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Abstract

The undirected power graph (or simply power graph) of a group G, denoted
by P (G), is a graph whose vertices are the elements of the group G, in which two
vertices u and v are connected by an edge between if and only if either u = vi or
v = uj for some i, j.

A number of important graph classes, including perfect graphs, cographs, chordal
graphs, split graphs, and threshold graphs, can be defined either structurally or in
terms of forbidden induced subgraphs. We examine each of these five classes and
attempt to determine for which groups G the power graph P (G) lies in the class
under consideration. We give complete results in the case of nilpotent groups, and
partial results in greater generality. In particular, the power graph is always perfect;
and we determine completely the groups whose power graph is a threshold or split
graph (the answer is the same for both classes). We give a number of open problems.

Mathematics Subject Classifications: 05C25.
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1 Introduction

The study of graph representations is one of the interesting and popular research topic
in algebraic graph theory. One of the major graph representation amongst them is the
power graphs of finite groups. We found several papers in this context [2, 5, 6, 9, 10, 13,
14, 23, 26, 27, 29].

Example 1. There are five groups of order 8. The power graph of C8 is complete, and
the power graph of (C2)

3 is a star K1,7. The figure shows the power graphs of the other
three groups.
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We begin with the history of the concept. The notion of power graphs was first
introduced by Kelarev and Quinn [23] in 2002. For a semigroup S, the directed power

graph of S, denoted by ~P (S), is a graph with vertex set V = S; for two distinct vertices
u, v ∈ S, there exists an arc (u, v) if v is a power of u.

The corresponding undirected graph is called the undirected power graph of S, denoted
by P (S). The undirected power graph of a semigroup was introduced by Chakrabarty
et al. [9] in 2009. So the undirected power graph of S is the graph with vertex set
V (P (S)) = S, with an edge between two vertices u and v if u 6= v and either v is a power
of u or u is a power of v. In the sequel, “power graph” will mean “undirected power
graph”.

Later the power graphs of groups were studied. In [9], the authors proved that if G
is a finite group then the power graph P (G) is always connected. They further showed
that a finite group has a complete undirected power graph if and only if it is cyclic
and its order is equal to 1 or pm for some prime p. (We give the proof below.) They
also counted the number of edges in a power graph of a finite group G by the formula

|E(P (G))| = 1

2
[
∑

g∈G(2o(g)−φ(o(g))−1)]. The power graph of a finite group is Eulerian

if and only if the group G is of odd order [9]. Also P (G) is Hamiltonian if |G| > 3.
In [13], Curtin et al. introduced the concept of proper power graphs. The proper power

graph of a group G, denoted by P ∗(G), is the graph obtained from P (G) by deleting the
identity. They discussed the diameter of the proper power graph of the symmetric group
Sn on n symbols. For more information related to proper power graphs we refer to
[13, 14, 29].

In [10], Chattopadhyay et al. gave bounds for the vertex connectivity of the power
graph of the cyclic group Cn.
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In [6], Cameron and Ghosh investigated isomorphism of the power graphs of groups.
They showed that if two finite Abelian groups have isomorphic power graphs then they
are isomorphic. Moreover they proved that if two finite groups have isomorphic directed
power graphs then they have same number of elements of each order. They have also
proved that the only finite group G for which Aut(G) = Aut(P (G)) is the Klein 4-group
V4 = C2 × C2. In [5], Cameron proved that if two finite groups have isomorphic power
graphs then they have isomorphic directed power graphs.

Papers dealing with the power graphs of infinite groups include [1, 7, 8, 22, 34, 35].
For more information related to power graphs we refer to the survey article by Abawajy
et al. [2].

Let G = (V,E) be any graph and S be any subset of V . Then the induced subgraph
G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges
in E that have both endpoints in S. For any graph H, the graph G is said to be H-free
if it has no induced subgraph isomorphic to H. The graphs Pn, Cn and 2K2 denote the
path on n vertices, the cycle with n vertices, and two disjoint edges with no further edges
connecting them.

We use Cn for both the cyclic group of order n and the cycle graph on n vertices;
the context makes clear in each case which is intended. Also, we use Dn for the dihedral
group

〈a, b : an = b2 = (ab)2 = 1〉
of order 2n, rather than for the dihedral group of order n as is often done.

Our general theme is that various important classes of graphs are defined by forbidden
induced subgraphs [4, 31], and we investigate several of these classes with the aim of
determining for which groups G the power graph P (G) belongs to the corresponding class.
So we conclude the Introduction with a simple result of this form due to Chakrabarty
et al. [9], which illustrates the general problem and will also be used later. Note that
a graph is complete if and only if it does not contain the null graph on 2 vertices as an
induced subgraph.

Proposition 2. The power graph of a finite group G is complete if and only if G is a
cyclic group of prime power order.

Proof. In a cyclic group G, a is a power of b if and only if the order of a divides the order
of b. If |G| is a power of a prime p, then the possible orders are powers of p, and so are
totally ordered; so P (G) is complete.

Conversely, suppose that P (G) is complete. Then |G| must be a prime power; for, if
distinct primes p and q divide |G|, then G contains elements a and b of orders p and q
respectively, and these are nonadjacent in P (G).

Let |G| = pn. Then, for each i with i 6 n, the number of elements of order pi is
at most φ(pi), where φ is Euler’s function, since if a and b are two such elements then
b ∈ 〈a〉, and a cyclic group of order pi contains φ(pi) elements of order pi. Since∑

i6n

φ(pi) = pn,
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we see that there are φ(pi) elements of order pi for all i. In particular, there exist elements
of order pn; so G is cyclic.

2 The power graph is perfect

A finite graph Γ is perfect if it has the property that every induced subgraph has clique
number equal to chromatic number. We are going to show that every power graph is
perfect. This motivates considering subclasses of the class of perfect graphs, as we do in
this paper.

The class of perfect graphs is closed under complementation (this is the Weak Perfect
Graph Theorem of Lovász [25]), and contains several further important graph classes,
including bipartite graphs, line graphs, chordal graphs, interval graphs, and comparability
graphs of partial orders. It was shown by Grötschel, Lovász and Schrijver [19] that
computational problems which are hard for general graphs (such as graph colouring,
maximal clique and maximal independent set) can be solved in polynomial time for perfect
graphs using semidefinite programming.

According to the Strong Perfect Graph Theorem, a conjecture of Berge [3] proved by
Chudnovsky, Robertson, Seymour and Thomas [11], a graph is perfect if and only if it
contains no odd hole or odd antihole as induced subgraph, where an odd hole is an n-cycle
with n odd and n > 5, and an odd antihole is the complement of an odd hole.

A partial preorder is a binary relation → on a set X which is reflexive and transitive.
Its comparability graph is the graph on the vertex set X in which u and v are adjacent if
and only if either u→ v or v → u.

Proposition 3. The comparability graph of a partial preorder is perfect.

Proof. In the case of a partial order, a partial preorder satifying

(x→ y and y → x)⇒ x = y,

this is one part (the easier part) of Dilworth’s Theorem [15]. For completeness, we sketch
the proof.

Let Γ be the comparability graph of a partial order. A clique in Γ is a chain in the
partial order. If the largest chain has size k, we produce a proper k-colouring of the graph
as follows: the minimal elements of the partial order form an independent set, to which
we assign the first colour, and then remove these vertices. Since every maximal chain
contains one of these vertices, the largest chain in the resulting graph has size k− 1, and
so by induction it can be properly coloured with the remaining k − 1 colours.

Now suppose that→ is a partial preorder on X. Define a relation ≡ on X by the rule

(x ≡ y)⇔ (x→ y and y → x).

Then ≡ is an equivalence relation. Now define a relation 6 on the set of equivalence
classes by the rule that [x] 6 [y] if x′ → y′ for some (and hence every) x′ ∈ [x] and
y′ ∈ [y]; then 6 is a partial order.
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Now we can refine the partial preorder to a partial order by simply putting a total
order on each equivalence class; this does not change the comparability graph, which is
thus perfect.

Now we can show that the power graph is a perfect graph. Indeed, we do not require
a group; a semigroup will suffice, or indeed any power-associative magma, that is, a set
with a binary operation such that the associative law holds for the powers of a single
element (so that powers xn can be unambiguously defined).

Proposition 4. The directed power graph of any power-associative magma is a partial
preorder.

Proof. This follows immediately from the facts that x1 = x and (xm)n = xmn.

Corollary 5. The undirected power graph of a power-associative magma is a perfect
graph.

Remark 6. This result holds also for infinite power-associative magmas, if we say that
an infinite graph is perfect if every finite induced subgraph has clique number equal to
chromatic number.

Remark 7. This satisfactory result shows, for example, that the power graph of a group
cannot contain the 5-cycle C5 as an induced subgraph (this graph has clique number 2
and chromatic number 3). In the remainder of this paper we look at other examples. But
first we pose an open problem concerning two closely related graphs.

The enhanced power graph of a group G is the graph with vertex set G, in which u
and v are joined if and only if they are both powers of an element w. The commuting
graph of G is the graph in which u and v are joined if and only if uv = vu. It is clear that
the power graph is a spanning subgraph of the enhanced power graph, which is itself a
spanning subgraph of the commuting graph.

Problem 8.

(a) For which groups G is the enhanced power graph of G a perfect graph?

(b) For which groups G is the commuting graph of G a perfect graph?

We make two observations about these problems.

Remark 9. The paper of Aalipour et al. [1] contains classifications of groups for which
either the enhanced power graph or the commuting graph is equal to the power graph.
These groups are examples satisfying the conditions of the problem. So the question is:
What other groups can occur?

Remark 10. It is not the case that the enhanced power graph or the commuting graph of
every group is perfect. For the commuting graph, we may take G = S5, the symmetric
group of degree 5; the five transpositions

(1, 2), (3, 4), (5, 1), (2, 3), (4, 5)
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have the property that the induced subgraph is C5. For the enhanced power graph, we
can work in a larger symmetric group, and take five cycles of pairwise coprime lengths
with the same intersection pattern as above, using the fact that two elements of coprime
order are joined in the enhanced power graph if and only if they commute.

3 Cographs

A graph G is a cograph if it has no induced subgraph isomorphic to the four-vertex path
P4. Cographs form the smallest class of graphs containing the 1-vertex graph and closed
under the operations of disjoint union and complementation.

Cographs have been rediscovered several times and given several different names: for
example, Sumner [30] called them heredditary Dacey graphs. The class of cographs con-
tains the threshold graphs that we discuss later, and is included in the class of compara-
bility graphs (they are the comparability graphs of N-free partial orders, those obtained
from the one-point order by the operations of disjoint union and ordered sum). Thus,
cographs are perfect graphs.

In this section, we determine completely the finite nilpotent groups whose power graph
is a cograph. We also give a partial analysis of the question for more general groups, using
the concept of the prime graph (or Gruenberg–Kegel graph) of a group.

3.1 Nilpotent groups

Recall that a finite group G is nilpotent if and only if it is a direct product of its Sylow
p-subgroups over primes p dividing |G|. Note that, in a nilpotent group, elements of
different prime orders commute. Our first result determines which finite nilpotent groups
G have the property that their power graphs are cographs.

We begin with:

Lemma 11. The power graph of a finite group cannot have an induced 4-vertex path or
cycle in which all four vertices are elements whose orders are powers of the same prime p.

Proof. Suppose that (a, b, c, d) is such a path or cycle.

In the directed power graph ~P (G), we cannot have b → c. For suppose that b → c.
Then c is a power of b, and one of a and b is a power of the other; so a, b, c are all contained
in a cyclic p-group. But the power graph of a cyclic p-group is complete, by Proposition 2,
and so there is an edge {a, c}, contrary to assumption.

By the same argument applied to (b, c, d), we cannot have c → b. Therefore b and c
are not joined in the power graph, a contradiction.

Theorem 12. Let G be a finite nilpotent group. Then P (G) is a cograph if and only if
either |G| is a prime power, or G is cyclic of order pq for distinct primes p and q.

Proof. Lemma 11 shows that if G is a p-group with p prime, then P (G) contains no
induced path of length 3, and so it is a cograph.
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Now we show that G = Cpq is a cograph if p and q are distinct primes. In any group,
two elements a, b satisfy a → b and b → a if and only if 〈a〉 = 〈b〉; in a cyclic group,
this is equivalent to the condition that a and b have the same order, and hence the same
neighbours. So if (a, b, c, d) is an induced path, then no two of a, b, c, d have the same
order. Hence one of them is the identity. But the identity is joined to all other vertices,
a contradiction.

Conversely, let G be a finite nilpotent group whose power graph is a cograph. Sup-
pose first that three primes p, q, r divide |G|. Let a, b, c be elements with orders p, q, r
respectively. These three elements commute pairwise; so ab and bc have orders pq and qr
respectively. Then (a, ab, b, bc) is an induced path, a contradiction.

So suppose that only two primes p and q divide |G|. Then G = P × Q where P is a
p-group and Q a q-group.

Suppose first that P is not cyclic. Then there are elements a, b ∈ P which are not
adjacent in the power graph. If c is a non-identity element of Q, then (a, ac, c, bc) is an
induced path in P (G). So P (and similarly Q) is cyclic.

Now suppose that |P | > p. If a is an element of order p2 in P , and b an element of
order q in Q, then (a, ap, apb, b) is an induced path in P (G). (These elements have orders
p2, p, pq, q respectively; so non-consecutive elements are not joined.)

So |P | = p, and similarly |Q| = q; thus G = Cp × Cq = Cpq.

3.2 The prime graph, or Gruenberg–Kegel graph

Suppose that G is a group which contains no element whose order is the product of two
primes. Then every element of G has prime power order, and every edge of the power
graph joins elements of the same prime power order. Now Lemma 11 shows that P (G)
contains no induced P4, and so it is a cograph

These considerations lead us to the notion of the prime graph Π(G) of the group G.
The vertices of Π(G) are the prime divisors of |G|; there is an edge joining p to q if G
contains an element of order pq. The argument in the previous paragraph shows:

Theorem 13. Let G be a group whose prime graph is a null graph. Then P (G) is a
cograph.

The prime graph was introduced by Gruenberg and Kegel in an unpublished manuscript
studying integral representations of groups in 1975. (The prime graph is often called the
Gruenberg–Kegel graph.) They observed that there are very strong restrictions on the
structure of a group whose prime graph is disconnected. Subsequently, Williams [33]
(a student of Gruenberg) published their theorem. With a small addition, it states the
following. Here a 2-Frobenius group is a group with normal subgroups H and K with
K 6 H such that

(a) H is a Frobenius group with Frobenius kernel K;

(b) G/K is a Frobenius group with Frobenius kernel H/K.
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The symmetric group S4 is an example, with H = A4 and K = V4.
Moreover, suppose that G has even order. Let π1 be the set of primes which are

vertices of the connected component containing the prime 2. A π1-group denotes a group
whose order is divisible only by primes in π1.

Theorem 14. The prime graph of G is disconnected only if G satisfies one of the follow-
ing:

(a) G is Frobenius or 2-Frobenius;

(b) |G| is even, and G is an extension of a nilpotent π1-group by a simple group by a
π1-group.

Williams observed that, in the second case of the theorem, the simple group itself must
have disconnected prime graph, and he analysed the simple groups to find which have
disconnected prime graph. The results cannot be summarised here since they comprise
extended tables. The tables contained some errors which were corrected by Kondrat’ev
and Mazurov [24].

The only simple groups with the property that the prime graph is a null graph are the
alternating groups A5 and A6 and the groups PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 4),
and Sz(8). So these groups have power graphs which are cographs.

In the other direction, Williams observed that, if G is a non-solvable group with
disconnected prime graph and π is the vertex set of a connected component not containing
2, then G has a nilpotent Hall π-subgroup which contains the centraliser of each of its
elements. By our earlier result, we obtain the following.

Theorem 15. Let G be a non-solvable group whose power graph is a cograph, and sup-
pose that the prime graph of G is disconnected. Then, with possibly one exception, each
component of the prime graph is either an isolated vertex or an isolated edge joining two
primes which divide |G| to the first power only (the exception, if any, is the component
containing 2).

Information about the simple groups satisfying this condition can be obtained from
the results of [33, 24]. However, some problems remain. We give an example. For which
prime powers q is power graph of the group PSL(2, q) a cograph? If q is even, then the
prime graph is the union of three complete graphs, on the sets of prime divisors of q, q−1
and q + 1; if q is odd, we replace q − 1 and q + 1 by (q − 1)/2 and (q + 1)/2.

(a) Let q = 2n. If n is even, say n = 2m with m > 1, then 22m − 1 = (2m − 1)(2m + 1),
and the two factors cannot both be primes except when m = 2; so q = 4 and q = 16
are the only examples. If n is odd, then we require that 2n − 1 has at most two
prime divisors; also 3 | 2n + 1, so we require that (2n + 1)/3 is prime. Examples
include q = 8, 32, 128, 2048, 8192, . . .

(b) Let q be a power of a prime p > 3. Then one of (q− 1)/2 and (q+ 1)/2 is even, and
one is divisible by 3. So there are several possibilities:
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• (q− 1)/2 = 2r, (q+ 1)/2 = 3s, or (q− 1)/2 = 3s, (q+ 1)/2 = 2r, with r and s
primes (possible values of q include 27, 43, 67, . . . );

• one of (q− 1)/2 and (q+ 1)/2 is a power of 2, the other is three times a prime
(examples q = 31, 257, . . . );

• one of (q − 1)/2 and (q + 1)/2 is a power of 3, the other is twice a prime
(examples q = 19, 53, 163, . . . );

• one of (q − 1)/2 and (q + 1)/2 is a power of 2, the other a power of 3 (by the
solution of Catalan’s equation, this holds only for q = 5, 7 and 17).

(c) For q a power of 3, a similar analysis is possible. Examples include q = 9, 27, 243,
2187, . . .

Problem 16. Are there infinitely many prime powers q such that the power graph of
PSL(2, q) is a cograph?

4 Chordal graphs

A graph Γ is chordal if it contains no induced cycles of length greater than 3; in other
words, every cycle on more than 3 vertices has a chord.

Chordal graphs also arise in several different contexts: they are the intersection graphs
of subtrees of a tree, or the graphs with a perfect elimination order [17]. The class includes
the split graphs and is contained within the class of perfect graphs.

In this section we determine which finite nilpotent groups have chordal power graphs.
We already know that power graphs contain no odd cycles of length greater than 3.

Theorem 17. If G is a group of prime power order then P (G) is chordal.

Proof. We saw in Lemma 11 that P (G) has no induced path of length 3, and hence no
induced even cycle of length 6 or greater. The same lemma also shows that there is no
induced 4-cycle.

Lemma 18. Let G be a group whose order is a power of a prime p. Suppose that there is
no induced path of length 2 in P (G) not containing the identity. Then either G is cyclic or
G has exponent p. Conversely, if G is cyclic or has exponent p, then P (G) \ {1} contains
no induced path of length 2.

Proof. If G is cyclic then P (G) is complete; if G has exponent p, then P (G) consists of
complete graphs of order p with a single vertex 1 in common. So the converse holds.

So assume that G is a p-group and P (G) has no induced path of length 2 not containing
the identity; assume for a contradiction that G is neither cyclic nor of exponent p.

First observe that G cannot contain a subgroup Cp2×Cp. For if a and b were generators
of the factors in such a subgroup, then (a, ap, ab) would be a path of length 2. In particular,
the centre of G is elementary abelian. If Z(G) is not cyclic, then choose an element a of
order p2 in G, and an element b ∈ Z(G) \ 〈a〉; then 〈a, b〉 ∼= Cp2 × Cp, a contradiction.
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Thus Z(G) ∼= Cp. This argument also shows that, if a is any element of G of order greater
than p, then some power of a generates Z(G).

Suppose that b is an element of order p not in Z(G), and a an element of order p2, so
that ap ∈ Z(G). If a and b commute, then they generate Cp2 ×Cp; so suppose not. Then
(b−1ab)p = ap. If b−1ab /∈ 〈a〉, then (a, ap, b−1ab) is a path of length 2; so suppose that
b−1ab ∈ 〈a〉. Then 〈a, b〉 is a non-abelian subgroup of order p3 and exponent p2, and we
may suppose that b−1ab = ap+1. Now we can compute that (ab)p = ap, and so (a, ap, ab)
is a path of length 2.

Theorem 19. Let G be a finite nilpotent group which is not of prime power order. Then
P (G) is chordal if and only if |G| has two prime divisors, one of the two Sylow subgroups
is cyclic, and the other has prime exponent.

Proof. If there are three prime divisors of |G|, say p, q, r, let a, b, c be elements of these
orders. Then (a, ab, b, bc, c, ca, a) is an induced 6-cycle in P (G).

Suppose that p and q are the only prime divisors of |G|, and P , Q the corresponding
Sylow subgroups. Suppose that P is not cyclic. If also Q is not cyclic, then choose a, b
nonadjacent vertices in P and c, d nonadjacent vertices inQ; then (a, ac, c, bc, b, bd, d, ad, a)
is an induced 8-cycle. So Q is cyclic. If (a, b, c) is an induced path of length 2 on non-
identity elements of P , and d a non-identity element of Q, then b is a power of a and a
power of c (but not the reverse) and so (b, ad, d, cd) is an induced 4-cycle in P (G). By
Lemma 18, P has prime exponent.

Now P (Cp2 × Cq2) is not chordal, since (if the factors are generated by a and b) it
contains the cycle

((1, bq), (ap, b), (ap, 1), (a, bq)).

So P and Q are not both cyclic of composite order; thus one is cyclic and the other has
prime exponent.

Conversely, let H be a group of exponent p, and G = H × Cqβ , and suppose that
P (G) contains a cycle of even length. Then P (H) consists of complete graphs of size p
sharing only the identity. Any two vertices of the form (1, y) in G are adjacent; so the
cycle contains at most two such vertices, and if two then they must be consecutive. The
remaining vertices all have the form (h, y) with h 6= 1. Then for two consecutive vertices
(h, y) and (h′, y′), we must have 〈h〉 = 〈h′〉, and we may without loss of generality assume
that h = h′. So the entire cycle is contained in Cp × Cqβ , and it suffices to show that the
power graph of this group is chordal. The argument above shows that the length of an
even cycle cannot be greater than 4.

So finally, let ((1, y1), (1, y2), (a, y3), (a, y4)) be a 4-cycle. Let the order of yi be qmi .
Then we have

m1 > m3 > m2 > m4 > m1,

since, for example, y1 is a power of y4 but is not a power of y3. But this is impossible.

Remark 20. A group of exponent 2 is abelian, and so is a direct product of cyclic groups of
order 2. But there are non-abelian groups of exponent p for any odd prime p, for example

G = 〈a, b, z : ap = bp = zp = 1, [a, b] = z, [a, z] = [b, z] = 1〉

the electronic journal of combinatorics 28(3) (2021), #P3.4 10



of order p3.

5 Threshold graphs and split graphs

A threshold graph is a graph containing no induced subgraph isomorphic to P4, C4 or
2K2 [12, 21, 28]. Thus every threshold graph is a cograph. Threshold graphs form the
smallest family of graphs containing the one-vertex graph and closed under the operations
of adding an isolated vertex and adding a vertex joined to all others.

Applications of threshold graphs in computer science and psychology can be found in
[12, 21].

An n-vertex threshold graph is can be represented by a binary string a1a2 · · · an where
a1 = 0 and, for 2 6 ai 6 n, ai = 0 if the vertex i is added as an isolated vertex, and
ai = 1 if it is added as a vertex joined to all other existing vertices. This sequence gives
a simple representation of the graph.

A graph G is split if the vertex set is the disjoint union of two subsets A and B
such that A induces a complete graph and B a null graph. Split graphs were introduced
independently by several authors, first by Földes and Hammer [16], and are easy to
recognise algorithmically (in particular, they can be recognised by their degree sequences).

A graph is split if and only if it contains no induced subgraph isomorphic to C4, C5

or 2K2.

A common feature of these two classes is that both exclude 2K2. In [26], Ma and
Feng proved that power graph of a finite group is a split graph if and only is it does not
contains 2K2. In fact we observe that the same is true for threshold graph. In this section
we are going to determine all finite groups whose power graph excludes 2K2.

We say that the finite group G satisfies the intersection condition (IC) if G does not
contain subgroups H and K such that both H \K and K \H contain elements of order
greater than 2.

Theorem 21. For a finite group G, the following conditions are equivalent:

(a) P (G) is a threshold graph;

(b) P (G) is a split graph;

(c) P (G) contains no induced subgraph isomorphic to 2K2;

(d) G satisfies the intersection condition;

(e) G is cyclic of prime power order, or an elementary abelian or dihedral 2-group, or
cyclic of order 2p, or dihedral of order 2pn or 4p, where p is an odd prime.

Proof. We noted already that each of (a) and (b) implies (c).
Next we show that (c) implies (d). If IC fails, let H and K be subgroups of G and

x ∈ H \ K, y ∈ K \ H, where x and y are elements with order greater than 2. Then
{x, x−1, y, y−1} induces 2K2 (with edges {x, x−1} and {y, y−1} only).

Now we classify groups satisfying IC. First suppose that G has prime power order pn.
If p is odd, then G has at most one subgroup of each order pi with i < n, which forces
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G to be cyclic. So suppose that p = 2. Let H be a cyclic subgroup of G of maximum
order. If H = G, then G is cyclic; if |H| = 2, then G is elementary abelian. By IC, every
element outside H has order 2, which implies that G is dihedral.

Now suppose that G does not have prime power order. By IC, |G| is divisible by
only one odd prime (since two Sylow subgroups of odd prime power order would violate
IC). Let p be an odd prime divisor of |G|, and P a Sylow p-subgroup of G. Then P
is the unique Sylow p-subgroup of G, and so is normal. Let T be a Sylow 2-subgroup.
If T contains an element x of order greater than 2, then 〈x〉 and P violate IC; so T is
elementary abelian. Also P is cyclic, and its automorphism group is therefore cyclic; so
T induces an automorphism group of P of order 1 or 2, so |CT (P )| is a subgroup of index
at most 2 in P .

If T contained distinct elements s and t centralising P , then 〈s, P 〉 and 〈t, P 〉 violate
IC. Also, if 1 6= t ∈ CT (P ) and |P | > p, choose an element x of order p2 in P ; then 〈x〉
and 〈t, xp〉 violate IC.

So we are left with three cases:

• |P | = 2 and CT (P ) = 1. Then the non-identity element of T inverts P , and G is
dihedral of order 2pn, where |P | = pn.

• |P | = 2 and CT (P ) = P . Then |P | = p and G is cyclic of order 2p.

• |P | = 4 and |CT (P )| = 2. Then G = C2 ×Dp = D2p.

The final step is to show that the groups G in (e) have the property that P (G) is
threshold and split, that is, contains no induced P4, C4, 2K2 or C5. Here C5 is excluded
since P (G) is perfect (Corollary 5). We note also that, if H is a graph having no isolated
vertex and no vertex joined to all others, and P (Cn) is H-free, then also P (Dn) is H-free.
For P (Dn) consists of P (Cn) with n further vertices joioned only to the identity (which
is joined to all vertices of P (Cn)), so any induced copy of H would have to be contained
in P (Cn) \ {1}.

Thus we only have to deal with cyclic groups. Now if G is cyclic of prime power order,
then P (G) is complete; and if G is cyclic of order 2p, then the complement of P (G) is a
star (on the elements of orders 2 and p) together with p isolated vertices (the identity and
the generators). All these graphs exclude P4, C4 and 2K2 (a self-complementary collection
of graphs).
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