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Abstract

We study the joint distribution of descents and sign for elements of the symmetric
group and the hyperoctahedral group (Coxeter groups of types A and B). For both
groups, this has an application to riffle shuffling: for large decks of cards the sign is
close to random after a single shuffle. In both groups, we derive generating functions
for the Eulerian distribution refined according to sign, and use them to give two
proofs of central limit theorems for positive and negative Eulerian numbers.

Mathematics Subject Classifications: 05A15, 60F05

1 Introduction

The distribution of descents over all permutations is known as the Eulerian distribution,
and the number of permutations of n elements with a given number of descents is known
as an Eulerian number. The Eulerian numbers are ubiquitous in combinatorics; see [23]
for an entire book devoted to Eulerian numbers, as well as various refinements and gen-
eralizations of them.

In this paper we study one such refinement, namely the joint distribution of descents
and sign, which has been studied, e.g., by Tanimoto [29], and more recently by Dey and
Sivasubramanian [10]. Our work is also in some sense an extension of work of Loday [22]
and Desarménien and Foata [9], who studied “signed” Eulerian numbers. This distribution

the electronic journal of combinatorics 28(3) (2021), #P3.37 https://doi.org/10.37236/10222

https://doi.org/10.37236/10222


is also briefly mentioned as an example in Section 9.3 of the sweeping work by Hwang,
Chern, and Duh [19] who give a unified approach to central limit theorems for distributions
satisfying Eulerian-type recurrences.

Permutations of the set [n] = {1, 2, . . . , n} provide one combinatorial description for
the elements of the symmetric group Sn. In Section 5 we also consider the analogous joint
distributions of descents and sign over elements of the hyperoctahedral group Bn (and
more generally, we replace sign by a one-dimensional character of Bn). The symmetric and
hyperoctahedral groups are Coxeter groups of types An−1 and Bn, and the distribution of
descents is well-understood in any finite Coxeter group; see, e.g., the recent paper of Kahle
and Stump [20] for the current state of knowledge. However, to our knowledge the limiting
distribution of descents and sign has not been investigated outside of the symmetric
group, and this paper is the first to make connections between such distributions and
card shuffling. We restrict our attention to these two cases and not, for example, type
Dn. While the definitions related to the distributions carry over to all finite Coxeter
groups, the connection with card shuffling (and combinatorial flavor) is strongest in types
An and Bn.

1.1 Basic definitions

We now provide some definitions in the symmetric group case. Definitions for the hyper-
octahedral group are given in Section 5. First, we define a permutation w to be a bijection
[n]→ [n], which we write in one-line notation: w = w(1)w(2) · · ·w(n). We let Sn denote
the set of all permutations of [n]. A descent of a permutation is a position i such that
w(i) > w(i+ 1). We let des(w) denote the number of descents of w, i.e., for w ∈ Sn,

des(w) = |{1 6 i 6 n− 1 : w(i) > w(i+ 1)}|.

Similarly, an ascent of a permutation is a position i such that w(i) < w(i + 1), and the
number of ascents is

asc(w) = |{1 6 i 6 n− 1 : w(i) < w(i+ 1)}|.

If a permutation has k descents, then it has n − 1 − k ascents, while its reversal, ←−w =
w(n)w(n − 1) · · ·w(1) has k ascents. Thus, the permutations with k descents are in
bijection with the permutations having k ascents. Note also that if w has k descents,
the descent positions partition w into k + 1 maximally increasing runs. For example, the
permutation w = 4|3|126|5 has des(w) = 3, and the descent positions (indicated with
vertical bars) partition w into 4 increasing runs.

The Eulerian numbers are denoted
〈
n
k

〉
, 1 6 k 6 n, and they count the number of

permutations with k increasing runs, i.e., with k − 1 descents. That is,〈
n

k

〉
= |{w ∈ Sn : des(w) = k − 1}|.

The first few rows of the Eulerian triangle are shown in Table 1.
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n\k 1 2 3 4 5 6 7
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1

Table 1: Triangle of the Eulerian numbers
〈
n
k

〉
, the number of permutations in Sn with

k − 1 descents.

The Eulerian polynomials are the generating functions for the rows of this triangle,
i.e., the generating function for permutations according to the descent statistic:

An(t) =
n∑

k=1

〈
n

k

〉
tk =

∑
w∈Sn

tdes(w)+1.

For example, we have A3(t) = t+ 4t2 + t3 and A4(t) = t+ 11t2 + 11t3 + t4.
The sign of a permutation is 1 if it can be written as a product of an even number of

transpositions; otherwise the sign is −1. The sign of a permutation is well-defined, and
denoted by sgn(w). It is also related to other statistics for permutations, e.g.,

sgn(w) = (−1)n−c(w) = (−1)inv(w),

where c(w) is the number of cycles of w, and inv(w) is the number of inversions of w. Let
S+
n denote the set of permutations of positive sign (also known as “even” permutations),

and let S−n = Sn − S+
n denote the set of permutations with negative sign, i.e.,

S+
n = {w ∈ Sn : sgn(w) = 1} and S−n = {w ∈ Sn : sgn(w) = −1}.

We now define the positive Eulerian number, denoted
〈
n
k

〉+
, to be the number of

permutations in S+
n with k−1 descents and define the negative Eulerian number, denoted〈

n
k

〉−
, to be the number of permutations in S−n with k − 1 descents, i.e.,〈
n

k

〉+

= |{w ∈ S+
n : des(w) = k − 1}| and

〈
n

k

〉−
= |{w ∈ S−n : des(w) = k − 1}|.

The first few rows of the positive and negative Eulerian numbers are shown in Tables 2
and 3.
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n\k 1 2 3 4 5 6 7
1 1
2 1 0
3 1 2 0
4 1 5 5 1
5 1 14 30 14 1
6 1 29 147 155 28 0
7 1 64 586 1208 605 56 0

Table 2: Triangle of the positive Eulerian numbers,
〈
n
k

〉+
, the number of permutations in

S+
n with k − 1 descents.

n\k 1 2 3 4 5 6 7
1 0
2 0 1
3 0 2 1
4 0 6 6 0
5 0 12 36 12 0
6 0 28 155 147 29 1
7 0 56 605 1208 586 64 1

Table 3: Triangle of the negative Eulerian numbers,
〈
n
k

〉−
, the number of permutations in

S−n with k − 1 descents.

We define the positive Eulerian polynomial, A+
n (t), and the negative Eulerian polyno-

mial, A−n (t), to be the generating functions for the positive and negative Eulerian numbers,
respectively. That is,

A+
n (t) =

n∑
k=1

〈
n

k

〉+

tk =
∑
w∈S+

n

tdes(w)+1,

and

A−n (t) =
n∑

k=1

〈
n

k

〉−
tk =

∑
w∈S−n

tdes(w)+1.

For example, A+
3 (t) = t + 2t2, A−3 (t) = 2t2 + t3, A+

4 (t) = t + 5t2 + 5t3 + t4, and
A−4 (t) = 6t2 + 6t3. Throughout the paper, when referring generically to both the pos-
itive Eulerian numbers and the negative Eulerian numbers, or to their corresponding
polynomial generating functions, we will write “±-Eulerian numbers” or “±-Eulerian
polynomials” and use the notation

〈
n
k

〉±
and A±n (t).
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1.2 Main results for the symmetric groups

This paper contains three theorems and a conjecture, and each theorem is proved in
more than one way. The conjecture, while interesting in its own right, would provide
a third proof of one of the theorems. In Section 5 we have analogous results for the
hyperoctahedral group.

Among the many identities for Eulerian numbers is the following power series identity:

An(t)

(1− t)n+1
=
∑
k>0

kntk. (1)

Our first main result for the±-Eulerian numbers is a similar identity, given in the following
theorem.

Theorem 1.1 (Generating function identity). For all n > 1,

A±n (t)

(1− t)n+1
=
∑
k>0

kn ± kdn/2e

2
tk. (2)

We will provide two different proofs of this result in Section 2. The first of these
shows that it is essentially a corollary of an identity of Desarménian and Foata [9]. The
second proof uses a generating function for the joint distribution of descents and cycle
structure studied by Fulman [15] and an identity of Hall [18]. We will also draw two
interesting conclusions from Theorem 1.1. The first of these is a central limit theorem for
the distribution of ±-Eulerian numbers, first obtained by Hwang, Chern, and Duh [19].

Theorem 1.2 (Limiting distribution). The distribution of the coefficients of A±n (t) is
asymptotically normal as n → ∞. For n > 4, these numbers have mean (n + 1)/2 and
for n > 6, these numbers have variance (n+ 1)/12.

While one proof of Theorem 1.2 will use Theorem 1.1 (essentially, this is the same
idea outlined independently in [19, Section 9.3]), we provide another proof in Section 3.
In fact we conjecture that the polynomials A±n (t) have all roots real, which by Harper’s
method [24] would give a third proof of our central limit theorem.

Conjecture 1.3 (Real roots). The ±-Eulerian polynomials have only real roots: A+
n (t)

has real roots for n > 1 and A−n (t) has real roots for n > 2.

We have verified Conjecture 1.3 for n 6 100. We provide some remarks on the con-
jecture in Section 2.3.

The second conclusion that we can draw from Theorem 1.1 has to do with card shuf-
fling.

Theorem 1.4 (Sign after a riffle shuffle). For a-shuffling starting at the identity, the
probability of having sign 1 after k steps is equal to

1

2
+

1

2akbn/2c
.
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By shuffling here we mean the Gilbert-Shannon-Reeds (GSR) model of riffle shuffling,
the details of which will be provided in Section 4. In that section we also present two
further proofs of Theorem 1.4, including one that follows immediately from work of Amy
Pang. A similar result for shelf-shuffling machines is also discussed there, which says
that the probability of having sign 1 after one pass through a shelf-shuffling machine is
exactly 1/2.

2 Identities for ±-Eulerian numbers and polynomials

In this section we will prove Theorem 1.1 and discuss some identities and recurrences for
±-Eulerian numbers and polynomials.

2.1 Proofs of Theorem 1.1

We will present two proofs of Theorem 1.1. As we shall see, this result is essentially a
corollary of an identity of Desarménien and Foata [9] for which Wachs [30] has provided
a simple proof. We also provide a second proof using a generating function identity of
Fulman [15] for the joint distribution of descents and cycle structure.

For the first proof of Theorem 1.1, we will use the generating function for the refinement
of the Eulerian polynomial that gives the joint distribution of inversions and descents:

An(q, t) =
∑
w∈Sn

qinv(w)tdes(w)+1,

where inv(w) is the number of inversions of w, defined as the number of pairs (i, j) with
i < j and w(i) > w(j).

Since the sign of w is sgn(w) = (−1)inv(w), it follows that

An(−1, t) = A+
n (t)− A−n (t).

Loday [22] initiated an investigation of the coefficients of An(−1, t), which he and others,
such as Desarménian and Foata [9], called “signed Eulerian numbers.” Among other
things, Desarménian and Foata prove that [9, Theorem 1]:

A2n(−1, t) = (1− t)nAn(t) and A2n+1(−1, t) = (1− t)nAn+1(t). (3)

The identities in (3) can be proved via manipulations of identities for An(q, t) as q → −1.
Wachs [30] also gives a combinatorial proof of (3) with a sign-reversing involution.

By adding or subtracting Am(t) = A+
m(t) +A−m(t), with m = 2n or m = 2n+ 1, to the

equations in (3) we can now conclude

2A±2n(t) = A2n(t)± (1− t)nAn(t) and 2A±2n+1(t) = A2n+1(t)± (1− t)nAn+1(t). (4)

The first proof of Theorem 1.1 now follows from basic series manipulations.
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First proof of Theorem 1.1. Using the equations from (4) and the identity of Equation
(1), we obtain

2A±2n(t)

(1− t)2n+1
=

A2n(t)

(1− t)2n+1
± An(t)

(1− t)n+1
,

=
∑
k>0

k2ntk ±
∑
k>0

kntk,

=
∑
k>0

[k2n ± kn]tk.

and

2A±2n+1(t)

(1− t)2n+2
=

A2n+1(t)

(1− t)2n+2
± An+1(t)

(1− t)n+2

=
∑
k>0

k2n+1tk ±
∑
k>0

kn+1tk,

=
∑
k>0

[k2n+1 ± kn+1]tk.

Thus, for any n > 1,
A±n (t)

(1− t)n+1
=
∑
k>0

kn ± kdn/2e

2
tk,

as desired.

We now turn to the second proof of Theorem 1.1. We begin the second proof by
recalling an identity from [15, Theorem 1]:

∑
n>0

un
∑

w∈Sn t
des(w)+1

∏
i x

ni(w)
i

(1− t)n+1
=
∑
k>1

tk
∏
j

(1− xjuj)−fj,k . (5)

In this identity, the xi are indeterminates, ni(w) is the number of i-cycles in the permu-
tation w, and

fj,k =
1

j

∑
d|j

µ(d)kj/d,

where µ is the Möbius function of elementary number theory. While we do not make use
of the fact here, the quantity fj,k counts the number of primitive necklaces of length j
drawn from an alphabet of k letters. We will also make use of the following lemma, which
is found in Marshall Hall’s group theory book [18], in connection with the commutator
calculus on the free group.

Lemma 1. For any integer k > 1, we have the following power series identity:∏
j>1

(1− uj/kj)−fj,k =
1

1− u
.
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The upshot for us comes from setting all xi = −1 and u = −u in Equation (5). Note
that

∏
i(−1)ni(w) = (−1)c(w), where c(w) is the number of cycles in w. Since sgn(w) =

(−1)n−c(w) = (−1)n+c(w), we have the following series identity:

∑
n>0

un
∑

w∈Sn t
des(w)+1 sgn(w)

(1− t)n+1
=
∑
k>1

tk
∏
j>1

(1 + (−u)j)−fj,k , (6)

which is key in what follows.

Second proof of Theorem 1.1. Since Equation (1) gives∑
w∈Sn

tdes(w)+1 = (1− t)n+1
∑
k>1

tkkn,

it is enough to prove that∑
w∈Sn

tdes(w)+1 sgn(w) = (1− t)n+1
∑
k>1

tkkdn/2e. (7)

We now attack the product on the right-hand side of Equation (6) with algebra and
an application of Lemma 1. Letting v = ku, we have:

∏
j>1

(
1

1 + uj

)fj,k

=
∏
j>1

(
1− uj

1− u2j

)fj,k

,

=
∏
j>1

(
1− vj/kj

1− (uv)j/kj

)fj,k

,

=
1− v

1− uv
=

1− ku
1− ku2

.

Thus by setting u = −u, we have the identity∏
j>1

(1 + (−u)j)−fj,k =
1 + ku

1− ku2
,

and we conclude that∑
n>0

un
∑

w∈Sn t
des(w)+1 sgn(w)

(1− t)n+1
=
∑
k>1

tk
1 + ku

1− ku2

=
∑
k>1

tk(1 + ku2 + k2u4 + · · ·+ ku+ k2u3 + k3u5 + · · · ),

=
∑
n>0

∑
k>1

untkkdn/2e.

Taking the coefficient of un on both sides proves Equation (7).
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2.2 Symmetries and recurrences

Having established our main series identity for the ±-Eulerian polynomials, we gather
some interesting features of them now.

First, we consider the homogeneous Eulerian polynomials

An(s, t) = (sn/t)An(t/s) =
∑
w∈Sn

sn−1−des(w)tdes(w)

=
∑
w∈Sn

sasc(w)tdes(w),

where asc(w) denotes the number of ascents of w, as mentioned in the introduction.
Similarly, we let

A±n (s, t) = (sn/t)A±n (t/s) =
∑
w∈S±n

sn−1−des(w)tdes(w)

=
∑
w∈S±n

sasc(w)tdes(w).

Note that while A±n (t) has degree n − 1 or n in t, this homogeneous version always
has degree n − 1. For example, A+

3 (s, t) = s2 + 2st, A−3 (s, t) = 2st + t2, A+
4 (s, t) =

s3 + 5s2t+ 5st2 + t3, and A−4 (s, t) = 6s2t+ 6st2.
Because ascents and descents are swapped under the involution that reverses a per-

mutation, w →←−w = w(n)w(n− 1) · · ·w(1), we have that

An(s, t) = An(t, s),

or equivalently, 〈
n

k

〉
=

〈
n

n+ 1− k

〉
.

That is to say, the rows of Table 1 are palindromic. It is also quite well-known that the
Eulerian numbers satisfy the recurrence〈

n

k

〉
= (n+ 1− k)

〈
n− 1

k − 1

〉
+ k

〈
n− 1

k

〉
, (8)

with initial conditions
〈
n
1

〉
=
〈
n
n

〉
= 1 for n > 1. This identity can be explained bijectively,

by considering whether the insertion of the letter n into a permutation in Sn−1 leaves the
number of descents unchanged or increases the number of descents by one. See, e.g., [23,
Chapter 1].

The two-term recurrence of Equation (8) is neatly summarized with the polynomial
recurrence

An+1(s, t) = T [An(s, t)] , (9)
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where T is the linear operator

T = s+ t+ st

(
d

ds
+
d

dt

)
.

See Section 7 of Brándën’s article [6] for a discussion of sequences of polynomials defined
by linear operators such as these.

Now we present similar recurrences and symmetries for the ±-Eulerian numbers and
polynomials both of which have appeared previously in work of Tanimoto [29] and in work
of Dey and Sivasubramanian [10].

Proposition 2.1 (Symmetries; see [29], Sec. 2 and [10], Lemma 10). For any n > 1:

A±n (s, t) =

{
A±n (t, s) if n ≡ 0, 1 (mod 4),

A∓n (t, s) if n ≡ 2, 3 (mod 4).
(10)

In terms of coefficients,〈
n

k

〉±
=

{〈
n

n+1−k

〉±
if n ≡ 0, 1 (mod 4),〈

n
n+1−k

〉∓
if n ≡ 2, 3 (mod 4).

(11)

In other words, the rows of Tables 2 and 3 are palindromic for n ≡ 0, 1 (mod 4), while
the rows of the two tables are mirror images when n ≡ 2, 3 (mod 4).

Proof. These symmetries are a consequence of the reversal involution previously discussed:
w ↔←−w . It is straightforward to check that this map has the property that for any w ∈ Sn,
des(←−w ) = n− 1− des(w), while inv(←−w ) =

(
n
2

)
− inv(w).

If n ≡ 0, 1 (mod 4), then
(
n
2

)
is even, in which case inv(←−w ) ≡ inv(w) (mod 2), and

hence sgn(←−w ) = sgn(w). Otherwise, if n ≡ 2, 3 (mod 4), we see that
(
n
2

)
is odd, and

therefore ←−w and w have opposite sign. This completes the proof.

To state the recurrence result, we first let

Ts = s+
st

2

(
d

ds
+
d

dt

)
and Tt = t+

st

2

(
d

ds
+
d

dt

)
.

Proposition 2.2 (Recurrences; see [10] Theorems 15 and 18). We have the following
recurrences, for any m > 1:

A±2m = TsA
±
2m−1(s, t) + TtA

∓
2m−1(s, t), (12)

A±2m+1 = TA±2m(s, t). (13)

In terms of coefficients, we have〈
2m

k

〉±
=

〈
2m− 1

k − 1

〉∓
+

(
2m− k

2

)〈
2m− 1

k − 1

〉
(14)

+

(
k − 1

2

)〈
2m− 1

k

〉
+

〈
2m− 1

k

〉±
,〈

2m+ 1

k

〉±
= (2m+ 2− k)

〈
2m

k − 1

〉±
+ k

〈
2m

k

〉±
. (15)
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These recurrences can be explained combinatorially by considering the effect of in-
serting n + 1 into a permutation of length n, much as one proves the classical Eulerian
recurrence in Equation (8). However, there are many cases to check carefully; we do not
know of a simple argument. The full proof of Proposition 2.2 can be found in [10].

2.3 Real roots

In the introduction, we presented Conjecture 1.3, which asserted that all the roots of the
±-Eulerian polynomials are real. It has been known that the classical Eulerian polyno-
mials are real rooted since Frobenius; see [6] for a thorough survey of similar sequences
of polynomials.

From Equation (10), we find the univariate ±-Eulerian polynomials satisfy A±n (t) =
tn+1A±n (1/t) if n ≡ 0, 1 (mod 4) and A±n (t) = tn+1A∓n (1/t) if n ≡ 2, 3 (mod 4). This
means the nonzero roots of A±n (t) come in reciprocal pairs when n ≡ 0, 1 (mod 4), and
when n ≡ 2, 3 (mod 4), the nonzero roots of A+

n (t) are reciprocals of the nonzero roots of
A−n (t). It would be lovely if the roots of A+

n (t) and A−n (t) were interlacing. This is false
in general.

A fact one encounters in the study of real rootedness [6] is that the operator T preserves
real roots. Thus, by Equation (13), we know that if A±2m(t) has real roots, then so does
A±2m+1(t). Therefore Conjecture 1.3 only needs to be proved in the even case. To this end,
we can apply the recurrences of Proposition 2.2 twice in a row to see

A±2m+2(s, t) = TsTA
±
2m(s, t) + TtTA

∓
2m(s, t).

It is not difficult to prove that the operators Ts and Tt preserve real-rootedness, and em-
pirical evidence suggests that the pair of polynomials on the right are real and interlacing
as well.

3 Central limit theorems

In this section we prove Theorem 1.2. In fact we will give two proofs of this central limit
theorem, one using the “method of moments” in comparison with the usual Eulerian
distribution, and the other using “analytic combinatorics” starting from the identity in
Theorem 1.1.

The first proof relies on the following result about moments of the ±-Eulerian distri-
butions. We note that Section 9.3 of [19] also proves Theorem 1.2 by moments.

Proposition 3.1. Let r be any positive integer. Then for bn/2c > r, the rth moment of
the ±-Eulerian distribution equals the rth moment of the Eulerian distribution.

Proof. Instead of working with the rth moment, we can work with the rth falling moment,
which can be computed from the relevant generating function by differentiating (with
respect to t) r times and then setting t = 1.

the electronic journal of combinatorics 28(3) (2021), #P3.37 11



Restating Equation (4), we have

A±n (t) =
1

2
An(t)± 1

2
(1− t)bn/2cAdn/2e(t).

Now observe that if bn/2c > r, then differentiating

(1− t)bn/2c

r times and setting t = 1 gives 0. And by the product rule, differentiating the expression

(1− t)bn/2cAdn/2e(t)

r times and setting t = 1 also gives 0. The theorem follows.

It is a well-known fact that the Eulerian numbers
〈
n
k

〉
are asymptotically normal with

mean (n + 1)/2 and variance (n + 1)/12. See, e.g., Bender [3]. Then by taking r = 1 in
Proposition 3.1, we find that for n > 4, averaging the number of descents over positive
signed permutations gives (n − 1)/2, and that averaging the number of descents over
negative signed permutations also gives (n − 1)/2. Likewise, if r = 2, we find in both
cases a variance of (n+ 1)/12 when n > 6. This gives our second proof of Theorem 1.2.

First proof of Theorem 1.2. This is immediate from the method of moments, Proposition
3.1, and the fact that the Eulerian distribution is asymptotically normal with the claimed
mean and variance.

For our second proof we start with the identity of Theorem 1.1 and use a modified
Curtiss’ theorem proved in Kim and Lee’s paper [21, Proposition 2.2]. We state a version
of that result in the following lemma.

Lemma 2. Let X be a random variable and let {Xn} be a sequence of random variables,
with moment generating functions MX and MXn, respectively. Suppose there is an open
interval I ⊆ R on which

lim
n→∞

MXn(s) = MX(s)

for all s ∈ I. Then Xn converges in distribution to X.

We can express the moment generating function for the ±-Eulerian numbers
〈
n
k

〉±
explicitly. To be precise, we introduce a random variable W±

n which takes values in
{1, · · · , n} with probabilities

P(W±
n = k) =

1

|S±n |

〈
n

k

〉±
.

Note that W±
n is distributed as one more than the number of descents of a permutation

drawn uniformly at random from S±n . Then, from Theorem 1.1, the moment generating
function of W±

n takes the form

E[exp{sW±
n }] =

A±n (es)

n!/2
=

(1− es)n+1

n!

∞∑
k=1

(
kn ± kdn/2e

)
eks.
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Our task now shifts to estimating this function well enough to show that for all fixed s in
an appropriately chosen interval I, the normalized moment generating function converges
as n→∞ to a moment generating function MX(s) for a normal distribution X with the
desired mean and variance.

Second proof of Theorem 1.2. We argue for positive Eulerian numbers; the argument for
negative Eulerian numbers is almost identical. Fix a real number s > 0.

The asymptotic normality of W+
n translates to the claim that the following normalized

random variable

Z+
n =

1√
n+ 1

(
W+

n −
n+ 1

2

)
converges in distribution to the normal distribution with zero mean and variance 1

12
. In

view of Lemma 3.1 and the subsequent remark, it is sufficient to prove that the Laplace
transform E[exp{−sZ+

n }] converges to exp{ s2
24
} as n → ∞ for each s in the interval

I = (0,∞). We henceforth write M+
n (s) = E[exp{−sZ+

n }]. Then

M+
n (s) = e

s
2

√
n+1 E

[
exp

{
−sW+

n /
√
n+ 1

} ]
=
e
s
2

√
n+1
(
1− e−s/

√
n+1
)n+1

n!

∞∑
k=1

(
kn + kdn/2e

)
e−sk/

√
n+1.

Plugging x = s√
n+1

in to the approximation

1− e−x

x
= exp

{
−x

2
+ log

(
sinh(x/2)

x/2

)}
= exp

{
−x

2
+
x2

24
+O(x3)

}
,

we see that the prefactor of M+
n (s) equals

e
s
2

√
n+1
(
1− e−s/

√
n+1
)n+1

n!
= e

s2

24
+O(n−1/2) 1

n!

(
s√
n+ 1

)n+1

.

In terms of M+
n (s) itself,

M+
n (s) = e

s2

24
+O(n−1/2) 1

n!

(
s√
n+ 1

)n+1 ∞∑
k=1

(
kn + kdn/2e

)
e−sk/

√
n+1.

Given this representation, we estimate the summation part via approximation to in-
tegrals. Indeed, for t ∈ (0, 1) and a > 1, we have∫ a

a−1
xntx+1 dx 6 anta 6

∫ a+1

a

xntx−1 dx.

Summing these over all a ∈ {1, 2, · · · }, we obtain

t

∫ ∞
0

xntx dx 6
∞∑
a=1

anta 6
∫ ∞
1

xntx−1 dx 6
1

t

∫ ∞
0

xntx dx.
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Since s > 0, we have 0 < e−s/
√
n+1 < 1, and setting t = e−s/

√
n+1, we find that both t and

1
t

have asymptotic form eO(n
−1/2). Thus we can replace the sum with an integral and our

estimate now becomes

M+
n (s) = e

s2

24
+O(n−1/2) 1

n!

(
s√
n+ 1

)n+1 ∫ ∞
0

(
xn + xdn/2e

)
e−sx/

√
n+1 dx.

Making the substitution u = sx/
√
n+ 1 and using some easy comparisons, we find

M+
n (s) = e

s2

24
+O(n−1/2) 1

n!

∫ ∞
0

(
un +

(
s√
n+ 1

)bn/2c
udn/2e

)
e−u du

= e
s2

24
+O(n−1/2) 1

n!

(
n! +

(
s√
n

)bn/2c (⌈n
2

⌉)
!

)
= e

s2

24
+O(n−1/2).

Therefore, the convergence M+
n (s) → exp{ s2

24
} holds for all s in the interval I = (0,∞),

and we are done.

We close this section by mentioning that if the polynomials A±n (t) have only real roots,
i.e., if Conjecture 1.3 holds, then Harper’s method would give a third proof of Theorem 1.2.

4 Shuffling and sign

The mathematics of card shuffling is a lively topic; see [11] for a nice survey. In this section
we study the sign of a permutation generated by the Gilbert-Shannon-Reeds (GSR) model
of riffle shuffling. We derive a simple and striking exact formula for the chance of a given
sign after a riffle shuffle, and this formula implies that (for large n), one shuffle suffices to
randomize the sign of a permutation.

To begin we give some background on the GSR model of riffle shuffling, definitively
studied in a lovely paper of Bayer and Diaconis [2], to which we refer the reader for further
background.

An a-shuffle is defined as follows. Choose integers j1, . . . , ja according to the multi-
nomial distribution,

P (j1, · · · , ja) =

(
n

j1, . . . , ja

)
/an.

Thus 0 6 ji 6 n,
∑a

i=1 ji = n, and the ji have the same distribution as the number of
balls in each box i if n balls are dropped at random into a boxes.

Given the ji, cut off the top j1 cards, the next j2 cards and so on, producing a packets
(some possibly empty). Then drop cards one at a time, according to the rule that if
there are Aj cards in packet j, the next card is dropped from packet i with probability
Ai/(A1 + · · ·+ Aa). This is done until all cards have been dropped.
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When a = 2 this is a realistic model for how people shuffle cards. It turns out that an
a1-shuffle followed by an a2-shuffle is equivalent to an (a1a2)-shuffle. Thus k iterations of
a 2-shuffle is equivalent to a single 2k-shuffle.

In what follows, we let Pn,a(w) denote the probability of a permutation w after an
a-shuffle started from the identity. In fact there is an explicit formula for this quantity,
derived in [2]:

Pn,a(w) =

(
n+ a− des(w−1)− 1

n

)
/an. (16)

In particular, Equation (16) connects riffle shuffling with descents, showing that this
probability depends only on the number of descents of the inverse permutation.

The main purpose of this section is to prove Theorem 1.4, which establishes a formula
for the probability of having a permutation with sign 1 after k iterations of a-shuffling
starting from the identity permutation 123 · · ·n. Letting P+

n,ak
denote this probability

(and P−
n,ak

its complementary probability), we will show

P+
n,ak

=
1

2
+

1

2akbn/2c
. (17)

We will give two proofs of this fact, and sketch a third using unpublished work of Amy
Pang. The first of these is a corollary of the Bayer and Diaconis formula (16) together with
the identity in (2) from Theorem 1.1. The second uses an identity of Diaconis, McGrath,
and Pitman [13], along the lines of the Fulman and Hall identities referenced above.

First proof of Theorem 1.4. Equation (2) gives

1

(1− t)n+1

∑
w∈S+

n

tdes(w)+1 =
∑
a>1

an + adn/2e

2
ta.

Taking the coefficient of ta on both sides gives∑
w∈S+

n

(
n+ a− des(w)− 1

n

)
=
an + adn/2e

2
.

Since sgn(w) = sgn(w−1), therefore,∑
w∈S+

n

(
n+ a− des(w−1)− 1

n

)
=
an + adn/2e

2
.

Hence by the formula for Pn,a(w) in Equation (16), we have

∑
w∈S+

n

Pn,a(w) =
1

an

[
an + adn/2e

2

]
=

1

2
+

1

2abn/2c
,

as desired.
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To get the second proof started, we recall the following series identity from Diaconis,
McGrath, and Pitman [13, Proposition 5.6]:

1 +
∑
n>1

un
∑
w∈Sn

Pn,a(w)
∏
i>1

x
ni(w)
i =

∏
j>1

(1− ujxj/aj)−fj,a , (18)

which is very similar to Fulman’s identity (5) we used in Section 2.1. As before the
quantity ni(w) counts the number of i-cycles of w and fj,a counts the number of primitive
necklaces of length j on an alphabet of a letters. Also as in Section 2.1, we recall that
sgn(w) = (−1)n+c(w), so that replacing u with −u and setting the xi equal to (−1) yields:

1 +
∑
n>1

un
∑
w∈Sn

Pn,a(w) sgn(w) =
∏
j>1

(1 + (−u)j/aj)−fj,a , (19)

which is our jumping off point for what follows.

Second proof of Theorem 1.4. The coefficient of un on the left hand side of Equation (19)
is ∑

w∈S+
n

Pn,a(w)−
∑

w′∈S−n

Pn,a(w
′) = P+

n,a − P−n,a,

i.e., the difference in probabilities between positively and negatively signed permutations.
By application of Lemma 1 as in the first proof of Theorem 1.1, we can show the right

hand side of Equation (19) is equal to

1 + u

1− u2/a
,

and taking the coefficient of un in this series gives 1/abn/2c.
We have shown that

P+
n,a − P−n,a =

1

abn/2c
.

Since P+
n,a + P−n,a = 1, it follows that

P+
n,a =

1

2
+

1

2abn/2c
.

Since k a-shuffles is the same as one ak shuffle, the result follows.

We now sketch a third proof of Theorem 1.4. As we learned from Diaconis, this is a
simple consequence of a result of Amy Pang (unpublished and prior to our work) stating
that f(w) = sgn(w) is a right eigenfunction of the a-shuffle Markov chain with eigenvalue
a−bn/2c. The proof of Pang’s result uses a heavy dose of Hopf algebras, along the lines
of [14].
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Third proof of Theorem 1.4. Letting P denote the transition operator of the riffle shuffling
Markov chain, one has that P acts on functions f by P (f)[x] =

∑
y∈Sn P (x, y)f(y), and

more generally,

P k(f)[x] =
∑
y∈Sn

P k(x, y)f(y).

Letting id denote the identity permutation, and taking f to be the sign function, since
f = sgn is a right eigenfunction with eigenvalue a−bn/2c, it follows that

P k sgn[id] =
sgn(id)

akbn/2c
=

1

akbn/2c
.

On the other hand,

P k sgn[id] =
∑
y∈Sn

P k(id, y) sgn(y),

which is simply the chance of sign 1 after k steps minus the chance of sign −1 after k steps.
So this difference is equal to 1/(akbn/2c), and the result follows as in the first proof.

We finish this section with two further remarks on shuffling and sign.

Remark 4.1 (Time to randomness). It is well known [2] that order 3
2

log2(n) many 2-
shuffles are necessary and sufficient to mix a deck of n cards. However if one is only
interested in certain features of the deck, then randomness can occur much earlier. For
example, Diaconis, McGrath, and Pitman [13] show that the distribution of fixed points
after a 2-shuffles is close to that of a random permutation if a tends to infinity arbitrarily
slowly with n, whereas the size of the longest cycle is close to random after a single
shuffle. The paper [1] shows that for certain features of interest in card games (e.g., suits
are disregarded, or only the colors are of interest), the number of 2-shuffles needed to mix
drops from order 3

2
log2(n) to order log2(n). Our Theorem 1.4 above shows that (for large

n), the sign of a permutation becomes close to random after a single shuffle.

Remark 4.2 (Shelf-shuffling machines and sign). Another model for card shuffling is the
shelf-shuffling machine as studied in [12]. These machines are used in casinos with ten
shelves. One of the main findings of [12] is that a single use of a shelf-shuffler does not
adequately mix 52 cards, but that two iterations do adequately mix 52 cards. One may
wonder what effect shelf-shuffling machines have on the sign of a permutation. It turns
out that the probability that sgn(w) = 1 after one pass through a shelf-shuffling machine
is exactly 1/2 for all n > 2.

This follows because, as found in [12], the probability of obtaining the permutation
w ∈ Sn when using a shelf shuffler with m shelves and an n card deck is

4val(w)+1

2(2m)n

m−1∑
a=0

(
n+m− a− 1

n

)(
n− 1− 2 val(w)

a− val(w)

)
,

where val(w) is the number of valleys w(i − 1) > w(i) < w(i + 1). That is, the proba-
bility of reaching a particular permutation depends only on the number of valleys in that
permutation.
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However, for any number of valleys, say k, we have an equal number of positively and
negatively signed permutations with that many valleys, i.e.,

|{w ∈ S+
n : val(w) = k}| = |{w′ ∈ S−n : val(w′) = k}|.

This is easily seen under the involution that swaps n and n− 1; neither of these elements
can be in a valley and swapping them only changes the number of inversions by one. For
example, w = 34812765↔ 34712865 = w′.

5 Analogous results for the hyperoctahedral group

We now present our results for the hyperoctahedral group. For more background on the
combinatorics of Coxeter groups, see [5] or [23, Part III].

First, we define elements of the hyperoctahedral group Bn to be permutations of
[±n] = {−n, . . . ,−1, 0, 1, . . . , n} with signed symmetry. That is, w ∈ Bn if and only
if w is a bijection [±n] → [±n] such that w(−i) = −w(i) for all i. This symmetry
requirement means such a permutation is determined by the entries w(1), . . . , w(n), and
we write elements in one-line notation as w = w(1) · · ·w(n), using bars to indicate negative
entries. For example, w = 1̄32 ∈ B3 is the bijection given by w(−3) = −2, w(−2) = −3,
w(−1) = 1, w(0) = 0, w(1) = −1, w(2) = 3, and w(3) = 2.

To any permutation w ∈ Sn we can associate 2n elements of Bn by negating any
subset of the entries w(1), . . . , w(n), and so there are 2nn! elements of Bn, commonly,
if somewhat confusingly for this context, called signed permutations. This notion of
decorating ordinary permutations with bars is important for us. So for any element
u ∈ Sn and any J ⊆ [n], let uJ = w ∈ Bn denote the element given by

w(j) =

{
u(j) j /∈ J
−u(j) j ∈ J

For example, 134652{1,4,5} = 1̄346̄5̄2.
The definitions of descent and inversion number for elements of the hyperoctahedral

group are motivated by the theory of Coxeter groups as discussed in [5] and [23, Part III].
For any w ∈ Bn, we say i is a type B descent if w(i) > w(i + 1), for i = 0, 1, . . . , n − 1.
We let desB(w) denote the number of type B descents:

desB(w) = |{0 6 i 6 n− 1 : w(i) > w(i+ 1)}|.

For example, desB(1̄32) = 2, because w(0) > w(1) and w(2) > w(3).

Remark 5.1. We mention that Reiner’s papers [25], [26] use a different notion of descents.
Using the ordering

1 < 2 < · · · < n < −n < · · · < −2 < −1,

he says that w has a descent at position i (1 6 i 6 n − 1) if w(i) > w(i + 1) and has a
descent at position n if w(n) < 0. While these definitions are different, it is straightforward
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n\k 0 1 2 3 4 5 6
1 1 1
2 1 6 1
3 1 23 23 1
4 1 76 230 76 1
5 1 237 1682 1682 237 1
6 1 722 10543 23548 10543 722 1

Table 4: Triangle of the type B Eulerian numbers
〈
Bn
k

〉
, the number of elements in Bn

with k descents.

to check that letting w0 = n(n−1) · · · 1, then a signed permutation w ∈ Bn has d descents
with Reiner’s definition if and only if w0ww0 has d descents with our definition. Moreover,
since w0 is an involution, replacing w by w0ww0 leaves the signed cycle type (defined
below) of w unchanged.

The type B Eulerian numbers are denoted
〈
Bn
k

〉
, 0 6 k 6 n, and they count the

number of w ∈ Bn with k descents, i.e.,〈
Bn

k

〉
= |{w ∈ Bn : desB(w) = k}|.

The first few rows of the type B Eulerian triangle are shown in Table 4.
The type B Eulerian polynomials are the generating functions for the rows of this

triangle, i.e., the generating function for signed permutations according to the type B
descent statistic:

Bn(t) =
n∑

k=0

〈
Bn

k

〉
tk =

∑
w∈Bn

tdesB(w).

For example, we have B2(t) = 1 + 6t+ t2 and B3(t) = 1 + 23t+ 23t2 + t3.
The sign of an element w ∈ Bn is again motivated by the theory of Coxeter groups,

but from a combinatorial standpoint it can be phrased very simply in terms of the number
of negative entries of w and the sign of the underlying unsigned permutation. That is, if
w = uJ for u ∈ Sn and J ⊆ [n],

sgnB(w) = (−1)|J | sgn(u). (20)

For example, u = 3412 ∈ S4 has sign +1, so w = 3̄41̄2̄ has sign (−1)3 · 1 = −1. As with
the symmetric group, we denote the sets of elements with positive and negative sign by
B+

n and B−n , respectively.
We now define the type B variants of the positive and negative Eulerian numbers:〈
Bn

k

〉+

= |{w ∈ B+
n : desB(w) = k}| and

〈
Bn

k

〉−
= |{w ∈ B−n : desB(w) = k}|.
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n\k 0 1 2 3 4 5 6
1 1 0
2 1 2 1
3 1 10 13 0
4 1 36 118 36 1
5 1 116 846 836 121 0
6 1 358 5279 11764 5279 358 1

Table 5: Triangle of the type B positive Eulerian numbers,
〈
Bn
k

〉+
, the number of elements

in B+
n with k descents.

n\k 0 1 2 3 4 5 6
1 0 1
2 0 4 0
3 0 13 10 1
4 0 40 112 40 0
5 0 121 836 846 116 1
6 0 364 5264 11784 5264 364 0

Table 6: Triangle of the negative Eulerian numbers,
〈
Bn
k

〉−
, the number of elements in B−n

with k descents.

The first few rows of the type B positive and negative Eulerian numbers are shown in
Tables 5 and 6.

Similarly, we define the type B ±-Eulerian polynomials:

B+
n (t) =

n∑
k=0

〈
Bn

k

〉+

tk =
∑
w∈B+

n

tdesB(w),

and

B−n (t) =
n∑

k=0

〈
Bn

k

〉−
tk =

∑
w∈B−n

tdesB(w).

For example, B+
2 (t) = 1 + 2t + t2, B−2 (t) = 4t, B+

3 (t) = 1 + 10t + 13t2, and B−3 (t) =
13t+ 10t2 + t3.

5.1 A type B generating function identity

The analogue of Equation (1) for the hyperoctahedral group is:

Bn(t)

(1− t)n+1
=
∑
k>0

(2k + 1)ntk. (21)
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See, for example, work of Brenti [7, Theorem 3.4].
The analogous identity for the type B ±-Eulerian polynomials is as follows.

Theorem 5.2 (Type B generating function identity). For all n > 1,

B±n (t)

(1− t)n+1
=
∑
k>0

(2k + 1)n ± 1

2
tk. (22)

For the first proof of Theorem 5.2, we first step back and define the polynomial

Bn(q, t) =
∑
w∈Bn

qinvB(w)tdesB(w),

where invB(w) is the number of type B inversions, defined as follows:

invB(w) = |{1 6 i < j 6 n : w(i) > w(j)}|+ |{1 6 i < j 6 n : −w(i) > w(j)}|+
|{1 6 i 6 n : w(i) < 0}|.

Both inv(w) and invB(w) are combinatorial characterizations of the Coxeter length of an
element. See [5] for more background.

It follows from work of Tan [28, Theorem C] (using the framework of Chapter 7 of
Björner and Brenti’s book [5]) that at q = −1 we have

Bn(−1, t) = (1− t)n. (23)

This identity is also in Reiner’s paper [25], where the identity is given a combinatorial
explanation with a sign-reversing involution on Bn.

First proof of Theorem 5.2. The theorem follows quickly from identity (23). Since

B+
n (t)−B−n (t) = Bn(−1, t) = (1− t)n,

and
B+

n (t) +B−n (t) = Bn(t),

we find
2B±n (t) = Bn(t)± (1− t)n. (24)

Dividing both sides by 2(1− t)n+1 and using the series identity for Bn(t) in (21), we get

B±n (t)

(1− t)n+1
=
Bn(t)± (1− t)n

2(1− t)n+1
=
∑
k>0

(2k + 1)n ± 1

2
tk,

as desired.
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As in the symmetric group case, our second proof of Theorem 5.2 uses the joint
distribution of descents and (signed) cycle type, in this case relying on a result of Reiner
[26]. Given a cycle (

j1 j2 · · · ji−1 ji
ε1j2 ε2j3 · · · εi−1ji εij1

)
,

where εi = ±1 and ji > 0, we say that C is a positive cycle (of size i) if ε1ε2 · · · εi = +1
and a negative cycle (of size i) if ε1ε2 · · · εi = −1. Given an element w of Bn, we let ni(w)
denote the number of positive cycles of w of size i, and we let mi(w) denote the number
of negative cycles of w of size i.

The following theorem is a special case of Theorem 4.1 of Reiner [26]. Compare with
the type A identity in Equation (5).

Theorem 5.3 (Reiner). We have the following series identity:∑
n>0

un
∑

w∈Bn t
desB(w)+1

∏
i x

ni(w)
i y

mi(w)
i

(1− t)n+1
= 1 +

∑
k>1

tk
1

1− x1u
∏
m>1

(
1 + ymu

m

1− xmum

)N∗(2k−1,2m)

,

where

N∗(2k − 1, 2m) :=
1

2m

∑
d|m
d odd

µ(d)[(2k − 1)m/d − 1].

Given this theorem, we are ready for the second proof of Theorem 5.2.

Second proof of Theorem 5.2. It is not difficult to see that

sgnB(w) = (−1)n−
∑
i ni(w).

Setting u 7→ −u, xi 7→ −1, yi 7→ 1 in Theorem 5.3 gives that∑
n>0

un
∑

w∈Bn sgnB(w)tdesB(w)+1

(1− t)n+1
= 1 +

∑
k>1

tk

(1− u)
.

Taking the coefficient of un, n > 0, gives that∑
w∈Bn sgnB(w)tdesB(w)+1

(1− t)n+1
=
∑
k>1

tk,

and multiplying by (1− t)n+1/t yields∑
w∈Bn

sgnB(w)tdesB(w) = (1− t)n+1
∑
k>0

tk.

The result follows by summing this identity with (21):∑
w∈Bn

tdesB(w) = (1− t)n+1
∑
k>0

(2k + 1)ntk,

and noting that

2B±n (t) =

(∑
w∈Bn

tdesB(w)

)
±

(∑
w∈Bn

sgnB(w)tdesB(w)

)
.
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5.2 Type B symmetries and recurrences

As we did with the symmetric group, we now consider homogenized polynomials

Bn(s, t) = snBn(t/s) =
∑
w∈Bn

sascB(w)tdesB(w),

where ascB(w) = n− desB(w) counts the number of type B ascents, and likewise for the
polynomials B±n (s, t).

In the hyperoctahedral group, a nice involution comes from negating all entries, i.e.,
w → w, where w(i) = −w(i). This involution clearly satisfies w(i) > w(i+ 1) if and only
if w(i) < w(i+ 1), i = 0, 1, . . . , n, so

Bn(s, t) = Bn(t, s).

From Equation (20), we see that for any w = uJ ,

sgnB(w) · sgnB(w) = (−1)n−|J | sgn(u) · (−1)|J | sgn(u) = (−1)n,

and therefore,

sgnB(w) =

{
sgnB(w) if n even,

− sgnB(w) if n odd.

We get the following symmetries as a consequence.

Proposition 5.4 (Type B symmetries; see [10] Lemma 26). For any n > 1:

B±n (s, t) =

{
B±n (t, s) if n even,

B∓n (t, s) if n odd.

Though usually referenced in an equivalent form for the univariate polynomials (e.g.,
in [7, Theorem 3.4(i)]), the homogenized type B polynomials satisfy

Bn+1(s, t) = U [Bn(s, t)],

where U is the linear operator

U = s+ t+ 2st

(
d

ds
+
d

dt

)
= T + st

(
d

ds
+
d

dt

)
,

and T is the operator from Section 2.2. To prove the recurrence, the idea is to imagine
the effect of inserting the letter (n+1) or (n+ 1) into an element of Bn written in one-line
notation.

This logic extends to the polynomials B±n (s, t), though there are more delicate cases
to consider. Details can be found in [10, Section 7].
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Proposition 5.5 (Type B recurrences; see [10] Theorem 30). For any n > 1,

B±n+1(s, t) = sB±n (s, t) + tB∓n (s, t) + st

(
d

ds
+
d

dt

)
Bn(s, t),

= TsB
±
n (s, t) + TtB

∓
n (s, t),

where operators Ts and Tt are as in Proposition 2.2.

The recurrence here is similar (and simpler) than that for type A in Proposition 2.2.
For reasons similar to those discussed in Section 2.3, we conjecture that the polynomials
B±n (t) are real-rooted.

Conjecture 5.6 (Real roots). The polynomials B±n (t) have all roots real.

We have verified this conjecture for n 6 30.

5.3 Central limit theorems

The main purpose of this subsection is to give two proofs of the following theorem.

Theorem 5.7. (Limiting distribution, type B) The distribution of the coefficients of
B±n (t) is asymptotically normal as n→∞. For n > 2, these numbers have mean n/2 and
for n > 3, these numbers have variance (n+ 1)/12.

The first proof of Theorem 5.7 uses the following proposition.

Proposition 5.8. Let r be any positive integer. Then for n > r, the rth moment of
the type Bn ±-Eulerian distribution equals the rth moment of the type Bn Eulerian
distribution.

Proof. Instead of working with the rth moment, we can work with the rth falling moment,
which can be computed from the relevant generating function by differentiating (with
respect to t) r times and then setting t = 1.

From equation (24), we conclude that

B±n (t) =
1

2
Bn(t)± 1

2
(1− t)n.

Now observe that if n > r, then differentiating (1−t)n r times and setting t = 1 gives 0.

We now give our first proof of Theorem 5.7.

First proof of Theorem 5.7. This is immediate from the method of moments, Proposition
5.8, and the fact (see Theorem 3.4 of [8] which uses a real-rootedness argument) that
the type B Eulerian distribution is asymptotically normal with the claimed mean and
variance.

Next we use generating functions to give a second proof of Theorem 5.7.
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Second proof of Theorem 5.7. The computation is very similar to the first proof of The-
orem 1.2. Again, we will establish the theorem only for the coefficients of B+

n (t), since
the proof of the case B−n (t) is analogous. Let W+

n be a random variable taking values in
{0, . . . , n} such that

P(W+
n = k) =

1

|B+
n |

〈
Bn

k

〉+

.

Similarly as before, we normalize W+
n by

Z+
n =

1√
n+ 1

(
W+

n −
n

2

)
.

Then |B+
n | = 1

2
|Bn| = 2n−1n!, and so, Theorem 5.2 tells that the Laplace transform of

Z+
n is given by

E[e−sZ
+
n ] =

e
sn

2
√
n+1 (1− e−s/

√
n+1)n+1

n!

∑
k>0

((
k +

1

2

)n

+
1

2n

)
e−ks/

√
n+1.

As before, the prefactor is asymptotically e
1
24

s2+O(n−1/2) 1
n!

(s/
√
n+ 1)n+1 as n→∞. More-

over, for each t ∈ (0, 1) and x > 0, we have for k > 1

t

∫ k

k−1
xntx dx 6

(
k +

1

2

)n

tk

and for k > 0 (
k +

1

2

)n

tk 6 t−2
∫ k+2

k+1

xntxdx.

This shows that

e−s/
√
n+1

∫ ∞
0

xne−xs/
√
n+1 dx 6

∑
k>0

(
k +

1

2

)n

e−ks/
√
n+1 6 e2s/

√
n+1

∫ ∞
0

xne−xs/
√
n+1 dx,

and so, ∑
k>0

(
k +

1

2

)n

e−ks/
√
n+1 = eO(n

−1/2)

∫ ∞
0

xne−xs/
√
n+1 dx

= eO(n
−1/2)n!

(√
n+ 1

s

)n+1

.

On the other hand, ∑
k>0

1

2n
e−ks/

√
n+1 =

1

1− 1
2
e−s/

√
n+1

6 2,

and so, the contribution from this sum is O(1). Combining altogether,

E[e−sZ
+
n ] = e

1
24

s2+O(n−1/2)

[
eO(n

−1/2) +O
(

(s/
√
n+ 1)n+1

n!

)]
= e

1
24

s2+O(n−1/2).

Therefore, the convergence E[e−sZ
+
n ]→ e

1
24

s2 holds for all s > 0 and we are done.
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5.4 Type B riffle shuffling and sign

There is a notion of type B riffle shuffling, studied by Bergeron and Bergeron [4], and also
in [16]. For a odd (the case of interest to us), a type B a-riffle shuffle can be defined as
follows. Choose integers j1, . . . , ja according to the multinomial distribution

P (j1, · · · , ja) =

(
n

j1, . . . , ja

)
/an,

where 0 6 ji 6 n,
∑a

i=1 ji = n.
Given the ji, cut off the top j1 cards, the next j2 cards and so on, producing a packets

(some possibly empty). Turn the even numbered packets face up. Then drop cards one
at a time, according to the rule that if there are Aj cards in packet j, the next card is
dropped from packet i with probability Ai/(A1 + · · · + Aa). This is done until all cards
have been dropped.

In what follows, let PB
n,a(w) denote the probability of a signed permutation w after a

type B a-shuffle started at the identity. From [4],

PB
n,a(w) =

(
n+ (a− 1)/2− desB(w−1)

n

)
/an. (25)

As with the type A riffle shuffle, r iterations of an a-shuffle gives the same distribution as
one iteration of an ar shuffle.

We give a formula for the probability of a having a type B permutation with sign 1
after r iterations of a-shuffling, starting from the identity permutation. Let PB,+

n,ar denote
this probability.

Theorem 5.9. For any n and a odd, the probability that r iterations of a type B a-shuffle
yields an element of Bn with sign 1 is:

PB,+
n,ar =

1

2
+

1

2arn
.

Proof. Equation (22) gives∑
w∈B+

n
tdesB(w)

(1− t)n+1
=
∑
k>0

(2k + 1)n + 1

2
tk.

Taking the coefficient of tk on both sides gives∑
w∈B+

n

(
n+ k − desB(w)

n

)
=

(2k + 1)n + 1

2
.

Letting a = 2k + 1, we have∑
w∈B+

n

(
n+ (a− 1)/2− desB(w)

n

)
=
an + 1

2
.
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Dividing by an and using the fact that the sign of w is equal to the sign of w−1 gives∑
w∈B+

n

(
n+ (a− 1)/2− desB(w−1)

n

)
/an =

1

2
+

1

2an
.

Since r a-shuffles is the same as a single ar shuffle, the result follows from equation (25).

As in the symmetric group case, this means that for large decks of cards, the sign is
close to random after a single shuffle.

5.5 Other one-dimensional characters of Bn

Aside from the trivial and sign character, there are two other one-dimensional characters
of Bn, and we can easily consider their interaction with descents, following Reiner [25].

Recall from the definition of sgnB in (20) that we can express a signed permutation
w = uJ in terms of a permutation u ∈ Sn such that |w(i)| = u(i) and J = {j ∈ [n] :
w(j) < 0}. We define the characters

δ(w) = (−1)J

and
η(w) = sgn(u),

and note that from (20) we have sgnB(w) = δ(w) · η(w). In terms of signed cycles,

δ(w) = (−1)
∑
imi(w),

and
η(w) = (−1)n−

∑
i ni(w)−

∑
imi(w),

where we recall that ni(w) is the number of positive i-cycles of w and mi(w) is the number
of negative i-cycles of w.

Setting xi = 1, yi = −1 in Theorem 5.3 gives that

∑
n>0

un
∑

w∈Bn δ(w)tdesB(w)+1

(1− t)n+1
= 1 +

∑
k>1

tk

(1− u)
.

This identity is exactly the same as the one obtained in the proof of Theorem 5.2 for
the joint distribution of sgnB with descents, so all our results for sgnB carry over to δ
immediately.

To analyze η, we set u 7→ −u, xi 7→ −1, yi 7→ −1 in Theorem 5.3, to find

∑
n>0

un
∑

w∈Bn η(w)tdesB(w)+1

(1− t)n+1
= 1 +

∑
k>1

tk

(1− u)

∏
m>1

(
1− (−u)m

1 + (−u)m

)N∗(2k−1,2m)

.
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From Lemma 1.3.17 of [17],

∏
m>1

(
1− (−u)m

1 + (−u)m

)N∗(2k−1,2m)

=
1 + (2k − 1)u

1 + u
.

It follows that ∑
n>0

un
∑

w∈Bn η(w)tdesB(w)+1

(1− t)n+1
= 1 +

∑
k>1

tk
1 + (2k − 1)u

1− u2
.

Taking the coefficient of un, n > 0, it follows that if n is even, then∑
w∈Bn

η(w)tdesB(w) = (1− t)n+1
∑
k>0

tk,

exactly as for sgnB and for δ.
But if n is odd, something new happens. We get that∑

w∈Bn

η(w)tdesB(w) = (1− t)n+1
∑
k>0

(2k + 1)tk.

Since ∑
w∈Bn

tdesB(w) = (1− t)n+1
∑
k>0

(2k + 1)ntk,

it follows that ∑
w∈Bn
η(w)=1

tdesB(w)

(1− t)n+1
=
∑
k>0

(2k + 1)n + (2k + 1)

2
tk.

So all of our main results have analogs for η, and we leave the details to the interested
reader.

We mention that these identities can also be deduced from the following identities,
also due to Reiner [25, Theorems 3.2 and 3.3] and proved combinatorially:∑

w∈Bn

sgnB(w)tdesB(w) =
∑
w∈Bn

δ(w)tdesB(w) = (1− t)n,

∑
w∈Bn

η(w)tdesB(w) =

{
(1− t)n for n even,

(1 + t)(1− t)n−1 for n odd.
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