in (11) is equivalent to finding integers s1, . . . , sn such that

s1, . . . , sn > 0, (12)
n∑
i=1

si > 2s` + 2r` + 2− d, for 1 6 ` 6 n, ` 6= k, and (13)

n∑
i=1

si = 2sk + 2 + 2rk − d. (14)

The s` represents the sum of the components of v from V`, each decreased by one. Note
that (14) already implies that

∑n
i=1 si ≡ dmod 2.

We have two cases to consider.
Case k = n:
We let s` = bd/2c − r` − 1 for ` = 1, . . . , n− 1. For (14) to hold, we must let

sn =
n−1∑
i=1

si − 2− 2rn + d = (n− 1)bd/2c − d+ rn − (n− 1)− 2− 2rn + d

= (n− 1)(bd/2c − 1)− rn − 1 > 2(bd/2c − 1)− rn − 1 > d− rn − 2 > 0.

For ` < n, one has s` > 0 by the previous Claim. Also, 2s` + 2 + 2r` − d is either 0 or 1,
depending on d being even or odd. Therefore, (13) and (12) are all verified.

Case 1 6 k 6 n− 1:
We let sn = 0 and s` = bd/2c − r` − 1 for ` = 1, . . . , n − 1 where ` 6= k. For (14) to

hold, we must let

sk = (
∑

16i6n−1,i 6=k

si) + sn − 2− 2rk + d. (15)

Clearly, sk > 0 since d > 2rk + 2. Arguing as in the other case, for k 6= ` < n one has
s` > 0 and (13) holds. We are left to verify that

n∑
i=1

si > 2sn + 2rn + 2− d. (16)
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Substituting (14) into the left hand side term above, (16) is equivalent to

sk + rk > sn + rn.

Using (15) we get that

sk + rk = (
∑

16i6n−1,i 6=k

si) + sn + d− rk − 2

= (
∑

16i6n−1,i 6=k

si) + sn + rn + (d− rk − rn − 2) > sn + rn,

where for the latter inequality we used the observation that d > rk + rn + 2 in our setup.
Consequently, s1, . . . , sn fulfil (12), (13), (14), and Ek = 2.

We can now finish the proof of Theorem 6.
Let m = xa11 . . . xadd be a monomial generator for ωR. Then degm =

∑d
i=1 ai >

2 + 2
∑

j∈Vk aj for all k = 1, . . . , n. In particular, degm > 2rn + 2.

Let f = xu/(x1 · · ·xd) be a monomial in ω−1R , with xu ∈ B. By (10),

deg xu =
d∑
i=1

ui > d− rk − 2 + 2
∑
j∈Vk

uj for all k = 1, . . . , n.

Since d > rn + 2 in our setup, we find a component k1 such that
∑

j∈Vk1
uj > 0.

The product m · f is a monomial in R of degree at least

(2rn + 2) + (d− rk1 − 2 + 2
∑
j∈Vk1

uj)− d > 2rn − rk1 + 2 > 3.

Consequently, tr(ωR) = ωR · ω−1R ( mR, a contradiction with (1).

2 Stable set rings

In this section we consider an algebra generated by the monomials coming from the stable
sets of a graph.

Let G be a finite simple graph on [n] and E(G) is the set of edges of G. A subset
C ⊂ [n] is a clique of G if {i, j} ∈ E(G) for all i, j ∈ C with i 6= j. A subset W ⊂ [n] is
stable in G if {i, j} 6∈ E(G) for all i, j ∈ W with i 6= j. In particular, the empty set as
well as each {i} ⊂ [n] is both a clique of G and a stable subset of G. Let ∆(G) denote
the clique complex of G which is the simplicial complex on [n] consisting of all cliques of
G. Let δ denote the maximal cardinality of cliques of G. Thus dim ∆(G) = δ−1. We say
that G is pure if ∆(G) is a pure simplicial complex, i.e. the cardinality of each maximal
clique of G is δ. The chromatic number of a graph is the smallest number of colors that
can be used for its vertices such that no adjacent vertices have the same color. The graph
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G is called perfect if for all induced subgraphs H of G, including G itself, the chromatic
number is equal to the maximal cardinality of cliques contained in H, see [1, p. 165].

Let K[x1, . . . , xn, t] denote the polynomial ring in n+ 1 variables over the field K. If,
in general, W ⊂ [n], then xW t stands for the squarefree monomial

xW t =
( ∏
i∈W

xi
)
· t ∈ K[x1, . . . , xn, t].

Let StabK(G) denote the subalgebra of K[x1, . . . , xn] which is generated by those xW t
for which W is a stable set of G. Letting deg(xW t) = 1 for any stable set W , the algebra
StabK(G) becomes standard graded. We call StabK(G) the stable set ring of G.

It is known [15, Example 1.3 (c)] that StabK(G) is normal if G is perfect. It follows
that, when G is perfect, StabK(G) is spanned over K by those monomials (

∏n
i=1 x

ai
i )tq

with
∑

i∈C ai 6 q for each maximal clique C of G. Furthermore, the canonical module
ωStabK(G) of StabK(G) is spanned over K by those monomials (

∏n
i=1 x

ai
i )tq with each ai > 0

and with
∑

i∈C ai < q for each maximal clique C of G. Thus [16, Theorem 2.1 (b)] implies
that StabK(G) is Gorenstein if and only if G is pure.

The following lemma captures a sufficient combinatorial condition for StabK(G) to be
nearly Gorenstein.

Lemma 11. Let G be a finite simple perfect graph such that StabK(G) is nearly Goren-
stein. Then every connected component of G is pure.

Proof. Assume V (G) = [n]. Denote R = StabK(G). Since each xit as well as t belongs to
R, the quotient field of R is the rational function field K(x1, . . . , xn, t) over K.

Suppose G1 is a connected component of G which is not pure. Let δ and δ1 denote
the maximal cardinality of cliques of G and of G1, respectively. Then there is an edge
{i0, j0} ∈ E(G1) for which i0 belongs to a clique C of G with |C| = δ1 and for which j0
belongs to no clique C of G with |C| = δ1.

Let z =
∏n

i=1 x
a′i
i t

q′ ∈ ω−1R . Set v1 = x1 · · ·xntδ+1. It is easy to check that v1 ∈ ωR and
that each monomial belonging to ωR is divisible (in K[x1, . . . , xn, t]) by v1. Hence ai > −1
for all i. Clearly, xj0v1 ∈ ωR and 1 6= xj0v1z ∈ R, hence q′ > −δ.

Since G is not pure, R is not a Gorenstein ring and thus

tr(ωR) = ωR · ω−1R = mR.

Let w′ =
∏n

i=1 x
a′i
i t

q′ ∈ ω−1R and w =
∏n

i=1 x
ai
i t

q ∈ ωR with w′w = xi0t. Since q′ > −δ
and q > δ + 1, one has q′ = −δ and q = δ + 1.

Let v = x1x2 · · ·xntδ+1 · xδ−δ1i0
. One has v ∈ ωR and xj0v ∈ ωR. We claim that

w′ · xj0v ∈ mR is divisible by xi0xj0t, but it is not divisible by t2. This is clear when
δ > δ1. In case δ = δ1, since i0 belongs to a clique C of G with |C| = δ, one has ai0 = 1.
Thus a′i0 = 0 and the claim is verified.

Thus w′ ·xj0v must be of the form xW t, where W is a stable set of G, which contradicts
{i0, j0} ∈ E(G). Hence mR ( tr(ωR), as desired.
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Recall that the a-invariant of any graded algebra R with canonical module ωR is
defined as a(R) = −min{i : (ωR)i 6= 0}.

Corollary 12. If G is a perfect graph then a(StabK(G)) = − dim ∆(G)− 2.

Proof. Let δ be the maximal size of a clique in G. From the proof of the Lemma 11,
v = x1 · · · xntδ+1 is in (ωStabK(G))δ+1 and v divides every monomial in ωStabK(G). This gives
the conclusion.

Theorem 13. Let G be a finite simple graph with G1, . . . , Gs its connected components
and suppose that G is perfect. Let δi denote the maximal cardinality of cliques of Gi.
Then StabK(G) is nearly Gorenstein if and only if each Gi is pure and |δi − δj| 6 1 for
1 6 i < j 6 s.

Proof. Suppose that StabK(G) is nearly Gorenstein. It follows from Lemma 11 that each
Gi is pure and each StabK(Gi) is Gorenstein. Since StabK(G) is the Segre product of
StabK(G1), . . . , StabK(Gs), it follows from [7, Corollary 4.16] and [8, Corollary 2.8] that

|a(StabK(Gi))− a(StabK(Gj))| 6 1 for all i, j.

Corollary 12 yields |δi− δj| 6 1 for 1 6 i < j 6 s. Furthermore, the “If” part also follows
from [7, Corollary 4.16] and [8, Corollary 2.8].

Corollary 14. Let G be a finite simple graph which is pefect and connected. Then the
ring StabK(G) is nearly Gorenstein if and only if it is Gorenstein.
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