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Abstract

Given a binary quasigroup G of order n, a d-iterated quasigroup G[d] is the
(d+1)-ary quasigroup equal to the d-times composition of G with itself. The Cayley
table of every d-ary quasigroup is a d-dimensional latin hypercube. Transversals and
diagonals in multiary quasigroups are defined so as to coincide with those in the
corresponding latin hypercube.

We prove that if a group G of order n satisfies the Hall–Paige condition, then
the number of transversals in G[d] is equal to n!

|G′|nn−1 · n!d(1 + o(1)) for large d,

where G′ is the commutator subgroup of G. For a general quasigroup G, we obtain
similar estimations on the numbers of transversals and near transversals in G[d] and
develop a method for counting diagonals of other types in iterated quasigroups.

Mathematics Subject Classifications: 05B15, 05D15, 05A16, 05E15, 20N05

1 Introduction

A latin square of order n is the Cayley table of a binary quasigroup of order n, i.e., an
n× n-table filled by n symbols so that each line (row or column) contains all symbols. A
transversal in a latin square of order n is a set of n entries filled by all different symbols
such that there is exactly one entry from the set in each row and each column.

In algebraic terms, transversals in binary groups and quasigroups G correspond to
complete mappings. A bijection ϕ : G→ G is called a complete mapping if the mapping
x 7→ x ∗ ϕ(x) is bijective.

The most intriguing conjecture on transversals in latin squares belongs to Ryser [18].

∗The work was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. 0314-2019-0016) and supported in part by the Young Russian Mathematics
award.
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Conjecture 1 (Ryser’s conjecture). Every latin square of odd order has a transversal.

Another celebrated conjecture is usually attributed to Brualdi and Stein [3, 19].

Conjecture 2 (Brualdi’s conjecture). Every latin square has a near transversal.

Here a near transversal in a latin square of order n is a diagonal that contains at least
n− 1 different symbols.

It happens that both of these conjectures are true for groups. The following statement,
known as the Hall–Paige conjecture, describes all groups with transversals in their Cayley
tables.

Theorem 3 (Hall–Paige conjecture). The Cayley table of a group G has a transversal if
and only if every Sylow 2-subgroup of G is trivial or non-cyclic.

The Hall–Paige conjecture first appeared in [14] and was open for quite a long time.
It was proved (modulo the classification of finite simple groups) in a series of papers of
Wilcox [26], Evans [9] and Bray [2]. Recently in preprint [8] there was given an alternative
(asymptotic) proof for the conjecture. Concerning Brualdi’s conjecture, in [12] it was
proved that the Cayley table of every group contains a near transversal.

Note that the Hall–Paige conjecture includes the easy observation that the Cayley
table of every group of odd order has a transversal. Further, we will say that a group is
a Hall–Paige group if its Sylow 2-subgroups are trivial or non-cyclic.

Alongside the existence, it is also interesting to know how many transversals a latin
square has. An asymptotic upper bound on the number of transversals was proved in [20]
and in [10] by another technique. In [7], Eberhard, Manners, and Mrazović found the
asymptotics of the number of transversals in the Cayley table of cyclic groups Zn of
odd order n, later Eberhard established it for arbitrary (iterated) abelian groups [6], and
recently these researchers submitted a preprint [8] with a similar result for all groups.

Theorem 4 ([8]). Let G be a Hall–Paige group of order n and G′ be the commutator
subgroup in G. Then the number of transversals in the Cayley table of G is

n!

|G′|nn−1
· n!(e−1/2 + o(1)).

While studying latin squares, we can increase not only their order but also their dimen-
sion. Let a d-dimensional latin hypercube of order n be a d-dimensional array of the same
order filled by n symbols so that in each line all symbols are different. Latin hypercubes
can be considered as the Cayley tables of d-ary quasigroups of order n. A transversal in
a latin hypercube of order n is a collection of n entries hitting each hyperplane exactly
once and containing all n different symbols of the hypercube. For more formal definitions
of latin hypercubes and their transversals see Section 2.

Wanless [25] generalized Ryser’s conjecture on latin hypercubes and proposed that
every latin hypercube of odd dimension or odd order has a transversal. As far as we
know, there is no evidence against the generalization of Brualdi’s conjecture on latin
hypercubes.
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Conjecture 5. Every latin hypercube has a near transversal.

In the present paper we focus on a special class of latin hypercubes corresponding to
d-iterated quasigroups. Such quasigroups have applications in cryptography (see e.g. [11]),
and their transversals were previously studied in paper [23] of the present author.

Given a binary quasigroup G of order n with the operation ∗, define the d-iterated
quasigroup G[d] to be the (d+ 1)-ary quasigroup of order n such that

G[d](x1, . . . , xd+1) = (· · · ((x1 ∗ x2) ∗ x3) ∗ · · · ∗ xd) ∗ xd+1.

There were several results on transversals in iterated groups and quasigroups of small
order before. The numbers of transversals in both d-iterated groups of order 4 were
calculated in [22], and the numbers of transversals in d-dimensional latin hypercubes of
orders 2 and 3 were found in [21]. Moreover, in [21, Theorem 26] it was proved that for all
even d every d-iterated quasigroup has a transversal. One of the main results of [23] states
that for every binary quasigroup G of order n there is c = c(G) such that the number
of transversals in the d-iterated quasigroup G[d] (if it is nonzero) asymptotically equals
cn!d(1 + o(1)).

The present paper significantly refines the technique and results from [23] and gives
the exact asymptotic of the number of transversals in d-iterated groups.

Theorem 6. Let G be a group of order n and G′ be the commutator subgroup of G. Then
the following hold.

• If G satisfies the Hall–Paige condition, then for all d, the d-iterated group G[d] has
a transversal.

• If G does not satisfy the Hall–Paige condition, then G[d] has a transversal if d is
even and does not have a transversal if d is odd.

If the number T (d) of transversals in G[d] is nonzero, then

T (d) =
n!

|G′|nn−1
· n!d(1 + o(1))

as d→∞.

It is interesting to note that Theorems 4 and 6 give similar asymptotics for the number
of transversals. It seems probable that Theorem 4 admits an extension to the case of
arbitrary d-iterated groups of large order (see [6]).

For a general quasigroup we prove the following result.

Theorem 7. Let G be a binary quasigroup of order n. There is d0 ∈ N such that for
all d > d0 one of the following possibilties for transversals in iterated quasigroups G[d]
occurs:

• every iterated quasigroup G[d] has a transversal;

• G[d] has no transversals when d is odd and contains transversals when d is even.
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There is an integer r = r(G), 1 6 r 6 n, such that if the number T (d) of transversals in
G[d] is nonzero, then

T (d) =
n!

rnn−1
· n!d(1 + o(1))

as d → ∞. Moreover, if G is a loop, then r 6 |G′|, where G′ is the commutator subloop
of G.

Theorems 6 and 7 imply that iterated abelian groups have the asymptotically maximal
number of transversals among all iterated quasigroups, that answers one of the questions
from [23].

The method developed in this paper allows us to count not only transversals but
other types of diagonals and structures in iterated quasigroups. For instance, we prove
the following result for near transversals being in line with Conjecture 5.

Theorem 8. Let G be a binary quasigroup of order n.

1. There is d0 ∈ N such that for all d > d0 the d-iterated quasigroup G has a near
transversal. Moreover, if Brualdi’s conjecture is true, then all d-iterated quasigroups
G[d] have a near transversal.

2. There is an integer r = r(G), 1 6 r 6 n, such that the number N(d) of near
transversals in G[d] is

N(d) = c(G, d)
n!

rnn−1
· n!d(1 + o(1))

as d→∞, where c(G, d) = n
2
(r−1)+1 when G[d] has a transversal, and c(G, d) = n

2
r

otherwise. If G is a group, then r = |G′|.

Recall that we treat a near transversal in a latin hypercube of order n as a set of n
entries filled by n or n− 1 different symbols.

2 Main definitions and preliminaries

In what follows, In stands for the set {1, . . . , n} and Ikn is used for the set of all k-tuples
with entries from In.

An n-tuple W ∈ Inn , W = (w1, . . . , wn), with different entries wi in all positions is said
to be a permutation. Let W denote the set of all permutations and W be the identity
permutation (1, . . . , n). Let us denote by a the n-tuple from Inn all of whose entries
are equal to a. Given a tuple V ∈ Inn , we use Vi(b) for a tuple from Inn that coincides
with V in all positions except, possibly, the i-th position, in which Vi(b) equals b. For a
permutation π ∈ Sn and a tuple V ∈ Inn , V = (v1, . . . , vn), let π(V ) = (π(v1), . . . , π(vn))
and V π = (vπ(1), . . . , vπ(n)).

A binary quasigroup G of order n is defined by a binary operation ∗ over a set In
satisfying the following condition: for each a0, a1, a2 ∈ In there exist unique x1, x2 ∈ In
such that both a0 = a1 ∗ x2 and a0 = x1 ∗ a2 hold. A d-ary quasigroup f of order n is a
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function f : Idn → In such that the equation x0 = f(x1, . . . , xn) has a unique solution for
any one variable if all the other n variables are specified arbitrarily.

A composition of a d-ary quasigroup f and a k-ary quasigroup g of orders n is the
(d+ k− 1)-ary quasigroup h of order n such that for some permutation σ ∈ Sd+k it holds

h(x1, . . . , xd+k−1) = xd+k ⇔ g(xσ(1), . . . , xσ(k)) = f(xσ(k+1), . . . , xσ(d+k)).

In this paper we mostly will work with the composition of quasigroups f and g defined
as

h(x1, . . . , xd+k−1) = xd+k ⇔ f(g(x1, . . . , xk), xk+1, . . . , xd+k−1) = xd+k.

Given a binary quasigroup G of order n with the quasigroup operation ∗, the d-iterated
quasigroup G[d] is the (d+ 1)-ary quasigroup of order n obtained as the composition of d
copies of the quasigroup G with itself:

G[d](x1, . . . , xd+1) = xd+2 ⇔ (· · · ((x1 ∗ x2) ∗ x3) ∗ · · · ∗ xd) ∗ xd+1 = xd+2.

In particular, the 0-iterated quasigroup G[0] is the identity 1-ary mapping (G[0](x) = x
for all x), and the 1-iterated quasigroup G[1] coincides with the binary quasigroup G.

A d-dimensional latin hypercube Q of order n is the Cayley table of a d-ary quasigroup
of the same order. Equivalently, a d-dimensional latin hypercube of order n is an array
indexed by elements from Idn, whose entries take values from the set In so that in each
line (1-dimensional plane) of the array all n symbols occur. In what follows, we identify
a d-ary quasigroup and the corresponding d-dimensional latin hypercube.

Every d-ary quasigroup f = f(x1, . . . , xd) of order n can be considered as an imaging of
the first coordinate x1 by the action of all other coordinates x2, . . . , xd. Similarly, for any
k-tuple U from Ikn we can find an image V of the tuple U in the d-ary quasigroup f by the
action of k-tuples W1, . . . ,Wd−1 ∈ Ikn from the relation f(U,W1, . . . ,Wd−1) = V satisfied
entrywise. Let us use this approach to define a collection of elements in a quasigroup
which are close to being diagonals.

Given a d-ary quasigroup f , define an U-diagonal of type V to be a collection of
permutations (W1, . . . ,Wd−1), Wi ∈ W , for which the equality

f(U,W1, . . . ,Wd−1) = V

holds entrywise. We define a transversal in a quasigroup f to be an arbitrary W-diagonal
of type W , where W is a permutation.

In the definition of U -diagonals of type V , we require that the tuples W1, . . . ,Wd−1 are
permutations only because in the framework of this study we are interested in transver-
sals and diagonals. For other structures in latin hypercubes, one can take the tuples
W1, . . . ,Wd−1 from any other appropriate class.

Given a d-ary quasigroup f of order n, define the transition matrix T to be the matrix
of order nn with entries tU,V , U, V ∈ Inn , equal to the number of U -diagonals of type V in
the quasigroup f . Note that for every d-ary quasigroup of order n, the transition matrix
T is an integer nonnegative matrix with row and column sums equal to n!d−1.

For an illustration of the introduced concepts, consider the following simple example.
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Example 9. Let G be a binary quasigroup (and group) of order 2 with the Cayley table

∗ 1 2
1 1 2
2 2 1

The set I22 consists of four tuples:

(1, 1), (1, 2), (2, 1), (2, 2),

with two of them being permutations: (1,2), (2,1). The transition matrix T of the
quasigroup G is the following matrix of order 4, in which a diagonal given by the first
permutation is highlighted in bold text and the other is highlighted in italics:

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) 0 1 1 0
(1, 2) 1 0 0 1
(2, 1) 1 0 0 1
(2, 2) 0 1 1 0

Let us establish several properties of transition matrices. Firstly, we consider the
transition matrices of isotopic binary quasigroups.

Binary quasigroups (G, ∗) and (H, ·) are called isotopic if there are bijections α, β, γ :
G→ H such that α(x) · β(y) = γ(x ∗ y) for all x, y ∈ G. Appealing to the terms of latin
squares, we will say that α is a row isotopy, β is a column isotopy, and γ is a symbol
isotopy.

Lemma 10. Let (G, ∗) and (H, ·) be binary quasigroups of order n with transition matrices
T = (tU,V ) and R = (rU,V ), respectively.

1. If there is a row isotopy α between G and H, then tU,V = rα(U),V for all U, V ∈ Inn .

2. If there is a column isotopy β between G and H, then T = R.

3. If there is a symbol isotopy γ between G and H, then tU,V = rU,γ(V ) for all U, V ∈ Inn .

Proof. Let a permutation W define a U -diagonal of type V in the quasigroup G, that is
U ∗W = V .

1. Since x ∗ y = α(x) · y, the permutation W gives an α(U)-diagonal of type V in the
quasigroup H: α(U) ·W = V .

2. Since x ∗ y = x · β(y), the permutation β(W ) gives the same U -diagonal of type V
in the quasigroup H: U · β(W ) = V .

3. Since γ(x ∗ y) = x · y, the permutation W gives a U -diagonal of type γ(V ) in the
quasigroup H: U ·W = γ(V ).

Next, we state the following key property of the transition matrix of a d-iterated
quasigroup.
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Lemma 11. Given a binary quasigroup G of order n with the transition matrix T = (tU,V ),
the transition matrix of the d-iterated quasigroup G[d] is T d. In particular, if there is a U-
diagonal of type Z in G[d] and a Z-diagonal of type V in G[k] then there is a U-diagonal
of type V in G[d+ k].

Proof. The proof is by induction on d. For d = 0 and d = 1 the statement of the lemma
follows from definitions.

Assume that the (d − 1)-iterated quasigroup G[d − 1] has the transition matrix R =
T d−1, R = (rU,V ). To prove the induction step, we note that a collection of permutations
(W1, . . . ,Wd−1,Wd) is a U -diagonal of type V in G[d] if and only if for some tuple Z ∈ Inn
the collection (W1, . . . ,Wd−1) is a U -diagonal of type Z in the quasigroup G[d − 1] and
the permutation Wd is a Z-diagonal of type V in G. So the number of all U -diagonals of
type V in G[d] is equal to

∑
Z∈Inn

rU,Z · tZ,V .

Summing up, we see that the problem of the asymptotics of the numbers of U -diagonals
of type V in iterated quasigroups G[d] is equivalent to the question of the asymptotic
behavior of the powers of the transition matrices T of G.

2.1 Perron–Frobenius theory, equivalence classes, and units

To study the behavior of powers of a transition matrix T , we use some results of Perron–
Frobenius theory.

A matrix A = (ai,j) is said to be nonnegative if all ai,j > 0. A nonnegative matrix is
called doubly stochastic if the sum of entries of A in each row and column equals 1. Let
Jn denote the doubly stochastic matrix of order n, whose entries all equal 1/n.

A nonnegative matrix A is called irreducible if for each pair of indices (i, j) there is
l ∈ N such that the (i, j)-th entry of Al is positive. The period of an irreducible matrix
can be defined as the greatest common divisor of all l for which the (i, i)-th entries of Al

are positive for all i.
The following property can be found in [16] or it can be easily derived from definitions.

Theorem 12 ([16]). For every doubly stochastic matrix A there is a permutation matrix
P such that

PAP−1 =

 B1 0
. . .

0 Bk

 ,

where Bi are irreducible doubly stochastic matrices.

From the Perron–Frobenius theory, we have the following result for irreducible doubly
stochastic matrices.

Theorem 13. Let A be an irreducible doubly stochastic matrix of order n and period τ .
After appropriate simultaneous permutations of rows and columns, we have the following
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limits for powers of A:

lim
k→∞

Akτ =

 Jn/τ 0
. . .

0 Jn/τ

 ;

lim
k→∞

Akτ+1 =


0 Jn/τ 0
...

. . .

0 0 Jn/τ
Jn/τ 0 · · · 0

 ; · · ·

lim
k→∞

Akτ+τ−1 =


0 · · · 0 Jn/τ
Jn/τ 0 0

. . .
...

0 Jn/τ 0

 .

Moreover, for all i, j ∈ {1, . . . , n} there is r ∈ {0, . . . , τ − 1} such that the (i, j)-entry of
the t-power of A is nonzero only if t ≡ r mod τ .

Note that, for a given binary quasigroup G of order n with transition matrix T , the
matrix n!−1T is a doubly stochastic matrix of order nn. By Theorem 12, there is a
permutation matrix P for which

PTP−1 =

 B1 0
. . .

0 Bm

 ,

where Bi are some irreducible doubly stochastic matrices. Next, there is a simultaneous
permutation of rows and columns of PTP−1 that preserves its block-diagonal form and
puts each block Bi into a block matrix whose limits and structure are given by Theorem 13.
In what follows, we assume everywhere that the transition matrix T has the described
block-diagonal form.

For a given binary quasigroup G, we divide the set of all n-tuples Inn into m = m(G)
equivalence classes U1, . . . ,Um such that each equivalence class Ui is exactly the set of
rows (or columns) of the block Bi of the transition matrix T . In particular, tuples U and
V belong to the same equivalence class Ui if and only if there exists a U -diagonal of type
V in G[d] for some d. Let the period τi of the equivalence class Ui be the period of the
irreducible block Bi.

By Theorem 13 and the construction of matrix T , we divide each equivalence class Ui
into τi subsets Y i1, . . . ,Y iτi of equal sizes defined by the following property: given tuples
U ∈ Y ik, V ∈ Y il , there is a U -diagonal of type V in the d-iterated quasigroup G[d] only
if l − k ≡ d mod τi. Let us call such subsets Y i1, . . . ,Y iτi of the equivalence class Ui by
units. Roughly speaking, units Y i1, . . . ,Y iτi determine the block structure of the block Bi

of the transition matrix T .
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For the binary quasigroup G of order 2 from Example 9, the set of all tuples I22
composes the single equivalence class U1, which consists of two units:

Y1
1 = {(1, 2), (2, 1)}, Y1

2 = {(1, 1), (2, 2)}.

3 Diagonals in iterated quasigroups

By Theorem 13, the question on the asymptotic behavior of the number of U -diagonals
of type V in a d-iterated quasigroup G[d] is reduced to studying of the properties and
sizes of equivalence classes and units produced by the transition matrix T . In the present
section, we carry out this research.

To distinguish equivalence classes and their units, we use n-tuples ai(b), whose entries
all equal a, except the i-th position, which is equal to b. We stress that this notation
includes the possibility that b = a.

We start this section with the fact that every equivalence class contains at least one
tuple of the form ai(b).

Proposition 14. Let G be a binary quasigroup of order n. Then for each n-tuple V ∈ Inn
and a, i ∈ In there is b ∈ In and k ∈ N such that there exists a V -diagonal of type ai(b)
in G[2k].

Proof. The proof is by induction on the number of positions in which tuple V is distinct
from tuples ai(b), b ∈ In. The base of induction is V = ai(b) for some b ∈ In. In this case
the statement is trivially true because there is a V -diagonal of type ai(b) in the 0-iterated
quasigroup G[0].

Assume that the tuple V is different from some tuples ai(b) in at most k positions,
k > 1. Without loss of generality, suppose that i equals n, the tuple V equals a in
the first n − k − 1 positions and it is different from a in positions n − k, . . . , n: V =
(a, . . . , a, vn−k, . . . , vn).

Consider permutations W,W ′ ∈ W , W = (w1, . . . , wn), W ′ = (w′1, . . . , w
′
n), such that

the following equalities hold

(a ∗ w1) ∗ w′1 = a;

...

(a ∗ wn−k−1) ∗ w′n−k−1 = a;

(vn−k ∗ wn−k) ∗ w′n−k = a.

In other words, we demand that (V ∗W ) ∗W ′ = V ′ for some n-tuple V ′, whose first n−k
positions are equal to a.

Let us show that such permutations W and W ′ exist. Firstly, we chose their entries
wn−k and w′n−k so that the equality (vn−k ∗ wn−k) ∗ w′n−k = a holds. Note that for every
a ∈ In there are exactly n different pairs (w,w′) satisfying the equality (a ∗ w) ∗ w′ = a.
The choice of wn−k and w′n−k spoils no more than two of these pairs, so we are able to

the electronic journal of combinatorics 28(3) (2021), #P3.48 9



find n − k − 1 different pairs (w1, w
′
1), . . . , (wn−k−1, w

′
n−k−1) for the first components of

permutations W and W ′. All other components of permutations W and W ′ are arbitrary.
Thus we have found a tuple V ′ different from tuples ai(b) in at most k−1 components

and for which there is a V -diagonal of type V ′ in G[2]. By the assumption of induction,
there is a V ′-diagonal of type ai(b) in G[2k − 2]. Therefore, by Lemma 11, one can find
a V -diagonal of type ai(b) in G[2k].

To estimate the sizes and numbers of equivalence classes and their units, we prove the
following proposition.

Proposition 15. Let G be a binary quasigroup of order n. Then for given a, j ∈ In every
unit contains at least one of the tuples aj(b), b ∈ In. Moreover, for a given equivalence
class Ui, each unit Y ik from this class contains the same number of tuples aj(b).

Proof. By Proposition 14, for given a, j ∈ In each equivalence class Ui contains at least
one of the tuples aj(b), b ∈ In.

Let Y i1, . . . ,Y iτi be the units in an equivalence class Ui. Note that one can always find
a pair of permutations W,W ′ ∈ W such that (aj(b) ∗W ) ∗W ′ = aj(b

′) for some b′ ∈ In.
By definition of units and since Y i1, . . . ,Y iτi is a partition of the equivalence class Ui, if
aj(b) belongs to some unit Y ik, then the unit Y il with l ≡ k + 2 mod τi contains some
tuple aj(b

′). From this and Proposition 14 we deduce that all units within an equivalence
class Ui contain tuples of the form aj(b), b ∈ In.

Assume that aj(b1), . . . , aj(bl) are all tuples of such a form in a unit Y ik, and that
aj(c1) is from any other unit Y ik′ . By definition of units and equivalence classes, there is
some d ∈ N for which there exists an aj(b1)-diagonal of type aj(c1) in G[d] corresponding
to a collection of permutations (W1, . . . ,Wd). Note the same collection of permutations
gives aj(bs)-diagonals of type aj(cs) in G[d], s = 1, . . . , l, with all c1, . . . , cl being distinct.
So each unit Y ik′ in the class Ui contains the same number of tuples of the form aj(b),
b ∈ In, as the unit Y ik.

As a trivial corollary of Proposition 15, we see that the total number of all units across
all equivalence classes is not greater than the order n of G.

Recall that for a given n-tuple V we use Vi(b) for denoting the n-tuple that coincides
with V in all but the i-th position and equals b in the i-th position. Let V ∗i be the set
{Vi(1), . . . , Vi(n)}.

Proposition 16. Let G be a binary quasigroup of order n and Y i1, . . . ,Y iτi be the units in
an equivalence class Ui. Then for all V ∈ Inn and j ∈ In each unit Y ik contains the same
number ri of tuples from the set V ∗j .

Proof. Proposition 14 and definition of units imply that each unit Y ik in an equivalence
class Ui contains at least one tuple from the set V ∗j . Acting similar to the proof of
Proposition 15, we see that the number of tuples from V ∗j in Y ik coincides with the number
of canonical tuples aj(b) in this unit. Recall that, by Theorem 13, each unit within an
equivalence class Ui has the same size, so units Y ik contain the same number ri of tuples
from V ∗j .
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Note that Proposition 16 is equivalent to the following fact: for all tuples U, V ∈ Inn
and i ∈ In, every d-iterated quasigroup G[d] with large enough d has a U -diagonal of type
Vi(a) for an appropriate a ∈ In. As a simple corollary of Proposition 16, we have the
below estimation on the sizes of units.

Corollary 17. Let G be a binary quasigroup of order n. There exist integers ri, 1 6 ri 6 n
such that each unit in an equivalence class Ui has cardinality rin

n−1.

Using similar ideas, let us prove that units and equivalence classes are closed under
permutations of positions.

Proposition 18. Given a binary quasigroup G of order n, if a tuple V ∈ Inn belongs to
a unit Y of an equivalence class U , then every tuple V π, whose coordinates are permuted
by π ∈ Sn, belongs to Y.

Proof. It is sufficient to show that there exists a set of tuples S ⊂ Y such that for all
U ∈ S and permutations π ∈ Sn the tuple Uπ belongs to S. Indeed, for every tuple
V ∈ Y , we can find a tuple U ∈ S such that there exists a U -diagonal of type V in some
G[d] given by a collection of permutations (W1, . . . ,Wd). Applying π to coordinates of
tuples U , V , and Wi, i = 1, . . . , d, we obtain an Uπ-diagonal of type V π in G[d]. Since
Uπ belongs to Y , the tuple V π is also from the unit Y .

Let us find the required set S. By Proposition 15, every unit Y has a tuple aj(b)
for any a, j ∈ In and certain b ∈ In. Let r be the number of tuples of the form aj(b)
in Y for given a, j ∈ In. By definitions of units, there are collections of permutations
Di = (W i

1, . . . ,W
i
d) corresponding to a1(bi)-diagonals of types a2(ci). Here a1(bi) and

a2(ci) are all tuples of such a form in the unit Y , i = 1, . . . , r. For every k ∈ In, k 6= 1,
there is a permutation of coordinates πk ∈ Sn such that the collections Dπk

i correspond
to a1(bi)-diagonals of types ak(ci).

Since all ci are different, the sets {ak(c1), . . . , ak(cr)} consist of all tuples of the form
ak(b). Using similar reasoning for other coordinates of tuples, we conclude that S =
{ai(cj)}, i ∈ In, j = 1, . . . , r, is the set of all tuples of such a form in the unit Y . It is
easy to see that S is closed under permutations of coordinates.

A direct corollary of Proposition 18 is that all permutations W are contained in a
single unit of some equivalence class. Without loss of generality, let U1 be the equivalence
class including the set W .

Since we are interested in transversals and W-diagonals of other types in iterated
quasigroups, we pay special attention to the class U1. Most significantly, the class U1 has
several remarkable properties that other equivalence classes do not possess.

Lemma 19. Let G be a binary quasigroup of order n. Then the period τ1 of the class U1
is not greater than 2. Moreover, all permutations W ∈ W and tuples a, a ∈ In, belong to
the equivalence class U1.

Proof. Since G is a quasigroup, for every permutation W ∈ W and a ∈ In there are
permutations W ′,W ′′ ∈ W such that W ∗W ′ = a and a ∗W ′′ = W . In other words,
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the quasigroup G = G[1] contains W -diagonals of type a and a-diagonals of type W .
Therefore, a and W belong to the same equivalence class and the period of this class is
equal to 1 or 2.

For the equivalence class U1 we can refine the general estimation on the size from
Corollary 17 with the help of the following quasigroup invariant.

Given a binary quasigroup G, define P k(G) to be the set of all elements of G that
allow a factorization (ordered and bracketed in any way) containing every element of G
precisely k times. For shortness, let P (G) = P 1(G).

For all k ∈ N it holds P k(G) ⊆ P k+2(G), since for each g ∈ P k(G) there is h ∈ G
such that g ∗ h = g and h can be presented as a product f1 ∗ f2 exactly n times, where f1
ranges over the elements of G as f2 also ranges over the elements of G. Note that there
are examples where P k(G) 6⊆ P k+1(G), e.g., when G is Z4.

Let us define the set P∞(G) =
∞⋃
i=1

P i(G). It is well defined due to P k(G) ⊆ P k+2(G)

and G is a finite quasigroup. It is easy to check that P∞(G) is a subquasigroup in G.
For a tuple V ∈ Ikn, V = (v1, . . . , vk), vi ∈ G, let

Π(V ) = (· · · (v1 ∗ v2) ∗ · · · ∗ vk−1) ∗ vk.

From the definitions of sets P∞(G) and Π(V ), we have the following property.

Proposition 20. Let G be a quasigroup of order n. Then for every tuple V ∈ U1 it holds
Π(V ) ∈ P∞(G).

Proof. It is sufficient to note that for every V ∈ U1 there is a collection of permutations
(W0, . . . ,Wd) such that V = (· · · (W0 ∗W1) ∗ · · · ∗Wd−1) ∗Wd.

From this statement, we have the following bound on the size of U1.
Corollary 21. Given a binary quasigroup G of order n, the cardinality of the equivalence
class U1 is pnn−1, where 1 6 p 6 |P∞(G)|.
Proof. By Proposition 16 and Corollary 17, the size of the equivalence class U1 is equal
to pnn−1, where p is the number of tuples from the sets V ∗j in the class U1. For a given
V ∈ Inn there are exactly |P∞(G)| tuples U ∈ V ∗j with Π(U) ∈ P∞(G). By Proposition 20,
for every U ∈ U1 we have Π(U) ∈ P∞(G), therefore the constant p is not greater than
|P∞(G)|.

Unfortunately, the size of the class U1 for a quasigroup G is not defined by |P∞(G)|
and we cannot distinguish tuples U and V from different equivalence classes by the sets
Π(U) and Π(V ).

Example 22. Consider a binary quasigroup G of order 4 with the Cayley table

∗ 1 2 3 4
1 2 1 4 3
2 1 2 3 4
3 3 4 1 2
4 4 3 2 1
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It is easy to see that G is isotopic to the group Z2
2 by the means of transposition of

the first two rows.
By Lemma 33 from the next section, the group Z2

2 has exactly four equivalence classes
U1, . . . ,U4 of period 1, where Ui = {V |Π(V ) = i}. With the help of Lemma 10, we obtain
that the quasigroup G has three equivalence classes: U ′1 = U1, U ′2 = U2, and U ′3 = U3∪U4.
Here classes U ′1 and U ′2 have period 1, and the class U ′3 has period 2.

It can be verified directly that there are tuples U ∈ U ′1 and V ∈ U ′2 (e.g. U =
(1, 2, 3, 4) and V = (1, 1, 3, 4)) such that

⋃
π∈S4

Π(Uπ) =
⋃
π∈S4

Π(V π) = P∞(G) = {1, 2} in

the quasigroup G.

Summarizing obtained results, we prove the main theorem of the present section that
describes diagonals in a general iterated quasigroup.

Theorem 23. Let G be a binary quasigroup of order n, U, V ∈ Inn , and U1, . . . ,Um be the
partition of Inn into equivalence classes of periods τ1, . . . , τm, respectively. Suppose that all
units of a class Ui have sizes rin

n−1, 1 6 ri 6 n. Then the following hold:

• If tuples U and V belong to different equivalence classes, then for all d ∈ N there
are no U-diagonals of type V in the d-iterated quasigroup G[d].

• If both U and V belong to the same equivalence class Ui, then there is 0 6 k 6 τi−1
such that for all d greater than some d0 ∈ N the number TU,V (d) of U-diagonals of
type V in the d-iterated quasigroup G[d] is

TU,V (d) =
n!d

rinn−1
· (1 + o(1))

if d ≡ k mod τn and TU,V (d) = 0 otherwise.

Proof. Theorems 12 and 13 give the partition into equivalence classes and units. By
Theorem 12, there are no U -diagonals of types V in G[d] if U and V are from different
equivalence classes. By Theorem 13 and definition of units, there are no U -diagonals of
types V in G[d] if both U and V are from unit Ui of period τi, U ∈ Y ik, V ∈ Y il but d 6≡ k−l
mod τi. Otherwise, Theorem 13 states that for large d the number of U -diagonals of types
V in G[d] is close to 1

Mi
n!d, where Mi is the size of units in the equivalence class Ui, for

which U, V ∈ Ui. The sizes of units were estimated in Corollary 17.

3.1 Diagonals in iterated loops and other special quasigroups

In this section, we consider how additional conditions on a quasigroup G affect equivalence
classes and their units. We start with quasigroups having the right inverse-property.

A quasigroup (G, ∗) is said to have the right inverse-property if there is a permutation
π of the set G such that (g ∗ h) ∗ π(h) = g for all g, h ∈ G.

Proposition 24. Let G be a binary quasigroup with the right-inverse property. Then each
equivalence class Ui has period 1 or 2.
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Proof. By Proposition 15, each equivalence class Ui of G contains tuples of the form
aj(b). Since G has the right inverse-property, for every permutation W ∈ W there is a
permutation W ′ ∈ W such that (aj(b) ∗W ) ∗W ′ = aj(b). Thus the period of the tuple
aj(b) from Ui is not greater than 2.

The right-inverse property (and the complementary left-inverse property) was intro-
duced in book [1]. If a quasigroup G has the left and right inverse-properties, then G
is said to be a quasigroup with the inverse property or an IP-quasigroup. For more
information on inverse properties of quasigroups see [15].

Next, we consider the case of loops. A quasigroup G is said to be a loop if there is the
identity element e ∈ G such that for each g ∈ G it holds e ∗ g = g ∗ e = g.

Given a loop G, a normal subloop of G is defined in the same way as for a general
algebraic system. Let the commutator subloop G′ of a loop G be the smallest normal
subloop of G such that G/G′ is an abelian group.

In [17] it was proved a number of properties of sets P k(G) and P∞(G), when G is
a loop. For example, the set P∞(G) is a subloop of G and for every k ∈ N the set
P k(G) is contained in a single coset of G′. Moreover, if P∞(G) is a normal subloop, then
P∞(G) = G′ or P∞(G) = G′ ∪ gG′, where g ∗ g ∈ G′.

These results give the following improvement on the sizes of units in the equivalence
class U1.

Proposition 25. If G is a loop of order n, then the size of units in the equivalence class
U1 is equal to rnn−1 for some integer r, 1 6 r 6 |G′|.

Proof. By definitions, there is k ∈ N such that for every tuple V from a unit Y of the
class U1 it holds Π(V ) ∈ P k(G). Since P k(G) is contained in a single coset of G′, we
have |P k(G)| 6 |G′|. Acting similar to the proof of Corollary 21, we obtain the required
statement.

We do not know how to efficiently find equivalence classes and units and estimate their
sizes for a general binary quasigroup G. It seems probable that in this case they cannot
be expressed in terms of some algebraic invariant and mostly depend on the structure of
the Cayley table of the quasigroup. To illustrate this, consider the following example.

Example 26. Let (G, ∗) be a binary quasigroup of order n = 2k with the Cayley table
of the form

A′ B′

B′′ A′′

where A′, A′′ are arbitrary latin squares of order k under the symbol set S1 = {1, . . . , k}
and B′, B′′ are latin squares under the symbol set S2 = {k+1, . . . , 2k}. By the definitions,
every permutation W ∈ W contains the same number of entries from S1 and S2. Moreover,
for all a, b ∈ In we have a∗ b ∈ S2 if a and b belong to different symbol sets, and a∗ b ∈ S1

otherwise.
We will say that a tuple V ∈ Inn is even if V contains an even number of symbols

from each of the sets S1 and S2, and that V is odd otherwise. It is easy to check that if
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k is even (n ≡ 0 mod 4), then for every permutation W ∈ W the tuple V ∗W has same
parity as V , and if k is odd (n ≡ 2 mod 4), then V ∗W has the different parity.

Therefore, for n ≡ 0 mod 4 the quasigroup G has at least two different equivalence
classes (composed of odd or even tuples), and for n ≡ 2 mod 4 each (possibly unique)
equivalence class of G contains at least two units.

3.2 Diagonals in iterated groups

Thanks to the association property, for a given group G we can completely describe the
structure of equivalence classes and their units. In particular, we will see that the variety
of diagonals in an iterated group depends on the fulfillment of the Hall–Paige condition.
We also refine the statement of Theorem 23 for groups and prove that for large d the
number of diagonals in d-iterated groups G[d] is given by the size of the commutator G′.

Recall that G is a Hall–Paige group if all its Sylow 2-subgroups are trivial or non-cyclic
(G satisfies the condition of Theorem 3).

Given a group G, the commutator subgroup G′ is the smallest normal subgroup of
G such that G/G′ is an abelian group. Equivalently, G′ is a subgroup generated by
commutators ghg−1h−1, g, h ∈ G. The group H = G/G′ is known as the abelianization
of G. Since G′ is a normal subgroup, the group G is partitioned into cosets hG′, h ∈ H.

The following result of Dénes and Hermann [4] connects the commutator subgroup G′

with the set P (G). Recall that here P (G) denotes the set of products of all elements of
G: P (G) = {Π(W )|W ∈ W}.

Theorem 27 ([4]). Let G be a group. Then either P (G) = G′ or P (G) = gG′, where g
is the unique element of order 2 in a nontrivial, cyclic Sylow 2-subgroup of G.

For our purposes, we need several approaches to the definition of Hall–Paige groups.
Some requirements, which are equivalent to the Paige–Hall condition, are presented in
the following table.

G is a Hall–Paige group G is a non-Hall–Paige group

(1) all Sylow 2-subgroups of G there exists a nontrivial
are trivial or non-cyclic cyclic Sylow 2-subgroup in G

(2) the Cayley table of G the Cayley table of G
has a transversal has no transversals

(3) P (G) = G′ P (G) = gG′

for some g /∈ G′, g2 ∈ G′
(4) all d-iterated groups G[d] d-iterated groups G[d] have

have transversals transversals only if d is even

Theorem 28. Conditions (1)–(4) are equivalent. Every condition can be taken as a
definition of a Hall–Paige group (a non-Hall–Paige group).

Proof. (1) ⇔ (2): It is the Hall–Paige conjecture (proved in [26] and [9]).
(3): This alternative is Theorem 27, proved in [4].
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(1)⇔ (3): By [5], the Hall–Paige condition (1) is equivalent to e ∈ P (G). It is possible
only when P (G) = G′. A short proof of (1) ⇔ (3) can be also found in [24].

(3) ⇔ (4): It will be proved in Theorem 6.

In order to describe equivalence classes and units for iterated groups, we need the
following refinement of Proposition 14, controlling the resulting tuples.

Proposition 29. Let G be a group of order n and let e be the identity element of G.
Then for each tuple V ∈ Inn , V = (v1, . . . , vn), there is l ∈ N, l 6 n for which there exists
a V -diagonal of type e1(Π(V )) in the iterated group G[2l].

Proof. Suppose that the last n − k positions of V are equal to e and the last element of
V that is distinct from e is located in the k-th position. The proof goes by the induction
on k. For the base of induction (k = 0 and k = 1) the statement is true with l = 0.

Assume that k > 2. Consider permutations W,W ′ ∈ W , W = (w1, . . . , wn), W ′ =
(w′1, . . . , w

′
n), for which the following equalities hold

v1 ∗ w1 ∗ w′1 = v1;

...

vk−2 ∗ wk−2 ∗ w′k−2 = vk−2;

vk−1 ∗ wk−1 ∗ w′k−1 = vk−1 ∗ vk;
vk ∗ wk ∗ w′k = e;

e ∗ wk+1 ∗ w′k+1 = e;

...

e ∗ wn ∗ w′n = e.

These equalities mean that V ∗W ∗W ′ = V ′ for some tuple V ′, whose first k−2 positions
are the same as in tuple V , Π(V ′) = Π(V ) and the last n− k+ 1 elements of V ′ are equal
to e.

Let us show that the required permutations W and W ′ exist. Let g be an arbitrary
element of G. Put

wk = g; w′k = g−1 ∗ v−1k ; wk−1 = vk ∗ g; w′k−1 = g−1.

Note that the condition vk 6= e implies that wk−1 6= wk and w′k−1 6= w′k. It is easy to see
that (k − 1)-th and k-th required equalities are satisfied by these choices.

Let the other n − 2 pairs of elements (w1, w
′
1), . . . , (wk−2, w

′
k−2), (wk+1, w

′
k+1), . . . ,

(wn, w
′
n) be all the pairs (w,w−1) of mutually inverse elements of the group G, except for

the pairs (g, g−1) and (vk ∗ g, g−1 ∗ v−1k ), whose elements have been already used in W and
W ′.

Thus, we construct a V -diagonal of type V ′ in the iterated groupG[2]. By the inductive
assumption, there exists a V ′-diagonal of type e1(Π(V ′)) in the iterated group G[2l − 2]
for some l. Since Π(V ′) = Π(V ), Lemma 11 implies that there is a V -diagonal of type
e1(Π(V )) in G[2l].
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Lemma 30. Let G be a group of order n. Then the equivalence class U1 is a subgroup in
the n-th Cartesian power Gn. Moreover, each equivalence class Ui, i = 1, . . . ,m, is a left
coset of U1 in Gn.

Proof. By Lemma 19, the identity element e of the group Gn belongs to the class U1. By
the definitions, every tuple V ∈ U1 is a product of some permutations W ∈ W . Thanks to
associativity, if tuples U and V belong to U1, then U ∗ V ∈ U1. At last, for every V ∈ U1,
V = W1 ∗ · · · ∗Wk its inverse V −1 = W−1

k ∗ · · · ∗W
−1
1 also belongs to the class U1. Thus

U1 is a subgroup in Gn.
By definition of equivalence classes, each Ui consists of tuples constructed by the means

of consecutive right multiplications of a tuple by permutations from W . Thanks to the
associativity of the multiplication in the group Gn, the class Ui is a left coset of U1.

Corollary 31. If G is a group, then each equivalence class Ui has the same size.

We are interested to know if it is true that for any quasigroup G the equivalence class
U1 is a subquasigroup in Gn. Note that in a general case there are no equalities between
sizes of equivalence classes (see Example 22).

Now we are ready to describe the equivalence class U1 for iterated groups. For abelian
groups a similar result was established by Hall in [13].

Lemma 32. Let G be a group of order n and G′ be the commutator subgroup of G.

1. Assume that G is a Hall–Paige group. Then the equivalence class U1 consists of
a single unit. A tuple V belongs to U1 if and only if Π(V ) ∈ G′. In particular,
|U1| = |G′|nn−1.

2. Assume that G is a non-Hall–Paige group and g is the element of order 2 from a
nontrivial, cyclic Sylow 2-subgroup of G. Then the equivalence class U1 consists of
two units Y1 and Y2. A tuple V belongs to the unit Y1 if and only if Π(V ) ∈ gG′ and
V belongs to Y2 whenever Π(V ) ∈ G′. The cardinality of each unit Yi is |G′|nn−1.

Proof. 1. Let G be a Hall–Paige group of order n. By condition (2) of the definition of
Hall–Paige groups, the Cayley table of G has a transversal. In other words, there exists
a W-diagonal of type W for some permutation W ∈ W in the iterated group G[1]. So
there are two consecutive units in U1 containing permutations. Meanwhile, Proposition 18
claims that all permutations are contained in a single unit. Therefore, the equivalence
class U1 has a unique unit.

For every tuple V ∈ U1 it holds Π(V ) ∈ G′, because, by Proposition 20, Π(V ) ∈ P∞(G)
and the condition (3) in the definition of Hall–Paige groups gives that P (G) = G′ =
P∞(G).

We prove that every tuple V with property Π(V ) ∈ G′ belongs to the class U1 by
comparing cardinalities of these sets. It is obvious that the number of tuples V for which
Π(V ) ∈ G′ is equal to |G′|nn−1.

Let us estimate the size of the class U1. Consider an arbitrary permutation W ∈ W
from the equivalence class U1 (see Lemma 19). By Proposition 29, the tuple e1(Π(W ))
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also belongs to the class U1. Therefore, for every b ∈ P (G) we have e1(b) ∈ U1. Since
P (G) = G′ by Theorem 27, there are at least |G′| different tuples of the form e1(b) in the
class U1. Finally, Proposition 16 implies that the equivalence class U1 contains at least
|G′|nn−1 tuples.

2. Assume now that G is a non-Hall–Paige group of order n. By condition (3) of the
definition of non-Hall–Paige groups, we have that P (G) = gG′ for some g ∈ G of order
2. From the definition of the equivalence class U1 it follows that every V ∈ U1 can be
presented as a productW1∗· · ·∗Wk for some collection of permutationsWi ∈ W and k ∈ N.
If k is even, then Π(V ) ∈ G′, and Π(V ) ∈ gG′ otherwise. Therefore, the equivalence class
U1 has at least two units Y1 and Y2 that are contained in sets {V |Π(V ) ∈ gG′} and
{V |Π(V ) ∈ G′} respectively. But by Lemma 19, the number of units in U1 is not greater
than 2.

To prove the equalities Y1 = {V |Π(V ) ∈ gG′} and Y2 = {V |Π(V ) ∈ G′}, we compare
their cardinalities by the same way as in the previous clause.

For groups, we are able to describe not only tuples in the equivalence class U1 but all
other equivalence classes and their units.

Lemma 33. Let G be a group of order n and G′ be the commutator subgroup of G.

1. If G is a Hall–Paige group, then each equivalence class Ui contains a single unit and
there are some hi ∈ G such that Ui = {V |Π(V ) ∈ hiG′}.

2. Assume that G is a non-Hall–Paige group and g is the element of order 2 from a
nontrivial, cyclic Sylow 2-subgroup of G. Then each equivalence class Ui consists of
two units Y i1 and Y i2 and there are some hi ∈ G such that Y i1 = {V |Π(V ) ∈ higG′}
and Y i2 = {V |Π(V ) ∈ hiG′}.

Proof. By Lemma 30, each equivalence class Ui is a left coset of the class U1. Therefore,
all classes Ui have the same size and the same number of units as the equivalence class
U1, for which these quantities were found in Lemma 32.

Consider a tuple V from an equivalence class Ui and assume that Π(V ) belongs to some
coset hiG

′. By the definition of equivalence classes, for every other tuple U from the class
Ui there is some collection of permutations (W1, . . . ,Wd) such that U = V ∗W1 ∗ · · · ∗Wd.
Using the condition (3) of the definition of Hall–Paige groups, we see that if G is a
Hall–Paige group, then Π(U) belongs to the same coset hiG

′. In the case when G is a
non-Hall–Paige group, if d is even then Π(U) belongs to the coset hiG

′ and if d is odd
then Π(U) ∈ higG′.

The equalities Ui = {V |Π(V ) ∈ hiG
′} for Hall–Paige groups and Y i1 = {V |Π(V ) ∈

higG
′} and Y i2 = {V |Π(V ) ∈ hiG

′} for non-Hall–Paige groups follow from equalities
between the cardinalities of these sets.

At last, we are ready to prove the general result on diagonals in iterated groups.

Theorem 34. Let G be a group of order n with the commutator subgroup G′ and let
U, V ∈ Inn .
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1. Assume that G is a Hall–Paige group.

• If Π(U) and Π(V ) belong to different cosets of G′, then there are no U-diagonals
of type V in all d-iterated groups G[d].

• If Π(U) and Π(V ) belong to the same coset of G′, then there is some d0 such
that for all d > d0 the d-iterated groups G[d] have U-diagonals of type V . The
number TU,V (d) of U-diagonals of type V in G[d] is asymptotically

TU,V (d) =
n!d

|G′|nn−1
· (1 + o(1)).

2. Assume that G is a non-Hall–Paige group and g is the unique element of order 2
from a nontrivial, cyclic Sylow 2-subgroup of G.

• If Π(U) and Π(V ) are not from the union of cosets hG′∪hgG′ for some h ∈ G,
then there are no U-diagonals of type V in all d-iterated groups G[d].

• There is d0 ∈ N such that the following hold. If one can find h ∈ G for which
Π(U),Π(V ) ∈ hG′, then the d-iterated groups G[d] have U-diagonals of type
V for all even d > d0, and if Π(U) ∈ hG′, Π(V ) ∈ ghG′ for some h ∈ G,
then the d-iterated groups G[d] have U-diagonals of type V for all odd d > d0.
Otherwise G[d] has no U-diagonals of type V . If d has an appropriate parity,
then the number TU,V (d) of U-diagonals of type V in G[d] is asymptotically

TU,V (d) =
n!d

|G′|nn−1
· (1 + o(1)).

Proof. The result follows from Theorem 23, which describes how the number of U -
diagonals of type V is connected with the structure of equivalence classes and units,
and from Lemma 33, where these sets were characterized for groups.

4 Proofs of the main results

We start with a proof of the theorem on transversals in iterated quasigroups.

Proof of Theorem 7. Recall that a transversal in a multiary quasigroup is a W-diagonal
of type W , where W is a permutation. Given a quasigroup of order n, there are exactly
n! possible types of diagonals corresponding to transversals.

Let us fix some permutation W ∈ W . By Proposition 18 and Lemma 19, the permu-
tations W and W belong to the same unit of the equivalence class U1 and the period of
the class U1 is not greater than 2. By Proposition 25, if G is a loop then the size of units
in the equivalence class U1 is rnn−1, where 1 6 r 6 |G′|.

To count the number of W-diagonals of type W in an iterated quasigroup G[d], it only
remains to apply Theorem 23.
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Proof of Theorem 6. The proof is similar to the proof of Theorem 7, but instead of The-
orem 23 we use Theorem 34.

If G is a Hall–Paige group, then all d-iterated groups have transversals, because, by
condition (2) of the definition of Hall–Paige groups, G[1] has a transversal and, by the
proof of Lemma 19, for each permutation W ∈ W there exists a W -diagonal of type W
in G[2].

At last, we prove a similar result for near transversals.

Proof of Theorem 8. In our terms, a near transversal in a quasigroup of order n is an
arbitrary W-diagonal of type Wi(b), where W ∈ W is a permutation and i, b ∈ In.

By Proposition 16, for every permutation W ∈ W and i ∈ In the number of tuples
from the set W ∗

i in each unit of the class U1 is equal to some r > 1. It means that there
is d0 ∈ N such that for all d > d0 every d-iterated quasigroup G[d] has near transversals.

If Brualdi’s conjecture is true, then for all quasigroups G there is a W-diagonal of type
Wi(b) in G[1]. Using Lemma 19, we have that in this case all d-iterated quasigroups have
near transversals. For groups, Brualdi’s conjecture is true by [12].

Assume that a tuple Wi(b), W ∈ W , belongs to a unit Y of the equivalence class
U1. If the tuple Wi(b) coincides with the permutation W , then, by Proposition 18, the
unit Y contains all n! permutations from W . If the tuple Wi(b) is not a permutation,
then Proposition 18 and permutations of coordinates of the tuple Wi(b) give n

2
n! different

tuples in the unit Y .
Therefore, if a unit Y of the equivalence class U1 contains permutations, then there

are exactly (n
2
(r− 1) + 1)n! tuples of the form Wi(b) in Y , otherwise, the number of such

tuples in Y is n
2
rn!.

The resulting asymptotic of the number of near transversals follows from Theorems 23
and 34.

5 Concluding remarks

There are many ways to extend the technique described in the present paper. First of all,
in one of our subsequent papers we are going to consider diagonals in a general composition
of multiary quasigroups and connect them with the permanents and contractions of mul-
tidimensional matrices. In particular, we study the composition not only of quasigroups
and latin hypercubes but other stochastic multidimensional arrays.

Another direction of the future work is finding explicit formulas for the numbers of
transversals and diagonals of other types in some iterated quasigroups of small orders or
arity.

At last, in paper [23], the author estimated the asymptotic numbers of partial di-
agonals, plexes, and multiplexes in iterated quasigroups. Using similar methods, these
bounds can be significantly refined. Moreover, it is possible to generalize our approach to
other structures in latin hypercubes, for example, to subcubes or trades.
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toroidal semiqueens problem. J. Eur. Math. Soc. (JEMS), 21(2):441–463, 2019.
https://doi.org/10.4171/JEMS/841.

[8] S. Eberhard, F. Manners, and R. Mrazović. An asymptotic for the Hall–Paige con-
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