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Abstract

We consider the Turán problems of 2-edge-colored graphs. A 2-edge-colored
graph H = (V,Er, Eb) is a triple consisting of the vertex set V , the set of red
edges Er and the set of blue edges Eb where Er and Eb do not have to be disjoint.
The Turán density π(H) of H is defined to be limn→∞maxGn hn(Gn), where Gn
is chosen among all possible 2-edge-colored graphs on n vertices containing no H
as a subgraph and hn(Gn) = (|Er(G)| + |Eb(G)|)/

(
n
2

)
is the formula to measure

the edge density of Gn. We will determine the Turán densities of all 2-edge-colored
bipartite graphs. We also give an important application on the Turán problems of
{2, 3}-hypergraphs.

Mathematics Subject Classifications: 5D05, 05C65, 05D40

1 Introduction

Given a graph H, the Turán problem asks for the maximum possible number of edges
(denoted as ex(n,H)) in a graph G on n vertices without a copy of H as a subgraph. The
Mantel’s theorem [13] states that any graph on n vertices with no triangle contains at most
bn2/4c edges. Turán [16] proved that the maximal number of edges in a k-clique free graph
on n vertices is at most (k− 2)n2/(2k− 2). The famed Erdős-Stone-Simonovits Theorem
[7, 8] proved that the Turán density of any graph H is π(H) = 1− 1

X (H)−1 , where X (H)
is the chromatic number of H. For hypergraphs the extremal problems are harder, see
Keevash [12] for a complete survey of some results and methods on uniform hypergraphs.
Although Turán type problems for graphs and hypergraphs have been actively studied
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for decades, there are only few results on non-uniform hypergraphs, see [14, 15, 10] for
related work. Motivated by the study of non-uniform Turán problems [3], in this paper
we study a Turán-type problem on edge-colored graphs and show an application on Turán
problems of non-uniform hypergraphs of edge size 2 or 3.

A hypergraph H = (V,E) consists of a vertex set V and an edge set E ⊆ 2V . An
r-uniform hypergraph is a hypergraph such that all its hyperedges have size r. Given
positive integers k > r > 2, and a set of colors C, with |C| = k, a k-edge-colored r-
uniform hypergraph H (for short, k-colored r-graph) is an r-uniform hypergraph that
allows k different colors on each hyperedge. We express H as H = (V,E1, E2, . . . , Ek)
where Ei denotes the set of hyperedges colored by ith color in C, note E1, E2, . . . , Ek
do not have to be disjoint. We say H ′ is a subgraph of H, denoted by H ′ ⊆ H, if
V (H ′) ⊆ V (H), Ei(H

′) ⊆ Ei(H) for every i. Given a family of k-colored r-graphs H, we
say G is H-free if it doesn’t contain any member of H as a subgraph. To measure the
edge density of G of size n, we use hn(G), which is defined by

hn(G) :=
k∑
i=1

|Ei(G)|(
n
r

) ,

where n = |V (G)|. Then we define the Turán density of H as

π(H) := lim
n→∞

πn(H) = lim
n→∞

max
Gn

hn(Gn),

where the maximum is taken over all H-free k-colored r-graphs Gn on n vertices.
By a simple average argument of Katona-Nemetz-Simonovits [11], this limit always

exists.

Theorem 1. For any fixed family H of k-colored r-graphs, π(H) is well-defined, i.e.
limn→∞ πn(H) exists.

When H = {H}, we simply write π({H}) as π(H). Note that π(H) agrees with the
definition of

π(H) =
ex(n,H)(

n
r

) ,

where ex(n,H) is the maximum number of hyperedges in an n-vertex H-free k-colored
r-graph.

In this paper, we let k = 2. A 2-edge-colored graph is a simple graph (without loops)
where each edge is colored either red or blue, or both. We call an edge a double-colored
edge if it is colored with both colors. For short, we call the 2-edge-colored graphs simply
as 2-colored graphs. A 2-colored graph H can be written as a triple H = (V,Er, Eb)
where V is the vertex set, Er ⊆

(
V
2

)
is the set of red edges and Eb ⊆

(
V
2

)
is the set of

blue edges. Denote |Er| and |Eb| as the size of each set, denote Hr, Hb as the induced
subgraphs of H generated by all the red edges and all the blue edges respectively. A
graph can be considered as a special 2-colored graph with only one color. We say H is
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proper if there exists at least one edge in each class Er and Eb. Throughout the paper,
we consider the proper 2-colored graphs. The results in this paper were finished in year
2018 and recently we noticed that our study is similar but different to a Turán problem
on edge-colored graphs defined by Diwan and Mubayi [4] in which the authors ask for the
minimum m, such that the 2-colored graph G, if both its red and blue edges are at least
m + 1, contains a given 2-colored graph F? What we do differently in this paper is the
study of the Turán density defined above for 2-colored graphs.

It is easy to see that π(H) > 1 for any proper 2-colored graph H, since we can take a
complete graph with all edges a single color that does not contain a copy of H.

Definition 2. A 2-colored graph H is called bipartite if H does not contain an odd cycle
of length l > 3 with all edges colored by the same color.

For a 2-colored graph H, we say H is degenerate if π(H) = 1. Note that if H is
degenerate, then it must be bipartite. Otherwise, say Hb = (V,Eb) is not a bipartite
graph, one may consider the union of the red complete graph and an extremal graph
respect to Hb, then the resulting graph is a H-free 2-colored graph with edge density at
least 1 + π(Hb) > 1, a contradiction.

In this paper, we will determine the Turán densities of all 2-colored bipartite graphs
and characterize the 2-colored graphs achieving these Turán values. The notation [n] is
the set of {1, . . . , n}. For convenience, we represent an edge {a, b} by ab.

Definition 3. Given two k-colored r-graphs G and H, a graph homomporhism is a map
f : V (G) → V (H) which keeps the colored edges, that is, f(e) ∈ Ei(H) whenever e ∈
Ei(G) for i ∈ [k]. We say G is H-colorable if there is a graph homomorphism from G to H.

Theorem 4. The Turán densities of all bipartite 2-colored graphs are in the set
{

1, 4
3
, 3
2

}
.

1. A 2-colored graph H is degenerate if and only if it is T -colorable, where T is the
2-colored graph with vertices [4] and red edges {12, 13, 34}, blue edges {12, 23, 34}.

2. A 2-colored graph H satisfies π(H) = 4
3
, then H must be H8-colorable but not T -

colorable, where H8 is the 2-colored graph with vertices [8], red edges are

Er(H8) = {12, 13, 24, 34, 16, 37, 48, 25, 35, 18, 46, 27},

blue edges are

Eb(H8) = {56, 57, 68, 78, 26, 15, 47, 38, 35, 18, 46, 27}.

3. A 2-colored bipartite graph H satisfies π(H) = 3
2
, then H is not H8-colorable.

1 3

24

T

1 2

3 4

5 6

7 8

H8
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Our consideration on 2-colored graphs is motivated by the study of Turán density
of non-uniform hypergraphs, which was first introduced by Johnston and Lu [10], then
studied by us [3]. We refer a non-uniform hypergraph H as R-graph, where R is the set of
all the cardinalities of edges in H. For example, H is a hypergraph on vertices {1, 2, 3, 4}
with edges {1}, {2, 3} and {1, 2, 4}, then the edge type of H is R(H) = {1, 2, 3} as the
cardinalities of all edges are 1, 2, 3. Given a hypergraph H with edge type R(H), the
Turán density of H is defined as:

π(H) = lim
n→∞

max{
∑

e∈E(G)

1(
n
|e|

)},
where the maximum is taken over all H-free hypergraphs G on n vertices satisfying
R(Gn) ⊆ R(H).

A degenerate R-graph H has the smallest Turán density, |R| − 1, where |R| is the size
of set R. For a history of degenerate extremal graph problems, see [9]. Let r > 3, for
r-uniform hypergraphs the r-partite hypergraphs are degenerate and they generalize the
bipartite graphs. An interesting problem is what the degenerate non-uniform hypergraph
look like? In [3], we prove that except for the case R 6= {1, 2}, there always exist non-
trivial degenerate R-graphs for any set R of two distinct positive integers. The degenerate
{1, 3}-graphs are characterized in [3], what about the the degenerate {2, 3}-graphs? In
the last section of this paper, we will apply the 2-colored graphs to bound the Turán
density of some {2, 3}-graphs.

The paper is organized as follows: in Section 2, we show some lemmas on the k-
colored r-uniform hypergraphs; in Section 3, we classify the Turán densities of all 2-colored
bipartite graphs; in Section 4, we give an application of the Turán density of 2-colored
graphs on {2, 3}-graphs.

2 Lemmas on k-colored r-graphs

2.1 Supersaturation and Blowing-up

In this section, we give some definitions and lemmas related to the k-colored r-graphs for
k > r > 2. These are natural generalizations from the Turán theory of graphs. We first
define the blow-up of a k-colored r-graph.

Definition 1 (Blow-up Families). For any k-colored r-graph H on n vertices and pos-
itive integers s1, s2, . . . , sn, the blow-up of H is a new k-colored r-graph, denoted by
H(s1, s2, . . . , sn) = (V, E1, . . . , Ek), satisfying

• V :=
⊔n
i=1 Vi, where |Vi| = si,

• Ej =
⋃
F∈Ej(H)

∏
i∈F Vi, for each j ∈ [k].

When s1 = s2 = · · · = sn = s, we simply write it as H(s).
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Lemma 5 (Supersaturation). For any k-colored r-graph H and a > 0, then there are
b, n0 > 0 so that if G is a k-colored r-graph on n > n0 vertices with hn(G) > π(H) + a
then G contains at least b

(
n

v(H)

)
copies of H.

Proof. Since we have limn→∞ πn(H) = π(H), there exists an n0 > 0 so that if t > n0

then πt(H) < π(H) + a
r
. Suppose n > t, and G is a k-colored r-graph on n vertices with

hn(G) > π(H) + a. Let T represent any t-set, then G must contain at least a
2

(
n
t

)
t-sets

T ⊆ V (G) satisfying ht(G[T ]) > (π(H) + a
2
). Otherwise, we would have∑

T

ht(G[T ]) 6

(
n

t

)
(π(H) +

a

2
) +

a

2

(
n

t

)
= (π(H) + a)

(
n

t

)
.

But we also have (
t

r

)∑
T

ht(G[T ]) =

(
n− r
t− r

)(
n

r

)
hn(G)

>

(
n− r
t− r

)(
n

r

)
(π(H) + a)

= (π(H) + a)

(
t

r

)(
n

t

)
.

A contradiction. Since t > n0, it follows that each of the a
2

(
n
t

)
t-sets T ⊆ V (G) satisfying

ht(G[T ]) > (π(H) + a
r
) contains a copy of H, so the number of copies of H in G is at least

a
2

(
n
t

)
/
(
n−v(H)
t−v(H)

)
= a

2

(
n

v(H)

)
/
(

t
v(H)

)
. Let b = a

2
/
(

t
v(H)

)
, the result follows.

The ‘blow-up’ does not change the Turán density of k-colored r-graphs. The following
result and proof are natural generalization of results on uniform hypergraphs, see [12].

Lemma 6. For any s > 1 and any k-colored r-graph H, π(H(s)) = π(H).

Proof. First, since any H-free r-graph G is also H(s)-free, we have π(H) 6 π(H(s)). We
will show that for any a > 0, π(H(s)) < π(H) + a.

By the supersaturation lemma, for any a > 0, there are b, n0 > 0 so that if G is a
k-colored r-graph on n > n0 vertices with hn(G) > π(H) + a then G contains at least
b
(

n
v(H)

)
copies of H. Consider an auxiliary v(H)-graph U on the same vertex set as G

such that the edges of U correspond to copies of H in G. Note that U contains at least
b
(

n
v(H)

)
edges. For any S > 0, if n is large enough we can find a copy K of K

v(H)
v(H)(S) in

U . Note that K is the complete v(H)-partite v(H)-graph with S vertices in each part,
then π(K) = 0. Fix one such K in U . Color each edge of K with one of the v(H)! colors
corresponding to the possible orderings with which the vertices of H are mapped into the
parts of K. By Ramsey theory, one of the color classes contains at least Sv/v! edges. For
large enough S (such that Sv/v! > s) it follows that U contains a monochromatic copy of

K
v(H)
v(H)(s), which gives a copy of H(s) in G. Thus π(H(s)) < π(H) + a.
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Note when we say G is H-colorable, it is equivalent to say G is a subgraph of a blow-up
of H. It is easy to prove the following lemmas.

Lemma 7. Let H be a family of k-colored r-graphs. If G is H-colorable for any H ∈ H,
then π(G) 6 π(H).

Definition 2. Given two k-colored r-graphs G1 and G2 with vertices set V1 and V2, we
define the product of G1 and G2, denoted by G1 ×G2 = (V1 × V2, E1, . . . , Ek), where for
any i ∈ [k],

Ei = Ei(G1)× Ei(G2) = {e× f | e ∈ Ei(G1), f ∈ Ei(G2)},

where e × f is defined through the following way: denote e = {v1, . . . , vr} ∈ Ei(G1),
f = {u1, . . . , ur} ∈ Ei(G2), then e × f = ∪σ∈Sr{(v1, uσ(1)), . . . , (vr, uσ(r))}, where σ =
(σ(1), · · · , σ(r)) takes over all permutations of [r].

Lemma 8. A k-colored r-graph G is G1 and G2 colorable, then it’s (G1 ×G2)-colorable.

Proof. There exist two graph homomorphisms f1 : V (G) 7→ V (G1) and f2 : V (G) 7→
V (G2) such that for any edge e = {v1, . . . , vr} ∈ E(G), without loss of generality, let
e ∈ E1(G), we have

f1(e) = {f1(v1), . . . , f1(vr)} ∈ E1(G1),

and
f2(e) = {f2(v1), . . . , f2(vr)} ∈ E1(G2).

Define a map f := f1×f2 from V (G) to V (G1)×V (G2), such that f(v) = (f1(v), f2(v))
for any v ∈ V (G). Then we have

f(e) = {(f1(v1), f2(v1)), . . . , (f1(vr), f2(vr))} ∈ f1(e)× f2(e) ⊆ E1(G1 ×G2).

Thus the map f is a graph homomorphism. Hence G is (G1 ×G2)-colorable.

2.2 Construction of 2-colored graphs

To compute the lower bound of π(H), we need to construct a family of H-free 2-colored
graphs Gn with hn(Gn) as large as possible. Here are three useful constructions.

GA: A 2-colored graph GA on n vertices is generated by partitioning the vertex set into
two parts such that V (GA) = X ∪ Y and the red edges either meet two vertices in
X or meet one vertex in X plus the other in Y , the blue edges meet one vertex in X
plus the other in Y . In other words, the red edges Er(GA) = {

(
X
2

)
}∪{

(
X
1

)
×
(
Y
1

)
} and

blue edges Eb(GA) = {
(
X
1

)
×
(
Y
1

)
}. Let |V (GA)| = n, |X| = xn and |Y | = (1− x)n

for some real number x ∈ (0, 1). We have

hn(GA) =

(|X|
2

)
+ 2
(|X|

1

)(|Y |
1

)(
n
2

)
= 4x− 3x2 + on(1),

which reaches the maximum 4
3

at x = 2
3
.
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X Y
GA: hn(GA) = 4

3
+ on(1) at |X| = 2

3
n.

GB: It is obtained from GA by simply exchanging red edges with blue edges. In other
words, the red edges Er(GB) = {

(
X
1

)
×
(
Y
1

)
} and blue edges Eb(GB) = {

(
X
2

)
} ∪

{
(
X
1

)
×
(
Y
1

)
}.

X Y
GB: hn(GB) = 4

3
+ on(1) at |X| = 2

3
n.

GC: A 2-colored graph GC on n vertices is generated by partitioning the vertex set into
two parts such that V (GC) = A∪B and the red edges either meet two vertices in A
or meet one vertex in A plus the other in B, the blue edges either meet two vertices
in B or meet one vertex in A plus the other in B. In other words, the red edges
Er(GC) = {

(
A
2

)
} ∪ {

(
A
1

)
×
(
B
1

)
} and blue edges Eb(GC) = {

(
A
1

)
×
(
B
1

)
} ∪ {

(
B
2

)
}.

A B

GC : hn(GC) = 3
2

+ on(1) at |A| = 1
2
n.

GD and GE: Two variations of GC are the following constructions:

X Y

GD: hn(GD) = 3
2

+ on(1).

C D

GE: hn(GE) = 3
2

+ on(1).

Following a similar description of above constructions, the red/blue edges of GD are
in the sets Er(GD) = {

(
X
1

)
×
(
Y
1

)
} and Eb(GD) = {

(
V (GD)

2

)
} \ Er(GD) respectively;

the blue/red edges of GE are in the sets Eb(GE) = {
(
C
1

)
×
(
D
1

)
} and Er(GE) =

{
(
V (GE)

2

)
} \ Eb(GE) respectively.

Example 1. The product of GA and GB is a blow-up of T , where V (T ) = [4], the red
edges {12, 13, 34} and the blue edges {12, 23, 34}:
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1 3

24

T

We define a map f : V (H)→ {1, 2, 3, 4} as follows:

1. If v appears in X of GA and in Y of GB, set f(v) = 1.

2. If v appears in Y of GA and in X of GB, set f(v) = 2.

3. If v appears in X of GA and in X of GB, set f(v) = 3.

4. If v appears in Y of GA and in Y of GB, set f(v) = 4.

One can check f is a graph homomorphism from the product GA ×GB to T .

3 Turán density of bipartite 2-colored graphs

In this section, we will prove results in Theorem 4. We first give a boundary to divide
the Turán densities of 2-colored non-bipartite graphs and 2-colored bipartite graphs.

Lemma 9.

1. For any 2-colored non-bipartite graph H, π(H) > 3
2
.

2. For any 2-colored bipartite graph H, π(H) 6 3
2
.

Before proceeding to the proof, we see several important 2-colored graphs whose Turán
density achieves value 3

2
, and we will use these results to prove Lemma 9. The following

lemma will be used in the proof of Lemma 12 which is useful to prove item 2 of Lemma 9.

Lemma 10. Let K3 be a triangle with three double-colored edges, i.e.

K3 = ([3], {12, 13, 23}, {12, 13, 23}).

Then

ex(n,K3) =

(
n

2

)
+

⌊
n2

4

⌋
.

In particular, π(K3) = 3
2
.

Proof. Observe that K3 is not contained in GC , thus π(K3) > 3
2
. Now we prove the other

direction. Let n be a positive integer and G be any K3-free 2-colored graph on n vertices.
Construct an auxillary graph F on the same vertex set V (G) and with the edge sets
consisting of all double-colored edges in G. Let H = Er(F ) consisting of all red colored
edges of F . Notice that H is triangle-free. By Mantel’s theorem, we have

|E(H)| 6
⌊
n2

4

⌋
.
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Note that H is a subgraph of G and the number of the rest of edges in G is at most
(
n
2

)
.

Therefore, we have

|E(G)| 6
(
n

2

)
+ |E(H)| 6

(
n

2

)
+

⌊
n2

4

⌋
=

(
3

2
+ o(1)

)(
n

2

)
.

This implies that π(K3) = 3
2
.

Corollary 11. Let K−3 = ([3], {12, 13, 23}, {12, 13}), then π(K−3 ) = 3
2
.

Proof. Since K−3 is a subgraph of K3, then π(K−3 ) 6 3
2
. By Lemma 9, π(K−3 ) > 3

2
. The

result follows.

Except the 2-colored non-bipartite graph, some bipartite graphs also achieves π(H) =
3
2
. See the following 2-colored graph on four vertices {1, 2, 3, 4}:

1 3

24

T1

Lemma 12. T1 = ([4], {12, 34, 13, 24}, {12, 34, 14, 23}. Then

ex(n, T1) =

(
n

2

)
+

⌊
n2

4

⌋
for any n 6= 3

and ex(3, T1) = 6. In particular, we have π(T1) = 3
2
.

Proof. When n 6 3, the complete 2-colored graph does not contain T1. Thus ex(n, T1) =
0, 0, 2, 6 when n = 0, 1, 2, 3, respectively. The assertion holds for n 6 3. It is sufficient to
prove for n > 4. Since T1 is not contained in GC , we have

ex(n, T1) >

(
n

2

)
+

⌊
n2

4

⌋
.

Now we prove the other direction by induction. We may assume n > 4. Let n be a
positive integer and G be any T1-free 2-colored graph on n vertices.

Note K3 is referring to a triangle with 3 double colored edges.

Case 1: G doesn’t contain K3 as a subgraph, by Lemma 10, we have

|E(G)| 6 ex(n,K3) =

(
n

2

)
+

⌊
n2

4

⌋
.

Case 2: G contains a copy of K3, let V1 = {a, b, c} be the vertices of this triangle and
V2 = V (G) \ V1. Then there are at most 4 edges from any vertex in V2 to V1. To
see this, suppose there are 5 edges from the vertex w ∈ V2 to V1, then there are
only two possible graphs on V1 ∪ {w} and each of them contains a copy of T1. A
contradiction.
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a

b c

w a

b c

w

Applying the inductive hypothesis to G[V2], we have

|E(G[V2])| 6
(
n− 3

2

)
+

⌊
(n− 3)2

4

⌋
+ ε.

Here ε = 1 if n = 6 and 0 otherwise.
Then the number of edges in G is:
if n 6= 6,

|E(G)| = |E(G[V1])|+ |E(G[V2])|+ |E(V1, V2)|

6 6 +

(
n− 3

2

)
+

⌊
(n− 3)2

4

⌋
+ 4(n− 3)

=

(
n

2

)
+ n+

⌊
n2 − 6n+ 9

4

⌋
=

(
n

2

)
+

⌊
n2 − 2n+ 9

4

⌋
=

(
n

2

)
+

⌊
n2

4

⌋
.

if n = 6,

|E(G)| = |E(G[V1])|+ |E(G[V2])|+ |E(V1, V2)|

6 6 +

(
n− 3

2

)
+

⌊
(n− 3)2

4

⌋
+ ε+ 4(n− 3)

= 24

=

(
6

2

)
+

⌊
62

4

⌋
.

The induction step is finished. It follows that hn(G) 6 3
2
. Therefore, π(T1) = 3

2
.

Proof of Lemma 9. For Item 1, let H be a 2-colored non-bipartite graph, without loss of
generality, assume H contains an odd cycle with red edges. For any n, let G be a 2-colored
graph generated by construction GD, then H can not be contained in G. Similarly, if H
contains an odd cycle with blue edges, then it is not contained in any 2-colored graph
generated by construction GE. Thus π(H) > 3

2
.

For Item 2, it is sufficient to prove that any 2-colored bipartite graph H is T1-colorable.
For any 2-colored bipartite graph H, the subgraph Hr can be partitioned into two disjoint
parts V1(Hr) and V2(Hr) such that the red edges form a bipartite graph between V1(Hr)
and V2(Hr). Similarly for the subgraph Hb, the blue edges form a bipartite graph between
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V1(Hb) and V2(Hb). Let S be the set of vertices incidents to double colored edges, then S
can be divided into four classes: V1(Hr) ∩ V1(Hb), V1(Hr) ∩ V2(Hb), V2(Hr) ∩ V1(Hb) and
V2(Hr) ∩ V2(Hb). We define a map f : V (H)→ {1, 2, 3, 4} as follows:

1. If v ∈ V1(Hr) ∩ V1(Hb), set f(v) = 1.

2. If v ∈ V1(Hr) ∩ V2(Hb), set f(v) = 4.

3. If v ∈ V2(Hr) ∩ V1(Hb), set f(v) = 3.

4. If v ∈ V2(Hr) ∩ V2(Hb), set f(v) = 2.

5. If uv ∈ Er(H) \ Eb(H), set f(u) = 1, f(v) = 2.

6. If uv ∈ Eb(H) \ Er(H), set f(u) = 3, f(v) = 4.

One can verify that this map f is a graph homomorphism from H to T1. By Lemma 12,
we have π(H) 6 3

2
.

3.1 The degenerate 2-colored graphs

In this part, we will determine the degenerate 2-colored graphs. We will see that the
2-colored bipartite graph T = ([4], {12, 13, 34}, {12, 23, 34}) shown in Example 1 plays an
important role.

Lemma 13. Let n be a positive integer, for any T -free 2-colored graph G on n vertices,
G has at most

(
n+1
2

)
edges. Thus T is degenerate.

Proof. We will prove this lemma by induction on n. It is trivial for n = 1, 2, 3, 4. Assume
n > 5. We assume that the statement holds for any T -free 2-colored graphs on less than
n vertices.

Let G = (V,Er, Eb) be a T -free 2-colored graph on n vertices. We also assume G
contains at least one double-colored edge uv, or else |Er(G)| + |Eb(G)| 6

(
n
2

)
<
(
n+1
2

)
.

Then G is one of the following cases.

Case 1: There exists a vertex w so that both uw and vw are double-colored edges. Since
G is T -free, there is no double-colored edges from u, v, w to the rest of the vertices.
By inductive hypothesis, when G is restricted to the complement set of {u, v, w},
the number of edges of G[V \{u, v, w}] is at most

(
n−2
2

)
edges. Thus, G has at most

6 + 3(n− 3) +

(
n− 2

2

)
=

(
n+ 1

2

)
.

Case 2: Now we assume no such w exists. Let X = {x ∈ V : |E({x}, {u, v})| > 3}. That
is, for each vertex x ∈ X, x has exactly 3 edges connecting to u and v. Since G is
T -free, for each x ∈ X, x has no double-colored edges to any vertex not in {u, v, x}.
In particular, the induced subgraph G[X] of G has no double-colored edge. Let
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V1 = {u, v} ∪X and V2 be the complement set. Then the induced subgraph G[V1]
has at most

2 + 3|X|+
(
|X|
2

)
<

(
|X|+ 3

2

)
=

(
|V1|+ 1

2

)
edges. Applying the inductive hypothesis to G[V2], then G[V2] has at most

(|V2|+1
2

)
edges. Note that all edges from X to V2 are single colored and the number of edges
from {u, v} to each vertex in V2 is at most 2. Thus the total number of edges from
V1 to V2 is at most |V1||V2| edges. Combining these facts together, we have G has
at most N edges, where

N =

(
|V1|+ 1

2

)
+ |V1||V2|+

(
|V2|+ 1

2

)
=

(
|V |+ 1

2

)
.

We finish the inductive step. Then we have

π(T ) = lim
n→∞

max
Gn

hn(Gn) 6 lim
n→∞

(
n+1
2

)(
n
2

) = 1,

implying π(T ) = 1. T is degenerate.

Proof of Item 1 of Theorem 4. Assume H is a degenerate 2-colored graph, then it must
be GA and GB-colorable. By Lemma 8, it must be GA × GB-colorable. Note that the
product of these two graphs is T -colorable. Thus H is T -colorable, see Example 1. By
Lemma 13, the result follows.

Remark 14. Note both hn(GA) and hn(GB) are equal to 4
3

+ on(1), then any 2-colored
graph H with π(H) < 4

3
is GA and GB-colorable, from above proof, H is then T -colorable,

thus further implies π(H) = 1.

3.2 Non-degenerate 2-colored bipartite graphs

In this part, we will further classify the non-degenerate 2-colored bipartite graphs. By
Lemma 9, the largest possible Turán density of a 2-colored bipartite graph H is 3

2
, so if

π(H) < 3
2
, it must be contained in the construction Gc and its variations GD, GE, thus

it must be colored by the product of these constructions. While the product of graphs
generated by the three constructions is a blow-up of following graph H8. Let ACX stand
for the vertex in A× C ×X, similar for other labels:

ACX ADY

ACY ADX

BDX BCY

BCX BDY

H8
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To compute the Turán density of H8, we need the following 2-colored graph T2 =
([4], {12, 14, 23, 24, 34}, {12, 13, 14, 23, 34}). T2 is not contained in a variation of GC , thus
π(T2) > 3

2
.

1 3

24

T2

Lemma 15. For any positive integer n, let G be a {T1, T2}-free 2-colored graph on n

vertices. Then |E(G)| 6
(
n
2

)
+
⌊
n2+3n

6

⌋
. Thus π({T1, T2}) 6 4

3
.

Proof. It is not hard to check the cases for n 6 3. Let n > 4, by induction on n we
assume the statement holds for any {T1, T2}-free graph on less than n vertices. Note if G
contains no double-colored edge, the result is trivial. Thus we assume G contains at least
one double-colored edge. Then G is one of the following cases.

Case 1: G contains a triangle consisting of three double-colored edges, let V1 = {a, b, c}
be the vertices of this triangle and V2 = V (G) \V1. By Lemma 12 “Case 2”, for any
vertex w ∈ V2, there are at most 4 edges from w to V1.

Case 2: G contains V1 = {a, b, c} such that |E(G[V1])| = 5, without loss of generality,
let ab, bc be double colored edges, and ac is blue colored edge. Let V2 = V (G) \ V1.
For any vertex w ∈ V2, there are at most 4 edges to V1. If there are 5 edges from w
to V1, then the following graphs include all of the possibilities and they contain T1,
T2 as subgraph respectively.

a

b c

w a

b c

w

Case 3: G contains two incident double-colored edges ab and bc, but no edge connecting
a and c. Let V1 = {a, b, c}, V2 = V (G) \ V1. Then there cannot be 5 edges from any
vertex w ∈ V2 to V1, otherwise, G is a graph either in Case 1 or in Case 2. Thus
there are at most 4 edges from any vertex in V2 to V1.

Case 4: If G is not the above three cases, then for any double-colored edge connecting a
and b, there are at most 2 edges from any other vertex to {a, b}.

Applying the inductive hypothesis to G[V2], we have

|E(G[V2])| 6
(
|V2|
2

)
+

⌊
|V2|2 + 3|V2|

6

⌋
.

Then the number of edges in G is: for the first three cases,

the electronic journal of combinatorics 28(3) (2021), #P3.42 13



|E(G)| = |E(G[V1])|+ |E(G[V2])|+ |E(V1, V2)|

6 6 +

(
n− 3

2

)
+

⌊
(n− 3)2 + 3(n− 3)

6

⌋
+ 4(n− 3)

=

(
n+ 1

2

)
+

⌊
(n− 3)2 + 3(n− 3)

6

⌋
=

(
n

2

)
+

⌊
n2 − 6n+ 9 + 3(n− 3) + 6n

6

⌋
=

(
n

2

)
+

⌊
n2 + 3n

6

⌋
,

for Case 4,

|E(G)| = |E(G[V1])|+ |E(G[V2])|+ |E(V1, V2)|

6 2 +

(
n− 2

2

)
+

⌊
(n− 2)2 + 3(n− 2)

6

⌋
+ 2(n− 3)

=

(
n

2

)
− 1 +

⌊
(n− 2)2 + 3(n− 2)

6

⌋
=

(
n

2

)
+

⌊
(n− 2)2 + 3(n− 2)− 6n

6

⌋
=

(
n

2

)
+

⌊
n2 − 7n− 2

6

⌋
<

(
n

2

)
+

⌊
n2 + 3n

6

⌋
.

The induction step is finished. It follows that π({T1, T2}) 6 4
3
.

Lemma 16. π(H8) = 4
3
.

Proof. We first prove π(H8) 6 4
3
. To show this, we prove that H8 is T1 and T2-colorable,

i.e there are graph homomorphisms from H8 to T1 and from H8 to T2.

For T1: We define a map f by f(ACX) = f(BCX) = 4, f(ADY ) = f(BDY ) = 3,
f(ACY ) = f(BCY ) = 2, f(ADX) = f(BDX) = 1. One can check that f is a
graph homomorphism from H8 to T1.

For T2: We define a map g by g(ACX) = g(ADX) = 1, g(ADY ) = g(ACY ) = 3,
g(BDX) = g(BDY ) = 2, g(BCY ) = g(BCX) = 4. It is easy to check that g is a
graph homomorphism from H8 to T2.

For any positive integer n, let Gn be a 2-colored graph on n vertices such that hn(Gn) >
π(T1, T2) + ε = π(T1(s), T2(s)) + ε, for any s > 2 and ε > 0. Then Gn contains T1(s) or
T2(s) as subgraph, further Gn contains H8 as subgraph. Then π(H8) 6 π({T1, T2}). By
Lemma 15, π(H8) 6 4

3
. By Remark 14, if π(H8) <

4
3
, then π(H8) = 1, while H8 is not

T -colorable, a contradiction. Thus it must be the case π(H8) = 4
3
.
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Remark 17. As we know, if π(H) < 3
2
, it must be colorable by Gc and its variations, then

it must be be colorable by H8 according to Lemma 8. Thus π(H) ∈ {1, 4
3
}.

For convenience, we use numbers to represent vertices: ACX = 1, ADY = 2, ACY =
3, ADX = 4, BDX = 5, BCY = 6, BCX = 7, BDY = 8. Then H8 has edges:

Er(H8) = {12, 13, 24, 34, 16, 37, 48, 25, 35, 18, 46, 27};

Eb(H8) = {56, 57, 68, 78, 26, 15, 47, 38, 35, 18, 46, 27}.
Now we are ready to finish the proof of Theorem 4.

Proof of Items 2 and 3 in Theorem 4. By Remark 14, Remark 17 and Lemma 9, the
Turán densities of all bipartite 2-colored graphs are in the set

{
1, 4

3
, 3
2

}
. To show Item 2,

let H be a 2-colored graph with π(H) = 4
3
, then H must be H8-colorable. One can check

if H does not contain T as a subgraph, then H must be T -colorable, implying π(H) = 1,
a contradiction. By excluding the bipartite 2-colored graphs in Item 2, we obtain the
result in Item 3.

Example 2. Let T3 be the following 2-colored graph, T3 is non-degenerate and π(T3) = 4
3
.

1 3

24

T3

4 The degenerate {2, 3}-graphs

In this section, we study degenerate {2, 3}-graphs and show an application of the study
of 2-edge-colored graphs on the Turán density of {2, 3}-graphs. A {2, 3}-graph is a non-
uniform hypergraph where each edge consists of 2 or 3 vertices. Given a {2, 3}-graph
G, we call an edge of cardinality i as an i-edge, and use Ei(G) to represent the set of
i-edges. Thus G can be represented by G = (V (G), E2(G), E3(G)). A 2-edge e is called
a double edge if e ⊂ f , for some 3-edge f ∈ E3(G). For convenience, we use the form of

ac to denote the edge {a, b} and use abc to denote the edge {a, b, c}. The notation H
{2,3}
n

represents a {2, 3}-graph on n vertices, K
{2,3}
n represents the complete hypergraph on n

vertices with edge set
(
[n]
2

)
∪
(
[n]
3

)
.

Given a family of {2, 3}-graphs H, the Turán density of H is defined to be:

π(H) = lim
n→∞

πn(H) = lim
n→∞

max

{
|E2(G)|(

n
2

) +
|E3(G)|(

n
3

) }
,

where the maximum is taken over all H-free hypergraphs G on n vertices satisfying G ⊆
K
{2,3}
n , and G is H-free {2, 3}-graph. Please refer to [3] for details on the Turán density

of non-uniform hypergraphs.
Next let us see some definitions and results for {2, 3}-graphs.
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Definition 3. [10] Let H be a hypergraph containing some 2-edges. The 2-subdivision of
H is a new hypergraph H ′ obtained from H by subdividing each 2-edge simultaneously.
Namely, if H contains t 2-edges, add t new vertices x1, . . . , xt to H and for i = 1, 2, . . . , t
and replace the 2-edge {ui, vi} with {ui, xi} and {xi, vi}.
Theorem 18. [10] Let H ′ be the 2-subdivision of H. If H is degenerate, then so is H ′.

Definition 4. [10] The suspension of a hypergraph H, denoted by S(H), is the hypergraph
with V = V (H) ∪ {v} where {v} is a new vertex not in V (H), and the edge set E =
{e ∪ {v} : e ∈ E(H)}. We write St(H) to denote the hypergraph obtained by iterating
the suspension operation t-times, i.e. S2(H) = S(S(H)) and S3(H) = S(S(S(H))), etc.

Proposition 1. [10] For any family of hypergraphs H we have that π(S(H)) 6 π(H).

Theorem 19. [3] Let R be a set of distinct positive integers with |R| > 2 and R 6= {1, 2}.
Then a non-trivial degenerate R-graph always exists.

A chain CR is a special R-graph containing exactly one edge of each size such that any
pair of these edges are comparable under inclusion relation. In [3], we say a degenerate
R-graph is trivial if it is a subgraph of a blow-up of the chain CR. By Theorem 19, there
exist non-trivial degenerate {2, 3}-graphs. The {2, 3}-graph H = {12, 123} is a chain, thus
it is degenerate. By Theorem 18, the subdivision H ′ = {14, 24, 123} is also degenerate,
but it is non-trivial. As showed in [10], H0 = S(K1,2

2 ) = {13, 12, 123} is not degenerate,
and π(H0) = 5

4
.

So what does the degenerate {2, 3}-graph look like? To answer this question, we may
need to construct a family of {2, 3}-graphs Gn with hn(Gn) > (1+ε) for some ε > 0. Here
are three {2, 3}-graphs with edge density greater than 1.

Note that for any R-graph H (with possible loops), one can construct the family of H-
colorable R-graph by blowing up H in certain way. The langrangian of H is the maximum
edge density of the H-colorable R-graph that one can get this way. For more details of
R-graphs with loops, blow-up, and Lagrangian, please refer to [3]. In this part, we will
use an easy-understood way to calculate the edge densities.

Example 3. A {2, 3}-graph G
{2,3}
1 is a blowing-up of the general hypergraph H1 with

vertex set {a, b, c} and edge set {aa, ab, ac, abc}, if there exists a partition of vertex set

such that V (G
{2,3}
1 ) = A ∪B ∪ C and every 2-edge meets two vertices in A (or B, or C),

every 3-edge meets A,B,C one vertex respectively. In other words,

E(G
{2,3}
1 ) =

(
A

2

)
∪
(
A

1

)(
B

1

)
∪
(
A

1

)(
C

1

)
∪
(
A

1

)(
B

1

)(
C

1

)
.

Let |A| = xn and |B| = |C| = 1−x
2
n for some value x ∈ (0, 1). We have

hn(G
{2,3}
1 ) =

(
xn
2

)
+
(
xn
1

)(
(1−x)n

1

)(
n
2

) +
xn( (1−x)n

2
)2(

n
3

)
= x2 + 2x(1− x) +

3

2
x(1− x)2 + on(1)

=
7

2
x− 4x2 +

3

2
x3 + on(1).
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The above value reaches the maximum value 245
243

+ on(1) at x = 7
9
.

A B

C

G
{2,3}
1 : hn(G

{2,3}
1 ) = 245

243
at |A| = 7

9
n.

Example 4. A {2, 3}-graph G
{2,3}
2 is a blowing-up of the general hypergraph H2 with vertex

set {x, y} and edge set {xy, xxx, xxy}, if there exists a partition of vertex set such that

V (G
{2,3}
2 ) = X ∪ Y and every 2-edge meets one vertex in X and one vertex in Y , every

3-edge either meet three vertices in X or two vertices in X plus one vertex in Y . Actually
G
{2,3}
2 is H2-colorable. In other words,

E(G
{2,3}
2 ) =

(
X

3

)
∪
(
X

2

)(
Y

1

)
∪
(
X

1

)(
Y

1

)
.

Let |X| = xn and |Y | = (1− x)n for some value x ∈ (0, 1), we have

hn(G
{2,3}
2 ) =

(
xn
3

)
+
(
xn
2

)(
(1−x)n

1

)(
n
3

) +
xn(1− x)n(

n
2

)
= x3 + 3x2(1− x) + 2x(1− x) + on(1)

= 2x+ x2 − 2x3 + on(1).

The above value reaches the maximum value 19+13
√
13

54
+ on(1) ≈ 1.21985 · · · + on(1) at

x = 1+
√
13

6
.

X Y

G
{2,3}
2 : hn(G

{2,3}
2 ) ≈ 1.21985 at |X| = (1+

√
13

6
)n.

Example 5. A {2, 3}-graph G
{2,3}
3 is a blowing-up of the general hypergraph H3 with

vertex set {e, f} and edge set {ee, eef}, if there exists a partition of vertex set such that

V (G
{2,3}
2 ) = E ∪ F and every 2-edge meets two vertices in E, every 3-edge meets two

vertices in E plus one vertex in F. Actually G
{2,3}
3 is H3-colorable. In other words,

E(G
{2,3}
3 ) =

(
E

2

)
∪
(
E

2

)(
Y

1

)
.
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Let |E| = xn and |F | = (1− x)n for some value x ∈ (0, 1), we have

hn(G
{2,3}
3 ) =

(
xn
2

)(
n
2

) +

(
xn
2

)(
(1−x)n

1

)(
n
3

)
= x2 + 3x2(1− x) + on(1)

= 4x2 − 3x3 + on(1).

The above value reaches the maximum value 256
243

+ on(1) at x = 8
9
.

E F

G
{2,3}
3 : hn(G

{2,3}
3 ) = 256

243
at |E| = 8

9
n.

A degenerate {2, 3}-graph must appear as subgraphs in all above {2, 3}-graphs G
{2,3}
1 ,

G
{2,3}
2 and G

{2,3}
3 , thus it must appear as subgraph in the product of these hypergraphs.

By taking this product, we get a 12-vertex {2, 3}-graph which is H
{2,3}
9 -colorable. Thus

we have

Lemma 20. The degenerate {2, 3}-graphs must be H
{2,3}
9 -colorable.

AXE
CYE BYE

BXF CXF

CXE BXE

AXF

AYE

H
{2,3}
9

The following theorem shows a relation between such {2, 3}-graphs and the 2-colored
graphs and can help us determine the upper bound for the Turán density of some {2, 3}-
graphs.

Theorem 21. Let H = (V, Er, Eb) be a 2-colored graph, and H ′ = (V ′, E2, E3) be a
{2, 3}-graph obtained from H by adding a new vertex v 6∈ (V ) such that V ′ = V ∪{v} and
E2 = Er, and E3 = {e′|e′ = e ∪ v, e ∈ Eb}. Then π(H ′) 6 π(H).
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Proof. Let n be positive integer, let G = (V, E2(G), E3(G)) be an arbitrary H ′-free
{2, 3}-graph on n vertices. For any vertex v ∈ V (G), let Gv = (V (G) \ {v}, Ev,2, Ev,3) be
a 2-colored graph obtained form G, such that the red edges are Ev,2 = E2(G), the blue
edges are Ev,3 = {u,w|{vuw} ∈ E3}. Observe that Gv is H-free since G is H ′-free. Thus
hn−1(Gv) 6 πn(H).

Since

|E2(G)| = 1

n− 2

∑
v∈V (G)

|Ev,2| and |E3(G)| = 1

3

∑
v∈V (G)

|Ev,3|,

Then

hn(G) =
|E2(G)|(

n
2

) +
|E3(G)|(

n
3

)
=
∑

v∈V (G)

|Ev,2|
(n− 2)

(
n
2

) +
∑

v∈V (G)

|Ev,3|
3
(
n
3

)
=

1

n

∑
v∈V (G)

|Ev,2|(
n−1
2

) +
1

n

∑
v∈V (G)

|Ev,3|(
n−1
2

)
=

1

n

∑
v∈V (G)

(
|Ev,2|(
n−1
2

) +
|Ev,3|(
n−1
2

))

6
1

n

∑
v∈V (G)

hn−1(Gv)

6 π(H).

Therefore π(H ′) 6 π(H).

So far we couldn’t give an upper bound of π(H
{2,3}
9 ), but we can show a subgraph of

π(H
{2,3}
9 ) are degenerate using above theorem. Let us observe that if we remove a single

vertex AXF and edges connecting to it, the resulting sub-hypergraph is H
{2,3}
5 -colorable,

where H
{2,3}
5 = ([5], {12, 13, 34, 125, 135, 345}).

1

2

3

4

5

H
{2,3}
5

1 2

4 5

6

3

H
{2,3}
6

Observe that we can also obtain H
{2,3}
5 from T by adding vertex 5, and connect it with

blue edges. Thus we have π(H
{2,3}
5 ) = 1.
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In H
{2,3}
9 , removing a single 2-edge connecting vertices AXE and AY E, the resulting

subgraph is H
{2,3}
6 -colorable, where H

{2,3}
6 = ([6], {34, 35, 134, 235, 456}). However, we

don’t know the Turán density of H
{2,3}
6 . We remark that determining the degenerate

{2, 3}-hypergraph is still unknown.

References

[1] N. Alon, C. McDiarmid and B. Read, Acyclic colorings of graphs, Random Structures
and Algorithms 2(3), 277–289, 1991.

[2] N. Alon, M. Krivelevich and B. Sudakov, Turán Numbers of Bipartite Graphs and
Related Ramsey-Type Questions, Combinatorics, Probability and Computing 12,
477–494, 2003.

[3] S. Bai and L. Lu, On the Turán density of {1, 3}-Hypergraphs, Electronic Journal of
Combinatorics, 26(1), #P1.34, 2019.

[4] Ajit Diwan and D. Mubayi, Turán’s theorem with colors, Available at http://www.
math.cmu.edu/~mubayi/papers/webturan.pdf. 2006.
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