Eckhoff's problem on convex sets in the plane

Adam S. Jobson

Department of Mathematics University of Louisville Louisville, KY 40292, U.S.A.

adam.jobson@louisville.edu

André E. Kézdy

Department of Mathematics University of Louisville Louisville, KY 40292, U.S.A.

kezdy@louisville.edu

Jenő Lehel

Alfréd Rényi Institue of Mathematics Budapest, Hungary

and

Department of Mathematics University of Louisville Louisville, KY 40292, U.S.A.

lehelj@renyi.hu

Submitted: Oct 28, 2020; Accepted: Jun 11, 2021; Published: Aug 27, 2021 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Eckhoff proposed a combinatorial version of the classical Hadwiger–Debrunner (p,q)-problems as follows. Let \mathcal{F} be a finite family of convex sets in the plane and let $m \ge 1$ be an integer. If among every $\binom{m+2}{2}$ members of \mathcal{F} all but at most m-1 members have a common point, then there is a common point for all but at most m-1 members of \mathcal{F} . The claim is an extension of Helly's theorem (m = 1). The case m = 2 was verified by Nadler and by Perles. Here we show that Eckhoff 's conjecture follows from an old conjecture due to Szemerédi and Petruska concerning 3-uniform hypergraphs. This conjecture is still open in general; its solution for a few special cases answers Eckhoff's problem for m = 3, 4. A new proof for the case m = 2 is also presented.

Mathematics Subject Classifications: 52A10, 52A35, 05C62, 05D05, 05D15, 05C65

1 Introduction

The subject of this note is a combinatorial version of the classical Hadwiger–Debrunner (p,q)-problems proposed by Eckhoff [2] (see also [1]). A family \mathcal{F} of convex sets in the

plane has the $\Delta(m)$ -property if \mathcal{F} has at least $|\mathcal{F}| - m + 1$ sets with non-empty intersection. We restate Eckhoff's conjecture using this notation.

Problem 1. (Eckhoff [2, Problem 6]) Let $m \ge 1$, $k = \binom{m+2}{2}$ be integers, and let \mathcal{F} be a family of at least k convex sets in \mathbb{R}^2 . If every k members of \mathcal{F} has the $\Delta(m)$ -property, then \mathcal{F} also has the $\Delta(m)$ -property.

Due to Helly's theorem [5], Problem 1 has a positive answer for m = 1. The claim was verified also for m = 2 by Nadler [8] and by Perles [9]. In this note we show that Eckhoff's conjecture follows from an old conjecture due to Szemerédi and Petruska [10] on 3-uniform hypergraphs.

In Section 2, Problem 1 is restated first (Problem 2) in terms of 2-representable 3uniform hypergraphs. The Szemerédi-Petruska conjecture, as reformulated by Lehel and Tuza [11, Problem 18.(a)] states that $\binom{m+2}{2}$ is the maximum order of a 3-uniform τ -critical hypergraph with transversal number m. Thus Eckhoff's conjecture becomes equivalent to a particular instance of a general extremal hypergraph problem (Theorem 6). The Szemerédi-Petruska conjecture is verified for m = 2, 3, 4 (see [7]) using the concept of 3uniform τ -critical hypergraphs, cross-intersecting set-pair systems, and τ -critical graphs; this solves Eckhoff's problem for m = 3, 4, with a new proof for m = 2 (Corollary 7).

Eckhoff made the remark that the value of k in Problem 1 is not expected to be tight. Examples in Section 5 show that $k = \binom{m+2}{2}$ cannot be lowered for m = 2, 3, but it is not optimal for m = 4.

2 Convex hypergraphs

Given a family \mathcal{F} of convex sets in \mathbb{R}^2 , let H be the 3-uniform *intersection hypergraph* defined by vertex set $V(H) = \{F : F \in \mathcal{F}\}$ and edge set $E(H) = \{\{A, B, C\} : A, B, C \in \mathcal{F} \text{ and } A \cap B \cap C \neq \emptyset\}.$

A 3-uniform hypergraph H, that is the intersection hypergraph of some family \mathcal{F} of planar convex sets is called a 2-*representable* or *convex* hypergraph. Observe that a k-clique $N \subset V$ of the intersection hypergraph indicates that the k convex sets of \mathcal{F} corresponding to the vertices of N have a common point in the plane, due to Helly's theorem. Eckhoff's problem is stated next in terms of convex hypergraphs.

Problem 2. Let $m \ge 1$ and $n \ge \binom{m+2}{2}$ be integers, and let H be a 2-representable 3-uniform hypergraph of order n. If $\omega(H[X]) \ge \binom{m+2}{2} - m + 1$, for every $X \subseteq V$, $|X| = \binom{m+2}{2}$, then $\omega(H) \ge n - m + 1$.

Observe that by Helly's theorem, a family \mathcal{F} of k convex sets in \mathbb{R}^2 has the $\Delta(m)$ property if and only if the 3-uniform intersection hypergraph H defined by \mathcal{F} has clique
number $\omega(H) \ge k - m + 1$. This implies the equivalence of Problem 1 and Problem 2.

3 τ -critical 3-uniform hypergraphs

Let H = (V, E) be an *r*-uniform hypergraph. For $X \subset V$ define the subhypergraph H[X]on vertex set X with all those edges in E that are contained by X. For $e \in E$, denote H-e the partial hypergraph with vertex set V and edge set $E \setminus \{e\}$. Let $\hat{H} = (V, \hat{E})$ be the *r*-uniform hypergraph obtained as the complement of H with \hat{E} containing all *r*-element subsets of V not in E.

The transversal number of a hypergraph H is defined by

$$\tau(H) = \min\{|T| : T \subset V, \ e \cap T \neq \emptyset, \text{ for each } e \in E\}.$$

A hypergraph H is τ -critical if it has no isolated vertex $(\bigcup_{e \in E} e = V)$ and $\tau(H - e) = \tau(H)$. I for every $e \in E$. Let ψ_{e} (n, t) he the maximum order of an n uniform τ critical

 $\tau(H) - 1$ for every $e \in E$. Let $v_{max}(r, t)$ be the maximum order of an *r*-uniform τ -critical hypergraph H with $\tau(H) = t$. This function was introduced and investigated by Gyárfás et al. [4] and by Tuza [11, Section 4.2].

Denote $\omega(H)$ the *clique number* of H defined as the maximum cardinality of a subset $N \subset V$ such that every r-element set of N belongs to E.

Lemma 3.

- (a) If \hat{H} is a τ -critical r-uniform hypergaph, then the maximum cliques of H have no common vertex.
- (b) If the maximum cliques of an r-uniform hypergaph H have no common vertex, then $|V| \leq v_{max}(r,t)$, where $t = \tau(\hat{H})$.

Proof. Notice that $N \subset V$ is a minimum cardinality transversal of \hat{H} if and only if $T = V \setminus N$ is the vertex set of a maximum cardinality clique of H.

(a) By definition, \widehat{H} has no isolated vertex. Furthermore, for every $x \in V$ and $e \in \widehat{E}$, $x \in e$, we have $\tau(\widehat{H}[V \setminus \{x\}]) \leq \tau(\widehat{H} - e) = \tau(\widehat{H}) - 1$. Then the union of $\{x\}$ with a $(\tau(\widehat{H})-1)$ -element transversal of $\widehat{H}[V \setminus \{x\}]$ forms a minimum transversal of \widehat{H} . Therefore, every $x \in V$ belongs to some minimum transversal of \widehat{H} . Equivalently, the complements of the minimum transversals of \widehat{H} , the maximum cliques of H, have no common vertex.

(b) Because the maximum cliques in H have no common vertex, the union of their complement in V, that is, the union of the *t*-element transversals of \hat{H} , is equal to V. Let H' be a τ -critical partial hypergraph of \hat{H} with vertex V' and $\tau(H') = t$. We claim that |V'| = |V|.

Because every vertex $x \in V \setminus V'$ belongs to some t-element transversal T of \hat{H} , the set $T \setminus \{x\}$ is a (t-1)-element transversal for all edges of \hat{H} not containing x; hence $\tau(H') < t$, a contradiction. Thus $|V| = |V'| \leq v_{max}(r, t)$ follows.

Recall that $v_{max}(3, m)$ is the maximum order of a 3-uniform τ -critical hypergraph H with $\tau(H) = m$. The conjecture that $v_{max}(3, m) = \binom{m+2}{2}$ for every m [11, Problem 18.(a)] was verified only for a few small values of m:

Proposition 4 ([7]). Let m = 2, 3, or 4, and n > m. If H is a 3-uniform hypergraph of order n with clique number $\omega(H) = n - m = k \ge 3$ and the intersection of the k-cliques of H is empty, then $n \le \binom{m+2}{2}$.

Corollary 5. $v_{max}(3,m) = \binom{m+2}{2}$, for m = 2, 3 and 4.

Proof. For every $m \ge 1$, a 3-uniform τ -critical hypergraph of order $n = \binom{m+1}{2} + m + 1$ with transversal number m is obtained from the complete graph K_{m+1} by extending each edge with one vertex using additional distinct vertices. This construction implies $v_{max}(3,m) \ge \binom{m+2}{2}$.

Let \widehat{H} be a τ -critical 3-uniform hypergraph with $\tau(\widehat{H}) = m$ and $|V| = v_{max}(3, m)$. By Lemma 3(a) and by applying Proposition 4, we obtain $|V| = v_{max}(3, m) \leq \binom{m+2}{2}$, m = 2, 3, 4. Thus $v_{max}(3, m) = \binom{m+2}{2}$ follows for m = 2, 3 and 4.

4 Eckhoff's problem and τ -critical hypergraphs

Eckhoff's problem relates to the hypergraph extremal problem of determining $v_{max}(3, m)$ as is shown by the next theorem.

Theorem 6. For $m \ge 1$ and $n \ge k \ge v_{max}(3, m)$, let \mathcal{F} be a family of n convex sets in \mathbb{R}^2 . If every k members of \mathcal{F} have the $\Delta(m)$ -property, then \mathcal{F} has the $\Delta(m)$ -property.

Proof. Assume that the claim is not true. Let H_0 be a 3-uniform convex hypergraph of minimum order n_0 such that $\omega(H_0) \leq n_0 - m$, but $\omega(H_0[X]) \geq k - m + 1$, for every $X \subset V_0$, |X| = k. Notice that the definition of H_0 implies $n_0 > k$; furthermore, since n_0 is minimal, $\omega(H_0) = n_0 - m$.

We claim that the intersection of the maximum cliques of H_0 is empty. If $x \in V_0$ was a common vertex of all maximum cliques, then $H' = H_0[V_0 \setminus \{x\}]$ has order $n' = n_0 - 1$, and for its clique number we have $\omega(H') = \omega(H_0) - 1 = n_0 - m - 1 = n' - m$. At the same time, $\omega(H'[X]) \ge k - m + 1$, for every k-element subset $X \subset V_0 \setminus \{x\}$. Hence H' is a counterexample of order n', contradicting the minimality of n_0 . Therefore, the maximum cliques of H_0 have no common vertex, and because $\tau(\widehat{H_0}) = n_0 - \omega(H_0) = m$, Lemma 3 implies $k < n_0 \le v_{max}(3, m) \le k$, a contradiction. \Box

As an immediate corollary of Theorem 6 and Proposition 5 we obtain an extensions of Helly's theorem together with a combinatorial proof for the case m = 2 (verified earlier by Nadler [8] and by Perles [9]).

Corollary 7. Let $1 \leq m \leq 4$, $k = \binom{m+2}{2}$, and let \mathcal{F} be a family of at least k convex sets in \mathbb{R}^2 . If every k members of \mathcal{F} has the $\Delta(m)$ -property, then \mathcal{F} also has the $\Delta(m)$ -property.

5 Concluding remarks

5.1 The best known general bound $v_{max}(3,m) \leq \frac{3}{4}m^2 + m + 1$ is obtained by Tuza¹ using the machinery of τ -critical hypergraphs. This bound combined with Theorem 6 yields the following finiteness result on Eckhoff's problem, for every m.

Corollary 8. Let \mathcal{F} be a family of at least $k \ge \frac{3}{4}m^2 + m + 1$ convex sets in \mathbb{R}^2 . If every k members of \mathcal{F} has the $\Delta(m)$ -property, then \mathcal{F} also has the $\Delta(m)$ -property. \Box

5.2 In Corollary 7 the value of k is optimal (the smallest possible) if there is a family of $n \ge k$ convex sets in \mathbb{R}^2 such that every k-1 members of \mathcal{F} satisfy the $\Delta(m)$ -property, but \mathcal{F} fails it. It was proved by Nadler [8] that $k = \binom{m+2}{2}$ is optimal for m = 2, but as noted by Eckhoff [1], it is 'somewhat unlikely' that it is optimal for every m. We address optimality for m = 2, 3, 4 by defining a family \mathcal{F}_m of convex sets as follows.

- \mathcal{F}_2 : m = 2, k = 6. Let \mathcal{F}_2 be the family of n = 6 line segments, taken each side of the triangle T = (p, q, r) twice. Then any vertex of T covers only 4 = n - mmembers of \mathcal{F}_2 ; meanwhile, when removing a copy of one side, say \overline{qr} , vertex pcovers (k-1) - (m-1) = 4 members.
- \mathcal{F}_3 : m = 3, k = 10. Let $p_0, p_1, p_2, p_3, p_4 \in \mathbb{R}^2$ be the vertices of a regular pentagon P, and let \mathcal{F}_3 be the family of n = 10 convex sets: the five triangles $T_i = (p_i, p_{i+1}, p_{i+2})$ plus the five quadrangles $Q_i = (p_i, p_{i+1}, p_{i+2}, p_{i+3}), 0 \leq i \leq 4$, with (mod 5) index arithmetic. Notice that among eight members there are at least three triangles, and among three triangles the intersection of some two is a vertex of P, which covers only 7 = n - m members of \mathcal{F}_3 . On the other hand when removing some member C from \mathcal{F}_3 , any vertex of P not in C covers (k - 1) - (m - 1) = 7 members.
- \mathcal{F}_4 : $m = 4, \ k = \binom{m+2}{2} 1 = 14$. Let $S = \{p_0, p_1, \dots, p_7\}$ be the set of vertices of a regular octagon, and let \mathcal{F}_4 be the family of n = 14 convex sets defined as follows. Take the eight hexagons determined by the vertex sets $S \setminus \{p_i, p_{i+1}\}, \ 0 \leq i \leq 7$, and take the six quadrangles $Q_i = (p_i, p_{i+1}, p_{i+2}, p_{i+3})$, for $i \in \{1, 2, 3, 5, 6, 7\}$, with (mod 8) index arithmetic. Notice that the undefined Q_0, Q_4 do not belong to \mathcal{F}_4 , furthermore, the six quadrangles defined in \mathcal{F}_4 form three disjoint pairs. Taking one quadrangle from each pair plus the eight hexagons form a subfamily of 11 convex sets with no common point, thus at most 10 = n m members of \mathcal{F}_4 can be covered by one point. On the other hand, three intersecting quadrangles plus seven more hexagons contained in every subfamily $\mathcal{F}_4 \setminus \{C\}$, that is, (k-1) (m-1) = 10 members have a common point q of the plane as it is seen in Fig.1.

Family \mathcal{F}_m shows that $k = \binom{m+2}{2}$ is optimal in Corollary 7 for m = 2, 3. Each of \mathcal{F}_2 and \mathcal{F}_3 is derived from a 3-uniform hypergraph witnessing $v_{max}(3,m) = \binom{m+2}{2}$. For m = 4 the 3-uniform witness hypergraphs are not 2-representable. This fact was observed by Jobson et al. [6] when a similar method using convex hypergraphs was applied to

¹Personal communication

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.43

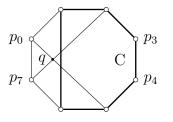


Figure 1: q covers ten members of $\mathcal{F}_4 \setminus \{C\}$

another geometry problem on convex sets in the plane [6]. Thus the optimum for m = 4 is less than $\binom{4+2}{2} = 15$; and \mathcal{F}_4 shows that for m = 4 the optimum value in Corollary 7 is actually $k = \binom{4+2}{2} - 1 = 14$.

5.3 In the light of the discussions above, Eckhoff's problem takes the form of an extremal problem asking for the smallest integer $k(m) \leq \binom{m+2}{2}$ such that Theorem 6 remains true when $v_{max}(3,m)$ is replaced with k(m). The exact values, which we know are k(1) = 3, k(2) = 6, k(3) = 10, k(4) = 14, and we ask the question whether $k(m) = \Omega(m^2)$.

Acknowledgements

We would like to thank András Gyárfás for calling our attention to Eckhoff's problem, and for his valuable comments to an earlier version of the manuscript.

References

- J. Eckhoff. A survey of the Hadwiger-Debrunner (p,q)-problem. in: Discrete and computational geometry, 347-377, Algorithms Combin., 25, Springer, Berlin, 2003. https://doi.org/10.1007/978-3-642-55566-4_16.
- J. Eckhoff. Problems in discrete geometry. Convexity and discrete geometry including graph theory, 269-273, Springer Proc. Math. Stat., 148, Springer, 2016. https://doi.org/10.1007/978-3-319-28186-5_26.
- [3] P. Erdős, and T. Gallai. On the maximal number of vertices representing the edges of a graph. *Közl. Magyar Tud. Akad. Mat. Kutató Int. Közl*, 6 (1961), 181–203.
- [4] A. Gyárfás, J. Lehel, and Zs. Tuza. Upper bound on the order of τ-criti-cal hypergraphs. J. Combin. Theory Ser., B 33 (1982), no. 2, 161–165. https://doi.org/10.1016/0095-8956(82)90065-X.
- [5] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung 32 (1923), 175–176.
- [6] A. S. Jobson, A. E. Kézdy, J. Lehel, T. Pervenecki, and G. Tóth. Petruska's question on planar convex sets. *Discrete Math.*, 343 (2020), no. 9, 13pp.

- [7] A. S. Jobson, A. E. Kézdy, and J. Lehel. The Szemerédi-Petruska conjecture for a few small values. *Eur. J. Math.*, May (2021) 8pp. https://doi.org/10.1007/s40879-021-00466-9
- [8] D. Nadler. Minimal 2-fold coverings of \mathbb{E}^d . Geom. Dedicata, 65 (1997), no 3. 305–312.
- [9] M. A. Perles. A Helly type theorem for almost intersecting families. *Talk at the Convex Geometry meeting, Oberwolfach.* June 1993.
- [10] E. Szemerédi, and G. Petruska. On a combinatorial problem I. Studia Sci. Math. Hungar., 7 (1972), 363–374.
- [11] Zs.Tuza. Critical hypergraphs and intersecting set-pair systems J. Combin. Theory Ser. B, 39 (1985), no. 2, 134–145.

https://doi.org/10.1016/0095-8956(85)90043-7