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Abstract

Every permutation of rank n > 5 is reconstructible from any dn/2e + 2 of its
(n− 1)-patterns.

Mathematics Subject Classifications: 05A05

1 Introduction

The theory of permutation patterns and pattern avoidance has been an active field of
research in the past decades. The fundamental notion of the theory is the pattern in-
volvement relation. Writing a permutation π ∈ Sn as a word π1π2 . . . πn where πt = π(t),
a permutation τ ∈ S` is called a pattern of π if τ1τ2 . . . τ` is order-isomorphic to some sub-
word πt1πt2 . . . πt` of π. For further information and background on permutation patterns,
we refer the reader to Bóna [1] and Kitaev [4].

A reconstruction problem concerns whether a mathematical structure can be uniquely
recovered from a collection of some derived structures that convey partial information on
the original structure. The kind of reconstruction problems we discuss in this paper are
exemplified by the famous unsolved problem in graph theory that concerns whether or not
a finite simple graph is uniquely determined, up to isomorphism, by the collection of its
one-vertex-deleted subgraphs. This problem was posed by Kelly [3] and Ulam [7], and it
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is conjectured to hold for every graph with at least three vertices. Analogous reconstruc-
tion problems have been formulated and studied for many other kinds of mathematical
structures.

The problem of reconstructing a permutation from its patterns has been considered
by several authors. It is known that, for n > 5, every n-permutation is reconstructible
from its multiset of (n− 1)-patterns (Smith [6], Raykova [5]) and from its set of (n− 1)-
patterns (Ginsburg [2]). Raykova [5] and Smith [6] also considered decks (i.e. multisets)
composed of (n− k)-patterns for k > 1 and, for every k > 1, they proved the existence of
natural numbers M such that all permutations of rank n > M are reconstructible from
their multisets of (n− k)-patterns. Although they did not determine Nk, the smallest of
those numbers M , they could provide an upper bound and a lower bound for Nk.

When a permutation is reconstructible, its deck contains a sufficient amount of in-
formation for uniquely determining the permutation. Nonetheless, there may be some
redundancy; perhaps some permutations can be reconstructed from only a few cards.
Our main goal is to shed some light on how much information is needed for reconstruc-
tion, independently of the permutation we may consider. In this way we sharpen the
previous results on the reconstructibility of permutations from patterns. In this paper we
succeed to answer, for k = 1, one of the open problems posed by Ginsburg in [2]: Can
we find a non-trivial function fk : {n ∈ N | n > Nk} → N so that fk(n) is the smallest
integer m such that every permutation π ∈ Sn is uniquely determined by any of its par-
tial (n − k)-decks of cardinality m? More precisely, here we prove that when k = 1 the
function fk is defined by f1(n) = dn/2e+ 2.

This paper is organized as follows. In Section 2, we introduce the basic notions and
notation that will be needed throughout the paper. The main questions we are addressing
in this paper are formulated precisely in Section 3. In Section 4, we look into certain special
cases in which a permutation can be easily reconstructed from a few cards that contain
the same monotone segment. Section 5 is devoted to our main result (Theorem 19): every
permutation of rank n > 5 is reconstructible from any partial deck of cardinality dn/2e+2.
Its proof is constructive and yields a reconstruction algorithm. For the sake of illustrating
the reconstruction method, several examples are given. We discuss some open problems
in the final Section 6.

2 Preliminaries

Let the symbols N and N+ denote the set of all nonnegative integers and the set of positive
integers, respectively. For n ∈ N+, denote by [n] the set {i ∈ N | 1 6 i 6 n}. For a set A
and k ∈ N, we denote by

(
A
k

)
the set of all k-element subsets of A.

A finite multiset M over a nonempty set X is a pair (X,χM), where χM : X → N is a
map, called a multiplicity function, such that the support or underlying set Supp(M) :=
{x ∈ X | χM(x) 6= 0} is finite. We say that x is an element of M and we write x ∈ M if
x ∈ Supp(M). For x ∈ X, the number χM(x) is called the multiplicity of x in M . In this
paper only finite multisets are discussed and we will refer to them simply as multisets.

For a multiset M , the sum
∑

x∈X χM(x) is a well-defined natural number, and it is
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called the cardinality of M and is denoted by |M |.
Let M and M ′ be multisets over X. We say that M is a submultiset of M ′ if χM(x) 6

χM ′(x) for all x ∈ X. The intersection of M and M ′ is the multiset M ∩M ′ over X given
by the multiplicity function χM∩M ′(x) = min(χM(x), χM ′(x)) for all x ∈ X.

We may represent a multiset M as a list enclosed in angle brackets where each element
x ∈ X occurs χM(x) times (the order of elements in the list does not matter), e.g.,
〈0, 0, 1, 1, 1, 1, 2, 3, 4, 4, 4〉. We also write xm to mean m occurrences of x. (This will not
create confusion because we will not be dealing with exponentiation in this paper.) Using
this shorthand, the above multiset can be written briefly as 〈02, 14, 2, 3, 43〉.

If (ai)i∈I is a finite indexed family of elements of X, then we will write 〈ai | i ∈ I〉 for
the multiset in which the multiplicity of each element x ∈ X equals |{i ∈ I | ai = x}|.

For n ∈ N+, the set of all permutations of [n] is denoted by Sn; these are called
permutations of rank n. We may write a permutation π ∈ Sn as a word π1π2 . . . πn where
πp = π(p) for every p ∈ [n].

For a nonempty subset P = {p1, p2, . . . , p`} ⊆ [n] with p1 < p2 < · · · < p`, we denote
by πP the permutation τ ∈ S` such that the words πp1πp2 . . . πp` and τ1τ2 . . . τ` are order-
isomorphic (with respect to the natural order of integers); when P = [n] \ {p} we write
π − p instead. If τ is such a permutation πP , then τ is called a pattern of π and π is said
to involve τ . We write τ 6 π when τ is a pattern of π.

Let π ∈ Sn. The reverse and the complement of π are the permutations πr and πc in
Sn, respectively, given by the rules πr(t) = π(n− t + 1) and πc(t) = n− π(t) + 1, for all
t ∈ [n]. It is well known that the pattern involvement relation is preserved under reverses
and complements of permutations, as well as under taking inverses (i.e., if τ 6 π, then
τ r 6 πr, τ c 6 πc, and τ−1 6 π−1).

For a permutation π ∈ Sn and k ∈ N+, the (n − k)-deck of π is the multiset
deckn−k(π) := 〈πP | P ∈

(
[n]
n−k

)
〉. The elements of deckn−k(π) are called the (n− k)-cards

of π. If the number n − k is clear from the context, we speak of the deck and the cards
of π. Any submultiset of the deck of π is called a partial deck of π.

A permutation π ∈ Sn is reconstructible from its (n−k)-cards if for all σ ∈ Sn it holds
that deckn−k(π) = deckn−k(σ) if and only if π = σ.

As we can easily observe from Lemma 6, the ascending (identity) and the descending
permutations of rank n, i.e., ιn = 12 . . . n and δn = n(n − 1) . . . 1, respectively, are the
unique permutations that admit an (n−1)-deck with a unique element. Hence, for n > 3,
ιn and δn are examples of permutations that are reconstructible from their (n− 1)-decks.

In Section 3 we present some constructions of permutations that preserve the existence
of common cards. Some of those examples are particular cases of direct sums and skew
sums of permutations. For σ ∈ Sm and τ ∈ Sn, the direct sum σ ⊕ τ and the skew sum
σ 	 τ are the permutations of rank m+ n given by the rules

(σ ⊕ τ)(t) =

{
σ(t), if 1 6 t 6 m,

τ(t−m) +m, if m+ 1 6 t 6 m+ n,

(σ 	 τ)(t) =

{
σ(t) +m, if 1 6 t 6 m,

τ(t−m), if m+ 1 6 t 6 m+ n.
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Cn,k
k

1 2 3 4

n

2 2∗ — — —
3 3∗ 3∗ — —
4 4∗ 6∗ 4∗ —
5 4† 10∗ 10∗ 5∗

6 4 14† 20∗ 15∗

7 5 18 34† 35∗

8 5 ? ? ?

Table 1: Values of Cn,k for small parameters n and k. Asterisks indicate values equal to(
n

n−k

)
, and daggers indicate values equal to

(
n

n−k

)
− 1.

3 Common partial decks

We are now ready to formulate the main question that we are addressing in this paper.

Definition 1. For n, k ∈ N+, with n > k, define Hk(n) to be the smallest integer m such
that every permutation π ∈ Sn is uniquely determined by any of its partial (n− k)-decks
of cardinality m.

Does the number Hk(n) exist for given n, k ∈ N+? It is clear that Hk(n) exists if
and only if every permutation of rank n is reconstructible from its (n− k)-deck, and that
Hk(n) 6

(
n

n−k

)
in this case. As explained in the introduction, for every k ∈ N+, there

exists a smallest number Nk such that every permutation of rank n > Nk is reconstructible
from its (n−k)-deck (see Smith [6] and Raykova [5]). Consequently, Hk(n) exists for every
n > Nk, given k ∈ N+. In particular, H1(n) exists for n > 5 and H2(n) exists for n > 6
since N1 = 5 (see Smith [6]) and N2 = 6 (see Raykova [5]).

Problem 2. Given n, k ∈ N+ such that n > Nk, what is the value of Hk(n)?

Definition 3. For n, k ∈ N with 1 6 k < n, define Cn,k to be the largest number m for
which there exist π, σ ∈ Sn such that π 6= σ but π and σ have m common (n− k)-cards,
i.e., |deckn−k(π) ∩ deckn−k(σ)| = m.

Clearly, every permutation of rank n is reconstructible from its (n − k)-deck if and
only if Cn,k <

(
n

n−k

)
. It follows immediately from the definitions that Hk(n) = Cn,k + 1

whenever n > Nk.
In Table 1 we present the numbers Cn,k for small values of n and k that were discovered

by an exhaustive computer search. Values equal to
(

n
n−k

)
are indicated with asterisks – this

means that not every permutation of rank n is reconstructible from its (n−k)-deck. Values
equal to

(
n

n−k

)
− 1 are indicated with daggers – this means that there exist permutations

of rank n such that all (n− k)-cards are necessary for unique reconstructibility.
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Focusing on the case k = 1, the pairs of distinct n-permutations with the maximum
number Cn,1 of common (n − 1)-cards were determined for 2 6 n 6 8; all such pairs are
presented in Table 2, one pair in each row. Note that for n 6 4, the listed permutations
are precisely the permutations that are not reconstructible from (n− 1)-decks.

At this point, we would like to draw the reader’s attention to the following facts. On
the one hand, the computational evidence seems to suggest that Cn,1 = dn/2e + 1 and
hence H1(n) = dn/2e+ 2 for all n > 5. On the other hand, by noticing that

• for n = 2k, the two distinct permutations (ιk−1 	 1) ⊕ ιk and (ιk 	 1) ⊕ ιk−1 have
dn/2e+ 1 common (n− 1)-cards, and

• for n = 2k + 1, the two distinct permutations ιk−1 ⊕ δ2 ⊕ ιk and ιk ⊕ δ2 ⊕ ιk−1 have
dn/2e+ 1 common (n− 1)-cards,

we may immediately conclude that Cn,1 > dn/2e + 1; consequently, H1(n) > dn/2e + 2
for all n > 5. In the next section, we are going to show that this lower bound is actually
exact.

We end this section by highlighting some constructions of permutations that preserve
the existence of common cards. For σ, τ ∈ Sn, the following holds:

1. For every p ∈ [n], σr − p = (σ − (n− p+ 1))r and σc − p = (σ − p)c.

2. For every i ∈ [n], σ−1 − i = (σ − σ−1(i))−1.

3. If σ and τ have m common (n − 1)-cards, then each of the pairs (σr, τ r), (σc, τ c),
and (σ−1, τ−1) also has m common (n− 1)-cards.

4. If σ and τ have m common (n − 1)-cards, then the following pairs of (n + 1)-
permutations have m common n-cards: (1⊕ σ, 1⊕ τ), (1	 σ, 1	 τ), (σ ⊕ 1, τ ⊕ 1),
and (σ 	 1, τ 	 1).

It is not difficult to verify that the pairs of permutations of Table 2 for n > 5 can be
built from permutations of lower rank by using some of these constructions. (Note that
for n = 5 we make use of the non-reconstructible pairs of 4-permutations.)

4 Monotone segments and their relevance for reconstructibility

In this section we highlight some cases where the presence of a monotone segment in cards
of a permutation is relevant to, and sometimes enough for, its reconstruction.

Given words v and w over some alphabet A, we write v v w if v is a consecutive
subword of w, i.e., there exist (possibly empty) words x and y over A such that xvy = w.
Recall that we may write a permutation π ∈ Sn as a word π1π2 . . . πn over [n]. We call
a nonempty consecutive subword of π1π2 . . . πn a segment of π. We denote the segment
πsπs+1 . . . πt by π[s, t]. If τ and τ ′ are segments of π and τ v τ ′, then we say that τ is a
subsegment of τ ′ and τ is a proper subsegment of τ ′ if τ v τ ′ and τ 6= τ ′. A segment π[s, t]
is ascending if πi+1 = πi + 1 for all i ∈ [s, t− 1], and π[s, t] is descending if πi+1 = πi − 1
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n = 2

12 21

n = 3

132 213
231 312

n = 4

2413 3142

n = 5

12435 13245
13524 14253
24135 31425
35241 42531
52413 53142
53421 54231

n = 6

123546 124356
123564 124563
123645 126345
124356 132456
124356 132546
124635 125364
135246 142536
146352 153642
163524 164253
164532 165342
214635 215364
231456 234156
235461 243561
241356 314256
241365 314265
312456 412356
352416 425316
352461 425361
365421 465321
463512 536412
463521 536421
524136 531426
534216 542316
543621 546321
562413 563142
612435 613245
613524 614253
624135 631425
635241 642531
645231 653421
645321 653421
651432 654132
652413 653142
653214 654213
653421 654231

n = 7

1235467 1243567
7645321 7653421

n = 8

12346578 12354678
12346785 12356784
12348567 12384567
12354678 12435678
18756432 18764532
23415678 23451678
23465781 23546781
41235678 51234678
48765321 58764321
76453218 76534218
76548321 76584321
81235467 81243567
87564321 87645321
87615432 87651432
87643215 87653214
87645321 87653421

Table 2: Permutations of rank n with Cn,1 common (n− 1)-cards, for 2 6 n 6 8.
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for all i ∈ [s, t − 1]. A segment is monotone if it is either ascending or descending.
An ascending (descending) segment is maximal if it is not a proper subsegment of any
ascending (descending) segment. The length of a segment π[s, t] is defined as t − s + 1,
that is, the cardinality of the interval [s, t]. A segment is nontrivial if its length is greater
than 1. The initial and the final values of a segment π[s, t] are πs and πt, respectively.
We sometimes view a segment π[s, t] as the set {πi | i ∈ [s, t]} of its elements, and with
slight misuse of notation, the meaning of expressions such as i ∈ π[s, t] or I ⊆ π[s, t] will
be clear.

Henceforth we will consider mainly (n − 1)-cards and (partial) (n − 1)-decks of an
n-permutation; therefore we will refer to them simply as cards and (partial) decks.

The following notation will be used to specify (n− 1)-cards of an n-permutation. For
π ∈ Sn and p ∈ [n], we denote by

• π ↓ i the (n − 1)-permutation obtained by deleting from π the entry with value i,
i.e., if p = π−1(i), then π ↓ i = π − p

and we recall that

• π− p denotes the (n− 1)-permutation obtained by deleting from π the entry at the
p-th position, i.e., the (n−1)-permutation order-isomorphic to π1 . . . πp−1πp+1 . . . πn.

In other words, π ↓ i = π[n]\{π−1(i)} and π − p = π[n]\{p}. More generally, for a subset
J ⊆ [n], we define π − J := π[n]\J and π ↓ J := π[n]\π−1(J). For a permutation π ∈ Sn and
a set I ⊆ [n], we denote by deckI(π) the partial deck 〈π ↓ i | i ∈ I〉.

Any permutation π can be recovered when π−1(i) and π ↓ i are known for some i ∈ [n],
as is made explicit in the next lemma. For any τ ∈ Sn−1 and p, v ∈ [n], we denote by
τ ↑p v the permutation in Sn obtained by adding 1 to all entries greater than or equal
to v and inserting at position p an entry with value v, more precisely, τ ↑p v = a1 . . . an,
where

at =



τ(t), if t < p and τ(t) < v,

τ(t) + 1, if t < p and τ(t) > v,

v, if t = p,

τ(t− 1), if t > p and τ(t) < v,

τ(t− 1) + 1, if t > p and τ(t) > v.

More generally, if τ = j1j2 . . . jm ∈ Sm, p ∈ [m+ 1], and σ = k1k2 . . . k` is a word over
[n] with n := m + `, then we define τ ↑p σ as the permutation a1a2 . . . an ∈ Sn, where
apap+1 . . . ap+`−1 = σ and a1 . . . ap−1ap+` . . . an is order-isomorphic to j1j2 . . . jm.

Lemma 4. For any π ∈ Sn and i ∈ [n], we have (π ↓ i) ↑π−1(i) i = π.

Proof. This is clear from the definitions.

Let us recall here a useful fact about iterated deletions of entries from a permutation.

Lemma 5 (Ginsburg [2, Lemma 1(vi)]). Let π ∈ Sn and p, q ∈ [n] with p < q. Then
(π ↓ q) ↓ p = (π ↓ p) ↓ (q − 1).
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The existence of nontrivial monotone segments in a permutation is directly connected
with the existence of cards of multiplicity greater than 1 in its deck.

Lemma 6 (Ginsburg [2, Lemma 1(iv)]). Let π ∈ Sn and s, t ∈ [n] with s 6 t. Then
π − s = π − t if and only if π[s, t] is a monotone segment in π.

Lemma 7. Let π ∈ Sn, I ⊆ [n], and D := deckI(π).

(i) The partial deck D comprises a single card τ with multiplicity |I| if and only if there
is a monotone segment π[s, t] of π such that I ⊆ π[s, t].

(ii) Assume that the condition of statement (i) holds and |I| > 2. If π[s, t] is an as-
cending segment in π, then π[s, t− 1] = τ [s, t− 1] is an ascending segment in τ and
π = τ ↑s τ(s). If π[s, t] is a descending segment in π, then π[s, t− 1] = τ [s, t− 1] is
a descending segment in τ and π = τ ↑t τ(t− 1).

(iii) Assume that the condition of statement (i) holds and |I| > dn/2e + 1. Then τ
has a unique maximal monotone segment π[u, v] of length at least dn/2e, and I ⊆
π[u, v + 1].

Proof. (i) This follows immediately from Lemma 6.
(ii) This follows from a straightforward verification.
(iii) By (i), π has a monotone segment π[s, t] of length at least dn/2e + 1 such that

I ⊆ π[s, t]; hence τ [s, t − 1] is a monotone segment in τ and has length at least dn/2e.
If τ had two distinct maximal monotone segments of length at least dn/2e, then τ would
have rank at least 2dn/2e > n, a contradiction.

The above Lemma 7 asserts that any card τ of multiplicity m > 2 in a partial deck
of π arises by removing entries from a monotone segment of length ` > m+ 1, and τ has
consequently a monotone segment of length `− 1 > m. The following lemma is a kind of
converse statement and allows immediate reconstruction of π in the case when the partial
deck contains a card with large multiplicity and a unique long monotone segment.

For a segment σ = k1k2 . . . kq, denote by σ∗ the word obtained from σ by deleting its
largest entry, and let σ− := (k1 − 1)(k2 − 1) . . . (kq − 1).

Proposition 8. Let π ∈ Sn, and let D be a partial deck of π. Assume that D contains
a card τ of multiplicity m > 3 such that τ has a unique maximal monotone segment
τ [u, v] = σ = k1 . . . kq of length at least m − 1. If σ is ascending, then π = τ ↑u τ(u). If
σ is descending, then π = τ ↑u (τ(u) + 1).

Proof. Since τ has multiplicity m, it follows from Lemma 7(i) that π must contain a
monotone segment λ of length at least m such that τ = π ↓ i for any i ∈ λ.

Consequently, τ [u, v − 1] = λ∗ is a monotone segment in τ , and it has length at least
m− 1. Since τ has a unique maximal monotone segment of length at least m− 1, it holds
that σ = λ∗. We have τ = π ↓ π(u). By Lemma 4, if σ (equivalently, λ) is ascending,
then π = (π ↓ π(u)) ↑u π(u) = τ ↑u k1 = τ ↑u τ(u). If σ (equivalently, λ) is descending,
then π = (π ↓ π(u)) ↑u π(u) = τ ↑u (k1 + 1) = τ ↑u (τ(u) + 1).
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We will now develop a result (Proposition 12) which, together with its dual, obtained
by reversing permutations, allows us to reduce the reconstruction of a permutation π of
rank n to the reconstruction of a permutation of rank n−q 6 n−2 whenever the cards of a
partial deck of π contain the same maximal increasing or decreasing sequence of length q.

Definition 9. Let π ∈ Sn, and assume that π[u, v] = k1k2 . . . kq =: σ and π[u′, v′] =
k′1k

′
2 . . . k

′
r =: σ′ are maximal ascending segments in π. We say that i ∈ [n] is critical for

(σ, σ′) in π, if one of the following conditions holds:

(1) u′ = v + 1, i = kq + 1, k′1 = kq + 2,

(2) u′ = v + 2, k′1 = kq + 1, i = π(v + 1).

In this case, we also say that i is (upper) critical for σ and (lower) critical for σ′.

Remark 10. By definition, a maximal ascending segment π[u, v] = k1k2 . . . kq may have at
most two upper critical points, and there are exactly two upper critical points if and only
if π(v+ 1) = kq + 2 and π(v+ 2) = kq + 1. In this case, kq + 2 is critical for (π[u, v], kq + 1)
and kq+1 is critical for (π[u, v], kq+2); moreover, (kq+2)(kq+1) is a maximal descending
segment in π, and hence π ↓ (kq + 1) = π ↓ (kq + 2). Similarly, π[u, v] may have at most
two lower critical points, and there are exactly two lower critical points if and only if
π(u− 1) = k1− 2 and π(u− 2) = k1− 1. In this case, k1− 2 is critical for (π[u, v], k1− 1)
and k1−1 is critical for (π[u, v], k1−2); moreover, (k1−1)(k1−2) is a maximal descending
segment in π, and hence π ↓ (k1 − 1) = π ↓ (k1 − 2).

Observe that if i is critical for (µ, µ′) in π, then in the card π ↓ i, the ascending
segments µ and µ′ are merged and are part of a longer ascending segment. This will be
made more precise in the following lemma.

Lemma 11. Let π ∈ Sn, and assume that π[u, v] = k1k2 . . . kq =: σ is a maximal ascending
segment in π.

(i) If q > 2, then for every i ∈ π[u, v], (π ↓ i)[u, v − 1] = σ∗ is a maximal ascending
segment in π ↓ i.

(ii) If π−1(i) < u and i < k1, then (π ↓ i)[u− 1, v − 1] = σ−.

(iii) If π−1(i) < u and i > kq, then (π ↓ i)[u− 1, v − 1] = σ.

(iv) If π−1(i) > v and i < k1, then (π ↓ i)[u, v] = σ−.

(v) If π−1(i) > v and i > kq, then (π ↓ i)[u, v] = σ.

(vi) The ascending segments in π ↓ i described in (ii)–(v) are maximal precisely unless i
is critical for σ in π.

(vii) Consequently, σ∗ is an ascending segment in every card of π.
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(viii) If σ′ = k′1k
′
2 . . . k

′
r is another maximal ascending segment in π and i is critical for

(σ, σ′), then π ↓ i has an ascending segment λ such that

• σσ′− v λ if k′1 = kq + 2;

• σσ′ v λ if k′1 = kq + 1 and i > k′r;

• σ−σ′− v λ if k′1 = kq + 1 and i < k1.

Proof. This follows from a straightforward verification.

Proposition 12. Assume n > 5, D is a partial deck of a permutation π ∈ Sn, and
|D| = H(n). Assume that the cards in D are not all equal, there is a card in D that has a
maximal ascending segment κ = k1k2 . . . kq with 2 6 q 6 n−H(n), and in every card in
D, either κ or κ− is a maximal ascending segment. Then the following statements hold.

(i) There is a maximal ascending segment λ in π such that the cards in D are obtained
by removing entries that do not lie in λ and are not critical for λ in π. Consequently,
either λ or λ− is a maximal ascending segment in each card in D, and κ ∈ {λ, λ−}.

(ii) Let G := {gτ | τ ∈ D}, where

gτ :=

{
(k1, τ

−1(k1)), if κ v τ ,

(k1 − 1, τ−1(k1 − 1)), if κ− v τ .

Let A := {a | ∃b (a, b) ∈ G}, B := {b | ∃a (a, b) ∈ G}, a∗ := maxA, b∗ := maxB.
Let

j :=

{
a∗ + 1, if |A| = 1 and H(n) 6 a∗,

a∗, otherwise,

u :=

{
b∗ + 1, if |B| = 1 and H(n) 6 b∗,

b∗, otherwise,

v := u+ q − 1,

Then π[u, v] is a maximal ascending segment in π with initial value j and length q.

(iii) Let D′ := 〈τ ′ | τ ∈ D〉, where

τ ′ :=

{
τ ↓ κ, if κ v τ ,

τ ↓ κ−, if κ− v τ .

Then D′ is a partial (n− q − 1)-deck of π ↓ π[u, v] ∈ Sn−q, where u and v are as in
part (ii).

(iv) Let u, v, and t be as in (ii) and D′ be as in (iii). If θ := π ↓ π[u, v] is reconstructible
from D′, then π is reconstructible from D as θ ↑u π[u, v]
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Proof. (i) Let γ be a card in D that has a maximal ascending segment κ satisfying the
conditions of the proposition. The card γ must arise in one of the following ways:

1. There is a maximal ascending segment λ := k1k2 . . . kq(kq + 1) in π such that γ =
π ↓ i for some (any) i ∈ λ.

2. There are maximal ascending segments µ and µ′ and a critical point i for (µ, µ′) in
π such that γ = π ↓ i and µµ′−, µµ′, or µ−µ′− is a subsegment of κ, according to
Lemma 11(viii).

3. There is a maximal ascending segment λ in π such that κ ∈ {λ, λ−} and γ = π ↓ i
for some i ∈ [n] \ λ that is not critical for λ in π.

We claim that cases 1 and 2 are impossible.
Case 1 is not possible because of our assumption that the cards in D are not all equal.

Namely, by Lemma 11, κ = λ∗ is an ascending segment in all cards, but it is not a maximal
one in the cards distinct from γ, contradicting our hypothesis.

Suppose now, to the contrary, that case 2 occurs. Consider first the case when the
length of µ is at least 2. Since µ has at most 4 critical points in π and H(n) > 5, there is
a card δ ∈ D such that δ = π ↓ j for some j that is not critical for µ in π. By Lemma 11,
µ, µ−, or µ∗ is a maximal ascending segment in δ. Since each one of µ, µ− and µ∗ has
a nonempty intersection with both κ and κ− and is also shorter than them, neither κ
nor κ− is an ascending segment in δ, contradicting our assumptions. The case when the
length of µ′ is at least 2 is treated similarly.

Consider now the case when both µ and µ′ have length 1, say µ = a and µ′ = b (and
hence b ∈ {a + 1, a + 2}); then a(a + 1) or (a − 1)a is a subsegment of κ. Observe first
that if D contained a card of the form π ↓ p for some p that is neither a nor a critical
point of µ, then µ = a or µ− = a − 1 would be a maximal ascending segment in π ↓ p
by Lemma 11, and therefore neither κ nor κ− would be a maximal ascending segment in
π ↓ p, which would contradict the hypotheses of the proposition. Since µ has at most 4
critical points and H(n) > 5, we are left with the situation where H(n) = 5, µ has exactly
4 critical points, and π ↓ a ∈ D. Then necessarily (a−1)(a−2)a(a+2)(a+1) v π; hence
(a − 1)(a − 2)(a + 1)a v π ↓ a, so neither κ nor κ− is a maximal ascending segment in
π ↓ a. We have reached a contradiction also in this case.

We conclude that case 3 is the only one possible. Furthermore, we see easily with the
help of Lemma 11, by considering the length of the maximal ascending segment containing
λ∗, that all cards in D must be of the form π ↓ i for some i that neither belongs to λ nor
is critical for λ. Therefore either λ or λ− is a maximal ascending segment in each card in
D, and κ ∈ {λ, λ−}.

(ii) Let λ = `1`2 . . . `q be the maximal ascending segment in π provided by part (i),
and assume that π[u, v] = λ. It is straightforward to verify that

• λ− v π − i and (π − i)−1(`1 − 1) = u− 1 if and only if i < u and π(i) < `1;

• λ− v π − i and (π − i)−1(`1 − 1) = u if and only if i < u and π(i) > `q;
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• λ v π − i and (π − i)−1(`1) = u− 1 if and only if i > v and π(i) < `1;

• λ v π − i and (π − i)−1(`1) = u if and only if i > v and π(i) > `q.

Therefore, we have A ⊆ {`1, `1 − 1} and B ⊆ {u, u− 1}. It is clear that if |A| = 2, then
A = {k1, k1 − 1} = {`1, `1 − 1}, so j = a∗ = k1 = `1. Assume now that |A| = 1. Then
all cards in D are of the form π − i with π(i) < `1, or they are all of the form π − i with
π(i) > `q. The former case holds if and only if H(n) < `1, and the latter case holds if and
only if H(n) < n − `q (both inequalities cannot hold simultaneously because otherwise
we would have n + 4 6 2H(n) < n− (`q − `1) < n, a contradiction). In the former case,
we have A = {`1 − 1} and H(n) 6 `1 − 1 = a∗, so j = a∗ + 1 = `1. In the latter case,
we have A = {`1} and H(n) � `1 − 1, so j = a∗ = `1. In a similar way we can show that
u = π−1(`1). Finally, since the length of κ equals that of λ, we have for v := u + q − 1
that π[u, v] = λ is a maximal ascending segment in π that has initial walue `1 = j.

(iii) Since each τ ∈ D is of the form π ↓ j for some j ∈ [n] \ [`1, `q], it follows from
Lemma 5 that

• if j < k1, then (π ↓ j) ↓ λ− = (π ↓ λ) ↓ j,

• if j > kq, then (π ↓ j) ↓ λ = (π ↓ λ) ↓ (j − q).

Consequently, D′ is an (n− q − 1)-deck of π ↓ λ ∈ Sn−q.
(iv) Since H(n) > H(n− q), θ := π ↓ λ is reconstructible from D′. Then we obtain π

as θ ↑u (`1 . . . `q) = (π ↓ λ) ↑u λ.

5 Reconstructing a permutation from a partial deck

In this section, we show that for n > 5, every permutation of rank n is uniquely deter-
mined by any of its partial (n − 1)-decks of cardinality H(n) := dn/2e + 2. The proof
is constructive and can be turned into a reconstruction algorithm. The idea is to aim at
determining π−1(i) and π ↓ i, for some i ∈ [n], from the given partial deck of π, because
these would enable us to recover π by Lemma 4. If this is not directly possible, we are
nevertheless able to determine π−1(1) and to reconstruct π ↓ 1 by a recursive application
of the algorithm.

For a permutation π ∈ Sn, the pair (π−1(1), π−1(2)) is referred to as the type of π. As
described in the following lemma, the cards of π have only a few possible types, and only
three of them may occur as types of multiple cards. Furthermore, the relative order of 1
and 2 in π and their adjacency can be determined from a few cards.

Lemma 13. Let n > 5, π ∈ Sn, p := π−1(1) and r := π−1(2). For each t ∈ [n], let
pt := (π − t)−1(1) and rt := (π − t)−1(2).
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(i) If p < r, then

(pt, rt) =



(p− 1, r − 1) if t < p,

(r − 1, x) if t = p,

(p, r − 1) if p < t < r,

(p, y) if t = r,

(p, r) if r < t,

for some x, y ∈ [n] that satisfy x = y = π−1(3) 6 p− 1 or x = y = π−1(3)− 1 > r
or x = y − 1 with y = π−1(3) ∈ [p+ 1, r − 1]. If r < p, then

(pt, rt) =



(p− 1, r − 1) if t < r,

(p− 1, x) if t = r,

(p− 1, r) if r < t < p,

(r, y) if t = p,

(p, r) if p < t,

for some x, y ∈ [n] that satisfy x = y = π−1(3) 6 r − 1 or x = y = π−1(3)− 1 > p
or x = y − 1 with y = π−1(3) ∈ [r + 1, p− 1].

(ii) We have p < r if and only if pt < rt for all t ∈ [n] \ {p, r}. Similarly, r < p if and
only if rt < pt for all t ∈ [n] \ {p, r}.

(iii) We have p = r − 1 if and only if pt = rt − 1 for all but at most two indices t ∈ [n].
Moreover, p 6= r− 1 if and only if pt 6= rt− 1 for all but at most two indices t ∈ [n].

Proof. (i) This follows from a straightforward verification.
(ii) This follows immediately from (i).
(iii) Necessity is clear by (i), because if p = r−1, then pt = rt−1 for all t ∈ [n]\{p, r}

(note that the case p < t < r does not occur here).
For sufficiency and for the last assertion we prove that p 6= r−1 implies that pt 6= rt−1

for all but at most two indices t ∈ [n]. Since n > 5, this means that the inequality holds
for at least three indices t ∈ [n].

So assume that p 6= r − 1. We consider different cases. If r < p, then rt < pt and
hence pt 6= rt − 1 for all t ∈ [n] \ {p, r} by (ii). If p < r − 2, then pt < rt − 1 for all
t ∈ [n] \ {p, r} by (i). Consider finally the case p = r − 2. Then pt < rt − 1 for all
t ∈ [n] \ {p, p+ 1, r}, and pp+1 = rp+1− 1. If pr = rr− 1, then π(p+ 1) = 3, and it follows
that (pp, rp) = (r − 1, p) = (p + 1, p), so pp > rp. If pp = rp − 1, then π(r + 1) = 3, and
it follows that (pr, rr) = (p, r) = (p, p+ 2), so pr < rr − 1. We conclude that in each case
there are at most two indices t ∈ [n] such that pt = rt − 1.

Note that we have also proved that p 6= r − 1 if and only if pt 6= rt − 1 for all but at
most two indices t ∈ [n].

Remark 14. By Lemma 13(ii), we may decide whether π−1(1) < π−1(2) or π−1(1) > π−1(2)
by comparing the relative order of 1 and 2 in the cards of π; they are in the same order
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as in π with at most two exceptions. In fact, this condition can be checked by applying
the majority rule to any five cards. Similarly, by Lemma 13(iii), we may decide whether
1 and 2 are adjacent in π, i.e., π−1(1) = π−1(2) − 1, by checking whether 1 and 2 are
adjacent in all cards of π with at most two exception. Again, it is sufficient to check only
five cards.

Note that π−1(1) is known as soon as we know (πr)−1(1). Since the pattern involvement
relation is preserved and reflected under reversing permutations, we may consider πr in
place of π and reverse all given cards when π−1(1) > π−1(2). Therefore, from now on we
assume that π−1(1) < π−1(2).

Given a permutation τ with τ−1(1) < τ−1(2), we denote by `τ the length of the longest
ascending segment of τ with initial value 1. Note that `τ = 1 if and only if 1 and 2 are
not adjacent.

Let us first consider the case where 1 and 2 are adjacent in π.

Lemma 15. Let n > 5, π ∈ Sn and I ⊆ [n] with |I| = H(n). For each i ∈ [n], let
pi := (π ↓ i)−1(1), ri := (π ↓ i)−1(2) and `i := `π↓i. Let L := 〈`i | i ∈ I〉. Suppose
that `π > 1 and let π[p, t] be the longest ascending segment with initial value 1 in π (i.e.,
p = π−1(1) and t = p+ `π − 1).

(i) For i ∈ [n], the following conditions are equivalent.

(a) π ↓ i = π ↓ 1.

(b) i ∈ π[p, t].

(c) `i = `π − 1.

(ii) For all i ∈ [n] \ π[p, t], we have `i > `π, and i ∈ {π(t + 1), π(t) + 1} whenever
`i > `π. Moreover, if i, j ∈ [n] are such that i 6= j and `i, `j > `π, then `i = `j,
π(t+ 1) = π(t) + 2, π(t+ 2) = π(t) + 1 and π ↓ i = π ↓ j.

(iii) I has a nonempty intersection with both π[1, p − 1] and π[p, n] if and only if there
exist i, j ∈ I such that pi 6= pj. In this case p = max{pi, pj} and p−1 = min{pi, pj}.
Moreover, for any i ∈ I with pi = p− 1, it holds that `i = `π.

(iv) I ⊆ π[1, p− 1] if and only if there is an a ∈ [n− 1] with a > H(n) such that pi = a
for all i ∈ I. In this case, p = a+ 1 and there is no i ∈ I such that π ↓ i = π ↓ 1.

(v) I ⊆ π[p, n] if and only if there is an a ∈ [n− 1] with a 6 n − H(n) + 1 such that
pi = a for all i ∈ I. In this case p = a.

Proof. Recall that |I| = H(n) and note that `π > 1 implies that π−1(2) = p+ 1. (i) The
equivalence of (a) and (b) follows from Lemma 6, and the equivalence of (b) and (c) is
clear.

(ii) By Lemma 11, we have `i > `π whenever i ∈ [n] \π[p, t]. Since π(p) = 1, the strict
inequality `i > `π holds only if i is an upper critical point for π[p, t], which implies by
Definition 9 that i ∈ {π(t+ 1), π(t) + 1}. If π[p, t] has two upper critical points, then, by
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Remark 10, π(t+ 1) = π(t) + 2, π(t+ 2) = π(t) + 1, and π ↓ π(t+ 1) = π ↓ π(t+ 2), from
which the claim follows immediately.

(iii) Recall that pi = (π ↓ i)−1(1) and ri = (π ↓ i)−1(2). Since π−1(2) = p + 1, by
applying Lemma 13(i), we see that pi ∈ {p−1, p} for any i ∈ I. Moreover, for any i, j ∈ I,
it holds that p − 1 = pi < pj = p if and only if π−1(i) < p 6 π−1(j), which is equivalent
to i ∈ π[1, p− 1] and j ∈ π[p, n]. Finally, for any i ∈ π[1, p− 1], we have `i = `π by part
(ii).

(iv) and (v) By Lemma 13(i), the following holds:

• If I ⊆ π[1, p − 1], then p − 1 > H(n) and pi = p − 1 for all i ∈ I. This shows the
necessity of the condition in (v) with a = p− 1.

• If I ⊆ π[p, n], then n − p + 1 > H(n) (and so n − H(n) + 1 > p) and pi = p for all
i ∈ I. This shows the necessity of the condition in (iv) with a = p.

Conversely, assume that there is an a ∈ [n− 1] such that pi = a for all i ∈ I. By part
(iii), we have I ⊆ π[1, p− 1] (and so a > H(n)) or I ⊆ π[p, n] (and so a 6 n−H(n) + 1).
Note that the conditions a > H(n) and a 6 n − H(n) + 1 cannot hold simultaneously,
because if H(n) 6 a 6 n −H(n) + 1, then n > 2H(n) − 1 = 2(dn/2e + 2) − 1 > n + 3,
which is absurd. Therefore a > H(n) implies I ⊆ π[1, p−1] and a 6 n−H(n) + 1 implies
I ⊆ π[p, n].

It follows immediately from (i) that when a > H(n) there is no i ∈ I such that
π ↓ i = π ↓ 1.

Let us now consider the case when 1 and 2 are not adjacent in π.

Lemma 16. Let n > 5, π ∈ Sn, I ⊆ [n] with |I| = H(n). Let p := π−1(1) and r := π−1(2),
and assume that p < r−1. For each k ∈ [n], let pk := (π ↓ k)−1(1) and rk := (π ↓ k)−1(2).

(I) For all k ∈ [n], it holds that pk = r− 1 if and only if k = 1. In other words, π ↓ 1
is the unique card of π with 1 at position r − 1.

(II) If α, β, γ, δ ∈ [n] are distinct indices such that

(pα, rα) = (pβ, rβ) 6= (pγ, rγ) = (pδ, rδ),

then p = max{pα, pγ} and r − 1 = min{rα, rγ}.

(III) Assume that there exists a unique pair (a, b) ∈ [n− 1]×[n− 1] such that there exist
distinct i, j ∈ I with (pi, ri) = (pj, rj) = (a, b). Let E := {(pk, rk) | k ∈ I}\{(a, b)}.

(1) Assume |E| > 3.

• If {a, a+ 1} ⊆ {x | ∃y (x, y) ∈ E} and {(a, a+ 1), (a− 1, a+ 1)} ∩E 6= ∅,
then p = a, r = b.
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• Otherwise
p = max{x 6 a+ 1 | ∃y (x, y) ∈ E}

and

r =


b if (a− 1, b− 1) ∈ E or

a+ 1 6= b− 1 ∈ {x | ∃y (x, y) ∈ E},
b+ 1 otherwise.

(2) Assume |E| = m 6 2. Then there exist x, y ∈ [n− 1] such that the following
statements hold.

(i) (a, b) = (p, r) if and only if

(A) H(n) − m 6 n − b + 1 and E ⊆ {(a, b − 1), (a − 1, b − 1), (a, x),
(b− 1, y)}.

(ii) (a, b) = (p, r − 1) if and only if

(B) H(n)−m 6 b− a+ 1 and E ⊆ {(a, b+ 1), (a− 1, b), (a, x), (b, y)}.
(iii) (a, b) = (p− 1, r − 1) if and only if

(C) H(n)−m 6 a and E ⊆ {(a+ 1, b+ 1), (a+ 1, b), (a+ 1, x), (b, y)}.

Proof. (I) This follows immediately from Lemma 13(i).
(II) Since, by Lemma 13(i), there may exist only one index i ∈ [n] such that (pi, ri) =

(r − 1, x) for some x ∈ [n], and only one index j ∈ [n] such that (pj, rj) = (p, y) for some
y ∈ [n] \ {r − 1, r}, we necessarily have

{(pα, rα), (pγ, rγ)} ⊆ {(p, r), (p, r − 1), (p− 1, r − 1)}.

It follows that p = max{pα, pγ} and r − 1 = min{rα, rγ}.
(III) We necessarily have (a, b) ∈ {(p, r), (p, r − 1), (p− 1, r − 1)}. Table 3 shows the

possible types of cards in terms of a and b in each case. Note that, by Lemma 13(i), the
values of x and y are fixed and only depend on the positions of entries with values 1, 2,
and 3 in π.

(p, r) (p, r − 1) (p− 1, r − 1) (p, x) (r − 1, y)

Case 1 (a, b) (a, b− 1) (a− 1, b− 1) (a, x) (b− 1, y)
Case 2 (a, b+ 1) (a, b) (a− 1, b) (a, x) (b, y)
Case 3 (a+ 1, b+ 1) (a+ 1, b) (a, b) (a+ 1, x) (b, y)

Table 3: The possible types of cards in the different cases of the proof of Lemma 16(III).

By our hypothesis we have p < r − 1 and then b− a > 2 clearly holds in Cases 1 and
3. In Case 2 we have (a, b) = (p, r− 1) and since there are at least two cards of this type,
we have r − p − 1 > 2, so b − a = r − p − 1 > 2 holds also in this case. Thus b − a > 2
always holds.
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(1) Assume |E| > 3. By reading off from Table 3, we can first note that the conditions
(a, b) = (p, r) and b − 1 = a + 1 ∈ {x | ∃y (x, y) ∈ E} hold simultaneously if and only if
the conditions {a, a + 1} ⊆ {x | ∃y (x, y) ∈ E} and {(a, a + 1), (a − 1, a + 1)} ∩ E 6= ∅
also hold.

Now suppose {a, a + 1} * {x | ∃y (x, y) ∈ E} or {(a, a + 1), (a− 1, a + 1)} ∩ E = ∅.
In Case 1 either {x | ∃y (x, y) ∈ E} = {a − 1, a} or b − 1 > a + 1 and in both cases
p = a = max{x 6 a+ 1 | ∃y (x, y) ∈ E} and r = b. In Cases 2 and 3, we can immediately
conclude from Table 3 that p = max{x 6 a + 1 | ∃y (x, y) ∈ E} and since neither
(a−1, b−1) ∈ E nor b−1 ∈ {x | ∃y (x, y) ∈ E} with b−1 6= a+1, we also have r = b+1.

(2) Assume |E| = m 6 2. We prove first the necessity of conditions (A), (B), and (C).
If (a, b) = (p, r), then the cards of type (a, b) are among the cards π − i with r < i

and, in the case with π(r + 1) = 3, also π ↓ 2 = π − r. Therefore, the inequality
H(n) −m 6 n − r + 1 = n − b + 1 holds. Furthermore, by reading off from Table 3, we
see that E ⊆ {(a, b− 1), (a− 1, b− 1), (a, x), (b− 1, y)} for some x, y ∈ [n− 1].

If (a, b) = (p, r − 1), then the cards of type (a, b) are among the cards π − i with
p < i < r and, in the case when π(r−1) = 3, also π ↓ 2 = π−r. Therefore, the inequality
H(n) −m 6 r − p = b − a + 1 holds. Furthermore, by reading off from Table 3, we see
that E ⊆ {(a, b+ 1), (a− 1, b), (a, x), (b, y)} for some x, y ∈ [n− 1].

If (a, b) = (p− 1, r − 1), then the cards of type (a, b) are among the cards π − i with
i < p; therefore the inequality H(n)−m 6 p−1 = a holds. Moreover, by reading off from
Table 3, we see that E ⊆ {(a+ 1, b+ 1), (a+ 1, b), (a+ 1, x), (b, y)} for some x, y ∈ [n− 1].

In order to prove the sufficiency of conditions (A), (B), and (C), it suffices to show that
they are mutually exclusive. In the case when m = 2, this is clear, because for any x, y ∈
[n− 1], the intersection of any two of the sets {(a, b− 1), (a− 1, b− 1), (a, x), (b− 1, y)},
{(a, b + 1), (a − 1, b), (a, x), (b, y)} and {(a + 1, b + 1), (a + 1, b), (a + 1, x), (b, y)} has at
most one element. Now assume that m 6 1, and suppose, to the contrary, that some two
of the inequalities H(n)−m 6 n− b+ 1, H(n)−m 6 b− a+ 1, and H(n)−m 6 a hold
simultaneously. Since 1 6 a < b 6 n− 1 and b− a > 2, it follows that

n+ 2 6 2(H(n)−m) 6 max{n− a+ 2, n− (b− a) + 1, b+ 1} 6 n+ 1,

a contradiction.

If none of the H(n) cards equals π ↓ 1, then the next result assures that the (n− 2)-
patterns obtained by deleting the entry 1 from each card constitutes a partial deck of
π ↓ 1, and we can make use of this partial deck to reconstruct π ↓ 1. Consequently, we
can reconstruct π.

Lemma 17. Let π ∈ Sn. If 1 < i1 < i2 < · · · < i` 6 n, then 〈(π ↓ ij) ↓ 1 | j ∈ [`]〉 is a
partial deck of π ↓ 1.

Proof. The multiset 〈(π ↓ 1) ↓ (ij − 1) | j ∈ [`]〉 is clearly a partial deck of π ↓ 1, and
(π ↓ ij) ↓ 1 = (π ↓ 1) ↓ (ij − 1) holds by Lemma 5.

Theorem 18. For every permutation π of rank n, with n > 5, the value π−1(1) is uniquely
determined by any partial (n − 1)-deck D of π with H(n) cards not all equal. Moreover,
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from the partial deck D alone, it is also possible to decide whether any of the cards in D
is equal to π ↓ 1, and, if positive, to identify such a card.

Proof. Let D := 〈τ1, . . . , τH(n)〉 be a partial n−1-deck D of π with H(n) cards and assume
that D has at least two distinct cards. Let p := π−1(1) and r := π−1(2). (Recall that we
are given only the partial deck D, so p and r are unknown quantities.) By Lemma 13(ii)
and (iii), we may determine whether p < r or p > r and whether p = r− 1 by comparing
the positions of 1 and 2 in the cards in D; in fact, it is enough to check only five cards
(see Remark 14). Henceforth we may assume that p < r. Otherwise we may consider
Dr := 〈τ r1, . . . , τ rH(n)〉 instead of D and reconstruct πr, which can then be reversed to
obtain π. We now consider different cases and subcases.

Case 1: Assume p = r− 1. By Lemma 15(i), π ↓ i = π ↓ 1 if and only if `π↓i = `π − 1,
so our aim is to determine π−1(1) and `π, if possible. Then it will be straightforward to
check whether or not D contains a card τk with `τk = `π − 1; such a card equals π ↓ 1.

Let P := {τ−1k (1) | k ∈ [H(n)]}. Then ∅ 6= P ⊆ {p− 1, p}. We consider two subcases
according to the cardinality of P .

Case 1.1: Assume |P | = 2. Then P = {p− 1, p}, and we have `τk = `π for any k such
that τ−1k (1) = p− 1, by Lemma 15(iii). Then it is easy to detect whether or not there is
a card τj such that `τj = `π − 1, i.e., τj = π ↓ 1.

Case 1.2: Assume |P | = 1, say P = {u}. Observe that, by Lemma 15, statements (iv)
and (v), either u > H(n) or n− (u− 1) > H(n), and these cases are mutually exclusive.

Case 1.2.1: Assume u > H(n). Then p = u+1 and π ↓ 1 is not in D by Lemma 15(iv).
Case 1.2.2: Assume n − (u − 1) > H(n). Then p = u by Lemma 15(iv) and every

card in D must be of the form π − t with t > p. Let π[p, v] be the maximal monotone
segment of length `π in π, let L := 〈`τj : j ∈ [H(n)]〉, and let k ∈ [H(n)] be such that
`τk = min Supp(L).

Observe that there is a number a > 1 such that ∅ 6= Supp(L) ⊆ {`π − 1, `π, `π + a}
with χL(`π + a) 6 2 by Lemma 15(i) and (ii). If χL(`π) = 0 holds, then χL(`π − 1) =
H(n)−χL(`π +a) > H(n)−2; since χL(`π−1) 6 `π, this implies `τk = `π−1 > H(n)−3.
If χL(`π − 1) = 0 holds, then H(n) = χL(`π) + χL(`π + a) 6 n − v = n − (p − 1 + `π)
and so `τk = `π 6 n −H(n) − p + 1. Finally notice that we cannot have simultaneously
`τk > H(n) − 3 and `τk 6 n −H(n) − p + 1 since n −H(n) − p + 1 > H(n) − 3 implies
n− p+ 1 > 2H(n)− 3 > n+ 1.

Hence one of the following cases occurs.
Case 1.2.2.1: Assume |Supp(L)| = 3. Then `τk = `π − 1 and we have τk = π ↓ 1 ∈ D.
Case 1.2.2.2: Assume |Supp(L)| 6 2 and `τk > H(n) − 3. Then `τk = `π − 1. Thus

τk = π ↓ 1 ∈ D.
Case 1.2.2.3: Assume |Supp(L)| 6 2 and `τk 6 n−H(n)− p+ 1. Then `τk = `π. Thus

π ↓ 1 /∈ D.
Case 1.2.2.4: Assume |Supp(L)| 6 2 and neither of the inequalities `τk > H(n)−3 and

`τk 6 n−H(n)−p+1 holds. By the above observations, we must then have χL(`π−1) > 0
and χL(`π) > 0; hence L = {`π − 1, `π} and `τk = `π − 1. Thus τk = π ↓ 1 ∈ D.

Case 2: Assume p < r−1. By Lemma 16(I), π− t = π ↓ 1 if and only if (π− t)−1(1) =
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r − 1, so our aim is to determine π−1(1) = p and π−1(2) = r, if possible. Then it will be
straightforward to check whether or not D contains a card τk with τ−1k (1) = r − 1; such
a card equals π ↓ 1.

Let T := 〈(τ−1k (1), τ−1k (2)) | k ∈ H(n)〉 be the multiset of the types of the cards in D.
By Lemma 13, the only possible elements of T are (p, r), (p, r−1), (p−1, r−1), (r−1, x),
and (p, y), for some x, y ∈ [n], and the only elements that may have multiplicity greater
than 1 are (p, r), (p, r − 1), and (p− 1, r − 1).

Case 2.1: Assume T contains all five possible types. Since p − 1 < p < r − 1, we
can immediately determine both p and r − 1, and clearly D contains a card τk with
τ−1k (1) = r − 1 and so π ↓ 1 = τk.

Case 2.2: Assume T contains at most four different types. Since H(n) > 5, this means
that some type has multiplicity at least 2 in T .

Case 2.2.1: Assume (a, b) and (c, d) are distinct types with multiplicity at least 2 in
T . Then, by Lemma 16(II), we have p = max{a, c} and r − 1 = min{b, d}.

Case 2.2.2: Assume there is only one type (a, b) of multiplicity at least 2 in T . Now
the values of p and r − 1 are obtained by applying Lemma 16(III).

Theorem 19. For n > 5, every permutation of rank n is reconstructible from H(n) cards.

Proof. If all cards in D are equal, say τk = τ for all k ∈ [H(n)], then by Lemma 7(iii)
τ contains a unique maximal monotone segment π[u, v] of length at least dn/2e, and by
Lemma 7(ii) we can immediately conclude that π = τ ↑u τ(u) if π[u, v] is ascending and
π = τ ↑v+1 τ(v) if π[u, v] is descending.

From now on we may assume that D has at least two distinct cards. We prove the
claim by induction on n. For n = 5, we have H(n) = 5, and the claim holds by the
results of Smith [6, Theorem 2.3] and Raykova [5, Lemma 3.3]. Assume now that every
permutation of rank m (m > 5) is reconstructible from H(m) cards. Let π ∈ Sm+1, and
let D = 〈τ1, . . . , τH(m+1)〉 be a partial m-deck of π with H(m+ 1) cards. By Theorem 18
we can find π−1(1) and we can determine if π ↓ 1 /∈ D.

Case 1: Assume that π ↓ 1 /∈ D. In this case, D′ := 〈τk ↓ 1 | k ∈ [H(m+ 1)]〉 is a
partial deck of π ↓ 1 by Lemma 17. Since |D′| = H(m + 1) > H(m), our inductive
hypothesis asserts that we can reconstruct π ↓ 1 from D′, and then we recover π as
π = (π ↓ 1) ↑π−1(1) 1 by Lemma 4.

Case 2: Assume that π ↓ 1 ∈ D. In this case we may identify π ↓ 1 among the cards
in D, by Theorem 18. Then we recover π as π = (π ↓ 1) ↑π−1(1) 1 by Lemma 4.

The proofs of Theorems 18 and 19, along with Lemmas 15 and 16, give readily rise
to a reconstruction algorithm for an unknown permutation π if any of its partial decks
of size H(n) is given. We may also make use of the shortcuts provided by Propositions 8
and 12. The following examples illustrate the reconstruction method.

Example 20.

1. Let π ∈ S10 and take D to be the following partial deck of π:

〈(9 7 8 6 1 2 3 5 4)3, (9 8 7 1 2 3 6 5 4)2, (9 7 8 1 2 3 6 5 4)1, (8 9 7 1 2 3 6 5 4)1〉.
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Hence D = deckI(π) for some I ⊆ [10] with |I| = 7 = H(10). The sequence σ = 1 2 3
is a maximal ascending segment in every card in D. We apply Proposition 12.
From part (ii) we obtain the following quantities: G = {(1, 5), (1, 4)}, A = {1},
B = {4, 5}, a∗ = 1, b∗ = 5, t = a∗ = 1, u = b∗ = 5, v = 5 + 3− 1 = 7. Consequently,
π[5, 7] = 1 2 3 is a maximal ascending segment in π.

Part (iii) yields the partial deck D′ = 〈(6 4 5 3 2 1)4, (6 5 4 3 2 1)2, (5 6 4 3 2 1)1〉 of
π ↓ π[5, 7]. We apply Lemmas 6 and 7(ii) to the card τ = 6 4 5 3 2 1 of multiplicity
4, and we obtain π ↓ π[5, 7] = τ ↑7 τ(6) = 6 4 5 3 2 1 ↑7 1 = 7 5 6 4 3 2 1. Hence
π = (π ↓ π[5, 7]) ↑5 π[5, 7] = 7 5 6 4 3 2 1 ↑5 1 2 3 = 10 8 9 7 1 2 3 6 5 4.

2. Let π ∈ S11 and let D be the partial deck of π comprising

τ1 = 10 2 4 6 8 3 1 7 5 9, τ2 = 10 1 3 6 8 4 2 7 5 9,

τ3 = 10 1 3 5 6 9 4 2 7 9, τ4 = 10 1 2 4 6 8 3 7 5 9,

τ5 = 10 1 3 5 7 8 4 2 6 9, τ6 = 10 1 3 4 6 8 2 7 5 9,

τ7 = 1 3 5 7 9 4 2 8 6 10, τ8 = 10 1 3 5 7 9 4 2 8 6.

First we compare the positions of 1 and 2 in the cards. With the help of Lemma 13(ii)
and (iii) we conclude that p := π−1(1) < π−1(2) =: r and p < r − 1. The multi-
set of pairs (τ−1(1), τ−1(2)) with τ ∈ D is 〈(1, 7)1, (2, 3)1, (2, 7)2, (2, 8)3, (7, 2)1〉.
This multiset contains two distinct elements of multiplicity greater than 1, namely
(2, 3) and (2, 7), so we can apply Lemma 16(II) and we obtain (π−1(1), π−1(2)) =
(max{2, 2},min{3, 7}+1) = (2, 8). Since τ−11 (1) = 7 = π−1(2)−1 we have τ1 = π ↓ 1
by Lemma 16(I), and then π = τ1 ↑2 1 = 11 1 3 5 7 9 4 2 8 6 10.

3. Let π ∈ S8, and let D = 〈(5 7 4 1 3 2 6)3, (6 7 5 1 4 3 2)1, (5 7 4 3 2 1 6)1, (5 7 1 4 3 2 6)1〉.
Applying Lemma 13, we conclude that p := π−1(1) < π−1(2) =: r and p < r − 1.
The multiset of pairs (τ−1(1), τ−1(2)) with τ ∈ D is 〈(4, 6)3, (4, 7)1, (6, 5)1, (3, 6)1〉.
This multiset has a unique element of multiplicity greater than 1, namely (4, 6),
and three elements of multiplicity 1, so we apply Lemma 16(III)(1) and we obtain
π−1(1) = p = 4 and π−1(2) = r = 7. Since τ = 5 7 4 3 2 1 6 ∈ D satisfies τ−1(1) =
6 = r − 1, we have π = τ ↑4 1 by Lemma 16(I). Hence π = 6 8 5 1 4 3 2 7.

4. Let D be the following partial deck of π ∈ S9:

〈(1 7 2 8 3 4 5 6)1, (7 1 2 8 3 4 5 6)1, (8 1 7 2 3 4 5 6)1, (7 1 6 2 8 3 4 5)4〉.

By applying Lemma 13 we conclude that p := π−1(1) < π−1(2) =: r and p < r − 1.
The multiset of pairs (τ−1(1), τ−1(2)) with τ ∈ D is 〈(1, 3)1, (2, 3)1, (2, 4)5〉. This
multiset has a unique element of multiplicity greater than 1, namely (a, b) := (2, 4),
and m := 2 elements of multiplicity 1, so with the help of Lemma 16(III)(2) we
conclude that (p, r) = (2, 4) since n− b = 9− 4 = 5 > 7− 2 = H(n)−m and there
is no (x, y) ∈ D with x = b = 4. No card in D has 1 at position r − 1 = 3 and so
π ↓ 1 /∈ D by Lemma 16(I).
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Now take

D′ := 〈(π ↓ i) ↓ 1 | i ∈ I〉 = 〈(6 1 7 2 3 4 5)2, (7 6 1 2 3 4 5)1, (6 5 1 7 2 3 4)4〉;

D′ is a partial deck of π ↓ 1 ∈ S8 of cardinality H(8) + 1. Theorem 19 guarantees
that θ = π ↓ 1 is reconstructible from the multiset

Dθ = 〈(6 1 7 2 3 4 5)1, (7 6 1 2 3 4 5)1, (6 5 1 7 2 3 4)4〉 ⊆ D′.

We apply Proposition 8 to the card τ = 6 5 1 7 2 3 4 that has multiplicity 4 and
contains a unique maximal monotone segment of length 3, namely τ [5, 7] = 2 3 4 =:
σ. Since σ is ascending, we get θ = τ ↑5 τ(5) = τ ↑5 2 = 7 6 1 8 2 3 4 5. Finally we
obtain π = θ ↑p 1 = θ ↑2 1 = 8 1 7 2 9 3 4 5 6.

6 Concluding remarks and open problems

We have taken the first steps of answering Ginsburg’s Problem 2 by showing that H1(n) =
dn/2e + 2 for all n > 5. It remains an open problem to determine values of Hk(n) when
the parameter k is greater than 1.

Another curious problem, which may be a necessary step for approaching Problem 2,
is to generalize Ginsburg’s Lemma 6 and determine necessary and sufficient conditions
for the equality of two (n − k)-cards of an n-permutation when k > 2. In this case, the
situation looks much more complicated. It is possible that two cards coincide even if
entries are not removed from the same monotone segments, as illustrated by the following
example: there are no nontrivial monotone segments in the permutation π = 52413, yet
we have π ↓ {1, 3} = π ↓ {1, 4} = π ↓ {2, 4} = π ↓ {2, 5} = 312.
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