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Abstract

Motivated by the study of affine Weyl groups, a ranked poset structure is defined
on the set of circular permutations in Sn (that is, n-cycles). It is isomorphic to the
poset of so-called admitted vectors, and to an interval in the affine symmetric group
S̃n with the weak order. The poset is a semidistributive lattice, and the rank
function, whose range is cubic in n, is computed by some special formula involving
inversions. We prove also some links with Eulerian numbers, triangulations of an
n-gon, and Young’s lattice.

Mathematics Subject Classifications: 06A07, 05A05
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1 Introduction

In [5], the second-named author defines for each affine Weyl group an affine variety whose
integral points are in bijection with the group. The irreducible components of the variety
are affine subspaces and are in bijection with the alcoves in a certain polytope; this set of
alcoves is partially ordered: the covering relation of this order is determined by applying
a reflection sending an alcove to a neighbouring one, further from the origin.

In the case of the affine symmetric group S̃n, it turns out that the irreducible com-
ponents are naturally in bijection with the set of circular permutations in Sn (that is,
n-cycles), so that one obtains an order on this set. It is this poset, with its three in-
stances, that we study in the present article.

The article is self-contained and may be read independently of the motivating ar-
ticle [5]. We begin by defining a partial order on the set of circular permutations in
Sn, obtaining a ranked poset (Corollary 4), whose rank function has image the interval
{0, 1, . . . ,

(
n
3

)
}. Note the rather unusual maximum rank, which is cubic in n. The rank

function is computed using inversions in a rather subtle way: it is a signed count of in-
versions (see Eq.(1)), and it is clearly not the usual length function in the symmetric
group).

The edges of the Hasse diagram of this order are indexed by transpositions (i, j) with
i+1 < j; the covering relation conjugates two circular permutations by this transposition,
under the condition that the smaller permutation sends j onto i (we call this large circular
descent, see Definition 26). The smallest element in the poset is (1, 2, . . . , n) and the
largest one is its inverse. Inversion and conjugation by the longest element in Sn are
anti-automorphisms of the poset. See Figures 1 and 2.

Admitted vectors, introduced by the second-named author in [5], are vectors v of natu-
ral integers, indexed by the transpositions considered above, which satisfy the conditions{

vij + vjk 6 vik 6 vij + vjk + 1, for all i < j < k,
vi,i+1 = 0 for all 1 6 i < n.

Admitted vectors are naturally ordered, and we show that the poset of admitted
vectors is isomorphic with the previous poset of circular permutations (Theorem 12).

Using the isomorphism of posets, we derive several properties. The poset is a lattice,
and we give an algorithmic construction for the supremum and the infimum of two ele-
ments, using the vector incarnation of the poset (Theorem 23). The number of edges in
the Hasse diagram are counted by Eulerian numbers: precisely, the number of circular
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permutations in Sn+1 which is covered by k circular permutations is the Eulerian number
a(n, k) (= number of permutations in Sn having k descents) (Theorem 28); in particular,
the number of join-irreducible elements is 2n−n− 1; the poset is however not isomorphic
to Sn with the weak order: indeed the maximum rank is cubic in n, whereas the maximum
rank for the weak order is quadratic. We consider also the limit poset when n→∞: that
is, we show that for any k, and n large enough, the posets coincide in their elements of
rank 6 k; and the limit of the posets is Young’s lattice of partitions (Theorem 32).

We give a link with triangulations of an n-gon. We consider the functions δijk, derived
from the above defining identities of admitted vectors, that is,

δijk(v) = vik − vij − vjk, i < j < k.

These functions take their values in {0, 1}, and satisfy the Ptolemy-like relation

δijk + δikl = δijl + δjkl, i < j < k < l.

We show that, given any triangulation of the n-gon, the component indexed by (1, n) of
any admitted vector v is equal to the sum of all δijk(v), where the sum is over all triangles
i, j, k of the triangulation (Theorem 22).

The third incarnation of the poset, close to the initial motivation [5], is an interval in
the affine symmetric group S̃n. We construct a special element fc in this group, and show
that our poset is isomorphic with the interval [id, fc] with the left weak order (Theorem
36). The rank function is therefore the length function in this Coxeter group.

From this isomorphism we derive several consequences: by a result of Reading and
Speyer, the lattice is semidistributive (but not distributive, nor modular) (Corollary 44);
and by a result of Björner and Brenti, the Möbius function takes values in {−1, 0, 1} (see
end of Subsection 6.2).

Finally, in Section 7, we illustrate the bijection between circular permutations and
admitted vectors using circular line diagrams.

2 Ordering circular permutations

In this section we define the poset which is the topic of the whole article. It is defined first
on circular permutations, by way of the covering relation. For each circular permutation,
there are as many covers as “large circular descents”. The rank function of the poset is
computed.

A conjugate of word w is a word w′ such that for some words x, y, one has w = xy, w′ =
yx. A factor of a word w is a word u such that w = xuy for some words x, y; a circular
factor of w is a factor of some conjugate of w. We say that the word sr of length 2 is a
subword of w if w = xsyrz for some words x, y, z.

For example, the alphabet being {1, 2, 3, . . . }, the word u = 213 is a factor of the word
w = 21354, the word 25 is a subword of length 2 of w and 542 is a circular factor of w.

For any permutation w ∈ Sn, that we view as a word on the alphabet {1, . . . , n}, and
for any i, j with 1 6 i < j 6 n, define the function γij(w) = 1 if j appears before i in w,
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and 0 otherwise; that is, γij(w) = 1 if ji is an inversion by value in w (which means that
ji is a subword of the word w), and = 0 if not. Then we define

N(w) =
∑

16k6n−1

k(n− k)γk,k+1(w)−
∑

16i<j6n

γij(w). (1)

For example, n = 5, w = 14325, with inversions 32, 43, 42, so that N(14325) =
2 · (5− 2) + 3 · (5− 3)− 1− 1− 1 = 9.

Proposition 1. (i) If w,w′ ∈ Sn are conjugate words, then N(w) = N(w′).

(ii) Suppose that w has the circular factor sr, s, r ∈ {1, 2, . . . , n}, with s > r+ 1 and let
w′′ be obtained from w by exchanging r and s. Then N(w′′) = N(w) + 1.

(iii) N(12 · · ·n) = 0.

(iv) N(n · · · 21) =
(
n
3

)
.

Proof. (i). It suffices to prove this in the case where w = ru, w′ = ur, for r ∈ {1, . . . , n}.
By inspection of the inversions of w and w′, we see that: for any i < r, w has the inversion
ri, but w′ not; for any j > r, w′ has the inversion jr, but w not; all other inversion are
identical in w and w′. Finally we synthesize this for all 1 6 i < r < j 6 n and k, l 6= r
by: 

γrj(w) = 0 and γir(w) = 1,
γrj(w

′) = 1 and γir(w
′) = 0,

γkl(w) = γkl(w
′).

Thus it follows that

N(w)−N(w′) = (r − 1)(n− (r − 1))γr−1,r(w)−
r−1∑
i=1

γi,r(w) −

r(n− r)γr,r+1(w
′) +

n∑
j=r+1

γrj(w
′)

= r(n− r)− (r − 1)(n− r + 1)− (n− r) + (r − 1)

= rn− r2 − rn+ r2 − r + n− r + 1− n+ r + r − 1

= 0.

(ii). By (i), we may assume that sr is a factor of w. Since s > r + 1 it follows that
k(k + 1) and (k + 1)k are simultaneously subwords of w and w′′, or not; moreover, there
is one subword of the form ji, j > i, less in w′′ than in w; hence N(w′′) = N(w) + 1.

(iii). This is straightforward.
(iv). Recall that the sum of the integers from 1 to n − 1 (resp. of their squares) is

equal to (n − 1)n/2 (resp. (n − 1)n(2n − 1)/6). Since γij(n . . . 21) = 1 for all i < j, it
follows that

N(n . . . 21) =
n−1∑
k=1

k(n− k)−
∑

16i<j6n

1
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= n
n−1∑
k=1

k −
n−1∑
k=1

k2 − n(n− 1)

2

=
n2(n− 1)

2
− n(n− 1)(2n− 1)

6
− n(n− 1)

2

=
n(n− 1)(n− 2)

6
.

In this article we call circular permutation an n-cycle in Sn. Such a permutation is
denoted in cyclic form by (w), for some w ∈ Sn, viewed as a word. For example (12345)
denotes the canonical 5-cycle; sometimes we use commas, if necessary, e.g. (1, 2, 3, 4, 5).

It is well-known that a circular permutation (w) in Sn has exactly n such represen-
tations, which are the (w′), w′ a conjugate of w. In particular, there is exactly one
representation beginning by 1, that is (w′) with w′ = 1v.

Corollary 2. The function N induces a function on the set of circular permutations in
Sn.

We denote this function on circular permutations also byN . The corollary is illustrated
by the following commutative diagram:{

permutations inSn

viewed as words

}

 permutations inSn

viewed as words

/
word conjugation

 circular

permutations of Sn



Z.
N

N

	

	

'

Definition 3 (Relation on circular permutations). Define a relation on circular permu-
tation by (w) → (w′) if w has some circular factor sr with s > r + 1 and w′ is obtained
by replacing in w this factor by rs.

It is easy to verify that this relation does not depend on the chosen representatives of
the circular permutations. For example, with sr = 51, (12345)→ (52341) is seen also by
(34512)→ (34152).

Corollary 4. The reflexive and transitive closure of the relation → is a partial order on
the set of circular permutations. The corresponding poset is graded by N , its smallest
element is (12 · · ·n) and its largest one is (n · · · 21).
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Proof. There is no cycle in the transitive closure of →, by Proposition 1 (ii). Thus it is
an order.

Note that if for a circular permutation (w), w has the property of having no circular
factor sr with s > r + 1, then (w) = (n · · · 21): indeed we may assume that w begins
by n, and then the second letter must be n − 1, the third one must be n − 2, and so
on. The element (n · · · 21) is the maximum of the poset; indeed, it is the only one having
the previous property; moreover, any element σ having some circular factor sr (with
s > r+1) is smaller than some other element, by the definition of→, so that by iteration,
σ < (n · · · 21).

Similarly, (12 · · ·n) is the smallest element of the poset.

Figure 1: Poset of circular permutations for n = 4. Red labels indicate the cover relation,
which is the conjugation. Ex: (14)(1234)(14) = (1423).

Corollary 5. The image of the function N is {0, 1, . . . ,
(
n
3

)
}.

Proof. This follows from the previous corollary and from Proposition 1.

Remark 6. It turns out that our poset gives a direct answer to a question proposed in
the problem 2 on the USAMO 2010 [1]. This problem is the following one: say there
are n students standing in a circle, one behind the other. The students have heights
h1 < h2 < · · · < hn. If a student with height hk is standing directly behind a student
with height hk−2 or less, the two students are permitted to switch places. Prove that it is

the electronic journal of combinatorics 28(3) (2021), #P3.31 6



Figure 2: Poset of circular permutations for n = 5. For the significance of the red labels,
see Figure 1.
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not possible to make more than
(
n
3

)
n such switches before reaching a position in which no

further switches are possible.

Corollary 7. The functions σ 7→ σ−1 and σ 7→ w0 ◦ σ ◦ w0 (where w0 = n · · · 21 is the
longest permutation) are anti-automorphisms of the poset.

In Figures 1 and 2, the first automorphism corresponds to a central symmetry of the
Hasse diagram.

Proof. 1. For inversion, this follows from the fact that the inverse of (w) is (w̃), where w̃
is the reversal of w. Therefore, cyclic factors rs and sr are interchanged in (w) and its
inverse, showing that (u)→ (v) if and only if (ṽ)→ (ũ).

2. Note that a cyclic factor rs gives, after applying the second function the cyclic
factor (n+ 1− r)(n+ 1− s), which implies the result.

Remark 8. In the Hasse diagram of the poset of circular permutations, each edge is
labelled by a transposition (rs), r + 1 < s, which is defined by the fact that the largest
permutation τ of this edge has the circular factor rs, and the smallest σ has the circular
factor sr (see Figures 1 and 2); this transposition clearly conjugates both permutations:
τ = (rs)◦σ ◦ (rs). Taking any upwards path in this diagram, from a circular permutation
σ to a larger one, τ say, we may perform the corresponding product of transpositions in
Sn from right to left, obtaining a permutation α, which conjugates them: τ = α ◦σ ◦α−1.
This implies that the class of α modulo the centralizer of σ (which has n elements) does
not depend on the chosen path. But we may be more precise.

Proposition 9. With the previous notations, α depends only on σ and τ and not on the
chosen path. In particular, for a maximal path (thus σ = (12 · · ·n) and τ = (n · · · 21) =
σ−1), one has, as words, α = n · · · 21 if n is odd, and (n/2) · · · 21n · · · (1 + n/2) if n is
even.

As examples, for n = 5 and 6 the latter permutations are 54321 and 321654.
The proof of the proposition will be given at the end of Section 3.

3 An isomorphism towards admitted vectors

Admitted vectors are vectors of natural integers, indexed by the set T of transpositions in
Sn, which satisfy certain inequalities. They inherit the partial order of NT . The poset thus
obtained is shown to be isomorphic to the poset of circular permutations of the previous
section.

Define S = {(i, i + 1), i = 1, . . . , n − 1}, T1 = {(i, j), 1 6 i, i + 1 < j 6 n} and
T = S ∪ T1. For a vector v in NT , we write vij := v(i,j). We say that v ∈ NT is admitted
if vi,i+1 = 0 for any i, and if for any (i, k) ∈ T1, one has

vij + vjk 6 vik 6 vij + vjk + 1 for all i < j < k. (2)

Note that equivalently vik − vij − vjk = 0 or 1.
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We show in Figures 3 and 4 all possible admitted vectors for n = 4, 5; we draw there
the admitted vectors using a triangle, where the way to place the coordinates is explained
in the figures (the coordinates vi,i+1 are not drawn, since they are equal to 0 by definition).

The set of admitted vectors inherits the natural partial order of NT . See Figures 3
and 4, where are drawn the Hasse diagrams of these posets.

We define a mapping V0 from Sn into ZT as follows: let w ∈ Sn and let V0(w) = v ∈ ZT
be defined by

vij = −γij(w) +
∑
i6k<j

γk,k+1(w).

Figure 3: Poset of admitted vectors for n = 4. The pyramid shows the position of each
coefficients but knowing the fact that by definition vi,i+1 = 0 for all i we only keep the
ones in the pink pyramid.

Proposition 10. Each V0(w), w ∈ Sn, is an admitted vector; V0(w) = V0(w
′) if w,w′ are

conjugate; and N(w) is equal to the sum of the components of V0(w).

Proof. Let v = V0(w). Let 1 6 i < j 6 n.
If (i, i + 1) ∈ S, then by definition of V0, vi,i+1 = −γi,i+1(w) + γi,i+1(w) = 0. If

(i, k) ∈ T , and i < j < k, then

vik − vij − vjk = − γik(w) +
∑
i6p<k

γp,p+1(w) + γij(w) −
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Figure 4: Poset of admitted vectors for n = 5.The pyramid shows the position of each
coefficients but knowing the fact that by definition vi,i+1 = 0 for all i we only keep the
ones in the pink pyramid.
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∑
i6p<j

γp,p+1(w) + γjk(w)−
∑
j6p<k

γp,p+1(w)

= γij(w) + γjk(w)− γik(w).

By inspecting the relative positions of i, j, k in the word w, one checks that the latter
quantity is equal to 0 or 1. Hence v satisfies the inequalities (2). Moreover, vi,i+1 = 0,
and by induction on j − i, these inequalities imply that the vij are all nonnegative.

This proves that v = V0(w) is an admitted vector. We show now that it is invariant
under conjugation of w.

Suppose that w = ru, w′ = ur, r ∈ {1, . . . , n}. Let v = V0(w), v′ = V0(w
′). Let i < j.

Then

vij = −γij(w) +
∑
i6k<j

γk,k+1(w) and v′ij = −γij(w′) +
∑
i6k<j

γk,k+1(w
′).

In the case j = i+ 1, we certainly have vij = v′ij, since they are both equal to 0.
Thus we may assume that j > i + 1. Suppose that i, j 6= r. If i < r < j, there is the

subword r(r − 1) in w, but not in w′, and there is the subword (r + 1)r in w′, but not in
w; thus vij = v′ij. If on the other hand, the double inequality i < r < j does not hold,
then the two previous sums are identically equal and vij = v′ij, too.

Suppose that r = i. Then γij(w) = 0, γij(w
′) = 1, and γi,i+1(w) = 0, γi,i+1(w

′) = 1;
the other terms are identical for w and w′, therefore vij = v′ij. The case r = j is similar.

We deduce that V0(w) = V0(w
′). Thus V0(w) is invariant under conjugation of w.

Finally, we have ∑
i<j

vij =
∑
i<j

(−γij(w) +
∑
i6k<j

γk,k+1(w))

= −
∑
i<j

γij(w) +
n∑
k=1

∑
i6k<j

γk,k+1(w)

= −
∑
i<j

γij(w) +
∑

16k6n

k(n− k)γk,k+1(w)

= N(w).

Definition 11. We define the functions δijk : NT → N, 1 6 i 6 j 6 k 6 n, by
δijk(v) = vik − vij − vjk, where we put vii = 0.

These functions satisfy the following relation, for any i 6 j 6 k 6 l:

δijk(v) + δikl(v) = δijl(v) + δjkl(v). (3)

Indeed, the left-hand side evaluated on the admitted vector v is equal to vik − vij −
vjk + vil− vik− vkl, whereas the right-hand side gives vil− vij − vjl + vjl− vjk− vkl, which
are both equal to vil − vij − vjk − vkl.
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Theorem 12. The mapping V0 induces a graded poset isomorphism V from the set of
circular permutations in Sn into the set of admitted vectors in NT , ordered componentwise.
The inverse mapping is completely determined as follows: let w = 1w′ ∈ Sn, viewed as
word; then V0(w) = v implies that for any 1 6 i < j 6 n, one has γij(w) = δ1ij(v).

The theorem is illustrated for n = 4 in Figure 5: each red labels represents, from
left to right, the coordinate which is increased in the cover relation (with the pyramidal
convention of Figure 3); the conjugating transposition; the large circular descent.

Figure 5: Isomorphism from admitted vectors onto circular permutations in S4.

The statement of Theorem 12 uses implicitly the well-known result that a permutation
w ∈ Sn is completely determined by its sequence of inversions (γij(w))16i<j6n.

In order to prove Theorem 12 we need several lemmas. Before stating and proving
them, we note that the inequalities (2) characterizing admitted vectors are equivalent to
the condition that the image of each function δijk is contained in {0, 1}.

Lemma 13. If u, v are admitted vectors such that u < v, then for some 1 6 i < j 6 n,
one has

i < p < j ⇒ δipj(u) = 0;
1 6 p < i⇒ δpij(u) = 1;
j < p 6 n⇒ δijp(u) = 1.
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Proof. In the whole proof we use the fact that the functions δ map u and v onto 0 or 1.
1. We show first that there exists a pair i < j such that δipj(v) = 0 for any i < p < j.

We construct below a nonempty set E, whose minimal elements, for a certain order, are
such pairs.

The order on the set of pairs (i, j), i < j, is as follows: (i, j) 6 (i′, j′) if the interval
[i, j] is contained in the interval [i′, j′] (that is, if i′ 6 i and j 6 j′).

Consider the set E of pairs (i, j), i < j, such that uij < vij. Note that by assumption
E is nonempty. Let (i, j) be a minimal element in this set, for the previous order. Then
for any (i′, j′) < (i, j), one has by minimality ui′,j′ = vi′,j′ ; in particular, for i < p < j,
uip = vip and upj = vpj. Moreover by construction, uij − vij 6 −1. Since δipj(v) 6 1, it
follows that:

δipj(u) = uij − uip − upj
= uij − vij + vij − vip − vpj
= (uij − vij) + δipj(v)

6 0.

Thus δipj(u) = 0.
2. We consider now that set F of pairs (i, j), i < j, such that for any i < p < j, one

has δipj(u) = 0. This set is nonempty by 1. Let (i, j) be a maximal element in this set.
We claim that for any 1 6 p < i, one has δpij(u) = 1 and for any n > p > j, δijp(u) = 1.
The claim implies the lemma.

Suppose by contradiction that the claim is not true; then by symmetry of the two
cases, we may assume that for some n > l > j, one has δijl(u) = 0, and we choose l
minimum.

Let j < k < l. By minimality of l, we have δijk(u) = 1. Then by Eq.(3), δijk(u) +
δikl(u) = δijl(u) + δjkl(u). Since δijk(u) = 1 and δijl(u) = 0, we must have δikl(u) = 0.

Now let i < p < j. Therefore, by Eq.(3) applied to i < p < j < l, we have δipj(u) +
δijl(u) = δipl(u) + δpjl(u). Since δijl(u) = 0 and δipj(u) = 0, we must have δipl(u) = 0.

We conclude that for any p with i < p < l, we have δipl(u) = 0. Since (i, j) < (i, l),
this contradicts the maximality of the pair (i, j).

Lemma 14. Let v be an admitted vector, let i < j and define v′ by vij + 1 = v′ij, whereas
vrs = v′rs for the other coordinates. Then the two following conditions are equivalent:

(i) v′ is an admitted vector;

(ii) the following equations hold:

i < p < j ⇒ δipj(v) = 0,
1 6 p < i⇒ δpij(v) = 1,
j < p 6 n⇒ δijp(v) = 1.

(4)
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Proof. Note that

i < p < j ⇒ δipj(v) = vij − vip − vpj = v′ij − 1− v′ip − v′pj = δipj(v
′)− 1;

1 6 p < i⇒ δpij(v) = vpj − vpi − vij = v′pj − v′pi − v′ij + 1 = δpij(v
′) + 1;

j < p 6 n⇒ δijp(v) = δijp(v
′) + 1;

In all other cases, δrst(v) = δrst(v
′).

(i) implies (ii): let i < p < j; then by the above calculations δipj(v) = δipj(v
′)−1; since

the values of δ are 0 or 1, we must have δipj(v) = 0. Let p < i; then δpij(v) = δpij(v
′) + 1;

this forces δpij(v) = 1. Similarly, p > j implies δijp(v) = 1. Hence equations (4) hold.
(ii) implies (i): It is enough to prove that the functions δ take the values 0 or 1 when

evaluated on v′. Let i < p < j; then δipj(v) = δipj(v
′) − 1, hence δipj(v

′) = 1 by Eq.(4).
Let 1 6 p < i; then δpij(v) = δpij(v

′) + 1, hence δpij(v
′) = 0. Similarly, for n > p > j,

δijp(v
′) = 0. In all other cases, δrst(v

′) = δrst(v) = 0 or 1. This concludes the proof.

Corollary 15. Let u < v be admitted vectors. Then there exists an admitted vector u′

such that u < u′ 6 v and that for some 1 6 i < j 6 n one has uij + 1 = u′ij, whereas
urs = u′rs for the other coordinates.

Note that this implies that necessarily u′ covers u for the order of admitted vectors.
The corollary could be given a geometric proof, in the spirit of [5], but it follows also
directly from the two previous lemmas.

Lemma 16. Let w ∈ Sn, viewed as a word. If 1 6 i < j 6 n, then ji is a factor of w if
and only if the following conditions hold:

(i) γij(w) = 1;

(ii) for any i < p < j, γip(w) + γpj(w) = 1;

(iii) for any 1 6 p < i, γpi(w) = γpj(w);

(iv) for any n > p > j, γip(w) = γjp(w).

Proof. Condition (i) means that ji is a subword of w. If 1 6 p < i, then γpi(w) = γpj(w) =
0 means that p is at the left of both i and j in w, and γpi(w) = γpj(w) = 1 means that p
is at their right; hence condition (iii) means that p is not between i and j in w. Condition
(iv) is similar in the case n > p > j. Condition (ii) means similarly that for i < p < j, p
is not between i and j.

Thus the four conditions together mean that ji is a factor of w.

To complete the picture, we give the following dual result, whose proof may be deduced
from the proof of Lemma 14:

Lemma 17. Let v′ be an admitted vector, let i < j and define v by vij = v′ij − 1, whereas
vrs = v′rs for the other coordinates. Then the two following conditions are equivalent:

(i) v is an admitted vector;
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(ii) the following equations hold:

i < p < j ⇒ δipj(v
′) = 1;

1 6 p < i⇒ δpij(v
′) = 0;

j < p 6 n⇒ δijp(v
′) = 0.

(5)

Proof of Theorem 12. 1. By Proposition 10, V is well-defined on the set of circular per-
mutations.

2. We show that, for w = 1w′, and V0(w) = v, for any 1 6 i < j 6 n, one has
γij(w) = −vij + v1j − v1i = δ1ij(v).

In the case i 6= 1, we have indeed

δ1ij(v) =− vij + v1j − v1i
= γij(w)−

∑
i6k<j

γk,k+1(w)− γ1j(w) +
∑

16k<j

γk,k+1(w) + γ1i(w)

−
∑
16k<i

γk,k+1(w).

The three summations cancel, and γ1j(w) = 0 = γ1i(w), since w = 1w′. Thus the
previous sum is equal to γij(w). In case i = 1, one has

δ1ij(v) = −v1j + v1j − v11 = 0 = γ1j(w).

3. This implies that the mapping V is injective, and proves the formulas of the
statement.

4. In order to prove surjectivity, let v be an admitted vector. Note that by the
inequalities (2), for i < j the numbers −vij + v1j − v1i = δ1ij(v) are equal to 0 or 1.
Consider the set I of pairs (i, j) such that 1 < i < j 6 n and δ1ij(v) = 1. We show that
this set is the set of inversions by value of some permutation w (meaning that I is the
set of (i, j), i < j, such that ji is a subword of w).

Recall that a set I of pairs (i, j), i < j, is the set of inversions by value of a permutation
if and only one has the two conditions: (i) (i, j) and (j, k) ∈ I implies (i, k) ∈ I; and (ii)
if i < j < k and (i, k) ∈ I, then (i, j) or (j, k) is in I.

Therefore with I as above, it is enough to prove (i) and (ii).
By Eq.(3), we have δ1ij(v)+δ1jk(v) = δ1ik(v)+δijk(v), and δijk(v) = 0 or 1. Therefore,

(i) and (ii) easily follow.
5. For the permutation w constructed in 4, its set of inversions by value is I =

{(i, j), 1 < i < j 6 n, δ1ij(v) = 1}. Therefore γij(w) = −vij+v1j−v1i for any 1 6 i < j 6 1
(since it is also true for i = 1, because by definition of I, there is no inversion 1j). We
show that V (w) = v. We have indeed

−γij(w) +
∑
i6k<j

γk,k+1(w) = vij − v1j + v1i +
∑
i6k<j

(−vk,k+1 + v1,k+1 − v1,k) = vij,

since vk,k+1 = 0 and since the summation is a telescoping sum.
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6. We have thus proved that V is a bijection from the set of circular permutations
onto the set of admitted vectors. We show now that V is increasing. It is enough to
show that if the permutation-word w has the circular factor ji with j > i + 1 and if w′

is obtained from w by exchanging i and j, then v′ = V0(w
′) is obtained by increasing by

1 the component ij of v = V0(w). Since V0 is invariant under conjugation of w, we may
assume that ji is a factor of w.

We have
vij = −γij(w) +

∑
i6k<j

γk,k+1(w),

and
v′ij = −γij(w′) +

∑
i6k<j

γk,k+1(w
′).

Thus vij + 1 = v′ij, since the values of γk,k+1 are the same for w and w′ and since
the subword ji disappears from w to w′. Let now l > k + 1 and (k, l) 6= (i, j). Similar
arguments then show that vkl = v′kl.

7. To conclude, we must show that if v = V0(w), v′ = V0(w
′) and v < v′, then

(w) < (w′) for the order of circular permutations. In view of Corollary 15, we are reduced
to the case where v and v′ differ by 1 on some coordinate ij: v′ij = vij + 1 and vkl = v′kl if
(k, l) 6= (i, j).

We may assume that w = 1u, and we show that ji is a circular factor of w, which will
suffice, by definition of the order on circular permutations and by 6.

Suppose that i > 1. We apply Lemma 16 to show that ji is a factor of w. We apply
below several times Eq.(3), Lemma 14 and 2.

(i) We have γij(w) = δ1ij(v) = 1.

(ii) Let i < p < j. Then we have

γip(w) + γpj(w) = δ1ip(v) + δ1pj(v) = δ1ij(v) + δipj(v) = 1.

(iii) Let p < i. Then

γpi(w)− γpj(w) = δ1pi(v)− δ1pj(v) = −δ1ij(v) + δpij(v) = 0.

(iv) is similar. We conclude that ji is a factor of w.

Suppose now that i = 1. Then we have to show that j1 is a circular factor of w = 1u,
which means that j is the last letter of w. Thus we must prove that for 1 < p < j, jp
is not a subword of w, that is γpj(w) = 0; and if p > j, that jp is a not a subword,
that is, pj is one, equivalently γjp(w) = 1. But we have, using Lemma 14: if p < j,
γpj(w) = δ1pj(v) = 0; and if p > j, γjp(w) = δ1jp(v) = 1, which concludes the proof.

The proof implies the following result, which is illustrated by the labels of the edges
in the Hasse diagram of Figures 3 and 4.
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Corollary 18. Let σ, σ′ be circular permutations and v, v′ be the corresponding admitted
vectors. Then σ′ covers σ if and only if v′ covers v. Moreover the following conditions
are equivalent, for 1 6 r, r + 1 < s 6 n:

(i) σ′ is obtained from σ by replacing the circular factor sr by rs;

(ii) v′rs = vrs + 1.

In the next result, we transfer to the poset of admitted vectors the anti-automorphisms
of the poset of circular permutations, as they appear in Corollary 7.

Corollary 19.

1. The anti-automorphism of the poset of admitted vectors, corresponding to inversion
in the poset of circular permutations, is defined by u 7→ v, with vij = j− i− 1− uij.

2. The anti-automorphism of the set of admitted vectors, corresponding to conjugation
by the longest permutation w0, is defined by u 7→ v, with vij = j−i−1−un+1−j,n+1−i.

Note that the product of the two previous anti-automorphisms of the poset is the
automorphism u→ v with vij = un+1−j,n+1−i.

Proof. 1. Inversion of circular permutations is the mapping (w) 7→ (w̃); the corresponding
admitted vectors are respectively u and v with

uij = −γij(w) +
∑
i6k<j

γk,k+1(w),

and
vij = −γij(w̃) +

∑
i6k<j

γk,k+1(w̃).

Since γrs(w̃) = 1− γrs(w), we have

vij = −(1− γij(w)) +
∑
i6k<j

(1− γk,k+1(w)) = −uij − 1 + j − i.

2. This anti-automorphism is defined, for circular permutations, by (w) 7→ (w′),
where w′ is obtained by replacing in w each letter by its complement n + 1 − k. Hence
γij(w

′) = 1 − γn+1−j,n+1−i(w). Therefore, denoting by u, v respectively the admitted
vectors corresponding to (w) and (w′), we have

vij = −γij(w′) +
∑
i6k<j

γk,k+1(w
′)

= −(1− γn+1−j,n+1−i(w)) +
∑
i6k<j

(1− γn+1−k−1,n+1−k(w))

= −1 + j − i− (−γn+1−j,n+1−i(w) +
n+1−i∑
l=n+1−j

γl,l+1(w))

= j − i− 1− un+1−j,n+1−i.
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Corollary 20. The smallest admitted vector is the null vector, and the largest one, w
say, satisfies wij = j − i− 1; moreover, δijk(w) = 1 for any i < j < k.

Proof. Clearly, the null vector is admitted and is the smallest element in the poset of
admitted vectors. Using Corollary 19, we see that w as defined in the statement is the
largest element. Now

δijk(w) = wik − wij − wjk
= k − i− 1− (j − i− 1)− (k − j − 1)

= 1.

Proof of Proposition 9. 1. It is enough to prove this result when σ = (12 · · ·n). Consider
a path from σ to τ , whose successive edges are labelled (r1, s1), . . . , (rp, sp), with ri+1 < si,
and let σ = (w0), (w1), . . . , (wp−1), (wp) = τ the successive vertices in the path, written as
n-cycles, so that each wi is a word. Then siri is a circular factor of the word wi−1, and
wi is obtained from the latter word by exchanging ri and si in it.

Define the permutations αi = (ri, si)◦ · · · ◦ (r1, s1). Then (wi) = αi ◦σ ◦α−1i . It follows
that, in cycle notation, (wi) = (αi(1) · · ·αi(n)) and therefore si+1ri+1, being a circular
factor of (wi), is a circular factor of the word αi. We have αi+1 = (ri+1, si+1) ◦ αi and
thus, as words, αi+1 is obtained from αi by exchanging ri+1 and si+1, whose positions
moreover must differ by 1 in both words (modulo n). Hence:

α−1i+1(ri+1) ≡ α−1i (ri+1)− 1 mod n
α−1i+1(si+1) ≡ α−1i (si+1) + 1 mod n
α−1i+1(j) = α−1i (j) if j 6= ri+1, si+1.

It follows by induction that for any j = 1, . . . , n, the position of j in the word αi+1

is congruent modulo n to: j plus the number of (rs) on the path with s = j minus the
number of (rs) on the path with r = j. From Corollary 18, it follows that it is congruent
modulo n to:

j +
∑
r<s=j

vrs −
∑
j=r<s

vrs

where v is the admitted vector associated to the circular permutation (wi+1).
Therefore each αi+1 depends only on v, which depends only on (wi+1); thus α = αp

depends only on τ .
2. It remains to determine α for a maximal path in the poset. The previous calculations

and Corollary 20 show that α−1(j) is congruent modulo n to j+
∑
r<j

(j−r−1)−
∑
j<s

(s−j−1).

Moreover, a direct computation shows that:

j +
∑
r<j

(j − r − 1)−
∑
j<s

(s− j − 1)

= j + ((j − 2) + · · ·+ 1 + 0)− (0 + 1 + · · ·+ (n− j − 1))

= j +
(j − 2)(j − 1)

2
− (n− j − 1)(n− j)

2
.
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The cases j = 1 and j = n have to be treated separately, but the final formula is
correct in these cases as well.

Suppose that n = 2k + 1. Then using the fact that the inverse of 2 mod n is −k, we
find that α−1(j) is congruent modulo n to j−k(j−2)(j−1) +kj(j+ 1). Hence, omitting
the calculations, to n+ 1− j. Thus, as words, α−1 = n · · · 21, and α = α−1, since it is an
involution.

Suppose now that n = 2k. Then a calculation left to the reader shows that modulo n,
α−1(j) is congruent to k + 1 − j. Hence, as word, α−1 = (n/2) · · · 21n · · · (1 + n/2) and
α = α−1 since it is an involution.

4 The functions δ and triangulations of an n-gon

The n-gon is a famous object whose combinatorial and geometrical structure appears in
a wide variety of subjects. A striking illustration of the ubiquity of the n-gon lies for
example in the theory of cluster algebras introduced by S. Fomin and A. Zelevinsky in
[8]. In this section we relate the n-gon with the functions δijk introduced in Definition 11.

We first characterize the sequences (γij(v))16i<j6n, v an admitted vector, and show
that v is completely determined by this sequence. The computation of v will lead to
triangulations of an n-gon.

Theorem 21. The mapping v 7→ (δijk(v))16i<j<k6n is a bijection from the set of admit-
ted vectors onto the set of sequences (aijk)16i<j<k6n with values in {0, 1}, satisfying the
relation aijk + aikl = aijl + ajkl for any i < j < k < l.

Proof. The mapping is well-defined by Eq. (3). Injectivity follows by induction on j − i
from the initial conditions vi,i+1 = 0 and if j − i > 1, from the equation vij = vip + vpj +
δipj(v) for any p, i < p < j.

To prove surjectivity, let (aijk)16i<j<k6n be a sequence, with values in {0, 1}, satisfying
the relations aijk+aikl = aijl+ajkl for any i < j < k < l. Define vij by induction: vi,i+1 = 0
and for j−i > 1, choose p between i and j, and define vij by vij = vip+vpj+aipj. We verify,
by induction on j − i, that this does not depend on the choice of p. So let i < p < q < j.
We have by induction viq = vip + vpq + aipq and vpj = vpq + vqj + apqj. The above relations
imply that aipq + aiqj = aipj + apqj. Hence

vip + vpj + aipj = vip + vpq + vqj + apqj + aipj

= vip + vpq + vqj + aipq + aiqj

= viq + vqj + aiqj,

and so vij is well-defined. The fact that v is an admitted vector then follows from the fact
that for any i < j < k, vik − vij − vjk = aijk ∈ {0, 1}, implying the inequalities (2).

We consider a regular n-gon in the plane whose vertices are sequentially numbered
1, 2, . . . , n. In this n-gon, a triangle (resp. convex quadrangle) is determined by a subset
of three (resp. four) vertices of the n-gon. A triangulation of the n-gon is a set of triangles
whose interiors do not pairwise intersect, and who cover the whole n-gon.
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Note that a 3-subset H of {1, 2, . . . , n} determines uniquely three numbers i < j < k
such that H = {i, j, k}. We write δH := δijk.

Theorem 22. If v is an admitted vector, and T a triangulation of the n-gon, then v1n is
equal to the sum of all δT (v) for all triangles T ∈ T .

Proof. Consider the unique triangle {1, 2, p} in T (it is the triangle containing the edge
12 of the n-gon). By induction, we have v1p =

∑
T δT (v), sum over all triangles in T

contained in the sub-p-gon with vertices 1, 2, . . . , p, which form a triangulation of this p-
gon. Similarly, the triangles contained in the n−p+1-gon with vertices p, p+1, . . . , n form
a triangulation of it; hence by induction (after appropriate reindexing), vpn =

∑
T δT (v),

sum over all triangles of this triangulation. If we add the the triangle with vertices 1, p, n
to these two triangulations we obtain the original triangulation. Now v1n = v1p+vpn+δ1pn,
which concludes the proof.

Figure 6: Illustration of Theorem 22 and the discussion following the proof.

More generally, for any i < j, the coefficient vij of an admitted vector v is equal to∑
T δT (v), where the sum is over all triangles of a triangulation of the j − i+ 1-gon with

vertices i, i+ 1, . . . , j.
Given a triangulation, consider a convex quadrangle such that one of its diagonal

determines two triangles of the triangulation. If we replace in the triangulation these two

the electronic journal of combinatorics 28(3) (2021), #P3.31 20



triangles by the two others of the quadrangle, determined by the other diagonal, then we
obtain a new triangulation: we say that the new triangulation is obtained by mutation.
It is known that given two triangulations of the n-gon, one may transform one into the
other by a sequence of mutations.

Note that Eq.(3) implies the fact that the sum
∑

T δT (v), over all triangles in a trian-
gulation, is invariant under mutation.

Theorem 22 is illustrated in Figure 6. We choose v defined in the figure, and therefore
δ345 = v35− v34− v45 = 1−0−0 = 1; we thus put 1 inside the triangle with vertices 3,4,5.
Similarly for the other triangles. The mutations, with respect to the red triangle sides,
are indicated by arrows in the figure. One verifies that for each triangulation, the sum of
the labels in the triangles is 2, thereby confirming the theorem.

We note finally that the sequence (δijk(v))16i<j<k6n is completely defined by the subse-
quence (δ1ij(v))i<j: this follows from Eq.(3), by considering the quadrangle 1, i, j, k. The
latter sequence moreover appears as the inversion sequence of the permutation w = 1w′

such that V (w) = v (see the proof of Theorem 12).

5 Properties of the poset

We establish three properties of the poset of this article: it is a lattice, its covering degrees
are related to Eulerian numbers, and its limiting poset is Young’s lattice.

5.1 Lattice

Recall that the set of admitted vectors in NT has been defined if the previous section.

Theorem 23. The poset of admitted vectors (or equivalently the poset of circular permu-
tations) is a lattice.

We give a combinatorial proof of this result, with a simple algorithmic construction of
the supremum and the infimum. This result may also be deduced from Theorem 36: see
the comment before Corollary 44.

We extend the definition of admitted vector as follows: if v ∈ NT , and i < k, then we
say that the component vik of v is admitted if either k = i + 1 and vik = 0 or k > i + 1
and

∀j, i < j < k ⇒ vij + vjk 6 vik 6 vij + vjk + 1.

Hence v is admitted if and only if all its components are admitted.

Lemma 24. If for v ∈ NT all components vik with k − i < n − 1 are admitted, then the
numbers v1i + vin, i = 2, . . . , n− 1 take at most two values, which are consecutive.

Proof. By hypothesis, we have for 1 < i < j < n, v1j = v1i + vij + η1ij and vin =
vij + vjn + ηijn for some η1ij, ηijn ∈ {0, 1}. It follows that

v1i + η1ij + vin = v1j − vij + vij + vjn + ηijn = v1j + vjn + ηijn.
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Since the η’s take only the values 0 or 1, it follows that any two of the numbers v1i + vin,
i = 2, . . . , n− 1, differ in absolute value by at most 1. It follows easily that they take at
most two values, which must be consecutive.

By appropriately reindexing the vector, we obtain the following corollary.

Corollary 25. Suppose that v ∈ NT and that, for some i < j, the components vrs with
s− r < j − i are admitted. Then the numbers vip + vpj, p = i+ 1, . . . , j − 1, take at most
two values, which are consecutive.

Proof of Theorem 23. Let u, v be two admitted vectors. We define X ∈ NT as follows:
Xij is defined by induction on j − i > 1; if j = i + 1, Xij = 0; if j > i + 1, then
Xij = max{uij, vij, Xip +Xpj, i < p < j}.

1. We show first that X is an admitted vector. It is enough to show that each
coefficient Xij is admitted, and we do it by induction on j− i. The case j− i = 1 is clear,
so take j − i = h > 1. By induction, all coefficients Xrs with s− r < h are admitted.

Suppose that Xij = Xip + Xpj for some p with i < p < j. By the corollary, one
has {Xiq + Xqj, i < q < j} ⊂ {a − 1, a}, and by the definition of Xij, we must have
a = Xip + Xpj. It follows that for any q, i < q < j, one has Xiq + Xqj = Xij or Xij − 1
and therefore Xiq +Xqj 6 Xij 6 Xiq +Xqj + 1.

If Xij is not equal to Xip+Xpj for some p with i < p < j, then we must have (choosing
one of the two similar cases) Xij = vij > uij and vij > Xip +Xpj for any p with i < p < j.
Then Xip+Xpj < Xij; moreover v being admitted, Xij = vij 6 vip+vpj+1 6 Xip+Xpj+1,
since by the recursive construction of X, vrs 6 Xrs for any rs with s− r < j − i.

We conclude that in all cases, Xij is admitted, and therefore by induction X is admit-
ted.

2. We show now that X is the supremun of u and v, that is, X is the smallest element
in the set of upper bounds of u, v. By construction, Xij > uij, vij, so that X > u, v and X
is an upper bound of u and v. Now let Y be an admitted vector which is an upper bound
of u, v. We show by induction on j − i that Xij 6 Yij, which will imply that X 6 Y , as
was to be shown. We have Xij = 0 = Yij if j − i = 1. Suppose that j − i > 1. Then
Yij > uij, vij; and by the inequalities (2), if i < p < j, Yij > Yip + Ypj which by induction
is > Xip +Xpj; thus Yij > max{uij, vij, Xip +Xpj, i < p < j} = Xij.

3. Thus u ∨ v exists in the poset. Since the poset has an anti-automorphism, u ∧ v
exists, too, and the poset is a lattice.

The proof allows to compute u ∨ v. A direct computation of X = u ∧ v is obtained
recursively, by induction on j − i, as follows: Xi,i+1 = 0; if j > i + 1, then Xij =
min{uij, vij, Xip + Xpj + 1, i < p < j}. The proof is left to the reader (one may use the
first anti-automorphism of Corollary 19).

The lattice is not modular. Indeed, looking in Figure 2, it is seen that the circular
permutations (14235) and (13425) have infimum (14253) and supremum (13542), and
respective rank 4,4,3 and 6. Since in a modular lattice, the rank function ρ satisfies
ρ(x) + ρ(y) = ρ(x ∧ y) + ρ(x ∨ y) (see [17] page 104), the lattice is not modular. Since
each distributive lattice is modular ([17] p. 106), the lattice is not distributive either.
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5.2 Multiplicities in the Hasse diagram and Eulerian numbers

Recall that the Eulerian numbers are defined as follows: a(n, k) is the number of per-
mutations in Sn whose descent set has k elements, where the descent set of σ ∈ Sn is
{i, 1 6 i 6 n− 1, σ(i) > σ(i+ 1)}. These numbers satisfy the recursion

a(n, k) = (k + 1)a(n− 1, k) + (n− k)a(n− 1, k − 1)

if n, k > 1, with the initial conditions a(0, k) = 0 for any k > 1, and a(n, 0) = 1 for any
n > 0 (see [12] for more details about Eulerian numbers).

Definition 26. Let σ = (a1 · · · an) be a circular permutation in Sn. We call large circular
descent of σ a letter ai such that ai−1 > ai + 1, were the indices are taken modulo n. The
number of large circular descents of σ is denoted by d(σ).

Symmetrically, we call large circular ascent of σ a letter ai such that ai < ai+1 + 1,
were the indices are taken modulo n.

In other words, b is a large circular descent if, denoting by a the letter before b in the
cycle, one has a > b+ 1. Note that we say that b is the large circular descent, and not a;
the reason for this notational shift will appear in the proofs below. For example, the large
circular descents of (1, 4, 2, 6, 5, 3) are 1 (because before 1 there is 3, cyclically speaking),
2 (because before 2 there is 4), and 3; 5 is not a large circular descent.

Theorem 27. The number of circular permutations in Sn+1 having k large circular de-
scents is equal to the Eulerian number a(n, k).

One can note that the cover relations of the poset of circular permutations defined in
Definition 3 correspond to the large circular descents defined in Definition 26. This gives
us directly the following result.

Corollary 28. In the poset of circular permutations in Sn+1, the number of elements
which are covered by k elements is a(n, k). In particular the number of inf-irreducible
elements is a(n, 1) = 2n − n− 1.

The next corollary is somewhat curious, since the two posets are not isomorphic, nor
are their Hasse diagram as (undirected) graphs.

Corollary 29. The total number of edges in the Hasse diagram of the poset of circular
permutations in Sn+1 is equal to the total number of edges in the Hasse diagram of the
poset of the weak order in Sn.

Proof. This follows from the theorem since the edges in the Hasse diagram of the right
weak order are in bijection with the set of descents of all permutations.

To prove the theorem, we show that the number of circular permutations in Sn+1 with
k large circular descents satisfy the same recursion as the Eulerian numbers, and the same
initial conditions. Finding a bijective proof is an open question.

the electronic journal of combinatorics 28(3) (2021), #P3.31 23



Proof of Theorem 27. 1. Denote by C(n) the set of circular permutations in Sn+1, so
that |C(n)| = n!. Denote by C(n, k) the set of elements in C(n) having k large circular
descents, and c(n, k) = |C(n, k)|.

We verify first that the initial conditions are the same. Indeed, c(0, k) for k > 1 is the
number of circular permutations in S1 having k large circular descents, hence c(0, k) = 0.
Moreover, for n > 0, c(n, 0) is the number of circular permutations in Sn+1 having no
large circular descent; this permutation is (n, n − 1, . . . , 2, 1) as we saw in the proof of
Corollary 4, and therefore c(n, 0) = 1.

We show below that

c(n, k) = (k + 1)c(n− 1, k) + (n− k)c(n− 1, k − 1),

which is the same recursion as the Eulerian numbers. Thus we will obtain c(n, k) = a(n, k),
which proves the theorem.

2. Recall that each element in C(n) is represented by a circular word (a1, . . . , an+1) and
that we do not distinguish between all its cyclic rearrangements (so that e.g.(a1, . . . , an+1)
= (a2, . . . , an+1, a1)).

3. Define a mapping φ from C(n) into C(n − 1) × [n] as follows. Associate with
α = (a1, . . . , an+1) ∈ C(n) the circular permutation β = (b1, . . . , bn) ∈ C(n− 1) obtained
by removing n+ 1 from the cycle, and let bj denote the letter such that (a1, . . . , an+1) is
obtained from β = (b1, . . . , bn) by inserting n+ 1 before bj.

To illustrate the notions above we give the two following examples for n+ 1 = 7:

- α1 = (2, 4, 6, 5, 1, 7, 3) ∈ C(6), β1 = (2, 4, 6, 5, 1, 3) ∈ C(5), bj = 3 ∈ [6];

- α2 = (2, 3, 6, 5, 1, 4, 7), β2 = (2, 3, 6, 5, 1, 4), bj = 2.

Therefore, φ is defined by φ(α) = (β, bj). This is clearly a bijection, since we recover
α from β by inserting n + 1 before bj, so that φ is injective, and since the two sets have
the same cardinality.

4. For β ∈ C(n − 1), define D(β) to be the set of large circular descents of β; hence
|D(β)| = d(β) (where d(β) is the number of large circular descents as defined in Definition
26).

5. Let X := X1 tX2 where X1 and X2 are defined by

X1 := {(β, b), β ∈ C(n− 1, k), b ∈ D(β) ∪ {n}},

and
X2 := {(β, b), β ∈ C(n− 1, k − 1), b /∈ D(β) ∪ {n}}.

We claim that the restriction of the mapping φ to C(n, k) is a bijection from C(n, k)
onto X. It will follow that c(n, k) = |X|.

6. To prove the claim, it is enough to show that φ(C(n, k)) = X, since φ is bijective.
Consider α and β satisfying φ(α) = (β, bj), with the notations in 3. Then α =

(b1, . . . bj−1, n+ 1, bj, . . . , bn) and β = (b1, . . . bj−1, bj, . . . , bn). We remark that:
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- If bj ∈ D(β) or if bj = n, then D(α) = D(β) and d(α) = d(β).

- If bj /∈ D(β) and bj 6= n, then D(α) = D(β) ∪ {bj} and d(α) = d(β) + 1.

Note indeed that n + 1 is not a large circular descent of α. It follows that for i 6= j, bi
is a large circular descent of α if and only bi is a large circular descent of β. Next, if
bj ∈ D(β), then bj ∈ D(α). Moreover, if bj = n, then bj is neither in D(α) nor in D(β).
Finally, if bj /∈ D(β) and bj 6= n, then bj ∈ D(α).

(i) We show that φ(C(n, k)) ⊂ X. Suppose that α ∈ C(n, k).
If bj ∈ D(β) or if bj = n, then by the remark, α and β have the same number k of

large circular descents; hence (β, bj) ∈ X1. If on the contrary, bj /∈ D(β) and bj 6= n, then
β has k − 1 large circular descents and thus (β, bj) ∈ X2.

(ii) We show now the inclusion X ⊂ φ(C(n, k)). Suppose that (β, bj) ∈ X. It is
enough to show that α ∈ C(n, k).

If (β, bj) ∈ X1, then d(β) = k. Moreover, bj ∈ D(β) or bj = n; thus by the remark, α
and β have the same number of large circular descents, hence α ∈ C(n, k).

If (β, bj) ∈ X2, then d(β) = k− 1, and similarly, α has one large circular descent more
than β, α ∈ C(n, k).

7. The set C(n, k) has c(n, k) elements. Moreover, by 5, we know that c(n, k) = |X| =
|X1|+|X2|. However it is clear that |X1| = c(n−1, k)(k+1) and |X2| = c(n−1, k−1)(n−k).
Thus the recursion follows.

5.3 Limiting poset

In this section, we show that the limit (in some precise sense) of the posets of circular
permutations in Sn is, when n tends to infinity, Young’s lattice of partitions.

Suppose that we have a family Pn, n ∈ N, of ranked posets; suppose also that for any
k, and for n large enough, the subposets {x ∈ Pn, rk(x) 6 k} are all isomorphic. We may
then define the limit of these posets as the ranked poset P , whose elements of rank 6 k
form the poset {x ∈ Pn, rk(x) 6 k}, n large enough.

Recall that a partition of n is a multiset of positive integers whose sum is n (n is the
weight of the partition); a partition of n+1 covers a partition of n if the latter is obtained
from the latter by adding 1 to the multiset, or by replacing some element a by a+1. This
is Young’s lattice, with rank equal to the weight function; see [15] Definition 5.1.2.

Let us also recall how the poset of circular permutations is constructed. First we
represent the smallest element (which is the canonical n-cycle) by (w0), where w0 is the
word

w0 := u0v0 = (bn/2c+ 1) . . . (n− 1)n12 . . . bn/2c.

For example, in the cases n = 5, 6, it is respectively 34512 and 456123.
Next each circular permutation is obtained, starting from (w0), by applying iteratively

the covering relation (w)→ (w′), defined by

w = usrv, w′ = ursv or w = rus, w′ = sur, s > r + 1.
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In the first case we say that the covering relation is inner, and the second one, it is
outer. In this way, we obtain for each circular permutation a unique representative (w),
as follows from Section 2.

Lemma 30. Let (w) ∈ Sn be a circular permutation, represented as above. Then the
following conditions are equivalent:

i) We can obtain (w) from (w0) by a sequence of inner covering relations.

ii) The word w is a shuffle of u0 and v0.

Example 31. Let n = 8 and w = 56172384. Then, using inner relations from w0 we get:

56781234→ 56718234→ 56178234→ 56172834→ 56172384

Proof. i) ⇒ ii). We proceed by induction on the number of inner relations p. For p = 0
there is nothing to do because w = w0. Assume that w is obtained from w0 by p+ 1 inner
relations. Then we can write w = ursv where r, s are letters such that r + 1 < s (that
is swapping r and s is the last inner relation to obtain w). Let w′ := usrv. This word
is obtained from w0 using only p inner relations. Then by induction w′ is a shuffle of u0
and v0. Therefore, if s, r are simultaneously in u0 or v0, they are consecutive and we must
have s = r− 1. This is in contradiction with our assumption. Thus s is a letter of u0 and
r is a letter of v0. Swapping s and r does not change appearance order of the letters of
both u0 and v0. Therefore, w is also a shuffle of u0 and v0. This ends the first direction.

The direction ii) ⇒ i) is obvious.

Theorem 32. The posets of circular permutations have a limit poset, which is Young’s
lattice.

Proof. 1. We prove first that the limit exists. Let k be an integer. Suppose that n > 2k.
We show that the subposet of elements of rank 6 k is independent of n.

Let (x) be a circular permutation of Sn such that rk(x) 6 k. Then x is obtained
from w0 using at most k covering relations. Moreover, since the first covering relation is
necessarily determined by the middle factor n1, and since k 6 bn/2c, we never perform
an outer covering relation. This implies that the subposet of elements of rank 6 k is
independent of n.

2. To finish the proof, it is enough to prove that if n > 2k, then the subposet of
elements of rank 6 k is isomorphic with the subposet of the Young lattice whose elements
are the partitions of weight 6 k.

By the previous part and because of Lemma 30, each element of rank 6 k is of the
form (w), where w a shuffle of the two words u0 and v0. Furthermore, the order is the
inverse order of the right weak order on these words.

Note that each such shuffle, w say, is determined by the sequence a1, a2, a3, . . . , abn/2c,
where ai is the number of j = (bn/2c + 1), . . . , (n − 1), n, which are at the right of i
in w. The rank of w is the sum of the ai’s. One has a1 > a2 > a3 . . ., and therefore
the sequence determines a partition of some integer 6 k. This sequence defines the
isomorphism between the two posets. We leave the details to the reader.
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Figure 7: Illustration of the proof of Theorem 32. On the left hand side, the beginning
of Young’s lattice, and the right hand side, the circular permutations lattice for n = 6.

Example 33. We continue Example 31. Let w = 56172384. Then a1 is the number of
blue letters which are on the right side of 1. That is a1 = 2. Proceeding this way for
all other cases we get a2 = 1, a3 = 1, a4 = 0. Thus, the partition corresponding to w is
2, 1, 1, 0.

6 An interval in the affine symmetric group

The two isomorphic posets of circular permutations and admitted vectors are isomorphic
to some interval of the affine symmetric group, ordered by the left weak order. Thus
we turn back to the geometric motivations of this article, following the second author’s
articles [5, 6].
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6.1 Preliminaries on S̃n

We begin by recalling some definitions and results on the affine symmetric group. Details
may be found in the book by Anders Björner and Francesco Brenti [4]. This group is
denoted S̃n. It is the group of permutations f of Z satisfying the two conditions:

- f(x+ n) = f(x) + n for any integer x;

- f(1) + f(2) + · · ·+ f(n) = n(n+ 1)/2.

An element of S̃n is called an affine permutation. Each usual permutation in Sn
extends uniquely to an affine permutation, so that S̃n contains the symmetric group
Sn as a subgroup. The group S̃n is generated by the adjacent affine transpositions
s0, s1, . . . , sn−1, defined by the condition that si exchanges i and i+ 1 if i = 0, . . . , n− 1.
Each affine permutation f is represented by a window [f(1), f(2), . . . , f(n)] and we write
f = [f(1), f(2), . . . , f(n)]. For example in S̃4, we have the elements s1 = [2, 1, 3, 4],
s0 = [0, 2, 3, 5], and [−3, 5, 0, 8]. The n numbers in a window are pairwise noncongruent
modulo n, and their sum is n(n+ 1)/2; windows are characterized by these two previous
properties.

The position inversion set of f ∈ S̃n is the set

Invp(f) := {(i, j) | 1 6 i 6 n, i < j, f(i) > f(j)},

which is also equal to

{(i, j) | 1 6 i 6 n, i < j, f(i) > f(j)},

since i < j implies f(i) 6= f(j).
The affine symmetric group is a Coxeter group, generated by the si’s, with length

function `(f) =| Invp(f) |. The left weak order, denoted simply 6, is defined on S̃n by
its covering relation: g covers f if for some i, one has g = sif and `(g) = `(f) + 1.

By definition of the product in S̃n, one has the following lemma (a variant of [4] p.
260).

Lemma 34. Let k = 0, . . . , n − 1 and [a1, . . . , an] ∈ S̃n. Define i, j in {1, 2, . . . , n} by
ai ≡ k+1 mod n and aj ≡ k mod n. Then sk[a1, . . . , an] = [b1, . . . , bn], with bj = aj +1,
bi = ai − 1, and bl = al if al is noncongruent to k nor to k + 1 modulo n.

We also need the following result, which follows from Theorem 16 in [7] (see also [3]
Theorem 5.3).

Lemma 35. Let f, g ∈ S̃n and k = 0, . . . , n− 1. Then:

(i) the sets Invp(f) and Invp(skf) differ by one element;

(ii) f 6 g if and only if Invp(f) ⊂ Invp(g).
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6.2 A poset isomorphism

We define a mapping F from the set of admitted vectors into Zn, where elements of the
latter set are denoted by brackets [a1, . . . , an]. Let v be an admitted vector. Then we
define F (v) = [a1, . . . , an], by

ai = i+
∑
p<i

vpi −
∑
i<p

vip. (6)

If we denote by e1, . . . , en the canonical basis of Zn, we have equivalently

F (v) = [1, 2, . . . , n] +
∑
r<s

vrs(es − er).

Now, consider the element fc ∈ S̃n defined by its window: fc = [c1, c2, . . . , cn] with
c1 = −(1/2)n(n−3) and ci+1 = ci+n−1 for i = 1, . . . , n−1. Since n−1 is a generator of
the additive group of integers modulo n, the ci are pairwise distinct modulo n. Moreover
the sum of all ci is

(c1 + 0) + (c1 + n− 1) + (c1 + 2(n− 1)) + · · ·+ (c1 + (n− 1)(n− 1))

= nc1 +
(n− 1)n(n− 1)

2

=− 1

2
n2(n− 3) +

1

2
(n− 1)2n

=
1

2
n((n− 1)2 − n(n− 3))

=
1

2
n(n2 − 2n+ 1− n2 + 3n)

=
n(n+ 1)

2
.

This shows that indeed fc ∈ S̃n.
As an example, for n = 4, fc = [−2, 1, 4, 7] and for n = 5, fc = [−5,−1, 3, 7, 11].

Theorem 36. The mapping F is a poset isomorphism from the set of admitted vectors
onto the interval [id, fc] with the left weak order.

Notice that this result has been proven by the second-named author for any affine
Weyl group Wa in [5] by using a geometrical approach. We give here a combinatorial
proof and further, we construct the element fc.

See Figure 8 for this interval. The cover relation is explained in Remark 39. For
example (24).[-1,1,3,5,7]=[-1,1-1,3,5+1,7]=[-1,0,3,6,7].

We first need several preliminary results.

Lemma 37. Let F (v) = [a1, . . . , an] and 1 6 i < j 6 n. Then

aj − ai = j − i+ nvij −
∑
i<p<j

δipj(v) +
∑
p<i

δpij(v) +
∑
j<p

δijp(v).

As a consequence, aj − ai = nvij + r, with r ∈ {1, . . . , n− 1} and baj−ai
n
c = vij.
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Proof. We have

aj − ai
= j − i+

∑
p<j

vpj −
∑
j<p

vjp −
∑
p<i

vpi +
∑
i<p

vip

= j − i+
∑
p<i

vpj + vij +
∑
i<p<j

vpj −
∑
j<p

vjp −
∑
p<i

vpi +
∑
i<p<j

vip + vij +
∑
j<p

vip

= j − i+ 2vij +
∑
i<p<j

(vip + vpj) +
∑
p<i

(vpj − vpi) +
∑
j<p

(vip − vjp)

= j − i+ 2vij +
∑
i<p<j

(vij − δipj(v)) +
∑
p<i

(vij + δpij(v)) +
∑
j<p

(vij + δijp(v))

= j − i+ nvij −
∑
i<p<j

δipj(v) +
∑
p<i

δpij(v) +
∑
j<p

δijp(v).

Let r = j − i−
∑

i<p<j

δipj(v) +
∑
p<i

δpij(v) +
∑
j<p

δijp(v). Then

aj − ai = nvij + r.

Moreover, since the δ’s take the values 0 and 1, r is in the interval [j− i− (j− i− 1), j−
i+ i− 1 + n− j] = [1, n− 1].

Proposition 38. The image of F is contained in the set of windows. If F (v) = [a1, . . . , an],
then a1 < · · · < an.

Proof. For the first assertion, it is enough to show that the ai as defined above are pairwise
noncongruent modulo n, and that their sum is n(n+ 1)/2.

Let i < j. Because of Lemma 37 we already know that ai − aj is nonzero modulo n.
Further we have

n∑
i=1

ai =
n∑
i=1

(i+
∑
p<i

vpi −
∑
i<p

vip)

=
n∑
i=1

i+
∑
p<i

vpi −
∑
i<p

vip

=
n∑
i=1

i

=
n(n+ 1)

2
.

For the last assertion, let 1 6 i < j 6 n. By Lemma 37, aj − ai > 0.

Remark 39. In this paragraph we recall how the cover relation works for an affine per-
mutation f (see Lemma 34). More precisely we give the cover relation in terms of the

the electronic journal of combinatorics 28(3) (2021), #P3.31 30



window corresponding to f . Let g be another affine permutation such that g covers f and
let (i, j) be the transposition such that (i, j).f = g. Then

(i, j).[a1, . . . , ai, . . . , aj, . . . , an] = [a1, . . . , ai − 1, . . . , aj + 1, . . . , an].

Lemma 40. Suppose that f, g ∈ S̃n with f = [a1, a2, . . . , an], g = [b1, b2, . . . , bn], a1 6
· · · 6 an and b1 6 · · · 6 bn. Then:

(i) Invp(f) is the set of pairs (i, p+ kn) with 1 6 p < i 6 n and k = 1, . . . , bai−ap
n
c,

(ii) f 6 g if and only if for any i < j, baj−ai
n
c 6 b bj−bi

n
c.

Note that assertion (ii) is a particular case of Theorem 16 (3) in [7].

Proof. (i). A pair as in the statement is an inversion, since i < p + kn and f(i) =
ai > f(p + kn) = f(p) + kn = ap + kn because k 6 bai−ap

n
c 6 ai−ap

n
. Conversely,

let (i, j) be an inversion of f . Then 1 6 i 6 n. Since j > i > 1, we may write
j = p + kn, 1 6 p 6 n, k > 0. We have f(i) > f(j) = f(p) + kn. We cannot have
p > i, since otherwise we would have, by the increasing property, f(i) 6 f(p) 6 f(j), a
contradiction. Hence p < i and since p + kn = j > i, we must have k > 1. Moreover,
kn < f(i)− f(p) = ai − ap, hence k 6 bai−ap

n
c.

(ii) follows from (i).

Lemma 41. Consider two admitted vectors v, v′ and 1 6 i < j 6 n such that v′ij = vij +1
whereas v′rs = vrs for the other coordinates. Let k = aj mod n, where aj is the j-th
coordinate of F (v). Then in S̃n, one has the equality F (v′) = skF (v) and `(F (v′)) =
`(F (v)) + 1.

Proof. Let F (v) = [a1, . . . , an] and F (v′) = [a′1, . . . , a
′
n]. Then by Eq.(6):

a′i = i+
∑
p<i

v′pi −
∑
i<p

v′ip = i+
∑
p<i

vpi −
∑
i<p

vip − 1 = ai − 1,

and similarly a′j = aj + 1, a′l = al if l 6= i, j. By Lemma 37 and Lemma 14, aj−ai is equal
to j − i+ (i− 1) + (n− j) = n− 1 ≡ −1 mod n. Hence ai ≡ k + 1 mod n.

Let skF (v) = [b1, . . . , bn]. By Lemma 34, we deduce that bi = ai − 1 and bj = aj + 1,
whereas bl = al for the other l. Hence bl = a′l for all l, that is, F (v′) = skF (v).

We have aj = ai + n− 1. Hence

F (v) = [. . . , ai, . . . , aj, . . .] = [. . . , ai, . . . , ai + n− 1, . . .],

and

F (v′) = [. . . , a′i, . . . , a
′
j, . . .] = [. . . , ai − 1, . . . , aj + 1, . . .]

= [. . . , ai − 1, . . . , ai + n, . . .].

Thus F (v′) has the position inversion (j, i + n) (because F (v′) send this pair onto (ai +
n, ai +n− 1)), but F (v) has not this inversion (because the pair (j, i+n) is sent by F (v)
onto (ai + n − 1, ai + n)). It follows from Lemma 35 (i) that the length of F (v′) is one
more than the length of F (v).
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Figure 8: The interval in the affine symmetric group S̃5.
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Lemma 42. Let [a1, . . . , an] ∈ S̃n. Then

ai = i−
∑
i<p

bap − ai
n
c+

∑
p<i

bai − ap
n
c.

This formula could be proved as a corollary of [16] Theorem 4.1, but we give a direct
proof.

Proof. By definition of S̃n, there exists a permutation σ ∈ Sn and integers b1, . . . , bn such
that ai = σ(i) + nbi and b1 + · · ·+ bn = 0. One has

A := i−
∑
i<p

bap − ai
n
c+

∑
p<i

bai − ap
n
c

= i−
∑
i<p

bσ(p) + nbp − σ(i)− nbi
n

c+
∑
p<i

bσ(i) + nbi − σ(p)− nbp
n

c.

Note that for integers b, s, bnb+s
n
c = b + b s

n
c, that −1 < σ(j)−σ(k)

n
< 1, and that

σ(j)− σ(k) has integer part 0 or −1 depending on σ(j)− σ(k) > 0 or < 0. Thus

A = i−
∑
i<p

(bp − bi) +
∑
p<i

(bi − bp)−
∑

i<p,σ(p)<σ(i)

(−1) +
∑

p<i,σ(i)<σ(p)

(−1).

We claim that
∑

i<p,σ(p)<σ(i)

1 = σ(i)− i+
∑

p<i,σ(i)<σ(p)

1. It follows that

A = i+ (n− 1)bi −
∑
p 6=i

bp + σ(i)− i = σ(i) + nbi = ai.

because −
∑
p 6=i

bp = bi.

In order to prove the claim, note that since σ is a permutation, one has for fixed i:∑
i<p,σ(p)<σ(i)

1 +
∑

i>p,σ(p)<σ(i)

1 =
∑

σ(p)<σ(i)

1 = σ(i)− 1,

and ∑
i>p,σ(p)<σ(i)

1 +
∑

i>p,σ(p)>σ(i)

1 =
∑
i>p

1 = i− 1.

Hence ∑
i<p,σ(p)<σ(i)

1 = σ(i)− 1−
∑

i>p,σ(p)<σ(i)

1 = σ(i)− 1− (i− 1−
∑

i>p,σ(p)>σ(i)

1).

We prove now Theorem 36. The mapping G = F−1, defined in the proof, appears
implicitly in [7] p.20 and Eq. (4.2.1) p. 375 in [17].

the electronic journal of combinatorics 28(3) (2021), #P3.31 33



Proof of Theorem 36. 1. It is easy to see that F sends the null admitted vector onto
id = [1, 2, . . . , n]. We show that F (w) = fc, where w is the largest admitted vector, so
that wij = j − i− 1 (Corollary 20). Let F (w) = [a1, . . . , an]. Then

a1 = 1−
∑

1<p6n

w1p = 1−
∑

1<p6n

(p− 2) = 1− (n− 1)(n− 2)

2

=
2− n2 + 3n− 2

2

= −n(n− 3)

2
.

Moreover, by Lemma 37, noting that

ai+1 − ai = 1 +
∑
p<i

δp,i,i+1(w) +
∑
i+1<p

δi,i+1,p(w) and vi,i+1 = 0,

we have by Corollary 20 that it is equal to 1 + (i − 1) + (n − i − 1) = n − 1. It follows
that ai = ci, and F (w) = fc.

2. Let v be an admitted vector and F (v) = f . We have vij 6 wij, so that by
Proposition 38, Lemma 40 (ii) and Lemma 37, one has f 6 fc. By the same results,
id 6 f . Thus f ∈ [id, fc].

3. Let 0 6 i < j 6 n. The injectivity of F follows from the equality vij = baj−ai
n
c, see

Lemma 37.
4. Given f ∈ [id, fc], define G(f) = v ∈ ZT by vij = baj−ai

n
c. The previous paragraph

shows that G ◦ F = id.
We show that the image of G is contained in the set of admitted vectors. For this

note that for an integer x, bx/nc is the quotient of the Euclidean division of x by n;
therefore b(x + y)/nc = bx/nc + by/nc + ε, with ε = 0 or 1. It follows that if i < j < k,
bak−ai

n
c − bak−aj

n
c − baj−ai

n
c is equal to 0 or 1, and vij is thus an admitted vector.

Observe that f = [a1, . . . , an] ∈ S̃n has no inversion of the form (i, j) with 1 6 i <
j 6 n if and only if a1 < . . . < an. This is the case in particular for f = fc. Therefore
each f ∈ [id, fc] satisfies this increasing condition, because f 6 fc implies that by Lemma
35, each inversion of f is an inversion of fc. The nonnegativity of the coefficients of G(f)
follows.

5. The equality F ◦G = id follows from Lemma 42.
6. It remains to show that F and G are increasing functions. That F is increasing

follows from Lemma 41 and the description in Lemma 15 of the covering relation for
admitted vectors.

Suppose now that f, g ∈ [id, fc] and f 6 g. Then f, g satisfy the hypothesis of Lemma
40 and it follows by (ii) in this lemma that G(f) 6 G(g).

By composing the bijections, we obtain a direct poset isomorphism from the interval
[id, fc] into the set of circular permutations. Recall that S̃n is the semidirect product of
Sn and of the additive group {(k1, . . . , kn) ∈ Zn,

∑
i ki = 0}. The canonical projection
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S̃n → Sn is defined by f 7→ σ, with σ(i) = f(i) MODn, where xMODn is the unique
representative modulo n of x in {1, . . . , n}.

Corollary 43. The poset isomorphism V −1 ◦ F−1 from [id, fc] into the set of circular
permutations in Sn is defined by f 7→ (σ), where σ is as above.

Proof. This follows from the definition of G and of the proof of Proposition 9 at the end
of Section 3.

In a Coxeter group, an interval I is always a lattice. Indeed it is well known that
the right weak order is a complete meet-semilattice (see [4] Section 3.2). Therefore each
pair of elements x, y ∈ I has an infimum. Since I admits a upper bound it turns out
that each pair of elements x, y ∈ I has also a supremum. Further, it is known that such
an interval is a semidistributive lattice (see [13] Theorem 8.1 and the comment after it).
Consequently, the poset considered in the present article has the following property.

Corollary 44. The poset of circular permutations in Sn is a semidistributive lattice.

We leave to the reader to verify that fc is an involution in S̃n if n is odd, but not when
n is even.

Define the elements sijk of S̃n, where 1 6 i < j 6 n and k ∈ Z for any x ∈ {1, 2, . . . , n}
by

sijk(x) =


j − kn if x = i
i+ kn if x = j
x if x 6= i, j.

Proposition 45. Let v be an admitted vector and f = F (v). Consider the upwards
path, in the Hasse diagram of the poset of admitted vectors, from the null vector to v, with
successive labels (i1, j1), . . . , (ir, jr), where r is the rank of v in the poset. For p = 1, . . . , r,
let kp be the number of q 6 p such that (iq, jq) = (ip, jp). Then in S̃n, one has the
factorization

f = si1j1k1 ◦ · · · ◦ sirjrkr .

The proof is left to the reader.
Note that it follows from Theorem 36, and from Corollary 3.2.8 in [4], that the Möbius

function of the poset takes its values in {−1, 0, 1}.

7 Circular line diagrams

In this section, we introduce circular line diagrams. They are inspired by classical line
diagrams for permutations, but instead of being on a flat plane, they are drawn on a
cylinder, allowing us to use the circular properties of circular permutations. We will
see that if such diagram respects certain properties on its crossings, it links a circular
permutation σ to its associated vector V (σ) (see Corollary 48). Thus, we illustrate the
bijection V with a nice geometric and combinatorial object.
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We define a circular line diagram D as follows: we take a cylinder, and we put in
clockwise order the numbers from 1 to n at the top and in any order at the bottom. For
any 1 6 i 6 n, we draw a continuous oriented line that goes from i at the top to i at the
bottom, and does not cross itself.

We can represent this diagram on a 2-dimensional surface by either projecting it like
in Figure 9, or unrolling it like in Figure 10.

By turning clockwise around the cylinder, we can list the numbers at the bottom start-
ing with 1 and we obtain a word w = 1i1 · · · in−1. We then say that a circular line diagram
D represents the circular permutation (w). For example, in Figures 9 and 10 below, we
draw two circular line diagrams representing the same permutation (1, 6, 4, 2, 3, 5).

 1 1

 2 2

33 44

55 66

 1 1

22

33

 4 4

55

66

Figure 9: Projection of a circular line diagram representing the circular permutation
(1, 6, 4, 2, 3, 5)

Figure 10: Unrolling of a circular line diagram representing the circular permutation
(1, 6, 4, 2, 3, 5)
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We denote by Li(D) the line of D that goes from i at the top to i at the bottom. We
define Li,j(D) to be number of times that Li(D) and Lj(D) cross each other.

For i < j, a crossing between the line Li(D) and Lj(D) is called a legal crossing if

i) i+ 1 < j,

ii) Lj(D) crosses Li(D) from the right side of Li(D) to the left side of Li(D) when one
follows Li(D) from the top to the bottom of the cylinder. See Figure 11.

We say that a circular line diagram is legal if all its crossings are legal. Note that a
legal circular line diagram must satisfy Li,i+1(D) = 0 for all 1 6 i < n. The diagrams in
Figures 9 and 10 are examples of legal diagrams.

Figure 11: With i+ 1 < j, the left crossing is legal while the right one is illegal.

We call trivial circular line diagram of n, the legal circular line diagram with no
crossing. The trivial circular line diagram of n represents the permutation (1, 2, . . . , n).

Now, let σ and τ be two permutations such that (ij)σ(ij) = τ for i + 1 < j and Dσ

a legal circular line diagram representing σ. One can build a legal diagram representing
τ by interchanging i and j at the bottom of Dσ. Because ij is a large circular descent,
it will only create a crossing between Li(Dσ) and Lj(Dσ), which will be a legal crossing.
Thus, this new diagram would be a legal circular line diagram representing τ .

Therefore, by starting with the trivial circular line diagram, for any circular permuta-
tion σ, one can build a legal circular line diagram D representing σ. With this construc-
tion, it is straightforward that D has the property that Li,j(D) = vij, where v = V (σ).
In fact, we will prove that this property holds for any legal diagrams. For example, if
one counts the crossings of Figure 10, one will obtain the admitted vector of Figure 12.
We will also see, throughout the next results a links between upward path in the poset of
circular permutation and legal line diagrams.

Considering two lines Li(D) and Lj(D) of a circular line diagram D that are crossing
each other, we define the triangle i − j of D, denoted Ti,j(D), to be the triangle whose
vertices are: the last intersection of Li(D) and Lj(D) and the points i and j on the bottom
of the cylinder.
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Figure 12: Admitted vector associated to the circular permutation (1, 6, 4, 2, 3, 5)

Lemma 46. Let D be a legal circular line diagram. If two lines are crossing each other,
D has a triangle that does not intersect any other line than its boundary.

Proof. We say that a triangle is basic if at least one of its non-bottom edges does not cross
any line. There always exist such triangles. Indeed, follow a line Li(D) and consider the
triangle whose top vertex is the last crossing of Li(D). Order basic triangles by inclusion
of their surfaces. Let T be a minimal element of this poset. Then T satisfies the conclusion
of this lemma.

Theorem 47. Let D be a non-trivial legal circular line diagram representing a circular
permutation σ. There exists a large circular ascent ah in σ such that we can create a
legal diagram D′ that represent (ah, ah+1)σ(ah, ah+1) where Lk,l(D

′) = Lk,l(D), for any
pair k, l, except for ah, ah+1 where Lah,ah+1

(D′) = Lah,ah+1
(D)− 1.

Proof. By Lemma 46 we know that there exists in D a pair i, j such Ti,j(D) is not crossed
by any line. Therefore, i is a large circular ascent of σ, with j following i. By interchanging
i and j on the bottom of the cylinder, we can untie the last crossing between Li(D) and
Lj(D) and keep the rest of the diagram unchanged. This proves the result.

Corollary 48. Let σ be a circular permutation and D a legal circular line diagram rep-
resenting σ. Let v = V (σ). Then Li,j(D) = vi,j for any pair i, j.

Proof. It is easy to convince ourself that the only legal circular line diagram that represents
(1, 2, . . . , n) is the trivial circular line diagram, which has no crossing.

The rest follows from Theorem 47 and the poset of circular permutations.

We finish this section by presenting two algorithms. The first one takes a circular
permutation σ and returns a legal circular line diagram representing σ. Thus, we can
deduce the admitted vector V (σ).

The second one takes an admitted vector v and returns a legal circular line diagram
D that has the property that Lij(D) = vij. Thus, D represent the circular permutation
V −1(v).
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For the first algorithm: take a cylinder and mark the numbers 1 to n on top in
order and the circular permutation σ at the bottom; preferably with 1 at the bottom
align with 1 at the top. We draw a line linking both 1. Now, for j going from 2 to n, we
draw a line going from j at the top to j at the bottom without crossing j− 1 and by only
doing crossing if necessary. Doing so, we are only doing legal crossing, and thus, building
a legal circular line diagram. The algorithm ends when we have placed the n lines.

For the second algorithm: take a cylinder and mark the numbers 1 to n on top in
order. Then mark the number 1 on the bottom line below the 1 from the top line. Draw
a line from 1 at the top to 1 at the bottom.

For j going from 2 to n, let rj = (a1, . . . , aj−1) with ai = vi,j.

i) For k going from 1 to j − 1, if ak 6= 0 make Lj cross Lk and ak becomes ak − 1.

ii) If rj 6= (0, . . . , 0) redo step i), if rj = (0, . . . , 0) then make Lj drop to the bottom of
the cylinder without crossing any line. Place j where Lj touches the bottom of the
cylinder.

The algorithm ends when we have placed the n lines.
Note that, if we look at admitted vectors with the coordinates placed in a pyramidal

shape, this algorithm is running through each diagonal a certain number of time, as shown
in Figure 13.

We give an example of the second algorithm in Figure 14. The corresponding circular
permutation is (1, 5, 3, 2, 4). The lines L1, L2, L3, L4 are directly drawn. We only detail
the steps of the line L5.

Figure 13: Reading direction of an admitted vector v in the diagonal descent algorithm.
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Figure 14: The diagonal descent algorithm.

8 Further Questions

First of all, we mention a link between our poset, and the poset in [9] when specialized to
An.

Conjecture 49. The poset of circular permutations and the poset in [9] for the case An
are isomorphic.

We do not have a proof of this isomorphism, but the sizes and the mathematical
context of both posets suggest that they are isomorphic.

In their article, Gashi et al. were able to give a closed formula for the rank generating
function of their poset (see [9], Eq.(5.7)). Thus, if the isomorphism exists, it is also the
rank generating function of our poset.

An interesting open problem, linked to the work of Gashi et al., would be to look at
other affine Coxeter groups and see if some nice combinatorial objects arise.

In 1927, K. Reidemeister introduced 3 moves in knot theory [14]: the Reidemeister
moves. One can observe that Reidemeister move of type III works well with legal circular
line diagrams in the following way: one can pass from a legal diagram to another that
represents the same permutation using such move.
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Figure 15: Reidemeister move of type III.

We think that more might occur:

Conjecture 50. Let σ be a circular permutation and let Dσ, D′σ be two legal circular
line diagrams representing σ. Then we can obtain D′σ from Dσ using only Reidemeister
moves of type III.

From this conjecture comes other questions.

Question 51. In Conjecture 50, what is the number of Reidemeister moves of type III
needed to obtain D′σ from Dσ?

Question 52. What is the number of legal diagrams representing the same circular
permutation?

In order to answer that last question, we think that we have to put an order on the
crossings in a circular line diagram by taking their order of appearance along the cylinder
from top to bottom in the same way as pseudo-line arrangements (see [2] or [10]). With
this order of crossings in mind, we can define the following equivalence relation: two
diagrams are equivalent if they represent the same permutation and have the same order
of appearance of the crossings. We then have the following conjecture:

Conjecture 53. The number of circular line diagrams representing a permutation σ is
exactly the number of paths in the poset of circular permutations from the permutation
(1, 2, . . . , n) to σ.

As Berenstein et al. explain in Section 2 of [2], we know that pseudo-line arrangements
are in bijection with reduced expression of elements in Sn.

Question 54. Are circular line diagrams in bijection with reduced expression of circular
permutations?
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Finally, an interesting object of finite poset are the maximal chains, more particularly,
the number of these chains. We were able to calculate the number of maximal chains for
n up to 9. This sequence does not appear in OEIS yet.

n number of maximal chains
2 1
3 1
4 2
5 60
6 279180
7 2563983592380
8 709628135986073648478240
9 105883974421582156430080943763802159752672
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