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Abstract

Let F be a graph. A hypergraph is called Berge F if it can be obtained by
replacing each edge in F by a hyperedge containing it. Given a family of graphs
F , we say that a hypergraph H is Berge F-free if for every F ∈ F , the hypergraph
H does not contain a Berge F as a subhypergraph. In this paper we investigate
on the connections between spectral radius of the adjacency tensor and structural
properties of a linear hypergraph. In particular, we obtain a spectral version of
Turán-type problems over linear k-uniform hypergraphs by using spectral methods.
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1 Introduction

A hypergraph H = (V,E) consists of a vertex set V and an edge (hyperedge) set E, where
each edge is a nonempty subset of V . A hypergraph is called k-uniform if each edge is a
k-element subset of V . A 2-uniform hypergraph is simply called a graph. Two vertices x
and y are said to be adjacent if there is an edge that contains both of these vertices. A
hypergraph H is called linear if every two edges have at most one vertex in common.

For a fixed k-uniform family F , the Turán number of F , denoted by exk(n,F), is the
maximum number of edges of an F -free hypergraph on n vertices. Similarly, given a family
of k-uniform linear hypergraphs F , the linear Turán number of F , denoted exlin

k (n,F), is
the maximum number of edges in an F -free k-uniform linear hypergraph on n vertices.

Turán type extremal problems in graphs and hypergraphs are the central topic of
extremal combinatorics and have a vast literature. For a survey of recent results we refer
the reader to [11, 18, 22]. Only a handful of results are known about the asymptotic
behaviour of Turán numbers for hypergraphs. One of the most active subjects is Berge
hypergraphs. The classical definition of a hypergraph cycle due to Berge is the following:
a Berge cycle Ct of length t > 2 is an alternating sequence of distinct vertices (other than
first and last) and distinct edges of the form v1l1v2l2 · · · vtlt where vi, vi+1 ∈ li for each
i ∈ {1, 2, · · · , t− 1} and vt, v1 ∈ lt.

Gerbner and Palmer [14] gave the following natural generalization of the definitions of
Berge graphs. Let F = (V (F ), E(F )) be a graph and B = (V (B), E(B)) be a hypergraph.
We say B is Berge F if there is a bijection φ : E(F ) → E(B) such that e ⊆ φ(e) for all
e ∈ E(F ). In other words, given a graph F , we can obtain a Berge F by replacing each
edge of F with a hyperedge that contains it. Given a family of graphs F , we say that a
hypergraph H is Berge F -free if for every F ∈ F , the hypergraph H does not contain a
Berge F as a subhypergraph. The maximum possible number of edges in a Berge F -free
hypergraph on n vertices is the Turán number of Berge F .

Linear Turán extremal problems have been studied mostly implicitly. For example,
the famous upper bound of Ruzsa and Szemerédi [26] on triple systems not carrying three
edges on six vertices is equivalent to exlin

3 (n, T ) = o(n2) where T is the linear triangle.
For l > 2, Füredi and Özkahya [10] showed exlin

3 (n,C2l+1) 6 2ln1+1/l + 9ln. For the even
case, it is easy to show exlin

3 (n,C2l) 6 O(n1+1/l). Recently, linear Turán numbers were
studied in [5, 8, 12, 15, 28].

Our aim is to consider a spectral version of hypergraph Turán problems, i.e., spectral
extremal hypergraph theory, which is the subset of extremal problems where invariants
are based on the eigenvalues or eigenvectors of a hypergraph. The most natural such
invariant is the maximal absolute value of the eigenvalues of the adjacency tensor of a
hypergraph H, called its spectral radius. Because the spectral radius is a close correlate
of the number of edges in a hypergraph, the following problem is a natural spectral analog
of hypergraph Turán problems: What is the maximum spectral radius of hypergraphs of
order n, not containing a given F?

In fact, spectral extremal graph theory has a substantial history, with many important
results. Examples include Stanley’s bound [27], theorems of Wilf [29] relating eigenvalues
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of graphs to their chromatic number, and many other examples. Much of recent work
in spectral extremal graph theory is due to Nikiforov, who has considered maximizing
the spectral radius over several families of graphs; see [23]. Although the area is still
difficult and underdeveloped, we believe that ultimately a spectral approach to extremal
hypergraph theory will turn out to be a fruitful and interesting accompaniment to “con-
ventional” extremal theory, see e.g., [1, 17].

The rest of this paper is organized as follows. In the next section, the bulk of the
necessary notation and the basic facts have been presented, including the definitions and
properties of eigenvalues of tensors and hypergraphs. We develop a few new tools in order
to provide spectral analogues of extremal hypergraph problems. In Section 3 we consider
spectral analogues of Turán-type problems for hypergraphs and investigate bounds on the
maximum spectral radius of linear k-uniform hypergraphs with girth at least five by using
the spectral methods proved in Section 2.

2 Preliminaries

2.1 Spectra of tensors

In 2005, Qi [25] and Lim [20] independently introduced the concept of tensor eigenvalues
and the spectra of tensors. An order k dimension n real tensor1 T = (Ti1···ik) consists of
nk real entries Ti1···ik for 1 6 i1, i2, · · · , ik 6 n. Evidently, a vector of dimension n is a
tensor of order 1 and a matrix is a tensor of order 2. T is called symmetric if the value
of Ti1···ik is invariant under any permutation of the indices i1, i2, · · · , ik. Given a vector
x ∈ Rn, T xk is a real number and T xk−1 is an n-dimensional vector. T xk and the ith
component of T xk−1 are given by:

T xk =
∑

i1,i2,··· ,ik∈[n]

Ti1i2···ikxi1xi2 · · ·xik . (1)

(T xk−1)i =
∑

i2,··· ,ik∈[n]

Tii2···ikxi2 · · ·xik . (2)

The former is simply tensor contraction of T with the k-th outer product of x with
itself, and the latter is the i-th coordinate of the contraction of T with the (k − 1)-st
outer product of x with itself. Note that the symmetry of T makes these contractions
well-defined without specifying which indices are summed over. Let T be an order k
dimension n real tensor. For some λ ∈ C, if there exists a nonzero vector x ∈ Cn

satisfying the eigenequation
T xk−1 = λx[k−1], (3)

then λ is a called an eigenvalue of T and x is its corresponding eigenvector, where x[k−1] :=
(xk−1

1 , xk−1
2 , · · · , xk−1

n )T ∈ Cn \ {0}.
If x is a real eigenvector of T , then clearly the corresponding eigenvalue λ is real. In

this case, λ is called an H-eigenvalue and x is called an H-eigenvector associated with

1Sometimes known as a “hypermatrix” or simply, “matrix.”
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λ. Furthermore, if x is nonnegative and real, we say λ is an H+-eigenvalue of T . If x is
positive and real, λ is said to be an H++-eigenvalue of T . The maximal absolute value of
the eigenvalues of T is called the spectral radius of T , denoted by ρ(T ).

In 2012, Cooper and Dutle [6] defined the adjacency tensor of a k-uniform hypergraph
H. The adjacency tensor A = A(H) is an order k dimension n symmetric tensor defined
by

Ai1···ik =

{
1

(k−1)!
if {i1, · · · , ik} ∈ E,

0 otherwise.

This definition generalizes adjacency matrices, and its theory is a natural starting point
for spectral hypergraph theory. For a vector x of dimension n and a subset U ⊆ V , we
write

xU =
∏
vi∈U

xi.

The product Axk therefore has an interpretation as follows:

Axk = k
∑

e∈E(H)

xe. (4)

The right-hand side (without the factor of k) is sometimes known as the Lagrangian
polynomial of H.

For nonnegative tensors, we have a generalization of the Perron-Frobenius theorem,
see [4, 6, 13, 30]. Let T = (Ti1···ik) be an order k dimension n nonnegative tensor. If for
any nonempty proper index subset α ⊂ {1, 2, · · · , n}, there is at least an entry Ti1···ik > 0,
where i1 ∈ α and at least an ij /∈ α for j = 2, · · · , k, then T is called nonnegative
weakly irreducible tensor. It was proved that a k-uniform hypergraph H is connected
if and only if its adjacency tensor A(H) is weakly irreducible (see [13, 30]). Let ρ(H)
denote the spectral radius of a hypergraph H. By the Perron-Frobenius theorem, if H
is connected, the eigenvector x = (x1, x2, · · · , xn)T corresponding to ρ(H), known as the
principal eigenvector, can be chosen to be strictly positive. Throughout the paper, we
only consider connected and simple hypergraphs.

2.2 Useful tools

In this section we present some useful tools which help to recast into spectral theory some
classical results on hypergraphs and their proofs. We also introduce some additional
notation employed below.

Let H = (V,E) be a connected simple hypergraph on n vertices and m edges. For a
vertex v, let L(v) be the set of edges containing v and Nv be the neighborhood of v, i.e.,
Nv = {x ∈ V \ {v} | v, x ∈ l for some l ∈ E}. The degree of a vertex v, which is denoted
by d(v), is defined as the number of edges containing v, i.e., d(v) = |L(v)|. For any two
vertices u and v, let Nuv be the set of common neighbors of u and v. The codegree of u
and v, denoted by d(u, v), is the number of edges containing both u and v in H. Let ∆,
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∆2 and d denote the maximum degree, the maximum codegree and the average degree of
H, respectively. It is easy to verify that d = km/n.

For a set X ⊆ V , let Et(X) = {l | l ∈ E and |l ∩ X| = t} and et(X) = |Et(X)|.
Similarly, let Ev

t (X) = {l | l ∈ E, v ∈ l and |l ∩ X| = t} and evt (X) = |Ev
t (X)|. If X

and Y are disjoint sets of vertices of H, we write E(X, Y ) as the set of edges containing
some vertices in X and the others in Y and e(X, Y ) the number of edges in E(X, Y ), i.e.,
E(X, Y ) = {e ∈ E(H) |H ∩X 6= ∅ and H ∩ Y 6= ∅} and e(X, Y ) = |E(X, Y )|.

Lemma 1. Let H be a connected simple k-uniform hypergraph and ρ be the spectral radius
of the adjacency tensor of H. Then

ρ2 6
1

k − 1

k∑
t=1

∑
e∈Et(Nu)

∑
v∈Nu∩e

d(u, v) (5)

where u is the vertex corresponding to a maximum entry of the principal eigenvector.

Proof. Let x be an eigenvector corresponding to ρ. For a vertex v ∈ V (H), we will use
xv to denote the eigenvector entry of x corresponding to v. For any v ∈ V (H), the
eigenvector equation is

ρxk−1
v =

∑
{v,i2,··· ,ik}∈E

xi2xi3 · · ·xik . (6)

By the Perron-Frobenius Theorem, x has all positive entries, and it will be convenient
for us to normalize so that the maximum entry of x is 1. Let u denote the vertex with
maximum eigenvector entry equal to 1. Throughout the paper, we will use u to denote
the vertex with maximum eigenvector entry equal to 1. If there are multiple such vertices,
choose and fix u arbitrarily among them. Since xu = 1, (6) becomes

ρ =
∑

{u,i2,··· ,ik}∈E

xi2xi3 · · ·xik . (7)

Apply AM-GM inequality to (7), we have

ρ 6
1

k − 1

∑
{u,i2,··· ,ik}∈E

(xk−1
i2

+ xk−1
i3

+ · · ·+ xk−1
ik

). (8)

The next inequality is a simple consequence of our normalization and an easy double
counting argument, but will be used extensively throughout the paper and therefore
warrants special attention. Multiplying both sides of (8) by ρ and applying (6) gives

ρ2 6
1

k − 1

∑
{u,i2,··· ,ik}∈E

ρxk−1
i2

+ ρxk−1
i3

+ · · ·+ ρxk−1
ik

=
1

k − 1

∑
{u,i2,··· ,ik}∈E

 ∑
e∈L(i2)

xe\{i2} +
∑

e∈L(i3)

xe\{i3} + · · ·+
∑

e∈L(ik)

xe\{ik}

 .
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Since the maximum entry of x is normalized to 1, it is obvious that xe\{v} 6 1 for any
vertex v ∈ V (H). Thus

ρ2 6
1

k − 1

∑
{u,i2,··· ,ik}∈E

 ∑
e∈L(i2)

1 +
∑

e∈L(i3)

1 + · · ·+
∑

e∈L(ik)

1

 . (9)

We now estimate the right side of (9) in two different ways. On one hand, for a fixed
edge {u, i2, · · · , ik} ∈ E, we consider the edge set L(ij) for 2 6 j 6 k. The edge set L(ij)
can be considered the union of the k disjoint subsets of edges incident to ij which have

intersection with Nu of cardinality t = 1 through t = k. That is, L(ij) =
⋃k

t=1 E
ij
t (Nu).

Then we have
∑

e∈L(ij) 1 =
∑k

t=1(
∑

e∈E
ij
t (Nu)

1). Combining with (9), this gives

ρ2 6
1

k − 1

∑
{u,i2,··· ,ik}∈E

 k∑
t=1

 ∑
e∈Ei2

t (Nu)

1 +
∑

e∈Ei3
t (Nu)

1 + · · ·+
∑

e∈Eik
t (Nu)

1


 (10)

On the other hand, for an arbitrary edge l = {i1, i2, · · · , ik} with |l∩Nu| = t, without
loss of generality, assume l ∩ Nu = {i1, i2, · · · , it}. Then the contribution of the edge l
on the right-hand side of (10) is just the sum of the number of edges containing both
the vertices u and ij over 1 6 j 6 t. In other words, the edge l appears in the right
summation exactly d(u, i1) + d(u, i2) + · · ·+ d(u, it) times.

Thus (10) becomes

ρ2 6
1

k − 1

 ∑
e∈E1(Nu)

∑
v∈Nu∩e

d(u, v) + · · ·+
∑

e∈Ek(Nu)

∑
v∈Nu∩e

d(u, v)


=

1

k − 1

k∑
t=1

∑
e∈Et(Nu)

∑
v∈Nu∩e

d(u, v).

This completes the proof.

Note that Lemma 1 illustrates a relationship between spectral radius of the adjacency
tensor and structural properties of hypergraphs. Combined with estimates of the codegree,
one can obtain results such as the following.

Lemma 2. Let H be a connected simple k-uniform hypergraph with maximum codegree
∆2 and ρ be the spectral radius of the adjacency tensor of H. Let u be the vertex with
maximum eigenvector entry. Then

(1) ρ2 6 ∆2

k−1
[e1(Nu) + 2e2(Nu) + · · ·+ kek(Nu)];

(2) ρ2 6 ∆2

k−1

∑
v∈Nu

d(v).
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Proof. Since the maximum codegree of H is ∆2, by Lemma 1, we have

ρ2 6
∆2

k − 1
[e1(Nu) + 2e2(Nu) + · · ·+ kek(Nu)] =

∆2

k − 1

∑
v∈Nu

d(v) (11)

where the last equality follows because both sums count the number of pairs (v, e) where
v ∈ e ∈

⋃
tEt(Nu).

It is clear that the codegree of each pair of adjacent vertices in H is exactly 1 if H is
a linear hypergraph. We get the following result.

Corollary 3. Let H be a connected simple k-uniform linear hypergraph and ρ be the
spectral radius of the adjacency tensor of H. Let u be the vertex with maximum eigenvector
entry. Then

(1) ρ2 6 1
k−1

[e1(Nu) + 2e2(Nu) + · · ·+ kek(Nu)];

(2) ρ2 6 1
k−1

∑
v∈Nu

d(v).

For linear hypergraphs, the results in Corollary 3 are our main tools and we will use
this technique in the sequel.

3 Main Results

The purpose of this section is to illustrate the use of the tools developed in Section 2,
which translate nonspectral extremal problems into spectral results. We also determine
bounds on the maximum spectral radius of uniform hypergraphs with girth at least five.

3.1 Spectral radius of linear hypergraphs without Fank

To illustrate this technique, we first give a spectral version result corresponding to the
linear Turán number of Fank. We include this as a quick way for the reader to become
acquainted with our notation.

For k > 2, the k-fan Fank is the k-uniform linear hypergraph with k edges f1, · · · , fk
which pairwise intersect in the a single vertex v, and an additional edge g which intersects
all fi in a vertex different from v. Füredi and Gyárfás studied the linear Turán number of
Fank in [12]. They proved that exlin

k (n,Fank) 6 n2

k2
, asymptotically a factor of 1+1/(k−1)

smaller than the maximum number of edges in a k-uniform linear hypergraph,
(
n
2

)
/
(
k
2

)
.

The Turán number of Fank on k-uniform hypergraphs was determined by Mubayi and
Pikhurko in [21].

Theorem 4 ([12]). One has exlink (n,Fank) 6 n2

k2
for all k > 2. The only extremal hyper-

graphs are the transversal designs on n vertices with k groups.
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A transversal design T (n, k) on n vertices with k groups is a k-partite hypergraph with
groups of equal size (thus n is a multiple of k) and each pair of vertices from different
groups is contained in exactly one hyperedge. Such designs have long been known to
exist for all sufficiently large n (as a function of k), due to their connection with mutually
orthogonal latin squares (MOLS). After adopting some notations and results of Füredi
and Gyárfás, we prove the spectral analog of Füredi and Gyárfás’s result and obtain the
following extremal spectral result. Theorem 5 also implies that the maximum spectral
radius of the adjacency tensor of hypergraphs is closely related to the Turán numbers of
hypergraphs.

Theorem 5. Let H denote the set of linear k-uniform hypergraphs of order n, n ≡ 0
(mod k), with forbidden Fank and ρ be the maximum spectral radius of hypergraphs in H.
For n sufficiently large, we have ρ = n

k
.

Proof. Let H = (V,E) be a k-uniform Fank-free linear hypergraph on n vertices. Let
u be the vertex with maximum eigenvector entry. Set Bu = V \ Nu, where Nu is the
neighborhood of the vertex u. Suppose f ∈ Ek(Nu), the vertices {vi}ki=1 of f must belong
to k distinct edges {ei}ki=1 containing u since H is linear. But then, {f, e1, . . . , ek} is
the edge set of a Fank, a contradiction. In other words, ek(Nu) = 0. On one hand, by
Corollary 3, we have

ρ2 6
1

k − 1
[e1(Nu) + 2e2(Nu) + · · ·+ (k − 1)ek−1(Nu)]

6
1

k − 1
[(k − 1)e1(Nu) + (k − 1)e2(Nu) + · · ·+ (k − 1)ek−1(Nu)]

6 e1(Nu) + e2(Nu) + · · ·+ ek−1(Nu)

= e(Nu, Bu) (12)

By Theorem 4, we know that |E(H)| 6 n2

k2
. Thus e(Nu, Bu) 6 n2

k2
. After using (12), we

have ρ2 6 n2

k2
, i.e., ρ 6 n

k
.

On the other hand, because a transversal design T (n, k) is an n
k
-regular linear hyper-

graph without Fank, then ρ(T (n, k)) = n
k
. Since ρ is the maximum spectral radius of

hypergraphs in H, we have ρ > n
k
.

This completes the proof.

3.2 Spectral radius of linear hypergraphs without Berge C4

One of the first results concerning Turán numbers of Berge cycles is due to Lazebnik and
Verstraëte [19]. Very recently this was strengthened by Ergemlidze, Győri and Methuku

[8] who showed that exlin
3 (n, {C4}) 6 1

6
n

3
2 +O(n) (which is tight, due to a construction from

[19]). Gerbner, Methuku and Vizer [15] proved that exlin
k (n, {K2,t}) 6

√
t−1

k(k−1)
n

3
2 + O(n)

which indicates exlin
k (n, {C4}) 6 1

k(k−1)
n

3
2 + O(n). In this subsection, we give a spectral

version of Ergemlidze, Győri and Methuku’s results on k-uniform linear hypergraphs.
Throughout this subsection, suppose k > 3.
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As before, let H be a k-uniform linear hypergraph of order n and size m containing
no Berge C4. Our plan is to first upper bound

∑
v∈Nu

d(v) for the vertex u in H. After that,

by Corollary 3, we get an upper bound of the spectral radius of a hypergraph containing
no Berge C4.

Theorem 6. Let H denote the set of linear k-uniform hypergraphs of order n with forbid-
den Berge C4 and ρ be the maximum spectral radius among hypergraphs in H. For k > 3,

ρ 6
√

3
2

+ 1
2(k−1)

(n− 1)
1
2 +O( 1√

n
).

To prove Theorem 6, we only need to upper bound
∑

v∈Nu
d(v) by Corollary 3. Notice

that d(v) =
∑k

t=1 e
v
t (Nu) for any v ∈ Nu. Our plan is to estimate via an upper bound on

evt (Nu) for 1 6 t 6 k.
Set Bu = V \ (Nu ∪ {u}). Define the set Sx = {ω ∈ Bu | ∃l ∈ Ex

1 (Nu) with ω ∈ l} for
any x ∈ Nu, i.e., the set of vertices contained in some edge which intersects Nu only at x.
Note that Sx ⊂ Nx \ (Nu ∪ {u}). The following results are necessary to our proof.

Lemma 7. Let x and y be two adjacent vertices in H. Then |Nxy| 6 2k − 3.

Proof. Since x and y are adjacent, let lxy be the edge containing both the vertices x and
y. Suppose for the sake of a contradiction that |Nxy| > 2k − 2. Then there are at least k
vertices in Nxy other than the common neighbors in lxy. Since H is k-uniform, there must
exist two distinct vertices v1 and v2 in Nxy such that the pairs xv1 and xv2 are contained
in two distinct edges which are not the edge lxy.

If the pairs yv1 and yv2 are contained in one edge incident to y, there must exist a
vertex v3 in Nxy such that yv1 and yv3 are contained in two distinct edges incident to y.
Then either the edges containing xv1, yv1, yv3 and xv3 or the edges containing xv2, yv2,
yv3 and xv3 form a Berge C4 in H, a contradiction. Otherwise the pairs yv1 and yv2 are
contained in two different edges incident to y, then the four edges containing the pairs
xv1, xv2, yv1 and yv2 form a Berge C4 in H, a contradiction.

Lemma 8. Let x and y be two distinct vertices in Nu of H. If the pairs xu and yu are
in distinct edges, then Sx ∩ Sy = ∅.

Proof. Let lx, ly be two edges incident to u such that x ∈ lx and y ∈ ly. Since H is linear,
it is obvious that lx 6= ly. If there were a vertex v in Sx ∩ Sy, then each of the pairs xv
and yv would be contained in edges l′x and l′y so that l′x ∩ Nu = {x} and l′y ∩ Nu = {y},
whence l′x 6= l′y and neither edge contains u. But then the four edges lx, ly, l

′
x, and l′y are

a Berge C4, a contradiction.

Proof of Theorem 6. First we show that
k∑

t=2

evt (Nu) is no more than k for any v ∈ Nu

while k > 3. Suppose for a contradiction that there is a vertex v ∈ Nu such that
k∑

t=2

evt (Nu) > k + 1. Since H is linear, there is exactly one of these at least k + 1 edges

containing u. Let li, 1 6 i 6 k, denote k other edges containing v. Since |li ∩Nu| > 2, we
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select k distinct vertices xi ∈ li ∩Nu for 1 6 i 6 k. Then for the adjacent vertices u and
v we have |Nuv| > 2k − 2, contradicting with Lemma 7. Thus d(v) 6 ev1(Nu) + k for any
v ∈ Nu.

Since H is linear and ev1(Nu) > d(v) − k for any v ∈ Nu, we have |Nu| = (k − 1)d(u)
and |Sv| > (k − 1)(d(v)− k). Thus,∑

v∈Nu

|Sv| >
∑
v∈Nu

(k − 1)(d(v)− k) =
∑
v∈Nu

(k − 1)d(v)− k(k − 1)2d(u). (13)

For each 1 6 i 6 d(u), let li denote the i-th edge incident to u, and write li =

{u, i2, i3, · · · , ik}. Set Vi =
⋃k

j=2 Sij for each 1 6 i 6 d(u). Obviously
⋃d(u)

i=1 Vi ⊆ Bu.

By Lemma 8, we have Vi∩Vj = ∅ since li∩ lj = {u} by linearity. Thus
d(u)∑
i=1

|Vi| 6 |Bu|.

For a fixed edge li, we only need to estimate the upper bound of |Sip∩Siq | where ip, iq ∈ li.
Note that

|Vi| =

∣∣∣∣∣
k⋃

j=2

Sij

∣∣∣∣∣ >
k∑

j=2

|Sij | −
∑

26p<q6k

|Sip ∩ Siq |.

By Lemma 7, we have

|Sip ∩ Siq | 6 |Nipiq \ (Nu ∪ {u})| 6 |Nipiq \ (li \ {x, y})| 6 (2k − 3)− (k − 2) = k − 1

since the vertices p and q are adjacent. Then

|Vi| >
k∑

j=2

|Sij | −
(
k − 1

2

)
(k − 1) =

k∑
j=2

|Sij | −
(k − 1)2(k − 2)

2
.

Thus we have

k∑
j=2

|Sij | 6 |Vi|+
(k − 1)2(k − 2)

2
(14)

and

d(u)∑
i=1

k∑
j=2

|Sij | 6
d(u)∑
i=1

|Vi|+
d(u)∑
i=1

(k − 1)2(k − 2)

2
. (15)

Since
d(u)∑
i=1

|Vi| 6 |Bu| 6 n, applying (15), we obtain

d(u)∑
i=1

k∑
j=2

|Sij | 6
d(u)∑
i=1

|Vi|+
d(u)∑
i=1

(k − 1)2(k − 2)

2

6 |Bu|+
(k − 1)2(k − 2)

2
d(u)
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6 n− |Nu|+
(k − 1)2(k − 2)

2
d(u). (16)

Combining this with (13), then

∑
v∈Nu

(k − 1)(d(v)− k) 6
d(u)∑
i=1

k∑
j=2

|Sij | 6 n+
(k − 1)2(k − 2)

2
d(u)− (k − 1)d(u). (17)

The first inequality follows |Sv| > (k−1)(d(v)−k) for any v ∈ Nu and the second because
|Nu| = (k − 1)d(u). Simplifying (17), we have∑

v∈Nu

(k − 1)d(v) 6 n+
k(k − 1)(3k − 5)

2
d(u). (18)

Since H is linear, it is obvious that d(u) 6 n−1
k−1

. Combining (18) with Corollary 3, we
get

ρ2 6
n

(k − 1)2
+
k(3k − 5)

2(k − 1)
d(u) 6 (

3

2
+

1

2(k − 1)
)(n− 1) +

1

(k − 1)2
. (19)

That is, ρ 6
√

3
2

+ 1
2(k−1)

(n− 1)
1
2 +O( 1√

n
). This completes the proof.

Note that
k∑

t=2

evt (Nu) 6 k holds if k > 3 in the proof of Theorem 6. For a graph G of

order n containing no C4, we have ev2(Nu) 6 1 and ρ(G) 6
√
n after applying ev2(Nu) 6 1

to the proof of Theorem 6. Recall that Nikiforov [24] proved that ρ2− ρ 6 n− 1 where ρ
is the spectral radius of a graph G of order n containing no C4. Obviously, ρ(G) 6

√
n is

asymptotically equivalent to the Nikiforov’s result when n is sufficiently large.

3.3 Spectral radius of linear hypergraphs with at least girth five

The question we consider in this subsection is to determine the maximum spectral radius of
k-uniform linear hypergraphs on n vertices of girth at least five, while the maximum num-
ber of edges in graphs of girth five is an old problem of Erdős [7]. Lazebnik and Verstraëte
[19] showed that exlin

3 (n, {C3, C4}) = n3/2/6 + O(n). Very recently this was strength-
ened by Ergemlidze, Győri, and Methuku, who showed in [8] that exlin

3 (n, {C3, C4}) ∼
exlin

3 (n, {C4}). Timmons [28] proved that exlin
k (n, {C3, K2,t+1}) 6

√
t

k(k−1)
n3/2 +O(n) which

indicated exlin
k (n, {C3, C4}) 6 1

k(k−1)
n3/2 + O(n). Now we investigated on the spectral

version of k-uniform linear hypergraphs on n vertices of girth at least five while the proof
of the result below is substantially simpler and shorter than the above proof.

Theorem 9. Let H denote the set of linear k-uniform hypergraphs of order n with girth
at least five and ρ be the maximum spectral radius of hypergraphs in H. For n sufficiently

large, we have ρ 6
√

n−1
k−1

+O( 1√
n
).

the electronic journal of combinatorics 28(3) (2021), #P3.46 11



Proof. Let H be a linear hypergraphs of order n and size m with girth at least five. For
an arbitrary and fixed vertex u, it is easy to verify that Ev

k−1(Nu) is exactly the set of
edges incident to u and Ev

t (Nu) = ∅ if t 6∈ {1, k−1}, where v is an arbitrary vertex in Nu.

Otherwise H contains a Berge C3, a contradiction. That is to say
k∑

t=2

tet(Nu) = (k−1)d(u).

Now we only need to provide an upper bound on e1(Nu).
As before, set Bu = V \ {Nu ∪ {u}} and Sv = {ω ∈ Bu | ∃l ∈ Ev

1 (Nu) with ω ∈ l} for
any v ∈ Nu. By Lemma 8, it is easy to verify that Sx ∩ Sy = ∅ for an arbitrary pair x, y
in Nu if x and y are nonadjacent. If x and y are adjacent, suppose for a contradiction
that there is a vertex z ∈ Sx ∩ Sy. Let lxy be the edge containing both the vertices x and
y. Similarly for lxz and lyz. Since H is linear, it is clear that lxy, lxz and lyz form a Berge
C3, a contradiction. Thus e1(Nu) 6 (n− (k − 1)d(u))/(k − 1).

By Corollary 3, we get

ρ2 6
1

k − 1
[e1(Nu) + 2e2(Nu) + · · ·+ kek(Nu)] 6

n

(k − 1)2
+

(k − 2)d(u)

k − 1
. (20)

Since H is linear, it is obvious that d(u) 6 n−1
k−1

, we get

ρ2 6
n− 1

k − 1
+

1

(k − 1)2
. (21)

Therefore ρ 6
√

n−1
k−1

+O( 1√
n
).

If G be a graph of order n containing neither C3 nor C4, it is easy to see that for n
sufficiently large, Theorem 9 is asymptotically equivalent to the result of Favaron, Mahéo
and Saclé [9] who showed that ρ(G) 6

√
n− 1 where ρ(G) is the spectral radius of G.

4 Conclusion and open problems

Of course, the above results are just a small sample of spectral analogues for Turán-
type hypergraph problems. Spectral extremal problems can be a rich font of interesting
questions, since so many classical extremal problems have been investigated. See [17] for
much more along these lines. Here we outline a few related to the above questions that
we find particularly appealing.

1. What do the extremal spectral results for other hereditary linear hypergraph classes
look like? For example, one might consider forbidden Berge cycles with lengths
greater than 4, Berge K2,t, the Fano plane, etc.

2. To get the upper bounds of Theorem 6 and Theorem 9, we used the inequality
d(u) 6 n−1

k−1
which indicates that equality holds if there exists a vertex adjacent

to other vertices in H. So how to construct the hypergraph with spectral radius
attaining O(

√
n)? As we know, the hyperstar containing either C3 nor C4 with n−1

k−1

edges sharing one vertex in common, can’t reach the upper bound in Theorem 9,
which is different from the case for graphs.
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3. How would one generalize Lemma 1 to other tensors, such as the (signless) Laplacian
tensor? How large can the maximum eigenvalue of the (signless) Laplacian tensor
of a uniform hypergraph be if various subhypergraphs are forbidden?

4. Kalai asked the following beautiful question: Let Fn denote the family of linear
3-uniform hypergraphs H = (V,E) for which there exists an injective function
φ : V → R3 so that the convex hulls of φ(e) and φ(f) intersect exactly in φ(e ∩ f)
for every e, f ∈ E. In other words, Fn consists of those linear 3-uniform hypergraphs
whose edges can be faithfully embedded as planar triangles in R3. Then, if f(n) is
the maximum number of edges of any hypergraph in Fn, is it true that f(n) = o(n2)?
Károlyi and Solymosi showed in [16] that f(n) = Ω(n3/2), but not much more is
known about this question. We ask the spectral analogue: for H ∈ Fn, is it true
that ρ(H) = o(n)?
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