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Abstract

In this paper we introduce and study a type of Cayley graph – subnormal Cayley
graph. We prove that a subnormal 2-arc transitive Cayley graph is a normal Cayley
graph or a normal cover of a complete bipartite graph Kpd,pd with p prime. Then
we obtain a generic method for constructing half-symmetric (namely edge transitive
but not arc transitive) Cayley graphs.

Mathematics Subject Classifications: 05C25, 20B05

1 Introduction

For a finite group G and a subset S ⊂ G, the Cayley digraph Γ = Cay(G,S) is the
digraph with vertices being the elements of G such that x, y ∈ G are adjacent if and only
if yx−1 ∈ S. If S = S−1 = {s−1 | s ∈ S}, then the adjacency is symmetric and thus
Cay(G,S) may be viewed as an (undirected) graph, that is, a Cayley graph. Let

Ĝ = {ĝ : x 7→ xg for all x ∈ G | g ∈ G}.

Then Ĝ 6 AutΓ , and Ĝ acts regularly on the vertex set G, so Γ is vertex-transitive.
A Cayley graph Γ = Cay(G,S) is called normal if Ĝ is normal in AutΓ . The class

of normal Cayley graphs have nice properties and play an important role in studying
Cayley graphs, see [5, 6, 10, 11, 16, 19] and references therein. However, there are various
interesting classes of Cayley graphs which are not normal.

Here we generalize the concept of normal Cayley graphs. For a group Y , a subgroup X
of Y is called subnormal if there exists a sequence of subgroups X0, X1, . . . , Xl of Y such
that X = X0CX1C · · ·CXl = Y ; denoted by XCCY . A Cayley graph Γ = Cay(G,S) is

called subnormal if Ĝ is subnormal in AutΓ , and more generally, Γ is called Y -subnormal
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if Ĝ is subnormal in Y , where Ĝ 6 Y 6 AutΓ . In the case where ĜCCY and Γ is Y -edge
transitive, Y -arc transitive or (Y, 2)-arc transitive, Γ is called subnormal edge transitive,
subnormal arc transitive, or subnormal 2-arc transitive, respectively. (A graph Γ is called
(Y, 2)-arc transitive if Y 6 Γ is transitive on the set of 2-arcs of Γ .) This paper initiates
to study the class of subnormal Cayley graphs.

Typical examples of subnormal Cayley graphs include generalized orbital graphs of
quasiprimitive permutation groups of simple diagonal type or compound diagonal type,
refer to [15]. The class of 2-arc transitive graphs is one of the central objects in algebraic
graph theory, see [10, 15] for references. It is shown in [10] that there are only finite many
‘basic’ 2-arc transitive Cayley graphs of given valency which are not normal. Here we
show that almost all subnormal 2-arc transitive Cayley graphs are normal.

Let Γ be a (Y, 2)-arc transitive graph with vertex set V . Let N be a normal subgroup
of Y which has at least three orbits on V . Let B be the set of N -orbits on V . The normal
quotient ΓN of Γ induced by N is the graph with vertex set B such that B,B′ ∈ B are
adjacent if and only if some vertex u ∈ B is adjacent in Γ to some vertex v ∈ B′. Let
K be the kernel of Y acting on B. Then Kα = 1 as Kα C Yα and Yα is 2-transitive on
Γ (α). Thus ΓN is (Y/N, 2)-arc transitive of valency equal the valency of Γ , and so Γ is
a normal cover of ΓN , that is, {u, v} is an edge in Γ , then the induced subgraph [uN , vN ]
is a pefect matching.

Theorem 1. Let Γ = Cay(G,S) be connected and undirected. Assume that Y 6 AutΓ is

such that ĜCCY and Γ is (Y, 2)-arc transitive. Then either ĜC Y , or ĜCX C Y and
Γ is a normal cover of the complete bipartite graph Kpd,pd, where p is an odd prime.

This theorem is proved in Section 3. The next theorem is a by-product for proving
Theorem 1, which extends a classical result for primitive permutation groups, that is, [3,
Theorem 3.2C] and [18, Theorems 18.4 and 18.5], to the general transitive permutation
groups. Some special cases of this result have been obtained and used in the study of
symmetrical graphs, see for example, [9, Lemma 2.1] and [4, Lemma 2.1].

Edge transitive graphs are divided into three disjoint classes: symmetric (arc transi-
tive); semi-symmetric (vertex intransitive); half-symmetric (vertex transitive but not arc
transitive). We remark that in the literature, half-symmetric graphs were called half-
transitive graphs. However, since ‘half-transitive’ is a classical concept for permutation
groups and often occurs in the area of transitive graphs, we would prefer to call them
‘half-symmetric’ instead of ‘half-transitive’.

Constructing and characterizing half-symmetric graphs is an active topic in symmetri-
cal graph theory which has received considerable attention, see for example [11, 12, 14, 17].
The following result provides a generic method for constructing half-symmetric graphs as
subnormal Cayley graphs, which is proved in Section 4.

Theorem 2. Let T be a finite simple group containing an element t which is not conjugate
in Aut(T ) to t−1. Let G = T l with l > 2, and let

R = {(tx, 1, . . . , 1), (1, tx, . . . , 1), . . . , (1, 1, . . . , tx), (tx, tx, . . . , tx) | x ∈ T}.

Then Cay(G,R ∪R−1) is subnormal and half-symmetric.
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Many finite simple groups T contain elements which are not conjugate in Aut(T ) to
their inverses. Here is an example. Let T = Sz(q) with q = 22e+1 > 8, and let t be an
element of T of order 4. Then t is not conjugate in Aut(T ) to t−1.

2 Proof of Theorem 1

Let Γ = (V,E) be a digraph. For v ∈ V , let Γ (v) = {w ∈ V | (v, w) is an arc of Γ}. Let

G
[1]
v be the kernel of Gv acting on Γ (v). Then G

[1]
v is normal in Gv. Let Γ0,1,··· ,i(v) = {w |

the distance between v and d are not larger than i in Γ}. We first prove a simple lemma
about the vertex stabilisers of vertex transitive graphs.

Lemma 3. Let Γ be a connected G-vertex transitive digraph. Then for a vertex v and a
normal subgroup N CG, if N

Γ (v)
v is semiregular, then Nv

∼= N
Γ (v)
v is faithful.

Proof. Suppose that N
Γ (v)
v is semiregular for a v. Since N C G, for any w ∈ Γ , there is

an element g ∈ G such that w = vg. Thus Nvg = N g
v and N

Γ (w)
w is semiregular. For the

contrary, suppose that there exists an x ∈ N such that x fixes pointwesely Γ0,1(v). Let
i > 1 be the maximal integer such that x fixes G0,1,··· ,i(v) but moves a vertex w′ ∈ Γi+1(v).
Let v′ ∈ Γi−1(v), w ∈ Γi(v) and w′ ∈ Γi+1(v) such that (v′, w, w′) is a 2-arc. Then x fixes

v′, w, and moves w′. Thus x ∈ Gwv′ and acts non-trivially on Γ1(w). So N
Γ (w)
w is not

semiregular, a contradiction.

For a group X and a core free subgroup H 6 X, denote by [X : H] the set of right
cosets of H in X, that is

[X : H] = {Hx | x ∈ X}.
For any subset S ⊂ X, define the coset graph of X with respect to H and S to be the
digraph Γ with vertex set [X : H] and such that two vertices Hx,Hy ∈ V are adjacent,
written as Hx ∼ Hy, if and only if yx−1 ∈ HSH; denoted by Γ = Cos(X,H,HSH).
Then X 6 AutΓ , and Γ is X-vertex transitive. For convenience, write H{g}H = HgH,
where g ∈ X. The following properties are known and easy to prove.

Lemma 4. Let X be a group, H a core free subgroup, and g ∈ X. Then

(i) Cos(X,H,HgH) is connected if and only if 〈H, g〉 = X;

(ii) Cos(X,H,HgH) is X-edge transitive;

(iii) Γ = Cos(X,H,H{g, g−1}H) is undirected and X-edge transitive; further, Γ is X-
arc transitive if and only if HgH = Hg−1H.

Let Aut(X,H) = 〈σ ∈ Aut(X) | Hσ = H〉. Then an element σ ∈ Aut(X,H) acts on
[X : H] by (Hx)σ = Hxσ. Let σ ∈ Aut(X,H) be such that (HgH)σ = HgH. Then for
any two vertices Hx,Hy, we have

Hx ∼ Hy ⇔ yx−1 ∈ HgH
⇔ yσ(xσ)−1 = (yx−1)σ ∈ (HgH)σ = HgH
⇔ Hxσ ∼ Hyσ
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Thus σ maps all edges to edges, and so σ induces an automorphism of Γ .

Lemma 5. Let Γ = Cos(X,H,HgH), and σ ∈ Aut(X,H). If (HgH)σ = HgH, then σ
induces an automorphism of Γ .

For a group G, the symmetric group Sym(G) contains two regular subgroups Ĝ and
Ǧ, where

Ǧ = {ǧ : x 7→ g−1x for all x ∈ G | g ∈ G},

consisting of left multiplications of elements g ∈ G and Ĝ with

Ĝ = {ĝ : x 7→ xg for all x ∈ G | g ∈ G},

consisting of right multiplications of elements g ∈ G. Then by [7], NSym(G)(Ĝ) = Ĝ o
Aut(G), the holomorph of G, and ĜCSym(G)(Ĝ) = Ĝ ◦ Ǧ = Ĝo Inn(G).

For a subset S ⊂ G, let

Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}.

Then Aut(G,S) 6 Aut(G) 6 Sym(G), and as subgroups of Sym(G), it is easily shown

that Aut(G,S) normalizes Ĝ. Moreover, for the Cayley graph Γ = Cay(G,S), by [7,
Lemma 2.1], we have

NAutΓ (Ĝ) = Ĝo Aut(G,S).

The subgroup Aut(G,S) plays an important role in the study of Cayley graphs. As-

sume that If ĜCX 6 AutΓ . Then Xα 6 Aut(G,S) where α is a vertex of Γ . A special
type of normal Cayley graph satisfies Xα > Inn(G,S), in this case, we call Γ a holomorph
Cayley graph.

Suppose Γ = Cay(G,S) is a holomorph graph with H = Ĝ ◦ Ǧ = Ĝ o Inn(G). Let
β ∈ Γ (α) = S, let g ∈ Hαβ, then βh = β, that is h ∈ CG(β). On the contrary, if
h ∈ CG(β), then βh = β, so h ∈ Hαβ. Thus Hαβ = CG(β). Thus the following lemma
holds.

Lemma 6. Suppose Γ = Cay(G,S) is a holomorph with H = Ĝ ◦ Ǧ. Then Hαβ = CG(β).

The next lemma shows that, for a prime p and an integer d, a complete bipartite graph
Kpd,pd is a 2-arc transitive subnormal Cayley graph.

Lemma 7. Let Γ = Kpd,pd, where p is an odd prime and d > 1. Then Γ ∼= Cay(G,S),
where G ∼= Zdp o Z2 and S consists of all involutions of G, and there exist subgroups

X, Y < AutΓ such that ĜCX C Y < AutΓ , X = Ĝo Aut(G), and Y/X ∼= Z2.

Proof. Let G = N o 〈z〉 ∼= ZdpoZ2, where p is an odd prime and z reverses every element
of N , that is, for each element x ∈ N , xz = x−1. Let S = G \N , and let Γ = Cay(G,S).
Then S consists of all involutions of G. Let V1 be the vertex set corresponding to the
elements in N , V2 be the vertex set corresponding to the elements in G \ N . Then each
vertex in V1 is adjcent to all vertices in V2 and each vertex in V2 is adjcent to all vertices
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in V1 as well. So Γ ∼= Kpd,pd . Thus, AutΓ ∼= §pd o §2. Further, Aut(G,S) = Aut(G) ∼=
AGL(d, p) = Zdp o GL(d, p), and Aut(G,S) acts 2-transitively on S.

Let X = NAutΓ (Ĝ), and let C = ĜCAutΓ (Ĝ). Then X = ĜoAut(G,S) = ĜoAut(G),

and C = Ĝ × Ǧ. Thus Γ is (X, 2)-arc transitive and C-arc transitive. Let v be the
vertex of Γ corresponding to the identity of G. Then Cv = {(ĝ, ǧ) | g ∈ G} ∼= G. Let
Γ ′ = Cos(C,Cv, Cv(ẑ, 1)Cv) and φ a map from vetices of Γ to vertices of Γ ′ such that for
any vertex Cvx ∈ V Γ ′ and x ∈ V Γ , φ : Cvx 7→ x. Then φ is an isomorphism of Γ to Γ ′.
Thus Γ ∼= Cos(C,Cv, Cv(ẑ, 1)Cv).

We label Aut(Ĝ) = {x̂ | x ∈ Aut(G)}, and Aut(Ǧ) = {x̌ | x ∈ Aut(G)}. Then

Aut(C) = Aut(Ĝ× Ǧ) = (Aut(Ĝ)× Aut(Ǧ)).〈τ〉, where τ : (x̂, y̌) 7→ (ŷ, x̌) for all (x̂, y̌) ∈
Aut(Ĝ)×Aut(Ǧ). Let (x̂, y̌) ∈ Aut(C) normalize Cv = {(ĝ, ǧ) | g ∈ G}. Then (ĝx̂, ǧy̌) ∈ Cv
for any g ∈ G. Thus gyx

−1
= g for any g ∈ G, that is yx−1 ∈ Z(G) = 1. Hence x = y and

Aut(C,Cv) = 〈(x̂, x̌) | x ∈ Aut(G)〉 × 〈τ〉. Since C C X and CX(C) = 1, it follows that
X 6 Aut(C). Further, Cv CXv 6 Aut(C,Cv), and it follows that Aut(C,Cv) = Xv × 〈τ〉.
Noticing that (ẑ, ž) ∈ Cv and ž is an involution, we have

(Cv(ẑ, 1)Cv)
τ = Cv(ẑ, 1)τCv = Cv(1, ž)Cv = Cv(1, ž)(ẑ, ž)Cv = Cv(ẑ, 1)Cv.

By Lemma 5, τ ∈ AutΓ and Aut(C,Cv) < AutΓ . Now Y := CAut(C,Cv) is such that

|Y : X| = 2. We obtain that ĜCX C Y < AutΓ . Since τ ∈ Y does not normalizes Ĝ, Ĝ
is not normal in Y .

Therefore, as Γ is (Y, 2)-arc transitive, Kpd,pd is a 2-arc transitive subnormal Cayley
graph.

The following is a property regarding 2-transitive permutation groups, which is ob-
tained by inspecting of the classification of 2-transitive permutation groups, refer to [3].

Lemma 8. Let X be a 2-transitive permutation group on Ω. Then the socle of X is either
a regular elementary abelian p-group, or a nonregualr nonabelian simple group.

Furter, assume that NCCX is imprimitive on Ω. Then X is affine with soc(X) = Zep,
where p is a prime and e > 1, and further, the following hold:

(i) Either N 6 soc(X), or Zep.Zb ∼= N CX and N is a Frobenius group, where b divides

pe
′ − 1 and e′ is a proper divisor of e.

(ii) Xω has no non-trivial normal subgroup of p-power order for ω ∈ Ω.

Proof. By the classification of 2-transitive groups, we know that X is either almost simple
or affine.

(1) Suppose that X is almost simple, that is T 6 X 6 Aut(T ), where T ∼= Inn(T ) is
nonabelian simple. For any 1 < N CX, suppose T " N . Then from T ∩N C T we have
T ∩ N = 1 and then T × N 6 X 6 Aut(T ), which implies N = 1, a contradiction. So
T 6 N , that means that N is also almost simple. Repeating this process, we know that
T 6 N and so N CX, and N is primitive.
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(2) Suppose that X is affine with the socle S = Zep. Set n = pe. Then X = S o H,
where H is a transitive subgroup of GL(e, p) on nonzero vectors. By [8], Xω

∼= H has no
non-trivial normal subgroup of p-power order for ω ∈ Ω as in item (ii).

Clearly, every subgroup of S is subnormal in X. So we assume that N $ S below.
For any 1 6= N CX, suppose that S ∩N = 1. Then SN = S ×N 6 S oH which implies
N 6 S, a contradiction. So N ∩S 6= 1. Since H is transitive on nonzero vectors, we have
(N ∩ S)H = S, which implies S 6 N . Then N/S CX = X/S = H. By Lemma 5.1 in [8],
we have if N is imprimitive, then N/S ∼= Zb, as in item (i).

This has an application to 2-arc transitive graphs.

Lemma 9. Let Γ be a (Y, 2)-arc transitive graph, and let H be a subnormal subgroup

of Y which is vertex transitive on Γ . Then either H
Γ (v)
v is center free and Γ is H-arc

transitive, or Hv is abelian and acts faithfully and semiregularly on Γ (v).

Proof. Since H C CY , we have that Hv C CYv, and H
Γ (v)
v C CY Γ (v)

v and Y
Γ (v)
v is a

2-transitive permutation group. If H
Γ (v)
v is primitive, then Γ is H-arc transitive and

H
Γ (v)
v > soc(Y

Γ (v)
v ) is center free by Lemma 8.

Now suppose H
Γ (v)
v is imprimitive. Since Y

Γ (v)
v is a 2-transitive permutation group, it

follows from Lemma 8 that either H
Γ (v)
v 6 soc(Y

Γ (v)
v ) ∼= Zep, where p is a prime and e > 1

or soc(Y
Γ (v)
v ) = Zep 6 H

Γ (v)
v = Zep.Zb and H

Γ (v)
v is center free.

For the former, since soc(Y
Γ (v)
v ) is regular, H

Γ (v)
v is semiregular. By Theorem 3,

Hv
∼= H

Γ (v)
v is faithful and abelian.

For the latter, since Y
Γ (v)
v is 2-transitive, we have that H

Γ (v)
v > soc(Y

Γ (v)
v ) is transitive,

and hence Γ is H-arc transitive.

To prove Theorem 1, we need the next property on permutation groups.

Lemma 10. Let G1, G2 < Sym(Ω) be regular which normalizes each other. If G1/(G1 ∩
G2) is abelian, then G1 = G2.

Proof. Let X = G1G2, and C = G1 ∩G2. Then C is semiregular on Ω , and C CX. Let
G1 = G1/C, G2 = G2/C, and X = X/C. Let ΩC be the set of C-orbits on Ω . Then both
G1 and G2 are regular on ΩC as G1, G2 are both regular on Ω .

Suppose that G1 6= G2. Then Gi 6= 1, and X = G1 × G2. In particular, G2 6
CSym(ΩC)(G1). If G1 is abelian, then G2 6 CSym(ΩC)(G1) = G1. Thus G2 = G1, and so
G1 = G2, which is a contradiction.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: Let Γ = Cay(G,S) be a (Y, 2) subnormal arc transitive graph
with vertex set V . Then G is regular on V .

IfGCY then the theorem holds. Now we suppposeG 6 Y . Then NAutΓ (G) < Y. LetX
be the maximal subnormal subgroup of Y contained in NAutΓ (G), we have GCX CCY .
If X C Y then NY (X) = Y > NAutΓ (G), otherwise there is a group K > X such
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that X C K C CY , so NY (X) > K with K ∩ NAutΓ (G) = X as X is maximal. Thus
NY (X) 6= NAutΓ (G). Since G < X < NY (X) 6 Y , any element y ∈ NY (X) \NY (G) is
such that Gy 6= G and Xy = X.

Let C = G ∩ Gy. Then for any x ∈ X, we have Gx = G, (Gy)x = Gyx = Gx′y = Gy

for some x′ ∈ X. Thus Cx = C and C,G,Gy C X; in particular, G and Gy normalizes
each other. Let G = G/C and G

y
= Gy/C, let VC be the set of C-orbits on V . By

Lemma 10, G is not abelian as G 6= Gy. Since G,Gy are both regular on V , the subgroup
C is semiregular on V , and G, G

y
are both regular on VC . Further, G

y
6 CSym(VC)(G).

Let H = GGy. Then H CX. Let H = H/C, and X = X/C. Then G×Gy
= H CX.

Let v be a vertex of Γ . Then H = G:Hv = Gy:Hv, and Hv
∼= H/Gy ∼= G/C = G. Further,

since G < H CX CCY , we have 1 6= Hv CXv CCYv, and 1 6= H
Γ (v)
v CX

Γ (v)
v CCY Γ (v)

v .
By Lemma 8, we conclude that either soc(Y

Γ (v)
v ) 6 H

Γ (v)
v , or Y

Γ (v)
v is affine with socle

isomorphic to Zdp, H
Γ (v)
v < soc(Y

Γ (v)
v ) ∼= Zdp, and H

Γ (v)
v is semiregular.

Let α be the vertex of ΓC containing v, that is, α = vC . Then the stabilizer Hα is
isomorphic to G as G×Gy

= H = G:Hα = G
y
:Hα. On the other hand, Hα is isomorphic

to a factor group of Hv, that is, Hα
∼= HvC/C ∼= Hv/(Hv ∩ C).

Suppose that Hv is abelian. Then the factor group Hα
∼= Hv/(Hv∩C) is abelian. Since

G ∼= G
y ∼= Hα, we conclude that G is abelian by Lemma 10, which is a contradiction.

Thus, Hv is not abelian. By Lemmas 8 and 9, either Y
Γ (v)
v is almost simple, or H

Γ (v)
v =

Zdp:Ho is a Frobenius group. In particular, Hv is transitive on Γ (v), and Γ is H-arc
transitive.

Since G × Gy
= H 6 Aut(ΓC), and G is regular on ΓC , we have ΓC is a holomorph

graph Cay(G,S). So H
ΓC(α)

α
∼= Hα = Inn(G,S). Suppose that Y

Γ (v)
v is almost simple.

Then soc(Y
Γ (v)
v ) 6 H

Γ (v)
v 6 Y

Γ (v)
v . Since Y

Γ (v)
v is 2-transitive, by the classification of

2-transitive almost simple groups, see [2], either H
Γ (v)
v is 2-transitive, or |Γ (v)| = 28,

H
Γ (v)
v
∼= PSL(2, 8) and Y

Γ (v)
v

∼= PΓL(2, 8). For the former, the graph ΓC is a holomorph
2-arc transitive graph, which is not possible, see [11, Theorem 1.3]. For the latter, since
|ΓC(α)| = |Γ (v)| = 28, we have Hα = D18 which have index 28 in Hα = PSL(2, 8).
However Hα = D18 is not the centraliser of any element in Hα = PSL(2, 8), which is not
possible.

Thus, Γ and ΓC are of valency pd, and G ∼= H
Γ (v)
v = Zdp:Ho

∼= Zdp:Zb is a Frobenius

group; in particular, G is center free. Hence H ∼= (Zdp:Ho) × (Zdp:Ho). Now ΓC is a

holomorph Cayley graph of G = Zdp:Ho, that is, ΓC = Cay(G,S) such that S is a full

conjugacy class of elements of G, and |S| = pd. Let α to be the vertex of ΓC corresponding
to the identity of G, and let β ∈ ΓC(α) = S. Then Hα

∼= Zdp:Ho, and Hαβ
∼= Ho. Since

ΓC is undirected, we have S = S−1 and so β−1 ∈ S. Now CG(β) ∼= Hαβ so β is not order
p. Further as G = Zdp:Zb is a Frobenius group, β is not conjugate to β−1 if o(β) > 2.
Hence β is an involution. It follows that p is odd and Ho = 〈β〉 ∼= Z2. So ΓC ∼= Kpd,pd ,
and Γ is a normal cover of ΓC . By Lemma 7, the theorem holds.
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3 Subnormal transitive subgroups

Let GCCX 6 Sym(Ω) be such that G is transitive on Ω . Assume that G = N0 CN1 C
· · · C Nr = X, where Ni+1 = NX(Ni) > Ni. A natural question is whether r has an
upper-bound. For characteristic simple groups, we have a positive answer.

Lemma 11. Let G 6 Sym(Ω) be a finite characteristic simple group. If G C CX 6
Sym(G) and G is transitive, then either G C X, or there exists a group N such that
GCN CX.

Proof. Write G = T k, where T is a simple group and k > 1. Suppose that G C CX 6
Sym(G) and G is not normal in X. Let N = NX(G). Then N < X, and there exists
x ∈ X \N such that Nx = N and Gx 6= G. Let C = G ∩Gx and H = GGx. Then C,G,
and Gx are normal in N , in particular, G and Gx normalizes each other. If G is abelian,
then G is regular and G/C is abelian, which is a contradiction to Lemma 10 since now
Gx 6= G. Thus G and so T is nonabelian.

Let G = N0 CN1 CN2 C · · ·CNr = X. Let Mi = 〈Gx | x ∈ Ni〉, where 2 6 i 6 r. We
claim that Mi = G× Tmi for some positive integer mi. First, M2 = 〈Gx | x ∈ N2〉CN2.
Since GxCN1 for x ∈ N2, we conclude that GGx = T n for some n > k, and as GCGGx,
we have GGx = G × T l. It follows that M2 = G × Tm2 for some positive integer m2.
Assume inductively that Mi = G× Tmi for some positive integer mi. Then Mi = T k+mi

is a characteristically simple group. Arguing as for M2, with Mi in the position of G, we
obtain Mi+1 = 〈Mx

i | x ∈ Ni+1〉 = Mi×T n = G×Tmi+1 , where mi+1 is a positive integer.
By induction, Mr = G× Tmr , and hence GCMr CNr = X.

However, we have been unable to extend this lemma for general groups.

Question 12. Let G = N0 CN1 C · · ·CNr = X 6 Sym(Ω), where Ni+1 = NX(Ni) > Ni.
Assume that G is transitive. Is it true that r 6 2?

In the rest of this section, we construct a family of half-symmetric graphs which are
subnormal Cayley graphs, and prove Theorem 2.

Let T be a nonabelian simple group, and let k > 2. Let

X = T k.(Out(T )× §k)

be a primitive permutation group on Ω ≡ T k−1 of simple diagonal type, see [13]. Then
the stabilizer

Xω = D.(Out(T )× §k) = D.Out(T )× §k,
where D.Out(T ) = {(t, t, . . . , t) | t ∈ Aut(T )}, and the socle M := soc(X) = T k =
T1×T2×· · ·×Tk. Let G×{1} = T1×· · ·×Tk−1×{1}C soc(X), and N = NX(G×{1}).
Then G× {1} is regular on Ω , and N = T k.(Out(T )× §k−1).

Proof of Theorem 2: Using the notation defined above, assume further that k > 3,
and there exists an element t ∈ T such that t is not conjugate in Aut(T ) to t−1. Let
g = (t, 1, . . . , 1, 1) ∈ G× {1} where t ∈ T , and let

Γ = Cos(X,Xω, Xω{g, g−1}Xω).
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Then Γ is X-edge transitive, and X 6 AutΓ 6 Sym(Ω). Further, Γ is not a complete
graph, and so AutΓ 6= Sym(Ω). By [13], AutΓ = X.

Suppose that Γ is arc-transitive. Then by Lemma 4, XωgXω = Xωg
−1Xω, and so

g = xg−1y, for some elements x, y ∈ Xω. Since Xω = D.Out(T ) × §k, the elements
x = (t1, t1, . . . , t1)π1, and y = (t2, t2, . . . , t2)π2, where ti ∈ Aut(T ), and πi ∈ §k. Thus

(t, 1, . . . , 1) = g = xg−1y = (t1, t1, . . . , t1).π1(t−1t2, t2, . . . , t2)π−1
1 .π1π2.

It follows that π1π2 = 1, and the element on the right hand side has exactly one entry
equal to t1t

−1t2 and the other entries equal to t1t2. Since k > 3, we conclude that t1t2 = 1
and t = t1t

−1t2. Thus t = t−1
2 t−1t2 and so t is conjugate to t−1 which is a contradiction.

Hence Γ is half-symmetric.
Finally, since G × {1} is regular on Ω , Γ is a Cayley graph of G × {1}, that is,

Γ = Cay(G × {1}, S × {1}) for some subset S × {1} ⊂ G × {1}. Let ω be the vertex
corresponding to Xω, let β = Xωg. Then the stabilizer of ω in X is Xω, and the stabilizer
of β = Xg

ω. So Xωβ = Xω ∩Xg
ω = CAut(T )(g) × §k−1. Since g is not conjugate to g−1, we

have Γ is not X-arc transitive. By Lemma 2.1 in [12], Xω have two orbits of the same
size on Γ (ω), and each have size val(Γ ) = |Xω : Xωβ| = |Aut(T ) : CAut(T )(g)|.k. Thus

val(Γ ) = 2|Xω : Xωβ| = 2|Aut(T ) : CAut(T )(g)|.k.

Let π = (12 . . . k), and let gi = gπ
i
. Then the i-th entry of gi is t and the others equal 1,

and
Xω{g, g−1}Xω = {Xωg

x
i , Xω(g−1

i )x | x ∈ Xω}.

Note that gxi = (1, . . . , txi , . . . , 1), where xi ∈ Aut(Ti). For i 6 l = k − 1, let gxi be the
projection of gxi in G = T1 × · · · × Tk−1. For i = k, gxk has the following property

gxk = (1, . . . , 1, txk) ≡ ((txk)−1, . . . , (txk)−1, 1) ( mod Xω).

Let gxk = ((txk)−1, . . . , (txk)−1) be the projection of gxk in G. Then all gxi for 1 6 i 6 k
lie in S. Similarly, we have the projections (g−1

i )x of (g−1
i )x. Since |S| = |S × {1}| =

val(Γ ) = 2|Aut(T ) : CAut(T )(g)|.k, it follows that

S = {gxi , (g−1
i )x | 1 6 i 6 k, x ∈ Xω}.

Thus Γ can be represented as a Cayley graph of G, that is, Γ ∼= Cay(G,S) ∼= Cay(G ×
{1}, S × {1}). As G ∼= G× {1}C soc(X) CX, the Cayley graph Γ is subnormal and has
the form stated in Theorem 2.
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