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Abstract

In this paper, we study the spectra of regular hypergraphs following the defi-
nitions from Feng and Li (1996). Our main result is an analog of Alon’s conjec-
ture for the spectral gap of the random regular hypergraphs. We then relate the
second eigenvalues to both its expansion property and the mixing rate of the non-
backtracking random walk on regular hypergraphs. We also prove the spectral gap
for the non-backtracking operator of a random regular hypergraph introduced in
Angelini et al. (2015). Finally, we obtain the convergence of the empirical spec-
tral distribution (ESD) for random regular hypergraphs in different regimes. Under
certain conditions, we can show a local law for the ESD.

Mathematics Subject Classifications: 60C05, 60B20

1 Introduction

Since their introduction in the early 1970s (see, for example, Berge’s book [5]), hyper-
graphs have steadily risen to prominence, both from a theoretical perspective and through
their potential for applications. Of the most recent fields to recognize their importance
we mention machine learning, where they have been used to model data [45], including
recommender systems [39], pattern recognition [27] and bioinformatics [40].

As with graphs, one main feature for the study is graph expansion; e.g., studies of
regular graphs [1, 32, 17, 2, 6], where all vertices have the same degree d, and quasi-
regular graphs (e.g., bipartite biregular [8, 9], where the graphs are bipartite and the
two classes are regular with degrees d1, respectively, d2; or preference models and k-
frames [42], which generalizes these notions). The key property for graph expansion is
fast random walk mixing. There are three main perspectives on examining this property:
vertex, edge, and spectral expansion [10]; the latter of these, the spectral gap, is the
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most desirable feature as it controls the others (the bounds on vertex and edge expansion
generally involve the second eigenvalue of the Laplacian of the graph).

For general, connected, simple graphs (possibly with loops), the Laplacian is a scaled
and shifted version of the adjacency matrix A = (Aij)16i,j6n, where Aij = 1 if and
only if i and j are connected by an edge and 0 otherwise. The Laplacian is defined by
L = I −D−1/2AD−1/2, where D is the diagonal matrix of vertex degrees.

As mentioned before, spectral expansion of a graph involves the spectral gap of its
Laplacian matrix; however, in the case of regular or bipartite biregular graphs, looking at
the adjacency matrix or the Laplacian is equivalent (in the case of the regular ones, D is a
multiple of the identity, and in the case of the bipartite biregular ones, the block structure
of the matrix ensures that D−1/2AD−1/2 = 1√

d1d2
A). For regular and bipartite biregular

graphs, the largest (Perron-Frobenius) eigenvalue of the adjacency matrix is fixed (it is d
for d-regular graphs and

√
d1d2 for bipartite biregular ones). So for these special cases,

the study of the second largest eigenvalue of the adjacency matrix is sufficient. As we
show here, this will also be the case for (d, k)-regular hypergraphs.

The study of the spectral gap in d-regular graphs with fixed d had a first breakthrough
in the Alon-Boppana bound [1], which states that the second largest eigenvalue λ :=
max{λ2, |λn|} satisfies λ > 2

√
d− 1−o(1). Later, Friedman [17] proved Alon’s conjecture

[1] that a uniformly chosen random d-regular graphs have λ 6 2
√
d− 1 + ε for any ε > 0

with high probability, as the number of vertices goes to infinity. Recently, Bordenave [6]
gave a new proof that λ2 6 2

√
d− 1 + εn for a sequence εn → 0 as n→∞ based on the

non-backtracking (Hashimoto) operator. Following the same idea in [6], Coste proved the
spectral gap for d-regular digraphs [14] and Brito et al. [9] proved an analog of Alon’s
spectral gap conjecture for random bipartite biregular graphs; for deterministic ones, the
equivalent of the Alon-Boppana bound had first been shown by Lin and Solé [26].

It is thus fair to say that both graph expansion and the spectral gap in regular graphs
and quasi-regular graphs are now very well understood; by contrast, despite the natural
applications and extension possibilities, hypergraph expansion is a much less understood
area. The difficulty here is that it is not immediately clear which operator or struc-
ture to associate to the hypergraph. There are three main takes on this: the Feng-Li
approach [16], which defined an adjacency matrix, the Friedman-Wigderson tensor ap-
proach [18], and the Lu-Peng approach [30, 31], which defined a sequence of Laplacian
matrices through higher-order random walks.

Several results on hypergraph expansion have been obtained using the Friedman-
Wigderson approach. Hyperedge expansion depending on the spectral norm of the as-
sociated tensor was studied in the original paper [18], the relation between the spectral
gap and quasirandom properties was discussed in Lenz and Mubayi [22, 23], and an inverse
expander mixing lemma was obtained in Cohen et al. [12]. Very recently, Li and Mohar
[24] proved a generalization of the Alon-Boppana bound to (d, k)-regular hypergraphs for
their adjacency tensors. On the other side, using the Feng-Li adjacency matrix approach,
the original paper [16] proved the Alon-Boppana lower bound for the adjacency matrix
of regular hypergraphs, and then Li and Solé [26] defined a (d, k)-regular hypergraph to
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be Ramanujan if any eigenvalue λ 6= d(k − 1) satisfies

|λ− k + 2| 6 2
√

(d− 1)(k − 1). (1)

Ramanujan hypergraphs were further studied in [33, 25, 37]. Note that when k = 2
(when the hypergraphs are actual graphs), this definition coincides with the definition for
Ramanujan graphs. The adjacency matrices and Laplacian matrices of general uniform
hypergraphs were analyzed in [4], where the relation between eigenvalues and diameters,
random walks, Ricci curvature of the hypergraphs were studied.

In this paper, we fill in the gaps in the literature by showing a spectral gap for the
adjacency matrix of a hypergraph, following the Feng-Li definition; we connect it to the
mixing rate of the hypergraph random walk considered in [45] and subsequently studied
in [13, 20], and we also show that this gap governs hyperedge and vertex expansion of the
hypergraph, thus completing the parallel with graph results. Specifically, for (d, k)-regular
hypergraphs and their adjacency matrices (the precise definitions are given in the next
section), we prove the following:

• Hyperedge and vertex expansion are controlled by the second eigenvalue of the
adjacency matrix.

• The mixing rate of the random walk is controlled by the second eigenvalue of the
adjacency matrix.

• The uniformly random (d, k)-regular hypergraph model has a spectral gap. This is
by far the most exciting result, and it turns out to be a simple consequence of the
spectral gap of uniformly random bipartite biregular graphs [9]. Our result shows
that, asymptotically, almost all (d, k)-regular hypergraphs are almost Ramanujan
in the sense of Li-Solé (see (1)).

Other results include the spectral gap and description for the spectrum of the non-
backtracking operator of the hypergraph, the limiting empirical distribution for the spec-
trum of the adjacency matrix of the uniformly random (d, k)-regular hypergraph in dif-
ferent regimes (which was studied by Feng and Li in [16] for deterministic sequences of
hypergraphs with few cycles and fixed d, k), and a sort of local law of this empirical
spectral distribution.

Our main methodology is to translate the results from bipartite biregular graphs by
using the bijection between the spectra (Lemma 10). While this bijection has been known
for a long time, the results on bipartite biregular graphs [15, 9] (especially the spectral
gap) are quite recent.

Our spectral gap results are linked to the random walk and offer better control over
the mixing rate. Together with the Alon-Boppana result established by Feng-Li [16],
they give complete control over the behavior of the random walk and hyperedge/vertex
expansion. In our view, this establishes the adjacency matrix perspective of Feng and
Li as ultimately more useful not just theoretically, but possibly computationally as well,
since computing second eigenvalues of matrices is achievable in polynomial time, whereas
the complexity of computing spectral norms of tensors is NP-hard [21].
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The rest of the paper is structured as follows. In Section 2 we provide definitions and
properties of hypergraphs that we use in the paper. In Section 3 we show that several
expansion properties of (d, k)-regular hypergraphs are related to the second eigenvalues
of their adjacency matrices. In Section 4 we prove the analog of Friedman’s second
eigenvalue theorem for uniformly random (d, k)-regular hypergraphs. The spectra of the
non-backtracking operator for the hypergraph are analyzed in Section 5. Finally, we
study the empirical spectral distributions of uniformly random (d, k)-regular hypergraphs
in Section 6.

2 Preliminaries

Definition 1 (hypergraph). A hypergraph H consists of a set V of vertices and a set E
of hyperedges such that each hyperedge is a nonempty subset of V . A hypergraph H is
k-uniform for an integer k > 2 if every hyperedge e ∈ E contains exactly k vertices. The
degree of i, denoted deg(i), is the number of all hyperedges incident to i. A hypergraph
is d-regular if all of its vertices have degree d. A hypergraph is (d, k)-regular if it is both
d-regular and k-uniform. A vertex i is incident to a hyperedge e if and only if v is an
element of e. We can define the incidence matrix X of a hypergraph to be a |V | × |E|
matrix indexed by elements in V and E such that Xi,e = 1 if i ∈ e and 0 otherwise.
Moreover, if we regard X as the adjacency matrix of a graph, it defines a bipartite graph
G with two vertex sets being V and E. We call G the bipartite graph associated to H.

Definition 2 (walks and cycles). A walk of length l on a hypergraph H is a sequence
(v0, e1, v1, · · · , el, vl) such that vj−1 6= vj and {vj−1, vj} ⊂ ej for all 1 6 j 6 l. A
walk is closed if v0 = vl. A cycle of length l in a hypergraph H is a closed walk
(v0, e1, . . . , vl−1, el, vl+1) such that

• |{e1, . . . , el}| = l (all hyperedges are distinct);

• |{v0, . . . vl−1}| = l, vl+1 = v0 (all vertices are distinct subject to vl+1 = v0).

In the associated bipartite graph G, a cycle of length l in H corresponds to a cycle of
length 2l. We say H is connected if for any i, j ∈ V , there is a walk between i, j. It’s easy
to see H is connected if and only if the corresponding bipartite graph G is connected.

Definition 3 (adjacency matrix). For a hypergraph H with n vertices, we associate a
n×n symmetric matrix A called the adjacency matrix of H. For i 6= j, Aij is the number
of hyperedges containing both i and j and Aii = 0 for all 1 6 i 6 n.

If H is 2-uniform, this is the adjacency matrix of an ordinary graph. The largest
eigenvalue of A for (d, k)-regular hypergraphs is d(k − 1) with eigenvector 1√

n
(1, . . . , 1).

3 Expansion and mixing properties of regular hypergraphs

In this section, we relate the expansion property of a regular hypergraph to its second
eigenvalue. We prove results on expander mixing and vertex expansion, and compute the
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mixing rate of simple random walks and non-backtracking random walks. These results
follow easily from the same methodology used in Chung’s book [10]. Let H = (V,E) be
a (d, k)-regular hypergraph, for any subsets V1, V2 ⊂ V , define

e(V1, V2) := |{(i, j, e) : i ∈ V1, j ∈ V2, {i, j} ∈ e ⊂ E}|

which counts the number of hyperedges between vertex set V1, V2 with multiplicity. For
each hyperedge e, the multiplicity is given by |e ∩ V1| · |e ∩ V2|. We first provide an edge
mixing result whose equivalence for regular graphs is given in [10].

Theorem 4 (expander mixing). Let H = (V,E) be a (d, k)-regular hypergraph with ad-
jacency matrix A. Let λ = max{λ2(A), |λn(A)|}. The following holds: for any subsets
V1, V2 ⊂ V ,∣∣∣∣e(V1, V2)− d(k − 1)

n
|V1| · |V2|

∣∣∣∣ 6 λ

√
|V1| · |V2|

(
1− |V1|

n

)(
1− |V2|

n

)
.

Remark 5. The above result is qualitatively different from the expander mixing lemma
for k-uniform regular graphs studied in [18, 12]. Their result considers the number of
hyperedges between any k subsets of V and the parameter λ there is the spectral norm
of a tensor associated with the hypergraph.

Proof. Let 1Vi be the indicator vector of the set Vi for i = 1, 2. Let v1, . . . , vn be the unit
eigenvector associated to λ1, . . . λn of A. We have the following decomposition of 1V1 , 1V2 :

1V1 =
n∑
i=1

αivi, 1V2 =
n∑
i=1

βivi

for some numbers αi, βi, 1 6 i 6 n. Recall that λ1 = d(k − 1) and v1 = 1√
n
(1, . . . 1)>. We

have α1 = 〈1V1 , v1〉 = |V1|√
n
, β1 = 〈1V2 , v1〉 = |V2|√

n
. From the definition of e(V1, V2),

e(V1, V2) =
∑

16i,j6n

1V1(i)1V2(j)Aij = 〈1V1 , A1V2〉

= λ1α1β1 +
∑
i>2

λiαiβi =
d(k − 1)

n
|V1| · |V2|+

∑
i>2

λiαiβi.

Therefore by the Cauchy-Schwarz inequality,∣∣∣∣e(V1, V2)− d(k − 1)

n
|V1| · |V2|

∣∣∣∣ 6 λ
∑
i>2

|αiβi| 6 λ

√∑
i>2

α2
i

√∑
i>2

β2
i .

Note that ∑
i>2

α2
i =

∑
i>1

α2
i −
|V1|2

n
= |V1|

(
1− |V1|

n

)
,
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and similarly,
∑

i>2 β
2
i = |V2|

(
1− |V2|

n

)
. This implies∣∣∣∣e(V1, V2)− d(k − 1)

n
|V1| · |V2|

∣∣∣∣ 6 λ
∑
i>2

|αiβi| 6 λ

√
|V1| · |V2|

(
1− |V1|

n

)(
1− |V2|

n

)
.

For any subset S ⊂ V , we define its neighborhood set to be

N(S) := {i : there exists j ∈ S such that {i, j} ⊂ e for some e ∈ E}.

We have the following result on vertex expansion of regular hypergraphs.

Theorem 6 (vertex expansion). Let H = (V,E) be a (d, k)-regular hypergraph with ad-
jacency matrix A. Let λ = max{λ2(A), |λn(A)|}. For any subset S ⊂ V , we have that

|N(S)|
|S|

>
1

1−
(

1− λ2

d2(k−1)2

)(
1− |S|

n

) . (2)

Proof. Let 1S be the indicator vector of the set S with the decomposition 1S =
∑n

i=1 γivi,
where γi, 1 6 i 6 n are constants and vi, 1 6 i 6 n are the unit eigenvectors of A
associated to λ1, . . . , λn, respectively. Then we know γ1 = |S|√

n
and

‖A1S‖22 =
n∑
i=1

λ2i γ
2
i 6 d2(k − 1)2

|S|2

n
+ λ2(

∑
i>2

γ2i )

= d2(k − 1)2
|S|2

n
+ λ2

(
|S| − |S|

2

n2

)
= (d2(k − 1)2 − λ2) |S|

2

n
+ λ2|S|. (3)

On the other hand,

‖A1S‖22 = 〈A1S, A1S〉 =
n∑
i=1

(
∑
k∈S

Aik)
2 =

n∑
i=1

e({i}, S)2 =
∑
i∈N(S)

e({i}, S)2, (4)

and by Cauchy-Schwartz inequality,

∑
i∈N(S)

e({i}, S)2 >

(∑
i∈N(S) e(S, {i})

)2
|N(S)|

. (5)

The quantity∑
i∈N(S)

e(S, {i}) = e(S,N(S)) = |{(i, j, e) : i ∈ S, j ∈ N(S), {i, j} ⊂ e ∈ E}| (6)

counts the number of hyperedges between S and N(S) with multiplicity. We then have

e(S,N(S)) = |S|(k − 1)d. (7)

Putting Equations (3)-(7) together, we obtain (2).
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For the rest of this section, we compute the mixing rates of random walks on hy-
pergraphs. The simple random walk on a general hypergraph was first defined in [45],
where the authors gave a random walk explanation of the spectral methods for clustering
and segmentation on hypergraphs, which generalized the result in Meila and Shi [36] for
graphs. A quantum version of random walks on regular hypergraphs was recently studied
by Liu et al. [28].

The simple random walk on k-uniform hypergraphs has the following transition rule.
Start at a vertex v0. If at the t-th step we are at vertex vt, we first choose a hyperedge e
uniformly over all hyperedges incident with vt, and then choose a vertex vt+1 ∈ e, vt+1 6= vt
uniformly at random. The sequence of random vertices (vt, t > 0) is a Markov chain.
It generalizes the simple random walk on graphs. We denote by P = (Pij)16i,j6n the
transition matrix for the Markov chain and let D be the diagonal matrix with Dii =
deg(i), 1 6 i 6 n. From the definition of the simple random walk on hypergraphs, for
any (d, k)-regular hypergraphs with adjacency matrix A, the transition matrix satisfies
P = 1

d(k−1)A.

It’s known (see for example [29]) that for any graph (or multigraph)G, ifG is connected
and non-bipartite, then it has a unique stationary distribution. For d-regular graphs, being
connected and non-bipartite is equivalent to requiring λ = max{λ2(A), |λn(A)|} < d, see
for example [2]. The simple random walk on (d, k)-regular hypergraphs H = (V,E) can
also be seen as a simple random walk on a multigraph GH on V , where the number of
edges between i, j in GH is Aij. The adjacency matrix of GH is the same as the adjacency
matrix of H. Therefore the simple random walk on H converges to a unique stationary
distribution if and only if the multigraph GH is connected and non-bipartite. These
two conditions can be satisfied as long as we have the following condition on the second
eigenvalue.

Lemma 7. Let H be a (d, k)-regular hypergraph with adjacency matrix A. The simple
random walk on H converges to a stationary distribution if and only if

λ = max{λ2(A), |λn(A)|} < d(k − 1).

Proof. If the corresponding multigraph GH is bipartite, then we have λn = −λ1 =
−d(k − 1). If GH is not connected, then it has at least two connected components,
the largest eigenvalue will have multiplicity > 2, which implies λ = d(k − 1). Therefore
λ < d(k−1) if and only if GH is non-bipartite and connected. From the general theory of
Markov chains on graphs and multigraphs, the simple random walk on GH converges to a
stationary distribution. Therefore the simple random walk on H converges to a stationary
distribution.

For any (d, k)-regular hypergraph H with λ < d(k − 1), a simple calculation shows
that the stationary distribution is π(i) = 1

n
for all i ∈ V . The mixing rate of the simple

random walk on hypergraphs, which measures how fast the Markov chain converges to
the stationary distribution, is defined by

ρ(H) := lim sup
l→∞

max
i,j∈V
|(P l)ij − π(j)|1/l,
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where π is the unique stationary distribution on V . Let λ1 > λ2 > · · · > λn be the
eigenvalues of A and we define the second eigenvalue in absolute value of A by λ :=
max{λ2, |λn|}.

The non-backtracking walk on hypergraphs is defined in [38] as a generalization of
non-backtracking walk on graphs. Recall a walk of length l in a hypergraph is a sequence
w = (v0, e1, v1, e2, . . . vl−1, el, vl) such that vi 6= vi+1 and {vi, vi+1} ⊂ ei+1 for all 0 6 i 6
l − 1. We say w is a non-backtracking walk if ei 6= ei+1 for 1 6 i 6 l − 1. Define a
non-backtracking random walk of length l on H from some given vertex v0 ∈ V , to be a
uniformly chosen member of the set of non-backtracking walks of length l starting at v0.
Let

~E(H) := {(i, e) : i ∈ V (H), e ∈ E(H), i ∈ e} (8)

be the set of oriented hyperedges of a k-uniform hypergraph H. Similar to case for regular
graphs in [2], we can also consider the non-backtracking random walk on H starting from

an initial vertex v0 as a Markov chain {Xt}t>0 with a state space ~E(H) in the following
way. The distribution of the initial state is given by

P(X0 = (v0, e)) =
1v0∈e

deg(v0)
,

for any e ∈ E(H). The transition probability is given by

P(Xt+1 = (u, f) | Xt = (v, e))

=

{
1

(k−1)(deg(u)−1) if u ∈ e, u 6= v ∈ V (H), and f 6= e ∈ E(H),

0 otherwise.

Notice that if H is a (d, k)-regular hypergraph with (d, k) = (2, 2), then H is a 2-
regular graph, which is a disjoint union of cycles. The non-backtracking random walk on
H is periodic and does not converge to a stationary distribution. Given a (d, k)-regular

hypergraph H = (V,E) with (d, k) 6= (2, 2), let P̃
(l)
i,j be the transition probability that a

non-backtracking random walk of length l on H starts at i and ends at j. Define

ρ̃(H) := lim sup
l→∞

max
i,j∈V

∣∣∣∣P̃ (l)
ij −

1

n

∣∣∣∣1/l
to be the mixing rate of the non-backtracking random walk. As a generalization of the re-
sult in [2], we can connect the second eigenvalue of regular hypergraphs to the mixing rate
of non-backtracking random walk. It turns out that similar results were already studied
in [11] for clique-wise non-backtracking walks on regular graphs. Especially, Corollary 1.3
in [11] is equivalent to the following theorem. We include a proof here for completeness.

Theorem 8. Let H be a (d, k)-regular hypergraph with d, k > 2 whose adjacency matrix
has the second largest eigenvalue in absolute value λ := max{λ2, |λn|} < d(k − 1), then

the electronic journal of combinatorics 28(3) (2021), #P3.36 8



1. the mixing rate of the simple random walk on H is ρ(H) = λ
(k−1)d .

2. Assume further that (d, k) 6= (2, 2). Define a function ψ : [0,∞)→ R as

ψ(x) :=

{
x+
√
x2 − 1 if x > 1,

1 if 0 6 x 6 1.

Then a non-backtracking random walk on H converges to the uniform distribution,

and its mixing rate ρ̃(H) satisfies ρ̃(H) = 1√
(d−1)(k−1)

ψ

(
λ

2
√

(k−1)(d−1)

)
.

Proof. (1) We first consider simple random walks. For any l > 1, P l = 1
((k−1)d)lA

l and

the vector v1 = 1√
n
(1, . . . , 1) is an eigenvector of P l corresponding to the unique largest

eigenvalue 1. Let µ(l) = max{|λ2(P l)|, |λn(P l)|}, we have

max
ij
|P l
ij−

1

n
| = max

ij
|〈(P l−v>1 v1)ei, ej〉| 6 max

|u|=|v|=1
|〈(P l−v>1 v1)u, v〉| = µ(l) =

λl

(k − 1)ldl
.

This implies ρ(H) 6 λ
(k−1)d . On the other hand, let J be a n×n matrix whose entries are

all 1, we have

max
ij
|P l
ij −

1

n
| > 1

n

√√√√∑
ij

∣∣∣∣(P l)ij −
1

n

∣∣∣∣2 =
1

n

∥∥∥∥P l − 1

n
J

∥∥∥∥
F

=
1

n

√∑
26i6n

λ2i (P
l)

>
µ(l)

n
=

1

n

λl

(k − 1)ldl
,

which implies ρ(H) > λ
(k−1)d . This completes the proof of part (1) of Theorem 8.

For part (2), we follow the steps in [2]. Recall that the Chebyshev polynomials satisfy
the following recurrence relation: Uk+1(x) = 2xUk(x) − Uk−1(x),∀k > 0. We also define
U−1(x) = 0, U0(x) = 1. Let A be the adjacency matrix of H and define the matrix A(l)

such that A
(l)
ij is the number of non-backtracking walks of length l from i to j for all i, j.

By definition, the matrices A(l) satisfy the following recurrence:{
A(1) = A, A(2) = A2 − (k − 1)dI,

A(l+1) = AA(l) − (k − 1)(d− 1)A(l−1) for l > 2,
(9)

where (k− 1)dI in the first equation eliminates the diagonal of A2 to avoid backtracking,
and (k−1)(d−1)A(l−1) in the second equation of (9) eliminates the walk which backtracks
in the (l + 1)-st step. We claim that

A(l) =
√

(k − 1)ld(d− 1)l−1Ql

(
A

2
√

(k − 1)(d− 1)

)
, (10)
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where Ql(x) =
√

d−1
d
Ul(x)− 1√

d(d−1)
Ul−2(x) for all l > 1. To see this, let

f(A, l) :=
√

(k − 1)ld(d− 1)l−1Ql

(
A

2
√

(k − 1)(d− 1)

)
.

Since U1(x) = 2x, U2(x) = 4x2 − 1, we have

Q1(x) = 2

√
d− 1

d
x, Q2(x) =

√
d− 1

d
(4x2 − 1)− 1√

d(d− 1)
.

We can check that

f(A, 1) =
√

(k − 1)d ·Q1

(
A

2
√

(k − 1)(d− 1)

)
= A = A(1),

f(A, 2) =
√

(k − 1)2d(d− 1) ·Q2

(
A

2
√

(k − 1)(d− 1)

)
= A2 − (k − 1)dI = A(2).

Therefore (10) holds for l = 1, 2. Since Ql(x) is a linear combination of Ul−2, Ul, it
satisfies the recurrence Qk+1(x) = 2xQk(x) − Qk−1(x). Therefore by induction we have

f(A, l) = A(l) for all l > 1. Recall P̃
(l)
i,j is the probability that a non-backtracking random

walk of length l on H starts from i and ends in j. The number of all possible non-
backtracking walks of length l starting from i is d(k − 1)((k − 1)(d − 1))l−1. This is
because for the first step we have d(k − 1) many choices for hyperedges and vertices,
and for the remaining (l − 1) steps we have ((k − 1)(d − 1))l−1 many choices in total.
Normalizing A(l) yields

P̃
(l)
ij =

A
(l)
ij

(k − 1)d((k − 1)(d− 1))l−1
=

A
(l)
ij

d(d− 1)l−1(k − 1)l
. (11)

Let µ̃1(l) = 1, µ̃2(l) > · · · > µ̃n(l) be the eigenvalues of P̃ (l), µ̃(l) := max{|µ2(l)|, |µn(l)|}.
We obtain that P̃ (l) is precisely the transition matrix of a non-backtracking random walk
of length l. Same as Claim 2.2 in [2], we have

µ̃(l)

n
6 max

ij

∣∣∣∣P̃ (l)
ij −

1

n

∣∣∣∣ 6 µ̃(l). (12)

We sketch the proof of (12) here. Since P̃ (l) is doubly stochastic, v1 = 1√
n
(1, . . . , 1) is an

eigenvector of P̃ (l) corresponding to the largest eigenvalue 1. We have

max
ij
|P̃ (l)
ij −

1

n
| = max

ij
|〈(P̃ (l) − v>1 v1)ei, ej〉| 6 max

‖u‖2=‖v‖2=1
|〈(P̃ (l) − v>1 v1)u, v〉| = µ̃(l).

On the other hand, let J be as above, we have

max
ij
|P̃ (l)
ij −

1

n
| > 1

n

√√√√∑
ij

∣∣∣∣P̃ (l)
ij −

1

n

∣∣∣∣2 =
1

n
‖P̃ (l) − 1

n
J‖F =

1

n

√∑
26i6n

λ2i (P̃
(l)) >

µ̃(l)

n
.
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Therefore

ρ̃(H) = lim sup
l→∞

max
i,j∈V

∣∣∣∣P̃ (l)
ij −

1

n

∣∣∣∣1/l = lim sup
l→∞

µ̃(l)1/l.

By (10) and (11), for 1 6 i 6 n,

µ̃i(l) =
λi(A

(l))

d(d− 1)l−1(k − 1)l
=

1√
d(d− 1)l−1(k − 1)l

Ql

(
λi(A)

2
√

(k − 1)(d− 1)

)
.

From Lemma 2.3. in [2],

lim sup
l→∞

|Ql(x)|1/l = ψ(|x|) =

{
1 0 6 x 6 1,

|x|+
√
x2 − 1 x ∈ R \ [−1, 1].

Therefore ρ̃(H) = 1√
(d−1)(k−1)

ψ

(
λ

2
√

(k−1)(d−1)

)
. This completes the proof.

4 Spectral gap of random regular hypergraphs

Let G(n,m, d1, d2) be the set of all simple bipartite biregular random graphs with vertex
set V = V1 ∪ V2 such that |V1| = n, |V2| = m, and every vertex in Vi has degree di for
i = 1, 2. Here we must have nd1 = md2 = |E|. Let H(n, d, k) be the set of all simple
(without multiple hyperedges) (d, k)-regular hypergraphs with labelled vertex set [n] and
nd
k

many labelled hyperedges denoted by {e1, . . . , end/k}.
Remark 9. From this section on, we always assume d > k for simplicity, since a (d, k)-
regular hypergraph, its dual hypergraph is (k, d)-regular, and they have the same associ-
ated bipartite biregular graph by swapping the vertex sets V1 and V2.

It’s well known (see for example [16]) that there exists a bijection between regular
multi-hypergraphs and bipartite biregular graphs. See Figure 1 as an example of the
bijection. For a given bipartite biregular graph, if there are two vertices in V2 that share
the same set of neighbors in V1, the corresponding regular hypergraph will have multiple
hyperedges, see Figure 2. Let G ′(n,m, d1, d2) be a subset of G(n,m, d1, d2) such that for
any G ∈ G ′(n,m, d1, d2), the vertices in V2 have different sets of neighborhoods in V1. We
obtain the following bijection.

Lemma 10. There is a bijection between the set H(n, d, k) and the set G ′ (n, nd/k, d, k).

Proof. Let G ∈ G ′ (n, nd/k, d, k) be an (n, nd/k, d, k)-bipartite biregular graph, and AG

be its adjacency matrix, we then have AG =

(
0 X
X> 0

)
, where X is a n× (nd/k) matrix

with entries Xij = 1 if and only there is an edge between i ∈ V1, j ∈ V2. We can then
construct a regular hypergraph H = (V (H), E(H)) from X with V (H) = V1. There exists
an edge ej = {i1, . . . , ik} ∈ E(H) if and only if j ∈ V2 and i1, . . . , ik ∈ V1 are connected to
j in G. By the definition of G, vertices in V2 have different sets of neighbors, hence the
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Figure 1: a (2, 3)-regular hypergraph and its associated bipartite biregular graph where
all vertices in V2 have different neighborhoods in V1

e1

e2

v1

v2

v3

Figure 2: a subgraph in a bipartite biregular graph which gives multiple hyperedges e1
and e2 in the corresponding regular hypergraph

corresponding hypergraph H has no multiple hyperedges. It’s easy to check that H is a
(d, k)-regular hypergraph on n vertices.

Conversely, for any simple (d, k)-regular hypergraph H ∈ H(n, d, k), X corresponds
the incidence matrix of H, and we can associate to H a (n, nd/k, d, k)-bipartite biregular

graph G whose adjacency matrix is

(
0 X
X> 0

)
, and it has no two vertices in V2 sharing

the same set of neighbors.

From Lemma 10, the uniform distribution on G ′ (n, nd/k, d, k) for bipartite biregular
graphs induces the uniform distribution on H(n, d, k) for regular hypergraphs. With this
observation, we are able to translate the results for spectra of random bipartite biregular
graphs into results for spectra of random regular hypergraphs. Our first step is the
following spectral gap result.

Theorem 11. Let A be the adjacency matrix of a random (d, k)-regular hypergraph sam-
pled uniformly from H(n, d, k) with d > k > 3, then any eigenvalue λ(A) 6= d(k − 1)
satisfies

|λ(A)− k + 2| 6 2
√

(k − 1)(d− 1) + εn,

asymptotically almost surely with εn → 0 as n→∞.

Remark 12. For k = 2, Theorem 11 reduces to Alon’s second eigenvalue conjecture proved
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in [17, 6]. In terms of Ramanujan hypergraphs defined in (1), the theorem implies almost
every (d, k)-regular hypergraph is almost Ramanujan.

We start with the following lemma connecting the adjacency matrix of a regular hy-
pergraph and its associated bipartite biregular graph.

Lemma 13. Let H be a (d, k)-regular hypergraph, and let G be the corresponding bipartite
biregular graph associated to H. Let AH be the adjacency matrix of H, and AG be the
adjacency matrix of G with the form

AG =

(
0 X
X> 0

)
. (13)

Then XX> = AH + dI.

Proof. Let V and E be the vertex and hyperedge set of H respectively. For i 6= j, we
have

(XX>)ij =
∑
e∈E

XieXje =
∑
e∈E

1{i,j}∈e = (AH)ij.

For the diagonal elements, we have (XX>)ii =
∑

e∈E XieXie = deg(i) = d. Therefore
AH + dI = XX>.

It’s not hard to show that for d > k, all eigenvalues of AG from (13) occur in pairs
(λ,−λ), where |λ| is a singular value of X, along with extra (dn/k − n) many zero
eigenvalues. The next result for random bipartite biregular graphs is given in [9].

Lemma 14 (Theorem 4 in [9]). Let AG be the adjacency matrix of a random bipartite
biregular graph G sampled uniformly from G(n,m, d1, d2), where d1 > d2 are independent
of n. Then:

1. Its second eigenvalue λ2 satisfies

λ2 6
√
d1 − 1 +

√
d2 − 1 + o(1) (14)

asymptotically almost surely as n→∞.

2. Its smallest positive eigenvalue λ+min satisfies

λ+min >
√
d1 − 1−

√
d2 − 1− o(1). (15)

We will use a result from [35] that estimates the probability that a random bipartite
biregular graph sampled from G(n,m, d1, d2) contains some subgraph L ⊂ Kn,m, where
Kn,m is the complete bipartite graphs with |V1| = n, |V2| = m. Let |L| be the number of
edges of L and we use the notation [x]a denotes the falling factorial x(x−1) · · · (x−a+1).
For any vertex v ∈ Kn,m, let gv and lv denote the degree of v considered as a vertex of G
and L respectively. Let lmax be the largest value of li.
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Lemma 15 (Theorem 3.5 in [35]). Let L ⊂ Kn,m. If |L|+ 2d1(d1 + lmax − 2) 6 nd1 − 1,
then

P (L ⊂ G) 6

∏
[gi]li

[nd1 − 4d21 − 1]|L|
.

With Lemma 15, we are able to estimate the probability that a random bipartite
biregular graph sampled uniformly from G (n, nd/k, d, k) belongs to G ′ (n, nd/k, d, k).

Lemma 16. Let G be a bipartite biregular graph sampled uniformly from G (n, nd/k, d, k)
such that 3 6 k 6 d 6 n

32
. Then

P (G ∈ G ′ (n, nd/k, d, k)) = 1−O
(
d2

nk2

)
.

In particular, if 3 6 k 6 d 6 n
32

and d
k

= o(n1/2), as n→∞,

P (G ∈ G ′ (n, nd/k, d, k))→ 1.

Proof. Let V = V1 ∪ V2 be the vertex set of a random graph G sampled uniformly from
G (n, nd/k, d, k). Assume there exist two vertices v1, v2 ∈ V2 such that v1, v2 have the
same neighborhood in V1 denoted by N(v1, v2). Since deg(v1) = deg(v2) = k, N(v1, v2)
is of size k. Let L be the subgraph induced by N(v1, v2) and v1, v2 (see Figure 2). Then
|L| = 2k and lmax = k. When 1 6 d 6 n

32
, the assumption in Lemma 15 holds. By Lemma

15, we have

P(L ⊂ G) 6
(d(d− 1))k([k]k)

2

[nd− 4d2 − 1]2k
.

The number of all possible vertex pairs in V2 is
(
nd/k
2

)
and the number of all possible k

many distinct vertices in V1 is
(
n
k

)
. Therefore for sufficiently large n, the probability that

there exists two vertices in V2 having the same neighborhood is at most(
nd/k

2

)
·
(
n

k

)
· d2kk2k

[nd− 4d2 − 1]2k
6

(nd)2

2k2

(ne
k

)k ( dk

nd− 4d2 − 2k

)2k

6
(nd)2

2k2

(ne
k

)k (2k

n

)2k

=
(nd)2

2k2

(
4ek

n

)k
.

Since x ln(x) is decreasing on x ∈ (0, e−1) and 3 6 k 6 d 6 n
32

, we have for large n,
12e
n

6 4ek
n
< e−1 and k ln(4ek/n) 6 3 ln(12e/n). Then

(
4ek
n

)k
6
(
12e
n

)3
. Therefore

P (G 6∈ G ′ (n, nd/k, d, k)) = O

(
d2

nk2

)
.

This completes the proof.
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With the four lemmas above, we are ready to prove Theorem 11.

Proof of Theorem 11. Let AH be the adjacency matrix of a random (d, k)-regular hyper-
graph with d > k. Then its associated bipartite biregular graph has adjacency matrix
(13), where X is a n× nd/k matrix and XX> = AH + dI. Let G be a bipartite biregular
graphs chosen uniformly from G (n, nd/k, d, k). From Lemma 16, we have

P
(
λ2(AG) 6

√
d− 1 +

√
k − 1 + εn

)
=P
(
λ2(AG) 6

√
d− 1 +

√
k − 1 + εn | G ∈ G ′ (n, nd/k, d, k)

)
· P (G ∈ G ′ (n, nd/k, d, k)) + o(1). (16)

By Lemma 14(1), asymptotically almost surely λ2(AG) 6
√
d− 1 +

√
k − 1 + εn for some

sequence εn → 0. Therefore by (16), we have

lim
n→∞

P
(
λ2(AG) 6

√
d− 1 +

√
k − 1 + εn | G ∈ G ′ (n, nd/k, d, k)

)
= 1.

The uniform measure on G(n, nd/k, d, k) conditioned on the event {G ∈ G ′ (n, nd/k, d, k)}
is a uniform measure on G ′ (n, nd/k, d, k). Hence asymptotically almost surely a bipartite
biregular graph G sampled uniformly from G ′ (n, nd/k, d, k) satisfies (14).

Note that G also satisfies (15) asymptotically almost surely. Since there is a bijection
between G ′ (n, nd/k, d, k) and H(n, d, k) described in Lemma 10, by (14) and Lemma 13,
we have with high probability, λ2(XX

>) = λ22(AG) 6 d+k−2+2
√

(k − 1)(d− 1)+o(1).
And it implies with high probability,

λ2(AH)− k + 2 6 2
√

(k − 1)(d− 1) + o(1). (17)

Similarly, from (15), for the smallest eigenvalue λn(AH), we have with high probability,

λn(AH) + d = λn(XX>) = λ+min(AG)2 > d+ k − 2− 2
√

(d− 1)(k − 1)− o(1),

which implies with high probability,

λn(AH)− k + 2 > −2
√

(d− 1)(k − 1)− o(1). (18)

Combining (17) with (18), and note that the largest eigenvalue of A is d(k − 1), we have
|λ − k + 2| 6 2

√
(d− 1)(k − 1) + o(1) for any eigenvalue λ 6= d(k − 1) asymptotically

almost surely. This completes the proof of Theorem 11.

5 Spectra of the non-backtracking operators

Following the definition in [3], for a hypergraph H = (V,E), its non-backtracking operator

B is a square matrix indexed by oriented hyperedges ~E = {(i, e) : i ∈ V, e ∈ E, i ∈ e}
with entries given by

B(i,e),(j,f) =

{
1 if j ∈ e \ {i}, f 6= e,

0 otherwise,
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for any oriented hyperedges (i, e), (j, f). This is a generalization of the graph non-
backtracking operators to hypergraphs. In [3], a spectral algorithm was proposed for
solving community detection problems on sparse random hypergraph, and it uses the
eigenvectors of the non-backtracking operator defined above. To obtain theoretical guar-
antees for this spectral algorithm, we need to prove a spectral gap for the non-backtracking
operator. To the best of our knowledge, this operator has not been rigorously analyzed
for any random hypergraph models. In the first step, we study the spectrum of the
non-backtracking operator for the random regular hypergraphs. From the bijection in
Lemma 10, it is important to find its connection to the non-backtracking operator of the
corresponding bipartite biregular graph.

Consider a bipartite graph G = (V (G), E(G)) with V (G) = V1(G) ∪ V2(G). The
non-backtracking operator BG of G is a matrix indexed by the set of oriented edges
~E(G) = {e = (i, j) : i, j ∈ V (G), e ∈ E(G)} with dimension 2|E(G)| × 2|E(G)|. For an
oriented edge e = (i, j) and f = (s, t), define BG as

(BG)ef =

{
1, if j = s and t 6= i;

0, otherwise.

We order the elements of ~E as {e1, . . . , e2|E(G)|}, so that the first |E(G)| oriented edges
have starting vertices from V1 and ending vertices in V2. In this way, we can write

BG =

(
0 M
N 0

)
, (19)

where M,N are |E| × |E| matrices with entries in {0, 1}. The following lemma connects
the non-backtracking operator BH of a hypergraph H to the non-backtracking operator
BG of its associated bipartite graph G.

Lemma 17. Let BH be a non-backtracking operator of H. Let G be its associated bipartite
graph with a non-backtracking operator given by (19). Then BH = MN .

Proof. Since B2
G =

(
MN 0

0 NM

)
, it suffices to show the |E|× |E| submatrix MN in B2

G

is BH . From our construction of the associated bipartite graph, we know V (G) = V1 ∪ V2
and V1 = V (H), V2 = E(H). The oriented edges with starting vertices from V1 and
ending vertices from V2 can be denoted by (i, e), where i ∈ V (H), e ∈ E(H). Then for

any (i, e), (j, f) in ~E(G), we have

(B2
G)(i,e),(j,f) =

∑
(k,g)∈ ~E(G)

(BG)(i,e),(k,g)(BG)(k,g),(j,f) =
∑

(k,g)∈ ~E(G)

1{e=k,g 6=i}1{j=g,f 6=k}

= 1{(e,j)∈ ~E(G)}1{j 6=i,f 6=e} = 1{j∈e,j 6=i,f 6=e} = (BH)(i,e),(j,f).

Hence BH = MN , this completes the proof.

Remark 18. Lemma 17 is true for any hypergraphs, including non-uniform hypergraphs.
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If H is a (d, k)-regular hypergraph, then G is a (d, k)-bipartite biregular graph with
|V1(G)| = n, |V2(G)| = nd/k. Our next lemma for the spectrum of BG is from from [9].

Lemma 19 (Lemma 2 in [9]). Let G be a (d, k)-bipartite biregular graph with n vertices.
Any eigenvalue of BG belongs to one of the following categories:

1. ±1 are both eigenvalues with multiplicity |E(G)| − |V (G)| = n(d− 1)− nd/k.

2. ±i
√
d− 1 are eigenvalues with multiplicity n− r, where r is the rank of X.

3. ±i
√
k − 1 are eigenvalues with multiplicity nd/k − r.

4. Every pair of non-zero eigenvalues (−ξ, ξ) of the adjacency matrix AG generates
exactly 4 eigenvalues of BG with the equation λ4−(ξ2−d−k+2)λ2+(k−1)(d−1) = 0.

We have the following characterization of eigenvalues for BH of a (d, k)-regular hyper-
graph H. It follows immediately from Lemma 17 and Lemma 19.

Theorem 20. Let H be a (d, k)-regular hypergraph on n vertices and G be its associated
(d, k)-bipartite biregular graph with adjacency matrix AG given in (13). All eigenvalues
of BH can be classified into the following:

1. 1 with multiplicity n(d− 1)− nd/k.

2. −(d− 1) with multiplicity n− r, where r is the rank of X.

3. −(k − 1) with multiplicity nd/k − r.

4. Every pair of non-zero eigenvalues (−ξ, ξ) of AG generates exactly 2 eigenvalues of
BH with the equation: λ2 − (ξ2 − d− k − 2)λ+ (k − 1)(d− 1) = 0.

Let G be an associated (d, k)-bipartite biregular graph of a regular hypergraph H.
From [9, Section 2], ±

√
(d− 1)(k − 1) are eigenvalues of BG with multiplicity 1. Then

from Theorem 20, BH has an eigenvalue λ1(BH) = (d−1)(k−1) with multiplicity 1. From
[9, Theorem 3], for random (d, k)-bipartite biregular graphs, the second largest eigenvalue
(in absolute value) λ2(BG) satisfies

|λ2(BG)| 6 ((k − 1)(d− 1))1/4 + o(1) (20)

asymptotically almost surely as n → ∞. Therefore from the discussion above, together
with Lemma 16, we obtain the following spectral gap result for BH .

Theorem 21. Let H be a random (d, k)-regular hypergraph sampled from H(n, d, k), with
d > k > 3. Then any eigenvalue λ of BH with λ 6= (d− 1)(k − 1) satisfies

|λ| 6 ((k − 1)(d− 1))1/2 + o(1)

asymptotically almost surely as n→∞.
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6 Empirical spectral distributions

In the last section, we study the empirical spectral distribution of the adjacency matrix
of a random regular hypergraph. We define the empirical spectral distribution (ESD) of
a symmetric n× n matrix M to be the probability measure µn on R given by

µn =
1

n

∑
i=1

δλi ,

where δx is the point mass at x and λ1, . . . , λn are the eigenvalues of M . We always assume
d > k (see Remark 9). Feng and Li in [16] derived the limiting ESD for a sequence of
connected (d, k)-regular hypergraphs with fixed d, k as follows. The definition of primitive
cycles in [16] is the same as cycles in our Definition 2.

Theorem 22 (Theorem 4 in [16]). Let Hn be a family of connected (d, k)-regular hyper-
graphs with n vertices. Assume for each integer l > 1, the number of cycles of length l is
o(n). Denote q = (d−1)(k−1). For fixed d > k > 3, the empirical spectral distribution of

Mn := A−(k−2)√
(d−1)(k−1)

converges weakly in probability to the measure µ supported on [−2, 2],

whose density function is given by

f(x) :=
1 + k−1

q

(1 + 1
q
− x√

q
)(1 + (k−1)2

q
+ (k−1)x√

q
)
· 1

π

√
1− x2

4
dx. (21)

We prove that for uniform random regular hypergraphs, the assumptions in Theorem
22 hold with high probability, which implies the convergence of ESD in probability for
random regular hypergraphs.

Lemma 23. Let H be a random (d, k)-regular hypergraph with fixed d > k > 3. Then H
is connected asymptotically almost surely.

Proof. H is connected if and only if its associated bipartite biregular graph G is connected.
The first eigenvalue for the (d, k)-bipartite biregular graph G is λ1 =

√
dk and we know

from Lemma 14 and Lemma 16, for a uniformly chosen random regular hypergraph H,
the corresponding bipartite biregular graph G satisfies λ2 6

√
d− 1 +

√
k − 1 + o(1)

asymptotically almost surely. Note that for d, k > 2,
√
d− 1 +

√
k − 1 =

√
dk if and

only if d = k = 2. So when d > k > 3, for sufficiently large n, the first eigenvalue
has multiplicity one with high probability. If G is not connected, we can decompose
G as G = G1 ∪ G2 such that there is no edge between G1 and G2. Then G1, G2 are
both bipartite biregular graphs with the largest eigenvalue

√
dk. However, that implies

G satisfies λ2 =
√
dk, a contradiction.

The following lemma shows the number of cycles of length l in H is o(n) asymptotically
almost surely.

Lemma 24. Let Hn be a random (d, k)-regular hypergraph. For each integer l > 1, the
number of cycles of length l in Hn is o(n) asymptotically almost surely.
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Proof. By Lemma 16, it is equivalent to show the number of cycles of length 2l for a
random bipartite biregular graph, denoted by Xl, is o(n) with high probability. From
[15, Proposition 4], when d, k, l are fixed, E[Xl] = O(1), and Var[Xl] = O(1). Then by
Chebyshev’s inequality,

P
(
|Xl − EXl| >

n

log n

)
= O

(
log2(n)

n2

)
.

Hence Xl = o(n) asymptotically almost surely.

Combining Theorem 22, Lemma 23 and Lemma 24, we have the following theorem for
the ESDs of random regular hypergraphs with fixed d, k:

Theorem 25. Let An be the adjacency matrix of a random (d, k)-regular hypergraph on

n vertices. Let Mn := A−(k−2)√
(d−1)(k−1)

. For fixed d > k > 3, the empirical spectral distribution

of Mn converges in probability to a measure µ with density function f(x) given in (21).

Remark 26. When k = 2, f(x) is the density of the Kesten-McKay law [34] with a
different scaling factor. For k > 3, the limiting distribution in (21) is not symmetric
(i.e. f(x) 6= f(−x)), which is quite different from the random graph case. For random
bipartite biregular graphs with bounded degrees, the limit of the ESDs was derived in
[19], and later in [7] using different methods.

In [16], the cases where d, k grow with n have not been discussed. With the results
on random bipartite biregular graphs from [15, 41], we can get the following result in this
regime.

Theorem 27. Let An be the adjacency matrix of a random (d, k)-regular hypergraph on n
vertices. For d→∞ with d

k
→ α > 1 and d = o(n1/2), the empirical spectral distribution

of Mn := An−(k−2)√
(d−1)(k−1)

converges in probability to a measure supported on [−2, 2] with a

density function

g(x) =
α

1 + α +
√
αx

1

π

√
1− x2

4
. (22)

To prove Theorem 27, we will apply the following results for the global law of random
bipartite biregular graphs.

Theorem 28 (Theorem 1 in [15] and Corollary 2.2 in [41]). Let AG be the adjacency
matrix of a random bipartite biregular graph sampled from G(n,m, d, k) with n 6 m,
d
k
→ α > 1, and d = o(n1/2) as n → ∞. Then the ESD of AG√

k
converges asymptotically

almost surely to a distribution supported on [−b,−a] ∪ [a, b] with density

h(x) :=
α

(1 + α)π|x|
√

(b2 − x2)(x2 − a2), (23)

and a point mass of α−1
α+1

at 0, where a = 1− α−1/2, b = 1 + α−1/2.
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Proof of Theorem 27. Let AG be the adjacency matrix of a random (d, k)-bipartite bireg-
ular graph sampled from G(n, nd/k, d, k). Since X is a n × m matrix with n 6 m, the

ESD of XX>

k
is the distribution of the squares of the nonzero eigenvalues of AG√

k
, and from

(23), the ESD of XX>

k
is supported on [a2, b2] with the density function given by

h̃(x) =
α

2πx

√
(b2 − x)(x− a2) (24)

asymptotically almost surely. By Lemma 16, the same statement holds for a random
bipartite biregular graph G sampled uniformly from G ′ (n, nd/k, d, k). Since the adjacency
matrix of the corresponding regular hypergraph H is An = XX> − d, by scaling, this
implies that the ESD of Mn = An−k−2√

(d−1)(k−1)
is supported on [−2, 2] and the density is given

by (22).

The convergence of empirical spectral distributions on short intervals (also known as
the local law) for random bipartite biregular graphs was studied in [15, 41, 44]. Univer-
sality of eigenvalue statistics was studied in [43]. All of these local eigenvalue statistics
can be translated to random regular hypergraphs via the bijection in Lemma 10. As
an example, we translate the following result about the local law for random bipartite
biregular graphs in [15] to random regular hypergraphs.

Theorem 29. Let H be a random (d, k)-regular hypergraph on n vertices satisfying d→∞
as n → ∞, d

k
→ α > 1 and log k = o

(√
log n

)
. Let A be the adjacency matrix of H and

µn be the ESD of M := A−d√
(d−1)(k−1)

and µ be the limiting ESD defined in (22). For

any ε > 0, there exists a constant Cε such that for all sufficiently large n and δ > 0,

for any interval I ⊂ [−2 + ε, 2] with length |I| > 4(1+
√
α)2√
α

max
{

2η, η
−δ log δ

}
, it holds

that |µn(I) − µ(I)| 6 δCε|I| with probability 1 − o(1), where η is given by the following
quantities:

h = min

{
log n

9(log k)2
, k

}
, r = e1/h, η = r1/2 − r−1/2. (25)

We prove Theorem 29 from the following local law for random bipartite biregular
graphs in [15].

Lemma 30 (Theorem 3 in [15]). Let G be a random (d, k)-bipartite biregular graph on
n+nd/k vertices satisfying d→∞ as n→∞ and log k = o

(√
log n

)
, d
k
→ α > 1. Let AG

be the adjacency matrix of G and µn be the ESD of AG√
k−1 and let µ be the measure defined

in (23). For any ε > 0, there exists a constant Cε such that for all sufficiently large n and

0 < δ < 1, for any interval I ⊂ R avoiding [−ε, ε] and with length |I| > max
{

2η, η
−δ log δ

}
,

|µn(I)− µ(I)| 6 δCε|I| (26)

with probability 1− o(1/n), where η is given in (25).
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Proof of Theorem 29. For any interval I ⊂ R and a symmetric matrix M , we denote
NM
I to be the number of eigenvalues of M in the interval I. For a random (d, k)-regular

hypergraph H with adjacency matrix A, let G be its associated bipartite biregular graph
and AG be the adjacency matrix of G. With Lemma 16, we know (26) holds for AG
with probability 1 − o(1). Recall that the ESD of W := XX>

k−1 is the distribution of the

squares of the nontrivial eigenvalues of AG√
k−1 . Let M := AG−k−2√

(d−1)(k−1)
. Consider any interval

I1 = [β, γ] ⊂ [−2 + ε, 2] with length

|I1| >
4(1 +

√
α)2√

α
max

{
2η,

η

−δ log δ

}
. (27)

Let I2 =
[√

d−1
k−1β + d+k+2

k−1 ,
√

d−1
k−1γ + d+k+2

k−1

]
:= [β′, γ′] be a shifted and rescaled interval

from I1. We have

|I2| = γ′ − β′ = (
√
α + o(1))(β − γ) = (

√
α + o(1))|I1|, (28)

β′ =
√
αβ + α + 1 + o(1) = (

√
α− 1)2 +

√
αε+ o(1) > (

√
α− 1)2 +

ε

2
, (29)

γ′ 6 2

√
d− 1

k − 1
+
d+ k + 2

k − 1
= 2
√
α + α + 1 + o(1) = (1 +

√
α)2 + o(1). (30)

Let I3 := [
√
β′,
√
γ′]. From the eigenvalue relation between M,W and AG, we have

NM
I1

= NW
I2

= 2N
AG√
k−1

I3
. Note that from (28) and (30), the interval length of I3 satisfies

|I3| =
√
γ′ −

√
β′ =

γ′ − β′√
γ′ +

√
β′

>
(
√
α + o(1))|I1|

2(1 +
√
α)2 + o(1)

> max

{
2η,

η

−δ log δ

}
,

where the last inequality is from (27). From (29),

|I3| =
γ′ − β′√
γ′ +

√
β′

6
γ′ − β′

2
√
β′

6

√
α + o(1)

2(
√
α− 1)2 + ε

|I1|. (31)

From Lemma 30, since
√
β′ >

√
ε/2, I3 is an interval avoiding [−

√
ε/2,

√
ε/2], hence

there exists a constant Cε such that∣∣∣∣∣ 1

n+ nd
k

N
AG√
k−1

I3
− µG(I3)

∣∣∣∣∣ 6 δCε|I3|, (32)

where µG is the limiting measure defined in (23). Let µX be the limiting measure defined
in (24) and µA be the limiting measure defined in (22). Note that µA(I1) = µX(I2) =
2(α + 1)µG(I3). Therefore (32) implies∣∣∣∣∣ 1

2(n+ nd
k

)
NM
I1
− 1

2(α + 1)
µA(I1)

∣∣∣∣∣ 6 δCε|I3|. (33)
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Let µn be the ESD of M . From (33), we get

|µn(I1)− µA(I1)| =
∣∣∣∣ 1nNM

I1
− µA(I1)

∣∣∣∣ = 2

(
1 +

d

k

) ∣∣∣∣∣ 1

2(n+ nd
k

)
NM
I1
− 1

2(1 + d
k
)
µA(I1)

∣∣∣∣∣
62

(
1 +

d

k

)(∣∣∣∣∣ 1

2(n+ nd
k

)
NM
I1
− 1

2(1 + α)
µA(I1)

∣∣∣∣∣+

∣∣∣∣∣ 1

2(α + 1)
− 1

2(1 + d
k
)

∣∣∣∣∣µA(I1)

)

62

(
1 +

d

k

)
δCε|I3|+

1

α + 1

∣∣∣∣dk − α
∣∣∣∣µA(I1)

6δ
(2 + 2α)

√
α + o(1)

2(
√
α− 1)2 + ε

Cε|I1|+ o(µA(I1)) 6
4δ(1 + α)

√
α

2(
√
α− 1)2 + ε

Cε|I1| := δC ′ε|I1|, (34)

where the first inequality in (34) is from (31), and C ′ε is a constant depending on α and
ε. This completes the proof of Theorem 29.
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