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Abstract

Let rep(G) be the maximum multiplicity of a vertex degree in graph G. It was
proven in Caro and West [E-JC, 2009] that if G is an n-vertex line graph, then
rep(G) > 1

4n
1/3. In this note we prove that for infinitely many n there is a n-vertex

line graph G such that rep(G) 6 (2n)1/3, thus showing that the bound above is
asymptotically tight. Previously it was only known that for infinitely many n there
is a n-vertex line graph G such that rep(G) 6

√
4n/3 (Caro and West [E-JC, 2009]).

Finally we prove that if G is a n-vertex line graph, then rep(G) >
((

1
2 − o(1)

)
n
)1/3

.

Mathematics Subject Classifications: 05C07

1 Introduction

It is well-known that any graph with at least two vertices (no loops or multiedges) has
two vertices with the same degree. We define the repetition number of a graph G, written
rep(G), to be the maximum multiplicity in the degree sequence of G. For general graphs
it was shown in [CW09] that rep(G) > n/(2d − 2s + 1) when G has n vertices, average
degree d and minimum degree s. Furthermore it was proven in [CW09] that the bound
above is sharp for certain families of graphs. Several special graph families were considered
in [CW09] besides their results on general graphs. We focus in this note on the natural
question of the repetition number of line graphs. We denote by L(G) the line graph of
graph G. The following lower and upper bounds on the repetition number of line graphs
were proven in [CW09].

Theorem 1.1. If G is a graph with m edges, then rep(L(G)) > 1
4
m1/3.

Theorem 1.2. For infinitely many m there is a graph G with m edges and rep(L(G)) 6√
4m/3.

In fact the following stronger result is shown in [CW09].

the electronic journal of combinatorics 28(3) (2021), #P3.35 https://doi.org/10.37236/9608

https://doi.org/10.37236/9608


Theorem 1.3. For infinitely many m there is a tree G with m edges and rep(L(G)) 6√
4m/3. Furthermore this bound is asymptotically tight (for trees).

Conjecture 3.5 in [CW09] states that the minimum of rep(L(G)) over m-edge graphs
is Θ(

√
m). In this note we refute this conjecture, by showing that the bound in Theorem

1.1 is asymptotically tight. In particular we prove the following theorems.

Theorem 1.4. For infinitely many m there is a graph G with m edges and

rep(L(G)) 6 (2m)1/3.

Theorem 1.5. If G is a graph with m edges, then

rep(L(G)) >

((
1

2
− o(1)

)
m

)1/3

.

The proof of Theorem 1.5 is very similar to the proof of Theorem 1.1, while the proof
of Theorem 1.4 is completely different from the proof of Theorem 1.2. For more results
on repeated degrees see [CSY14] and [CY20].

2 Proof of Theorem 1.4

Let n = t2 be an integer. Let G = (U, V,E) be a bipartite graph with U = {u1, u2, . . . , ut}
and V = {v1, v2, . . . , vn}. Furthermore we set the edges of G in such manner that the
following holds for the degrees of the vertices:

1. for all 1 6 i 6 t we have
d(ui) = n− (i− 1)t

2. for all 1 6 i 6 n we have

d(vi) =

⌈
i

t

⌉
Such degree sequence exists as we can set the edges of G in the following manner. For
each 1 6 i 6 t set

Vi = {v1+(i−1)t, . . . , vt+(i−1)t}

Now for each 1 6 i 6 t we connect vertex ui to all the vertices in sets Vi, . . . , Vt. The
number of edges in graph G is

|E| =
t∑

i=1

d(ui) =
n∑

i=1

d(vi) = n · t + 1

2
(2.1)

Definition 2.1. For an edge e = (u, v) ∈ E define w(e) = d(u) + d(v). A set M =
{e1, e2, . . . , er} of edges in E is called homogeneous if for all 1 6 i 6 j 6 r we have
w(ei) = w(ej).
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Notice that by definition we have rep(L(G)) equal to the maximum cardinality of a
homogeneous set, and hence to prove that rep(L(G)) 6 t it is sufficient to prove the
following.

Theorem 2.1. For any homogeneous set M we have |M | 6 t.

We will need a simple observation to prove Theorem 2.1.

Lemma 2.2. For any homogeneous set M , if (u, v) ∈M and (u′, v′) ∈M are two different
edges such that u, u′ ∈ U and v, v′ ∈ V , then u = u′.

Proof. Assume by contradiction that e1 = (ui, vj) ∈ M and e2 = (uk, vr) ∈ M where
i 6= k. Notice that by the definition of the degree sequence of graph G we have

n− (i− 1)t + 1 6 w(e1) 6 n− (i− 2)t.

Now if k > i then
w(e2) 6 n− (i− 1)t.

And if k < i then
w(e2) > n− (i− 2)t + 1.

We got a contradiction to the fact that w(e1) = w(e2) and thus we are done.

By Lemma 2.2 we have that the edges of a homogeneous set M are incident to exactly
one vertex in U and hence |M | 6 t as there are at most t vertices of the same degree in
V . This concludes the proof of Theorem 2.1.
We conclude that in graph G we have

1. |E| > 1
2
n3/2 ( this follows from Equation (2.1) ).

2. rep(L(G)) 6
√
n.

and this establishes Theorem 1.4.

3 Proof of Theorem 1.5

Let E(G) be the set of edges of G. Recall that |E(G)| = m. Let ∆ be the maximum
degree of graph G. As before for each edge e = (u, v) ∈ E(G) we define w(e) = d(u)+d(v).
Case 1: Assume that ∆ 6 21/3 ·m2/3.
Let S be the set of vertices in G of degree at least 2m7/12. Notice that |S| 6 m5/12

as 2m7/12 · m5/12 = 2m. Hence there are at most
(
m5/12

2

)
6 m5/6 edges in G with both

endpoints in S, that is |E(G[S])| 6 m5/6. Thus the edge set Q = E(G)\E(G[S]) satisfies
|Q| > m − m5/6 and for each edge e ∈ Q we have w(e) 6 ∆ + 2m7/12. Hence by the
pigeonhole principle we have

rep(L(G)) >
|Q|

maxe∈Qw(e)
>

m−m5/6

21/3 ·m2/3 + 2m7/12
>

((
1

2
− o(1)

)
m

)1/3

.
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and this concludes case 1.
Case 2: Assume that ∆ > 21/3 ·m2/3.
Let v ∈ G be vertex of degree ∆. Let T be the set of neighbors of v (in graph G) of degree
at most m5/12. As there are at most 2m7/12 vertices of degree at least m5/12 we have

|T | > ∆− 2m7/12 > (1− o(1))21/3 ·m2/3. (3.1)

Now we shall consider two subcases according to the number of edges in the subgraph of
G induced by T .
Subcase 2-1: Assume that |E(G[T ])| > 2m9/12.
In this case we have by the pigeonhole principle that

rep(L(G)) >
|E(G[T ])|

maxe∈E(G[T ]) w(e)
>

2m9/12

2m5/12
> m1/3.

and this concludes subcase 2-1.
Subcase 2-2: Assume that |E(G[T ])| < 2m9/12.
As |E(G[T ])| < 2m9/12 we have the following bound (where d(u) is the degree of u in
graph G). ∑

u∈T

d(u) 6 |E(G)|+ 2m9/12 6 (1 + o(1))m. (3.2)

Now set r = rep(L(G)). We may assume that

r 6 m1/3 (3.3)

for otherwise we are done. Notice that in T there are at most r vertices of the same degree,
as edges from v to T have a fixed endpoint, and thus any degree that occurs more than
r times in T occurs more than r times as a degree in L(G). Hence we have the following
inequality (we remind the reader that the o(1) tends to 0 as m tends to infinity).

∑
u∈T

d(u) > r ·
b|T |/rc∑
i=1

i

> r · (b|T |/rc)2/2

>
|T |2

2r

(
1− 2r

|T |

)
>
|T |2

2r
(1− o(1)) By Inequalities (3.1) and (3.3)

>
m4/3

r21/3
(1− o(1)) By Inequality (3.1) (3.4)

Now combining Inequalities (3.4) and (3.2) we get

m4/3

r21/3
(1− o(1)) 6 (1 + o(1))m.

We conclude that r >
(
m
2

)1/3
(1− o(1)) and the theorem follows.
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