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Abstract
Eckhoff proposed a combinatorial version of the classical Hadwiger–Debrunner

(p, q)-problems as follows. Let F be a finite family of convex sets in the plane and
let m > 1 be an integer. If among every

(
m+2
2

)
members of F all but at most m− 1

members have a common point, then there is a common point for all but at most
m − 1 members of F . The claim is an extension of Helly’s theorem (m = 1). The
case m = 2 was verified by Nadler and by Perles. Here we show that Eckhoff ’s
conjecture follows from an old conjecture due to Szemerédi and Petruska concerning
3-uniform hypergraphs. This conjecture is still open in general; its solution for a
few special cases answers Eckhoff’s problem for m = 3, 4. A new proof for the case
m = 2 is also presented.

Mathematics Subject Classifications: 52A10, 52A35, 05C62, 05D05, 05D15,
05C65

1 Introduction

The subject of this note is a combinatorial version of the classical Hadwiger–Debrunner
(p, q)-problems proposed by Eckhoff [2] (see also [1]). A family F of convex sets in the
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plane has the ∆(m)-property if F has at least |F|−m+1 sets with non-empty intersection.
We restate Eckhoff’s conjecture using this notation.

Problem 1. (Eckhoff [2, Problem 6]) Let m > 1, k =
(
m+2
2

)
be integers, and let F be

a family of at least k convex sets in R2. If every k members of F has the ∆(m)-property,
then F also has the ∆(m)-property.

Due to Helly’s theorem [5], Problem 1 has a positive answer for m = 1. The claim
was verified also for m = 2 by Nadler [8] and by Perles [9]. In this note we show that
Eckhoff’s conjecture follows from an old conjecture due to Szemerédi and Petruska [10]
on 3-uniform hypergraphs.

In Section 2, Problem 1 is restated first (Problem 2) in terms of 2-representable 3-
uniform hypergraphs. The Szemerédi-Petruska conjecture, as reformulated by Lehel and
Tuza [11, Problem 18.(a)] states that

(
m+2
2

)
is the maximum order of a 3-uniform τ -critical

hypergraph with transversal number m. Thus Eckhoff’s conjecture becomes equivalent
to a particular instance of a general extremal hypergraph problem (Theorem 6). The
Szemerédi-Petruska conjecture is verified for m = 2, 3, 4 (see [7]) using the concept of 3-
uniform τ–critical hypergraphs, cross-intersecting set-pair systems, and τ -critical graphs;
this solves Eckhoff’s problem for m = 3, 4, with a new proof for m = 2 (Corollary 7).

Eckhoff made the remark that the value of k in Problem 1 is not expected to be tight.
Examples in Section 5 show that k =

(
m+2
2

)
cannot be lowered for m = 2, 3, but it is not

optimal for m = 4.

2 Convex hypergraphs

Given a family F of convex sets in R2, let H be the 3-uniform intersection hypergraph
defined by vertex set V (H) = {F : F ∈ F} and edge set E(H) = {{A,B,C} : A,B,C ∈
F and A ∩B ∩ C 6= ∅}.

A 3-uniform hypergraph H, that is the intersection hypergraph of some family F
of planar convex sets is called a 2-representable or convex hypergraph. Observe that a
k-clique N ⊂ V of the intersection hypergraph indicates that the k convex sets of F
corresponding to the vertices of N have a common point in the plane, due to Helly’s
theorem. Eckhoff’s problem is stated next in terms of convex hypergraphs.

Problem 2. Let m > 1 and n >
(
m+2
2

)
be integers, and let H be a 2-representable

3-uniform hypergraph of order n. If ω(H[X]) >
(
m+2
2

)
− m + 1, for every X ⊆ V ,

|X| =
(
m+2
2

)
, then ω(H) > n−m+ 1.

Observe that by Helly’s theorem, a family F of k convex sets in R2 has the ∆(m)-
property if and only if the 3-uniform intersection hypergraph H defined by F has clique
number ω(H) > k −m+ 1. This implies the equivalence of Problem 1 and Problem 2.
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3 τ -critical 3-uniform hypergraphs

Let H = (V,E) be an r-uniform hypergraph. For X ⊂ V define the subhypergraph H[X]
on vertex set X with all those edges in E that are contained by X. For e ∈ E, denote
H−e the partial hypergraph with vertex set V and edge set E\{e}. Let Ĥ = (V, Ê) be the

r-uniform hypergraph obtained as the complement of H with Ê containing all r-element
subsets of V not in E.

The transversal number of a hypergraph H is defined by

τ(H) = min{|T | : T ⊂ V, e ∩ T 6= ∅, for each e ∈ E}.

A hypergraph H is τ -critical if it has no isolated vertex (
⋃
e∈E

e = V ) and τ(H − e) =

τ(H)− 1 for every e ∈ E. Let vmax(r, t) be the maximum order of an r-uniform τ -critical
hypergraph H with τ(H) = t. This function was introduced and investigated by Gyárfás
et al. [4] and by Tuza [11, Section 4.2].

Denote ω(H) the clique number of H defined as the maximum cardinality of a subset
N ⊂ V such that every r-element set of N belongs to E.

Lemma 3.

(a) If Ĥ is a τ -critical r-uniform hypergaph, then the maximum cliques of H have no
common vertex.

(b) If the maximum cliques of an r-uniform hypergaph H have no common vertex, then

|V | 6 vmax(r, t), where t = τ(Ĥ).

Proof. Notice that N ⊂ V is a minimum cardinality transversal of Ĥ if and only if
T = V \N is the vertex set of a maximum cardinality clique of H.

(a) By definition, Ĥ has no isolated vertex. Furthermore, for every x ∈ V and e ∈ Ê,

x ∈ e, we have τ(Ĥ[V \ {x}]) 6 τ(Ĥ − e) = τ(Ĥ) − 1. Then the union of {x} with a

(τ(Ĥ)−1)-element transversal of Ĥ[V \{x}] forms a minimum transversal of Ĥ. Therefore,

every x ∈ V belongs to some minimum transversal of Ĥ. Equivalently, the complements
of the minimum transversals of Ĥ, the maximum cliques of H, have no common vertex.

(b) Because the maximum cliques in H have no common vertex, the union of their

complement in V , that is, the union of the t-element transversals of Ĥ, is equal to V . Let
H ′ be a τ -critical partial hypergraph of Ĥ with vertex V ′ and τ(H ′) = t. We claim that
|V ′| = |V |.

Because every vertex x ∈ V \ V ′ belongs to some t-element transversal T of Ĥ, the

set T \ {x} is a (t − 1)-element transversal for all edges of Ĥ not containing x; hence
τ(H ′) < t, a contradiction. Thus |V | = |V ′| 6 vmax(r, t) follows.

Recall that vmax(3,m) is the maximum order of a 3-uniform τ -critical hypergraph H
with τ(H) = m. The conjecture that vmax(3,m) =

(
m+2
2

)
for every m [11, Problem 18.(a)]

was verified only for a few small values of m:
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Proposition 4 ([7]). Let m = 2, 3, or 4, and n > m. If H is a 3-uniform hypergraph of
order n with clique number ω(H) = n −m = k > 3 and the intersection of the k-cliques
of H is empty, then n 6

(
m+2
2

)
.

Corollary 5. vmax(3,m) =
(
m+2
2

)
, for m = 2, 3 and 4.

Proof. For every m > 1, a 3-uniform τ -critical hypergraph of order n =
(
m+1
2

)
+ m + 1

with transversal number m is obtained from the complete graph Km+1 by extending
each edge with one vertex using additional distinct vertices. This construction implies
vmax(3,m) >

(
m+2
2

)
.

Let Ĥ be a τ -critical 3-uniform hypergraph with τ(Ĥ) = m and |V | = vmax(3,m).
By Lemma 3(a) and by applying Proposition 4, we obtain |V | = vmax(3,m) 6

(
m+2
2

)
,

m = 2, 3, 4. Thus vmax(3,m) =
(
m+2
2

)
follows for m = 2, 3 and 4.

4 Eckhoff’s problem and τ -critical hypergraphs

Eckhoff’s problem relates to the hypergraph extremal problem of determining vmax(3,m)
as is shown by the next theorem.

Theorem 6. For m > 1 and n > k > vmax(3,m), let F be a family of n convex sets in
R2. If every k members of F have the ∆(m)-property, then F has the ∆(m)-property.

Proof. Assume that the claim is not true. Let H0 be a 3-uniform convex hypergraph of
minimum order n0 such that ω(H0) 6 n0 − m, but ω(H0[X]) > k − m + 1, for every
X ⊂ V0, |X| = k. Notice that the definition of H0 implies n0 > k; furthermore, since n0

is minimal, ω(H0) = n0 −m.
We claim that the intersection of the maximum cliques of H0 is empty. If x ∈ V0 was

a common vertex of all maximum cliques, then H ′ = H0[V0 \ {x}] has order n′ = n0 − 1,
and for its clique number we have ω(H ′) = ω(H0) − 1 = n0 −m − 1 = n′ −m. At the
same time, ω(H ′[X]) > k−m+1, for every k-element subset X ⊂ V0 \{x}. Hence H ′ is a
counterexample of order n′, contradicting the minimality of n0. Therefore, the maximum
cliques of H0 have no common vertex, and because τ(Ĥ0) = n0 − ω(H0) = m, Lemma 3
implies k < n0 6 vmax(3,m) 6 k, a contradiction.

As an immediate corollary of Theorem 6 and Proposition 5 we obtain an extensions of
Helly’s theorem together with a combinatorial proof for the case m = 2 (verified earlier
by Nadler [8] and by Perles [9]).

Corollary 7. Let 1 6 m 6 4, k =
(
m+2
2

)
, and let F be a family of at least k convex

sets in R2. If every k members of F has the ∆(m)-property, then F also has the ∆(m)-
property.
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5 Concluding remarks

5.1 The best known general bound vmax(3,m) 6 3
4
m2 +m+ 1 is obtained by Tuza1 using

the machinery of τ -critical hypergraphs. This bound combined with Theorem 6 yields the
following finiteness result on Eckhoff’s problem, for every m.

Corollary 8. Let F be a family of at least k > 3
4
m2 +m+ 1 convex sets in R2. If every

k members of F has the ∆(m)-property, then F also has the ∆(m)-property.

5.2 In Corollary 7 the value of k is optimal (the smallest possible) if there is a family of
n > k convex sets in R2 such that every k − 1 members of F satisfy the ∆(m)-property,
but F fails it. It was proved by Nadler [8] that k =

(
m+2
2

)
is optimal for m = 2, but as

noted by Eckhoff [1], it is ‘somewhat unlikely’ that it is optimal for every m. We address
optimality for m = 2, 3, 4 by defining a family Fm of convex sets as follows.

F2: m = 2, k = 6. Let F2 be the family of n = 6 line segments, taken each side
of the triangle T = (p, q, r) twice. Then any vertex of T covers only 4 = n − m
members of F2; meanwhile, when removing a copy of one side, say qr, vertex p
covers (k − 1)− (m− 1) = 4 members.

F3: m = 3, k = 10. Let p0, p1, p2, p3, p4 ∈ R2 be the vertices of a regular pentagon P ,
and let F3 be the family of n = 10 convex sets: the five triangles Ti = (pi, pi+1, pi+2)
plus the five quadrangles Qi = (pi, pi+1, pi+2, pi+3), 0 6 i 6 4, with (mod 5) index
arithmetic. Notice that among eight members there are at least three triangles, and
among three triangles the intersection of some two is a vertex of P , which covers
only 7 = n −m members of F3. On the other hand when removing some member
C from F3, any vertex of P not in C covers (k − 1)− (m− 1) = 7 members.

F4: m = 4, k =
(
m+2
2

)
− 1 = 14. Let S = {p0, p1, . . . , p7} be the set of vertices of a

regular octagon, and let F4 be the family of n = 14 convex sets defined as follows.
Take the eight hexagons determined by the vertex sets S \ {pi, pi+1}, 0 6 i 6 7,
and take the six quadrangles Qi = (pi, pi+1, pi+2, pi+3), for i ∈ {1, 2, 3, 5, 6, 7}, with
(mod 8) index arithmetic. Notice that the undefined Q0, Q4 do not belong to F4,
furthermore, the six quadrangles defined in F4 form three disjoint pairs. Taking one
quadrangle from each pair plus the eight hexagons form a subfamily of 11 convex
sets with no common point, thus at most 10 = n−m members of F4 can be covered
by one point. On the other hand, three intersecting quadrangles plus seven more
hexagons contained in every subfamily F4 \ {C}, that is, (k − 1) − (m − 1) = 10
members have a common point q of the plane as it is seen in Fig.1.

Family Fm shows that k =
(
m+2
2

)
is optimal in Corollary 7 for m = 2, 3. Each of

F2 and F3 is derived from a 3-uniform hypergraph witnessing vmax(3,m) =
(
m+2
2

)
. For

m = 4 the 3-uniform witness hypergraphs are not 2-representable. This fact was observed
by Jobson et al. [6] when a similar method using convex hypergraphs was applied to

1Personal communication
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p3

p7
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Figure 1: q covers ten members of F4 \ {C}

another geometry problem on convex sets in the plane [6]. Thus the optimum for m = 4
is less than

(
4+2
2

)
= 15; and F4 shows that for m = 4 the optimum value in Corollary 7 is

actually k =
(
4+2
2

)
− 1 = 14.

5.3 In the light of the discussions above, Eckhoff’s problem takes the form of an extremal
problem asking for the smallest integer k(m) 6

(
m+2
2

)
such that Theorem 6 remains true

when vmax(3,m) is replaced with k(m). The exact values, which we know are k(1) = 3,
k(2) = 6, k(3) = 10, k(4) = 14, and we ask the question whether k(m) = Ω(m2).
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