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Abstract

A finite subset X on the unit sphere Sd is called an s-distance set with strength
t if its angle set A(X) := {〈x,y〉 : x,y ∈ X,x 6= y} has size s, and X is a spherical
t-design but not a spherical (t + 1)-design. In this paper, we consider to estimate
the maximum size of such antipodal set X for small s. Motivated by the method
developed by Nozaki and Suda, for each even integer s ∈ [ t+5

2 , t + 1] with t > 3, we
improve the best known upper bound of Delsarte, Goethals and Seidel. We next
focus on two special cases: s = 3, t = 3 and s = 4, t = 5. Estimating the size
of X for these two cases is equivalent to estimating the size of real equiangular
tight frames (ETFs) and Levenstein-equality packings, respectively. We improve
the previous estimate on the size of real ETFs and Levenstein-equality packings.
This in turn gives an upper bound on |X| when s = 3, t = 3 and s = 4, t = 5,
respectively.

Mathematics Subject Classifications: 05E30, 51D20
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1 Introduction

1.1 Spherical designs with few angles

A finite set X ⊂ Sd−1 is called an s-distance set if its angle set A(X) := {〈x,y〉 : x,y ∈
X,x 6= y} contains s distinct values, and we say X has strength t if t is the largest integer
such that X is a spherical t-design. We say that a finite set X ⊂ Sd−1 is a spherical
t-design if the following equality∫

Sd−1

f(x)dµd(x) =
1

|X|
∑
x∈X

f(x)

holds for any polynomial f of degree at most t (see [12]). Here, µd is the Lebesgue measure
on Sd−1 normalized by µd(Sd−1) = 1. In this paper we focus on the following problem
which originally arises in design theory:

Problem 1. Given s, t ∈ Z+, what is the maximum size of an s-distance set X ⊂ Sd−1
with strength t?

Spherical designs with few angles usually display beautiful symmetry and optimality
[11, 6, 16], e.g., the universal optimality of the 600-cell on S3 [11], which have been studied
for several decades [12, 3, 4]. Estimating the size of these designs provides a necessary
condition on their existence. See [1, 23] and the references for the recent work.

In this paper we devote our attention to the antipodal case of this problem, i.e.,
X = −X. We aim to bound the size of antipodal s-distance sets in Sd−1 with strength
t. Recall that the strength of an antipodal set must be an odd integer [12, Theorem 5.2].
According to [12, Theorem 6.8], we always have

|X| 6 2

(
d+ s− 2

s− 1

)
and 2s > t+ 1 (1)

provided X ⊂ Sd−1 is an antipodal s-distance set with strength t. The upper bound in
(1) is called the Delsarte-Goethals-Seidel bound for an antipodal spherical s-distance set.
Furthermore, the equality in (1) holds if and only if the s-distance set X forms a tight
spherical (2s − 1)-design, i.e., t + 1 = 2s. In this paper we will focus on estimating the
size of X when 2s is slightly greater than t+ 1.

1.2 The optimal line packing problem

It is particularly interesting to consider two special cases, i.e., s = 3, t = 3 and s = 4, t =
5. These two cases are closely related to the optimal line packing problem, which aims
to find a finite set Φ = {ϕi}ni=1 ⊂ Sd−1 with fixed size n > d and the minimal coherence
µ(Φ) := max

i 6=j
|〈ϕi,ϕj〉| (see [10, 13, 15, 17]). The followings are two well-known lower
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bounds on the coherence:

µ(Φ) >

√
n− d
d(n− 1)

, if n > d, (2a)

µ(Φ) >

√
3n− d(d+ 2)

(d+ 2)(n− d)
, if n >

d(d+ 1)

2
. (2b)

The (2a) is called the Welch bound [31] and the (2b) is called the Levenstein bound
[19, 20]. It is well known that the equality in (2a) occurs when Φ∪−Φ forms an antipodal
3-distance 3-strength set or an antipodal 3-distance 5-strength set with size d(d+ 1) [12,
Example 8.3]; and the equality in (2b) occurs when Φ∪−Φ forms an antipodal 4-distance

5-strength set or an antipodal 4-distance 7-strength set with size d(d+1)(d+2)
3

[12, Example
8.4]. Hence, estimating the size of the antipodal 3-distance 3-strength sets and of the
antipodal 4-distance 5-strength sets is helpful to know the existence of these two kinds
of optimal packings. In the context of frame theory, a set achieving the Welch bound
in (2a) is known as a real equiangular tight frame (ETF). Hence, bounding the size of
an antipodal 3-distance set with strength 3 is equivalent to bounding the size of a real
ETF whose size is strictly smaller than d(d+1)

2
. This is particularly interesting since the

existence of real ETFs is a long-standing open problem for most pairs (d, n) [14, 25]. For
the nontrivial case where n > d+ 1 > 2, an ETF may exist only if its size n satisfies the
Gerzon bound [18, 14, 13]:

d+
1

2
+

√
2d+

1

4
6 n 6

d(d+ 1)

2
. (3)

1.3 Related work

We overview the known upper bounds on antipodal spherical designs with few angles. Let
X ⊂ Sd−1 be an antipodal s-distance set with strength t. As said before, t must be an
odd integer [12, Theorem 5.2]. Set

h0 := 1, h1 := d, hk :=

(
d+ k − 1

k

)
−
(
d+ k − 3

k − 2

)
, k > 2 (4)

and

δs :=

{
0, if s is even,
1, if s is odd.

(5)

For each odd integer t ∈ [s− δs − 1, 2s− 2δs − 3], Nozaki and Suda in [23, Corollary 3.7]
derived a new upper bound on |X|:

|X| 6 2

(
d+ s− δs − 1

s− δs

)
− 2ht−s+δs+1. (6)

If s > 3 is odd and t ∈ [s − 2, 2s − 5], it is easy to see that the bound in (6) lowers the
Delsarte-Goethals-Seidel bound by 2ht−s+2. If s > 2 is even and t ∈ [s − 1, 2s − 3], the
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upper bound in (6) becomes 2
(
d+s−1
s

)
− 2ht−s+1. When s is fixed, a simple calculation

shows that 2
(
d+s−1
s

)
− 2ht−s+1 = Θ(ds) while the Delsarte-Goethals-Seidel bound in (1)

is Θ(ds−1). Hence, if s is an fixed even integer and d is large enough, the upper bound in
(6) is larger than the Delsarte-Goethals-Seidel bound.

1.4 Our contributions

Assume that X ⊂ Sd−1 is an antipodal s-distance set with strength t. The aim of this
paper is to present a better upper bound on |X|.

1.4.1 The general case

Motivated by the methods developed in [23], we present an upper bound for |X| which
lowers the Delsarte-Goethals-Seidel bound when s ∈ [ t+5

2
, t + 1] is an even integer and

t > 3.

Theorem 2. Let d > 2 be an integer. Assume that X ⊂ Sd−1 is an antipodal s-distance
set with strength t > 3, where s ∈ [ t+5

2
, t+ 1] is an even integer. Then, we have

|X| 6 2

(
d+ s− 2

s− 1

)
− 2ht−s+2, (7)

where hk is defined in (4) for each k > 0.

We next consider to estimate |X| for the case when s = t+3
2

. We mainly focus on two
special cases : s = 3, t = 3 and s = 4, t = 5.

1.4.2 The case: s = 3, t = 3

As mentioned before, a set Φ is an ETF for Rd with size n < d(d+1)
2

if and only if Φ∪−Φ
is an antipodal 3-distance sets with strength 3 [12, Example 8.3]. Hence, we direct our
attention to estimating the size of real ETFs. The following theorem presents a necessary
condition for the size of real ETFs.

Theorem 3. Let d > 5 be an integer. Assume that Φ is an ETF for Rd with size n > d+1.

Then, we have either n ∈ {d+ 1
2

+
√

2d+ 1
4
, d(d+1)

2
} or

d+
1

2
+

√
3d+

1

4
6 n 6

d(d+ 2)

3
. (8)

Theorem 3 improves the Gerzon bound (3) when n /∈ {d + 1
2

+
√

2d+ 1
4
, d(d+1)

2
}. To

our knowledge, one only finds two pairs (d, n) for which ETFs exist and achieve the size
d(d+2)

3
: (6, 16) and (22, 176). The known configuration of these two ETFs is a subset of

ETFs with parameters (7, 28) and (23, 276), respectively (see [28, Remark 5.2] and [27,
Page 271]). Also, one only finds two pairs (d, n) for which ETFs exist and achieve
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the size d + 1
2

+
√

3d+ 1
4
: (10, 16) and (154, 176). These two ETFs are the Naimark

complements of ETFs with parameters (6, 16) and (22, 176), respectively [14]. Motivated
by the observation, we present the following conjecture:

Conjecture 4. Assume that d > 5. There exists an ETF with parameters (d+1, (d+1)(d+2)
2

)

if and only if there exists an ETF with parameters (d, d(d+2)
3

).

Recall that X ⊂ Sd−1 is an antipodal 3-distance set with strength 3 if and only if
X = Φ ∪ −Φ where Φ is an ETF in Rd with size n < d(d+1)

2
. A simple observation is

Φ ∩ −Φ = ∅ if Φ is an ETF. Hence, we immediately obtain an upper bound for the
antipodal 3-distance sets with strength 3.

Corollary 5. Let d > 5 be an integer. Assume X ⊂ Sd−1 is an antipodal 3-distance set
with strength 3. Then, we have either |X| ∈ {2d+ 2, 2d+ 1 +

√
8d+ 1} or

2d+ 1 +
√

12d+ 1 6 |X| 6 2d(d+ 2)

3
.

Remark 6. According to Delsarte-Goethals-Seidel bound in (1), |X| 6 d(d+1) if X ⊂ Sd−1
is an antipodal 3-distance set with strength 3. Corollary 5 lowers the bound to 2d(d+2)

3
.

We next introduce another result on the existence of real ETFs. It is well known that
the existence of a real ETF for Rd with size n > d + 1 > 2 is equivalent to the existence
of a strongly regular graph with parameters (n− 1, a, 3a−n

2
, a
2
) [25, 29, 14], where

a :=
n

2
− 1 + (1− n

2d
)

√
d(n− 1)

n− d
. (9)

Since every strongly regular graph satisfies the Krein conditions (see Lemma 21 for de-
tails), one is interested in whether the Krein conditions are covered by the Gerzon bound
(3) or other known necessary conditions (see [29, 14]). In Proposition 22 we will give a
positive answer to this question showing that the Krein conditions for strongly regular
graphs with parameters (n− 1, a, 3a−n

2
, a
2
) are equivalent to the Gerzon bound (3).

1.4.3 The case: s = 4, t = 5

Finally, we consider to estimate the size of antipodal 4-distance sets with strength 5.
Recall that the Levenstein bound (2b) is attained only if n > d(d+1)

2
[20, Theorem 6.13].

Moreover, Φ ⊂ Sd−1 is a Levenstein-equality packing with size n < d(d+1)(d+2)
6

if and only
if Φ ∪ −Φ is an antipodal 4-distance set with strength 5 [12, Example 8.4]. Thus, we
mainly focus on estimating the size of Levenstein-equality packings.

We begin with providing an estimate on the size of Levenstein-equality packings, i.e.,

µ(Φ) =
√

3n−d(d+2)
(d+2)(n−d) .
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Theorem 7. Let d > 4 be an integer. Assume Φ ⊂ Sd−1 is a Levenstein-equality packing
with size n. Then we have either n = d(d+2)

2
or

n ∈
{
d(d+ 2)(d− 1 + α)

3α
: α ∈ [2,

2(d− 1)(d+ 2)

d+ 5
] ∩ Z

}
∩ Z. (10)

Particularly, if Φ ⊂ Sd−1 is a Levenstein-equality packing with size n /∈ {d(d+2)
2

, d(d+1)(d+2)
6

}
then we have n ∈ [d(d+3)

2
, d(d+2)2

9
].

Remark 8. Taking α = 2(d−1)(d+2)
d+5

in (10), we have n = d(d+3)
2

. To our knowledge, there

does not exist a Levenstein-equality packing in Rd with size d(d+3)
2

. Taking α = 3 in

(10), we have n = d(d+2)2

9
. To our knowledge, so far, one only finds two pairs (d, n) for

which Levenstein-equality packings achieve the size d(d+2)2

9
: (7, 63) and (22, 1408). The

corresponding packings come from a tight spherical 7-design in R8 and R23, respectively
[21, Page 619]. We next explain the link between tight spherical 7-designs and Levenstein-
equality packings. Assume that X ⊂ Rd+1 is a tight spherical 7-design. According to [12,
Theorem 8.2] there exists a x ∈ X so that the derived code Z := {y ∈ X : 〈y,x〉 = 0}
forms an antipodal 4-distance 5-strength set in Rd with the angle set {−1, 0,±

√
3
d+5
}.

Hence, choosing a point from each antipodal pair of points in Z gives a Levenstein-equality

packing Φ ⊂ Sd−1. Combining µ(Φ) =
√

3
d+5

with (2b) we obtain that Φ has size d(d+2)2

9
.

Hence, if we have a tight spherical 7-design in Rd+1, we can obtain a Levenstein-equality

packings in Rd with size d(d+2)2

9
. We are interested in knowing whether each Levenstein-

equality packing with size d(d+2)2

9
comes from a tight spherical 7-design.

Remind that X ⊂ Sd−1 is an antipodal 4-distance set with strength 5 if and only if
X = Φ ∪ −Φ where Φ is a Levenstein-equality packing in Rd with size n < d(d+1)(d+2)

6
.

Based on Theorem 7, we have the following corollary:

Corollary 9. Let d > 4 be an integer. Assume X ⊂ Sd−1 is an antipodal 4-distance set
with strength 5. Then, we have either |X| = d(d+ 2) or

|X| ∈
{

2d(d+ 2)(d− 1 + α)

3α
: α ∈ [3,

2(d− 1)(d+ 2)

d+ 5
] ∩ Z

}
∩ Z. (11)

Remark 10. According to (11), we obtain that |X| 6 2d(d+2)2

9
if X ⊂ Sd−1 is an antipodal

4-distance set with strength 5. Recall that the Delsarte-Goethals-Seidel bound in (1)

gives |X| 6 d(d+1)(d+2)
3

when s = 4, and that the Nozaki-Suda bound in (6) gives |X| 6
1
12
· (d+ 2)(d3 + 4d2 − 9d+ 12) when s = 4, t = 5. A simple calculation shows that

2d(d+ 2)2

9
<
d(d+ 1)(d+ 2)

3
<

(d+ 2)(d3 + 4d2 − 9d+ 12)

12
, for d > 4.

Hence, the upper bound |X| 6 2d(d+2)2

9
improves both the Nozaki-Suda bound and the

Delsarte-Goethals-Seidel bound when d > 4.
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In Table 1 we summarize the best known upper bounds on the antipodal s-distance
t-strength sets so far.

Table 1: Upper bounds on the size of an antipodal s-distance set X ⊂ Sd−1 with strength t

The values of s and t An upper bound of |X|
s = 3, t = 3 2d(d+2)

3
(Corollary 5)

s = 4, t = 5 2d(d+2)2

9
(Corollary 9)

even s = t+3
2

, t > 7 min{2
(
d+s−2
s−1

)
, 2
(
d+s−1
s

)
− 2ht−s+1} ([12],[23])

even s ∈ [ t+5
2
, t+ 1], t > 3 2

(
d+s−2
s−1

)
− 2ht−s+2 (Theorem 2)

odd s ∈ [ t+5
2
, t+ 2] 2

(
d+s−2
s−1

)
− 2ht−s+2 [23]

1.5 Organization

The paper is organized as follows. In Section 2, we introduce some definitions and lemmas.
After presenting the proof of Theorem 2 in Section 3, we prove Theorem 3 in Section 4.
We also show the equivalence between the Gerzon bound and the necessary conditions on
the existence of real ETFs obtained from the Krein conditions in Section 4. Finally we
prove Theorem 7 in Section 5.

2 Preliminaries

In this section, we introduce some definitions and lemmas which will be used in later
sections.

2.1 Notations

Let Harmk(Rd) be the vector space of all real homogeneous harmonic polynomials of
degree k on d variables, equipped with the standard inner product

〈f, g〉 =

∫
Sd−1

f(x)g(x)dµd(x)

for f, g ∈ Harmk(Rd). It is known that the dimension of Harmk(Rd) is hk, where hk is

defined in (4) for each k > 0 [12, Theorem 3.2]. Let {φ(d)
k,i}

hk
i=1 be an orthonormal basis for

Harmk(Rd).

Let G
(d)
k (x) denote the Gegenbauer polynomial of degree k with the normalization

G
(d)
k (1) = hk, which can be defined recursively as follows (see also [12, Definition 2.1]):

G
(d)
0 (x) := 1, G

(d)
1 (x) := d · x,

k + 1

d+ 2k
·G(d)

k+1(x) = x ·G(d)
k (x)− d+ k − 3

d+ 2k − 4
·G(d)

k−1(x), k > 1.
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The following formulation is well-known [12, Theorem 3.3]:

G
(d)
k (〈x,y〉) =

hk∑
i=1

φ
(d)
k,i (x)φ

(d)
k,i (y), for x,y ∈ Sd−1, k ∈ Z+. (12)

We also need the following notations.

Definition 11. For a finite non-empty set X ⊂ Sd−1, we use the following notations:

1. The k-th characteristic matrix Hk(X) of size |X| × hk is defined as (see also [12,
Definition 3.4]):

Hk(X) := (φ
(d)
k,i (x)), x ∈ X, i ∈ {1, 2, . . . , hk};

2. Set Dk(X) := Hk(X)Hk(X)T for each k > 0;

3. Let Vk(X) denote the direct sum of the eigenspaces corresponding to all positive
eigenvalues of Dk(X) (see also [23, Page 1707]);

4. The annihilator polynomial of X is defined as

FX(x) :=
∏

α∈A(X)

x− α
1− α

;

5. When X is antipodal, we say the subset X̂ ⊂ X is a half of X if X̂ satisfies
X̂ ∩ −X̂ = ∅ and X̂ ∪ −X̂ = X.

Note that H0(X) is exactly the all-ones vector of size |X|. According to (12), we have

Dk(X) = Hk(X)Hk(X)T = (G
(d)
k (〈x,y〉))x,y∈X . (13)

Throughout this paper, we use I,J to denote the identity matrix and all-ones matrix
of appropriate size, respectively. We also set

∆k,l :=

{
I, if k = l,
0, otherwise.

2.2 Spherical designs

By the notion of characteristic matrices, the following lemma provides two equivalent
definitions of spherical t-designs.

Lemma 12. (see [12, Theorem 5.3]) A finite set X ⊂ Sd−1 is a spherical t-design if and
only if any one of the following holds:

1. Hk(X)TH0(X) = 0hk×1, k = 1, 2, . . . , t.

the electronic journal of combinatorics 28(3) (2021), #P3.39 8



2. Hk(X)THl(X) = |X| ·∆k,l when 0 6 k + l 6 t.

We next prove some properties of antipodal spherical designs which will be used in
Section 3.

Corollary 13. Assume X ⊂ Sd−1 is an antipodal set and let X̂ be a half of X. Then,

1. X is a spherical t-design if and only if Hk(X̂)TH0(X̂) = 0hk×1 for each positive
even integer k 6 t.

2. if X is a spherical t-design, then

Hk(X̂)THl(X̂) =
|X|
2
·∆k,l and Dk(X̂)Dl(X̂) =

|X|
2
·∆k,l ·Dk(X̂)

hold when 0 6 k + l 6 t and k ≡ l (mod 2).

Proof. For any x ∈ Sd−1 and i ∈ {1, 2, . . . , hk}, we have φ
(d)
k,i (−x) = −φ(d)

k,i (x) if k is odd

and φ
(d)
k,i (−x) = φ

(d)
k,i (x) if k is even. Hence, we have

Hk(X) =

(
Hk(X̂)

(−1)k ·Hk(X̂)

)
. (14)

(i) According to (14) we have

Hk(X)TH0(X) =

{
2 ·Hk(X̂)TH0(X̂), if k is even,
0hk×1, if k is odd.

Based on Lemma 12 we obtain thatX is a spherical t-design if and only if Hk(X̂)TH0(X̂) =
0hk×1 for each positive even integer k 6 t.

(ii) Let k and l be two integers satisfying 0 6 k + l 6 t and k ≡ l (mod 2). Equation
(14) implies Hk(X)THl(X) = 2 ·Hk(X̂)THl(X̂). Thus, according to Lemma 12 we obtain

that Hk(X̂)THl(X̂) = |X|
2
·∆k,l if X is a spherical t-design. According to (2) in Definition

11, we have

Dk(X̂)Dl(X̂) = Hk(X̂)Hk(X̂)THl(X̂)Hl(X̂)T =
|X|
2
·∆k,l ·Dk(X̂).

The following lemma played a key role in Nozaki and Suda’s framework [23]. Its main
idea is to identify the size of an s-distance set X with the dimension of a sum of subspaces
Vk(X) defined in Definition 11.

Lemma 14. (see [23, Lemma 3.2]) Let X ⊂ Sd−1 be an s-distance set. Assume the

annihilator polynomial of X has the Gegenbauer expansion FX(x) =
s∑

k=0

fkG
(d)
k (x). Then

we have |X| = dim(
∑

k:fk>0

Vk(X)).
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2.3 Spherical embeddings of strongly regular graphs

In this subsection we briefly introduce the spherical embeddings of strongly regular graphs,
which will be used in our analysis of Levenstein-equality packings in Section 5. A regular
graph Γ with v vertices and degree k is called strongly regular if every two adjacent vertices
have λ common neighbors and every two non-adjacent vertices have µ common neighbors.
Let Γ be a strongly regular graph with parameters (v, k, λ, µ). Denote its vertex set by
{1, 2, . . . , v} for simplicity. The adjacency matrix A of Γ has three eigenvalues k, r1
and r2, with multiplicities 1, n1 and n2, respectively. The values of r1, r2, n1, n2 can be
calculated as follows [7, 9]

r1 =
1

2
(λ− µ+

√
(λ− µ)2 + 4(k − µ)), r2 =

1

2
(λ− µ−

√
(λ− µ)2 + 4(k − µ)), (15)

n1 =
1

2
(v − 1− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)
), n2 =

1

2
(v − 1 +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

). (16)

For each i ∈ {1, 2}, let Ei denote the eigenspace of A with respect to the eigenvalue
ri. Then a spherical embedding of Γ with respect to Ei is a collection of unit vectors
in Rni , obtained by orthogonally projecting a standard basis of Rv onto the eigenspace
Ei and rescaling the projections to have unit norm. It is known that the obtained set is
a two-distance spherical 2-design [7, 9]. If we let Y (i) = {y(i)

j }vj=1 denote the spherical
embedding of Γ with respect to Ei, i ∈ {1, 2}, then we have [7, 9, 5] :

|〈y(i)
j ,y

(i)
l 〉| =


1, if j = l,
ri
k
, if vertex j and vertex l are adjacency,

− ri+1
v−k−1 , otherwise.

(17)

In Section 5 we will introduce that each Levenstein-equality packing gives rise to a
strongly regular graph. Then we will use one of the spherical embeddings of this strongly
regular graph to provide a lower bound on the size of Levenstein-equality packings.

3 Proof of Theorem 2

In this section, motivated by the method developed in [23], we present a proof of Theo-
rem 2.

Assume s is an even integer. Let X ⊂ Sd−1 be an antipodal s-distance set with
strength t and let X̂ be a half of X (see (5) in Definition 11). Now we focus on estimating
the maximum size of X̂. Noting that X is antipodal and s is even, we assume A(X) =
{−1, 0,±α1, . . . ,±α s−2

2
}, where αi ∈ (0, 1) for each i ∈ {1, 2, . . . , s−2

2
}. Noting that

A(X̂) = A(X)\{−1}, we have

FX̂(x) = x ·
s−2
2∏
i=1

x2 − α2
i

1− α2
i

.
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It follows that FX̂(x) is an odd function. Assume that FX̂(x) has the Gegenbauer expan-

sion FX̂(x) =
s−1∑
k=0

fkG
(d)
k (x). It is well known that the Gegenbauer polynomial G

(d)
k (x) is

an odd function if k is odd and an even function if k is even [26, Page 59]. This means
that fk = 0 provided k 6 s− 1 is even. Hence, by Lemma 14 we obtain

|X̂| = dim(
∑
k:fk>0

Vk(X̂)) 6 dim(

s−2
2∑

k=0

V2k+1(X̂)). (18)

Now we aim to prove that Vt−s+2(X̂) is contained in the sum of some other subspaces
V2k+1(X̂) when s ∈ [ t+5

2
, t+ 1]. The following lemma is analogous to [23, Lemma 3.3].

Lemma 15. Suppose X ⊂ Sd−1 is an antipodal s-distance set with strength t, where
s ∈ [ t+5

2
, t+1] is an even integer and t > 3 is an odd integer. Let X̂ be a half of X. Assume

the annihilator polynomial of X̂ has the Gegenbauer expansion FX̂(x) =

s−2
2∑

k=0

f2k+1G
(d)
2k+1(x).

If f2i+1 6= 1

|X̂| for some integer i satisfying t − s + 2 6 2i + 1 6 t−1
2

, then we have

V2i+1(X̂) ⊂
s−2
2∑

k= t−2i−1
2

V2k+1(X̂).

Proof. Set F := (FX̂(〈x,y〉))x,y∈X̂ . Noting that FX̂(1) = 1 and FX̂(α) = 0 for α ∈ A(X̂),

we obtain that F is exactly the identity matrix of size |X̂|. On the other hand, by the
Gegenbauer expansion of FX̂(x) and (13), we have

I = F =

s−2
2∑

k=0

f2k+1 ·D2k+1(X̂). (19)

For each integer i satisfying t− s + 2 6 2i + 1 6 t−1
2

, we multiply D2i+1(X̂) on both
sides of (19) and obtain

D2i+1(X̂) =

s−2
2∑

k=0

f2k+1 ·D2k+1(X̂)D2i+1(X̂)

= f2i+1 ·D2i+1(X̂)D2i+1(X̂) +

s−2
2∑

k=0, k 6=i

f2k+1 ·D2k+1(X̂)D2i+1(X̂).

(20)

Since X is an antipodal spherical t-design, by Corollary 13, we have

D2i+1(X̂) = |X̂| · f2i+1 ·D2i+1(X̂) +

s−2
2∑

k= t−2i−1
2

f2k+1 ·D2k+1(X̂)D2i+1(X̂). (21)
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Noting that s ∈ [ t+5
2
, t + 1] is an even integer and t > 3 is an odd integer, rearranging

equation (21) gives

(1− |X̂| · f2i+1)D2i+1(X̂) =

s−2
2∑

k= t−2i−1
2

f2k+1 ·D2k+1(X̂)D2i+1(X̂). (22)

Assume v is an eigenvector of D2i+1(X̂) with respect to an eigenvalue λ 6= 0. Then,
we have

(1− |X̂| · f2i+1)D2i+1(X̂)v =

s−2
2∑

k= t−2i−1
2

f2k+1 ·D2k+1(X̂)D2i+1(X̂)v,

which implies

(1− |X̂| · f2i+1) · λv = λ ·
s−2
2∑

k= t−2i−1
2

f2k+1 ·D2k+1(X̂)v. (23)

Note that a real symmetric matrix of size |X̂| always has |X̂| linear independent eigenvec-

tors. Hence, we can write v =
∑|X̂|

j=1 v
(2k+1)
j for each k ∈ [ t−2i−1

2
, s−2

2
], where {v(2k+1)

j }|X̂|j=1

is a set of linear independent eigenvectors of D2k+1(X̂). Assume that λ
(2k+1)
j is an eigen-

value of D2k+1(X̂) with respect to the eigenvector v
(2k+1)
j . Since D2k+1(X̂) is a symmetric

positive semidefinite matrix, we have λ
(2k+1)
j > 0 for each j ∈ {1, 2, . . . , |X̂|}. Then,

according to (23), we have

(1− |X̂| · f2i+1) · λv = λ ·
s−2
2∑

k= t−2i−1
2

f2k+1 ·D2k+1(X̂)

|X̂|∑
j=1

v
(2k+1)
j ,

which implies

(1− |X̂| · f2i+1) · λv = λ ·
s−2
2∑

k= t−2i−1
2

f2k+1 ·
∑

j: λ
(2k+1)
j >0

λ
(2k+1)
j v

(2k+1)
j .

Thus, if f2i+1 6= 1

|X̂| , then v can be written as a linear combination of vectors in

s−2
2∑

k= t−2i−1
2

V2k+1(X̂),

which implies that v ∈
s−2
2∑

k= t−2i−1
2

V2k+1(X̂). Since v can be any vector in V2i+1(X̂), we

arrive at our conclusion.
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It remains to show that the coefficient ft−s+2 in the Gegenbauer expansion of FX̂(x)
is not 1

|X̂| . We need the following lemma.

Lemma 16. [12, Lemma 2.6] Assume F (x) =
∑

k fkG
(d)
k (x) and let Q(x) :=

G
(d)
l (x)

hl
·F (x)

for some positive integer l. Assume Q(x) has the Gegenbauer expansion Q(x) =
∑

k qk ·
G

(d)
k (x). Then q0 = fl.

With the help of the above lemma, we now show that the coefficient ft−s+2 in the
Gegenbauer expansion of FX̂(x) is not 1

|X̂| . Actually, we prove that ft−s+2 is the first

coefficient with this property.

Lemma 17. Suppose X ⊂ Sd−1 is an antipodal s-distance set with strength t, where
s ∈ [ t+3

2
, t+1] is an even integer and t > 3 is an odd integer. Let X̂ be a half of X. Assume

the annihilator polynomial of X̂ has the Gegenbauer expansion FX̂(x) =

s−2
2∑

k=0

f2k+1G
(d)
2k+1(x).

Then, ft−s+2 6= 1

|X̂| and fl−s+2 = 1

|X̂| for each odd integer l satisfying s− 1 6 l < t.

Proof. Set Ql(x) :=
G

(d)
l−s+2(x)

hl−s+2
· FX̂(x) for each odd integer l satisfying s − 1 6 l 6 t.

Since FX̂(x) is a polynomial of degree s− 1, we see that Ql(x) is a polynomial of degree

l + 1. Noting that both G
(d)
l−s+2(x) and FX̂(x) are odd functions, we obtain that Ql(x)

is an even function. Thus we can assume Ql(x) has the Gegenbauer expansion Ql(x) =
l+1
2∑
i=0

q
(l)
2i · G

(d)
2i (x). Since FX̂(1) = 1 and FX̂(α) = 0 for each α ∈ A(X̂), we obtain that

Ql(1) = 1 and Ql(α) = 0 for each α ∈ A(X̂). This implies∑
x,y∈X̂

Ql(〈x,y〉) = |X̂|. (24)

On the other hand, we have

∑
x,y∈X̂

Ql(〈x,y〉) =
∑

x,y∈X̂

l+1
2∑
i=0

q
(l)
2i ·G

(d)
2i (〈x, y〉) = |X̂|2q(l)0 +

l+1
2∑
i=1

(q
(l)
2i ·

∑
x,y∈X̂

G
(d)
2i (〈x,y〉)) (25)

Note that H0(X̂) is the all-ones vector of size |X̂|. According to (13), for each i ∈
{1, 2, . . . , l+1

2
}, we have∑

x,y∈X̂

G
(d)
2i (〈x,y〉) = H0(X̂)TD2i(X̂)H0(X̂)

= H0(X̂)TH2i(X̂)H2i(X̂)TH0(X̂) = ||H2i(X̂)TH0(X̂)||22.
(26)

Combining (25) and (26), we obtain

∑
x,y∈X̂

Ql(〈x,y〉) = |X̂|2q(l)0 +

l+1
2∑
i=1

q
(l)
2i · ||H2i(X̂)TH0(X̂)||22. (27)
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Combining (24) and (27), we arrive at

|X̂| − |X̂|2q(l)0 =

l+1
2∑
i=1

q
(l)
2i · ||H2i(X̂)TH0(X̂)||22. (28)

Since X has strength t, by Corollary 13 we have

||H2i(X̂)TH0(X̂)||22 = 0, for all i ∈ {1, 2, . . . , t− 1

2
} (29)

and
||Ht+1(X̂)TH0(X̂)||22 6= 0. (30)

Then, by equation (28) we obtain

|X̂| − |X̂|2q(l)0 = 0 (31)

when s− 1 6 l < t and

|X̂| − |X̂|2q(t)0 = q
(t)
t+1 · ‖Ht+1(X̂)TH0(X̂)‖22. (32)

The (31) implies q
(l)
0 = 1

|X̂| for each odd integer s − 1 6 l < t. Noting that Qt(x) is

a polynomial of degree t + 1, we have q
(t)
t+1 6= 0. Combining (30) and (32), we obtain

q
(t)
0 6= 1

|X̂| . By Lemma 16 we know that q
(l)
0 = fl−s+2 for each l > s− 1. Hence, we arrive

at our conclusion.

We next present a proof of Theorem 2.

Proof of Theorem 2. Recall that X is an antipodal s-distance set with strength t. Let
X̂ be a half of X. Combining Lemma 15 and Lemma 17, we know that Vt−s+2(X̂) is
contained in Vs−1(X̂). Then by (18) we have

|X̂| 6 dim(

s−2
2∑

k=0

V2k+1(X̂)) = dim(

s−2
2∑

k=0
k 6= t−s+1

2

V2k+1(X̂))

6

s−2
2∑

k=0
k 6= t−s+1

2

dim V2k+1(X̂) 6

s−2
2∑

k=0

h2k+1 − ht−s+2 =

(
d+ s− 2

s− 1

)
− ht−s+2.

(33)

The last inequality in (33) follows from

dim V2k+1(X) = rank (D2k+1(X)) 6 rank (H2k+1(X)) 6 h2k+1.

Noting that |X| = 2|X̂|, we obtain |X| 6 2
(
d+s−2
s−1

)
− 2ht−s+2.

the electronic journal of combinatorics 28(3) (2021), #P3.39 14



Remark 18. Lemma 15 and Lemma 17 can be easily extended to the case when s is an
odd integer. Using these extended results one can obtain an upper bound on |X| for odd
s ∈ [ t+5

2
, t + 2], which is actually the same with the bound in (6). Hence, for clarity

and convenience we only consider the case when s is an even integer in Lemma 15 and
Lemma 17.

Remark 19. Note that the framework of Nozaki and Suda developed in [23] can be applied
to any finite two-point-homogeneous space. Since we follow the framework of Nozaki and
Suda, our method in Theorem 2 can also be applied to antipodal designs with few angles
in the binary Hamming schemes.

4 Proof of Theorem 3

The aim of this section is to present a proof of Theorem 3. We need the following necessary
condition on the existence of real ETFs.

Lemma 20. (Theorem A in [25]) Let d and n be two integers satisfying n > d + 1 > 2

and n 6= 2d. If there exists an ETF for Rd with size n, then both
√

d(n−1)
n−d and

√
(n−d)(n−1)

d

are odd integers.

Using the above lemma, we present a proof of Theorem 3.

Proof of Theorem 3. Recall that Φ is an ETF for Rd with size n > d + 1 > 6. We first
show that n 6 d(d+2)

3
if n 6= d(d+1)

2
. Notice that 2d < d(d+2)

3
when d > 5, so we only need to

consider the case when n > 2d. According to Lemma 20, we can assume
√

d(n−1)
n−d = 2k−1

for some positive integer k > 1. Then a simple calculation shows:

(2k − 1)2(n− d) = d(n− 1) (34a)

((2k − 1)2 − d)(n− d) = d(d− 1). (34b)

Since n−d and d(d− 1) are positive, from (34b) we obtain that (2k− 1)2−d is a positive
integer. If (2k − 1)2 − d = 1, then (34b) gives n = d2. This is impossible since n must
satisfy the Gerzon bound (3). Hence, we must have (2k−1)2−d > 2. If (2k−1)2−d = 2,

then (34b) gives n = d(d+1)
2

; otherwise, we have (2k − 1)2 − d > 3, then (34b) implies

n 6 d(d+2)
3

. Hence, we have n 6 d(d+2)
3

if n 6= d(d+1)
2

.

It remains to prove that n > d + 1
2

+
√

3d+ 1
4

if n 6= d + 1
2

+
√

2d+ 1
4
. Notice that

d+ 1
2

+
√

3d+ 1
4
< 2d when d > 5, so we only need to consider the case when n < 2d. Set

m := n − d. By Lemma 20, we may assume
√

m(n−1)
n−m =

√
(n−d)(n−1)

d
= 2p − 1 for some

positive integer p. By similar computation with (34b) we obtain

((2p− 1)2 −m)(n−m) = m(m− 1). (35)
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Since n−m = d > 0 and m = n− d > 1, from (35) we see that (2p− 1)2−m is a positive

integer. If (2p−1)2−m = 1, then (35) gives n = m2, that is, n = d+ 1
2

+
√
d+ 1

4
. This is

impossible since n must satisfy the Gerzon bound (3). Hence, we have (2p− 1)2−m > 2.

If (2p− 1)2 −m = 2, then we have n = m(m+1)
2

, that is, n = d+ 1
2

+
√

2d+ 1
4
; otherwise,

we have (2p− 1)2 −m > 3, then (35) implies n 6 m(m+2)
3

, that is, n > d+ 1
2

+
√

3d+ 1
4
.

Hence, we must have n > d + 1
2

+
√

3d+ 1
4

if n 6= d + 1
2

+
√

2d+ 1
4
. Putting all these

together, we arrive at the conlcusion.

For the remainder of this section we compare the Krein conditions for strongly regular
graph with Gerzon bound. It is well known that there exists an ETF for Rd with size
n > d + 1 > 2 if and only if there exists a strongly regular graph with parameters
(n − 1, a, 3a−n

2
, a
2
) [25, 29, 14], where a is defined in (9). It is also known that each

strongly regular graph satisfies the following Krein conditions:

Lemma 21. (see [24, 8, 14] ) Assume there exists a strongly regular graph Γ with given
parameters v, k, λ, µ. Then the parameters v, k, λ, µ satisfy the following Krein conditions:

K1 := (k + r1)(r2 + 1)2 − (r1 + 1)(k + r1 + 2r1r2) > 0, (36a)

K2 := (k + r2)(r1 + 1)2 − (r2 + 1)(k + r2 + 2r1r2) > 0, (36b)

where r1 and r2 are defined in (15).

Hence, if we apply the above lemma to strongly regular graphs with parameters (n−
1, a, 3a−n

2
, a
2
), then (36a) and (36b) provide two necessary conditions on the existence of

nontrivial ETFs. The authors of [29] and [14] wondered whether these two necessary
conditions are covered by the Gerzon bound (3) or other known necessary conditions. In
what follows we show that they are actually equivalent to the Gerzon bound (3).

Proposition 22. Assume that n > d+ 1 > 2. Set

a :=
n

2
− 1 + (1− n

2d
)

√
d(n− 1)

n− d
. (37)

The (n, d) satisfies Krein conditions (36a) and (36b) with parameters v = n − 1, k =
a, λ = 3a−n

2
, µ = a

2
if and only if (n, d) satisfies the Gerzon bound (3).

Proof. Substituting v = n−1, k = a, λ = 3a−n
2
, µ = a

2
into equation (15), we can represent

r1 and r2 as follows:

r1 =
1

2
·
√
d(n− 1)

n− d
− 1

2
, (38a)

r2 = −1

2
· n− d

d
·
√
d(n− 1)

n− d
− 1

2
. (38b)
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Next, substituting equation (37), (38a), (38b) into (36a) and (36b), we obtain

K1 =
n

8d
·
√
n− 1

n− d
· (
√
n− 1

n− d
−
√

1

d
) · (n2 − (2d+ 1)n+ d2 − d), (39a)

K2 =
n

8d(n− d)
· (n− 1 +

√
d(n− 1)

n− d
) · (d2 + d− 2n). (39b)

Since n > d+ 1 > 2, K1 > 0 if and only if n2 − (2d+ 1)n+ d2 − d > 0, i.e., n > d+ 1
2

+√
2d+ 1

4
. Moreover, K2 > 0 if and only if n 6 d(d+1)

2
. We arrive at the conclusion.

5 Proof of Theorem 7

The main goal of this section is to prove Theorem 7. For convenience, in the rest of this
paper, we use αn,d to denote the Levenstein bound in (2b), i.e.,

αn,d :=

√
3n− d(d+ 2)

(d+ 2)(n− d)
. (40)

We assume that Φ ⊂ Sd−1 with |Φ| = n is a Levenstein-equality packing, i.e., µ(Φ) = αn,d.
Hence Φ has the angle set {0, αn,d,−αn,d} (see [12, Example 8.4] and [15, Proposition 3.3]).

We begin with introducing two basic properties about Levenstein-equality packings.
The following lemma says that each Levenstein-equality packing gives rise to a strongly
regular graph.

Lemma 23. [22, Page 83] Assume Φ = {ϕi}ni=1 ⊂ Sd−1 is a Levenstein-equality packing
with the angle set {0, αn,d,−αn,d}, where αn,d is defined in (40). Let Γ be a graph with n
vertices where vertex i and vertex j are adjacency if 〈ϕi,ϕj〉 6= 0. Then Γ is a strongly
regular graph with parameters (n, k, λ, µ), where

k = −r2(3 · r1 − r2)
2

, λ = r1+r2+µ, µ = −r2(r1 − r2)
2

, r1 =
2n

3d
+
r2
3
−2

3
, r2 = − 1

α2
n,d

. (41)

Here, r1 and r2 are defined in (15).

Remark 24. Substituting (40) into (41) we can write these parameters in terms of n and
d as follows:

k =
(n− d)2(d+ 2)

d · (3n− d(d+ 2))
, (42a)

λ =
(n− d) · ((d+ 8)n2 − 9d(d+ 2)n+ 2d2(d+ 2)2)

d · (3n− d(d+ 2))2
, (42b)

µ =
(n− d)2(d+ 2)n

d · (3n− d(d+ 2))2
, (42c)

r1 =
(n− d)(2n− d(d+ 2))

d · (3n− d(d+ 2))
, r2 = −(n− d)(d+ 2)

3n− d(d+ 2)
. (42d)
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Recall that r1 and r2 are the eigenvalues of A, which is the adjacency matrix of Γ, with
multiplicities n1 and n2. Substituting (42a), (42b) and (42c) into (16), we can obtain the
multiplicities of r1 and r2 as follows

n1 =
d(d+ 1)

2
− 1, n2 = n− d(d+ 1)

2
. (43)

The next lemma introduces another property of Levenstein-equality packings.

Lemma 25. Let d > 4 be an integer. If Φ = {ϕi}ni=1 ⊂ Sd−1 is a Levenstein-equality
packing with size n, then both 1

αn,d
and n−d

d·αn,d
are integers.

Proof. Let M be the matrix of size d×n whose i-th column is ϕi. Since Φ is a Levenstein-
equality packing, Φ ∪ −Φ is an antipodal spherical 5-design. Note that every spherical
2-design is a unit norm tight frame [30, Proposition 6.1]. Hence, Φ forms a unit norm
tight frame in Rd, i.e., MMT = n

d
· Id×d which has eigenvalue n/d with multiplicities

d. Set G := 1
αn,d
· (MTM − In×n). Since the nonzero eigenvalues of MTM and MMT

have the same value and the same algebraic multiplicity, we see that G has two different
eigenvalues:

λ1 = − 1

αn,d
and λ2 =

1

αn,d
· n− d

d
(44)

with multiplicities n − d and d, respectively. Moreover, since the (i, j)-entry of MTM
is the inner product between ϕi and ϕj, G is a matrix whose diagonal entries are all
zeros and non-diagonal entries are 0 or ±1. This means that both λ1 and λ2 are algebraic
integers. Since an algebraic integer is an integer if it is a rational number, it remains to
prove that both λ1 and λ2 are rational numbers. For the aim of contradiction, we assume
that λ1 is irrational. Let f(x) be the minimal polynomial of λ1. Then the characteristic
polynomial of G is divided by f(x)n−d. This means that any algebraic conjugate of λ1 is
also an eigenvalue of G with multiplicity n−d. However, since Φ is a Levenstein-equality
packing, we have n > d(d+1)

2
. Combining with d > 4, we have d < n− d, meaning that G

does not have two eigenvalues with the same multiplicity. This is a contradiction. Hence,
λ1 is rational. Since λ2 = −λ1 · n−dd , we obtain that λ2 is also rational. This completes
the proof.

Remark 26. From viewpoint of the association scheme, the authors in [2, Theorem 8.1]
showed that 1

αn,d
is an integer if the strongly regular graph generated by Φ in Lemma 23 is

not a conference graph. Recall that a strongly regular graph is a conference graph if and
only if its parameters are (n, n−1

2
, n−5

4
, n−1

4
). A simple calculation shows that the strongly

regular graph with parameters described in (42) can never be a conference graph. Hence,
the results in [2, Theorem 8.1] also imply the integrality of 1

αn,d
.

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Recall that Φ ⊂ Sd−1 has the angle set A(Φ) = {0, αn,d,−αn,d},
where αn,d is defined in (40). We claim that n > d(d+3)

2
if n 6= d(d+2)

2
. According to Lemma
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25, we can assume αn,d = 1
k

for some positive integer k. Noting αn,d =
√

3n−d(d+2)
(d+2)(n−d) = 1

k
,

we have

3k2 · (n− d(d+ 2)

3
) = (d+ 2)(n− d)

which implies

(3k2 − d− 2)(n− d(d+ 2)

3
) =

1

3
· d(d− 1)(d+ 2). (45)

We set α := 3k2 − d − 2 ∈ Z. Since either n > d(d+3)
2

or n = d(d+2)
2

, we have n > d(d+2)
3

.
Then (45) implies that α ∈ Z+ and

n =
d(d+ 2)(d− 1 + α)

3α
. (46)

We next show that α ∈ [2, 2(d−1)(d+2)
d+5

] ∩ Z if n 6= d(d+2)
2

. Indeed, α 6 2(d−1)(d+2)
d+5

follows

from n > d(d+3)
2

. We still need show that α > 2. For the aim of contradiction, we assume

that α = 1. Then (46) implies n = d2(d+2)
3

. Noting that Φ∪−Φ is an antipodal 4-distance

set, we have |Φ∪−Φ| = 2n = 2d2(d+2)
3

. On the other hand, according to Delsarte-Goethals-

Seidel bound, i.e. (1), we have |Φ ∪ −Φ| 6 d(d+1)(d+2)
3

. We have 2d2(d+2)
3

6 d(d+1)(d+2)
3

,
which is a contradiction.

We still need show n > d(d+3)
2

if n 6= d(d+2)
2

. We assume n 6= d(d+2)
2

. According to
Lemma 23, Φ gives a strongly regular graph Γ with parameters described in (42). Let E2

denote the eigenspace of the adjacency matrix of Γ with respect to the eigenvalue r2, and
let Y denote the spherical embedding of Γ with respect to E2. Since Y is obtained by
orthogonally projecting a standard basis of Rn onto the eigenspace E2 and rescaling to

have unit norm, we know that Y ⊂ Sn2−1. Combining with (43), we have Y ⊂ Sn−
d(d+1)

2
−1.

By substituting (42) into (17), we see that Y is a spherical two-distance set with the angle

set {− d
n−d ,

d
2n−d(d+1)

}. Since the Levenstein bound (2b) is attained only if n > d(d+1)
2

[20,

Theorem 6.13], we have − d
n−d < 0. Also note that d

2n−d(d+1)
6= 1 since n 6= d(d+2)

2
. Hence,

Y contains no repeated vectors. According to the Delsarte-Goethals-Seidel bound for
spherical two-distance sets (see [12, Theorem 4.8]), we have

|Y | = n 6
(n− d(d+1)

2
)(n− d(d+1)

2
+ 3)

2
. (47)

Rearranging the terms in (47) and solving a quadratic inequality gives n > d(d+3)
2

or

n 6 (d−2)(d+1)
2

. Since n > d(d+1)
2

, we obtain n > d(d+3)
2

. Hence, we have n > d(d+3)
2

if

n 6= d(d+2)
2

.
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