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Abstract

Let X and Y be connected Cayley graphs on abelian groups, such that no two dis-
tinct vertices of X have exactly the same neighbours, and the same is true about Y .
We show that if the number of vertices of X is relatively prime to the number of
vertices of Y , then the direct product X × Y has only the obvious automorphisms
(namely, the ones that come from automorphisms of its factors X and Y ). This was
not previously known even in the special case where Y = K2 has only two vertices.
The proof of this special case is short and elementary. The general case follows from
the special case by standard arguments.
Mathematics Subject Classifications: 05C25, 05C76

1 Introduction

The canonical bipartite double cover [13] of a graph X is the bipartite graph BX with
V (BX) = V (X)× {0, 1}, where

(v, 0) is adjacent to (w, 1) in BX ⇐⇒ v is adjacent to w in X.

Letting S2 be the symmetric group on the 2-element set {0, 1}, it is clear that AutX×S2

is a subgroup of AutBX. If this subgroup happens to be all of AutBX, then it is easy
to see (and well known) that X must be connected, and must also be “twin-free” (see
Definition 4.1 below).

B. Fernandez and A.Hujdurović [5] recently established that the converse is true when
X is a circulant graph of odd order. This had been conjectured by Y.-L.Qin, B.Xia,
and S. Zhou [11, Conj. 1.3], who proved the special case where X has prime order. See
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the introductions of [5] and [11] for additional history and motivation. All graphs in this
paper are undirected, with no multiple edges, but loops are allowed

Circulant graphs are examples of “Cayley graphs” (see Definition 2.1 below), and both
sets of authors asked whether the converse can be generalized to all Cayley graphs on
abelian groups of odd order ([5, Problem 3.3] and [11, p. 157]). This note provides a
short, elementary proof that the desired generalization is indeed true:

Theorem 1.1. If X is a twin-free, connected Cayley graph on a finite abelian group of
odd order, then AutBX = AutX × S2.

Remark 1.2. A graph X is said to be stable if AutBX = AutX × S2 [11, p. 155], so the
theorem can be rephrased as the statement that:

Every twin-free, connected Cayley graph on a finite abelian group of odd order
is stable.

(However, the term “stable graph” is ambiguous, because it also has other meanings in
graph theory [1, 6].)

Example 1.3 (Hujdurović-Mitrović [personal communication]). The word “abelian” cannot
be deleted from the statement of the theorem. For example, if

G = 〈 a, x | a3 = x7 = 1, a−1xa = x2 〉

is the nonabelian group of order 21, then X = Cay
(
G; {a±1, x±1, (ax)±1}

)
is twin-free and

connected, but it can easily be verified by computer that |AutX| = 42 and |AutBX| =
252. (This was discovered with MAGMA and confirmed with sagemath.)

Remark 1.4 ([5, Rem. 1.3]). For any Cayley graph X on an abelian group of odd order,
the theorem makes it possible to obtain the automorphism group of BX from the au-
tomorphism group of X. For simplicity, let us assume that X is loopless. Then there
exist integers c, d > 1, and a twin-free, connected, abelian Cayley graph Y of odd or-
der, such that X ∼= Kc o (Y o Kd). Then, by a well-known theorem of Sabidussi [12]
on the automorphism group of a wreath product of graphs, the theorem implies that
AutBX = Sc o

(
(AutY × Z2) o Sd

)
.

The canonical bipartite double cover BX can be realized as the direct product X×K2

(see Definition 5.1), and the theory of direct products (see Section 5) implies that the
theorem can be generalized by replacing BX = X × K2 with X × Y , where Y is any
graph in a much more general family:

Corollary 1.5. Let X be a twin-free, connected Cayley graph on a finite abelian group of
odd order, and let Y be any twin-free, connected graph, such that either:

1. Y is not bipartite, and |V (Y )| is relatively prime to |V (X)|, or

2. Y is bipartite, with bipartition V (Y ) = Y0 ∪ Y1, such that

(a) |Y0| and |Y1| are relatively prime to |V (X)|, and
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(b) either |Y0| 6= |Y1|, or Y has an automorphism that interchanges Y0 and Y1.

Also assume that neither X nor Y is the one-vertex trivial graph. Then

Aut(X × Y ) = AutX × AutY.

The statement of the corollary becomes much simpler if we assume that Y is also an
abelian Cayley graph:

Corollary 1.6. Let X and Y be twin-free, connected Cayley graphs on abelian groups,
such that |V (X)| is relatively prime to |V (Y )|. Also assume that neither X nor Y is the
one-vertex trivial graph. Then

Aut(X × Y ) = AutX × AutY.

Remark 1.7. In Theorem 1.1, the Cayley graphX can be allowed to have an edge-colouring
that is invariant under translation by elements of G (see Remark 3.4(2)). However, the
proofs of Corollaries 1.5 and 1.6 do not allow colours on the edges.

Here is an outline of the paper:

§1. Introduction

§2. A crucial lemma

§3. Comments on the lemma (optional)

§4. Proof of the main theorem

§5. Review of direct products (proof of Corollaries 1.5 and 1.6 )

2 A crucial lemma

As was already mentioned in the introduction, all graphs in this paper are undirected,
with no multiple edges. Loops are allowed, but they are not necessary for any of the
arguments, so readers are welcome to assume that all graphs are simple. Readers at the
other extreme, who want to discuss multiple edges (or edge-colourings), are referred to
Remark 3.4, but these complications are forbidden in this section.

Definition 2.1 ([7, p. 34]). Let S be a symmetric subset of an abelian group G. (This
means that −s ∈ S, for all s ∈ S.) The corresponding Cayley graph Cay(G;S) is the
graph whose vertices are the elements of G, and with an edge joining the vertices g and h
if and only if g = s+ h for some s ∈ S.

We now state a simple observation that is probably already in the literature somewhere.
(Although the same proof also applies to Cayley digraphs, we state the result only for
Cayley graphs, because they are the topic of this note.)
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Lemma 2.2. Let ϕ be an automorphism of a Cayley graph Cay(G;S), and let k ∈ Z+.
If

1. G is abelian, and

2. ks 6= kt for all s, t ∈ S, such that s 6= t,

then ϕ is an automorphism of Cay(G; kS), where kS = { ks | s ∈ S }.

Proof. Write k = p1p2 · · · pr, where each pi is prime, and let ki = p1p2 · · · pi for 0 6 i 6 r.
We will prove by induction on i that ϕ is an automorphism of Cay(G, kiS). The base case
is true by assumption, since k0S = 1S = S.

For v, w ∈ G, let #(v, w) be the number of walks of length pi from v to w in the
graph Cay(G, ki−1S). These walks are in one-to-one correspondence with the pi-tuples
(s1, s2, . . . , spi) of elements of ki−1S, such that s1+s2+· · ·+spi = w−v. Since G is abelian,
any cyclic rotation of (s1, s2, . . . , spi) also corresponds to a walk from v to w. Therefore,
the set of these walks can be partitioned into sets of cardinality pi, unless w = pis+ v, for
some s ∈ ki−1S, in which case there is a walk of the form v, s+ v, 2s+ v, . . . , pis+ v = w.
(Also note that s is unique, if it exists, by assumption (2).) Hence, we see that

#(v, w) 6≡ 0 (mod pi) ⇐⇒ v is adjacent to w in Cay(G; piki−1S).

Since piki−1 = ki, the desired conclusion that ϕ ∈ AutCay(G, kiS) now follows from the
induction hypothesis that ϕ ∈ AutCay(G, ki−1S) (and the observation that automor-
phisms preserve the value of the function #).

3 Comments on the lemma

This section is optional.

Remarks 3.1. Two comments on assumption (2) of Lemma 2.2:

1. This assumption holds for all S ⊆ G if and only if gcd
(
k, |G|

)
= 1.

2. This assumption can be weakened. For example, if k is prime, then it suffices to
assume, for each s ∈ S, that |{ t ∈ S | ks = kt }| is not divisible by k.

Remark 3.2. Lemma 2.2 may be of independent interest. For example, it provides a short,
fairly elementary proof of the known classification of edge-transitive graphs of prime order.
(See the following corollary.) Can it also simplify the proofs of other known results [10]
on automorphism groups of circulant graphs?

Corollary 3.3 (Chao [2]). Let Zp be the cyclic group of order p, where p is prime. A
connected Cayley graph X = Cay(Zp;S) on Zp is edge-transitive if and only if S is a
coset of a subgroup of the multiplicative group Z×p .
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Proof. (⇒) First, note that 0 /∈ S, because a connected, edge-transitive graph with p
vertices cannot have loops. Since p is prime, this implies S ⊆ Z×p .

Now, let A0 = {ϕ ∈ AutX | ϕ(0) = 0 } be the stabilizer of the vertex 0 in AutX.
For every k ∈ Z×p , Lemma 2.2 tells us that kS is A0-invariant. Since S = 1S is also A0-
invariant, this implies that kS∩S is A0-invariant. However, A0 is transitive on S (because
S = NX(0) and X is edge-transitive), so this implies that either kS = S or S ∩ kS = ∅.
Since this is true for all k (and S ⊆ Z×p ), this means that S is a block of imprimitivity for
the regular representation of Z×p [3, p. 12]. So S is an orbit of some subgroup H of Z×p [3,
Thm. 1.5A, pp. 13–14]: S = Hz for some z ∈ Z×p . Since we are dealing with the regular
representation, this means that S is a coset of H.

(⇐) This is the easy direction (and does not require the assumption that p is prime).
Assume S is a coset of the subgroup H of Z×p . Note that H acts by automorphisms on the
group Zp (because multiplication by any k ∈ Z×p is an automorphism of Zp). The set S
is invariant under H; indeed, H is transitive on S (because S is a coset of H). The proof
is now completed by a well-known, elementary argument [11, Lem. 2.8]: H is a group of
automorphisms of the Cayley graph X (because it is a group of automorphisms of Zp that
fixes S). Since H fixes the vertex 0, and acts transitively on the set S of neighbours of 0,
this implies that X is edge-transitive.

Remarks 3.4. Unlike in [5, 11], we do not need to assume that Cay(G;S) is a simple
graph.

1. Graphs may have loops.

2. We can allow edge-colourings of Cay(G;S) that are invariant under translation by
elements of G: the colour of an edge (v, w) must be the same as the colour of the
edge (v + g, w + g). Such colourings come from colourings of S: choose a colour
for each element s of S (such that colour(s) = colour(−s), for all s ∈ S), and then
apply this colour to each edge of the form (v, s + v). Automorphisms are required
to preserve the edge-colouring.

3. Lemma 2.2 remains valid in this setting. To see this, let

Sc = { s ∈ S | colour(s) = c }, for each colour c.

Lemma 2.2 (as stated, without considering any edge-colourings) implies that ϕ is
an automorphism of Cay(G; kSc). Saying that this is true for every c is exactly the
same as saying that ϕ is a (colour-preserving) automorphism of Cay(G; kS), if we
let

colour(t) = { colour(s) | t = ks, s ∈ S } for each t ∈ kS.
Also note that this proof only applies the original version of Lemma 2.2 to Sc, not
all of S, so hypothesis (2) can be replaced with the weaker assumption that:

(2′) for every colour c, we have ks 6= kt for all s, t ∈ Sc, such that s 6= t.

(If s and t have different colours, then it is not necessary to assume ks 6= kt.)
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4. Technically, we do not allow graphs to have multiple edges. However, since the
statements of the results only consider automorphism groups, not other graphical
properties, the multiplicity of an edge can be encoded as part of its colour (or “label”).
For example, an edge coloured “2B, 3R,W” could be thought of as representing 2 blue
edges, 3 red edges, and a white edge, all with the same endpoints.

4 Proof of the main theorem

Definition 4.1 (Kotlov-Lovász [9]). A graph X is twin-free if there do not exist two
distinct vertices v and w, such that NX(v) = NX(w), where NX(v) denotes the set of
neighbours of v in X.

Remark 4.2. Synonyms for “twin-free” include “irreducible” [5], “R-thin” [8, p. 91], and
“vertex-determining” [11].

Let S be a symmetric subset of a finite abelian group G of odd order, such that the
Cayley graph X = Cay(G;S) is twin-free and connected. Given ϕ ∈ AutBX, we wish to
show that ϕ ∈ AutX × S2.

Note that
BX = Cay

(
G× Z2;S × {1}

)
,

and that BX is connected and bipartite, with bipartition sets G×{0} and G×{1}. Since
AutX × S2 contains an element that interchanges these two sets, we may assume

ϕ
(
G× {i}

)
= G× {i} for i = 0, 1.

Remark 4.3. If the edges of X have been coloured (as allowed by Remark 3.4(2)):

1. Each element x of NX(v) is labelled with the colour of the edge from v to x. There-
fore, saying that NX(v) = NX(w) means that, for each x ∈ NX(v), the colour of
the edge joining x to v is same as the colour of the edge joining x to w. Hence, an
edge-coloured graph may be twin-free, even though its underlying uncoloured graph
is not twin-free.

2. The edges of BX are coloured by colouring the edge from (v, 0) to (w, 1) with
whatever colour appears on the edge from v to w in X.

Let k = |G| + 1, so k ≡ 1 (mod |G|) and k ≡ 0 (mod 2). Then, for every (s, 1) ∈
S×{1}, we have k(s, 1) = (s, 0), so Lemma 2.2 tells us that ϕ is an automorphism of the
graph Cay

(
G×Z2;S×{0}

)
(which is the disjoint union of two copies of X). Hence, after

multiplying by an element of AutX × {ι}, where ι is the identity element of S2, we may
assume that ϕ(v) = v for all v ∈ G× {0}.
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It is now easy to complete the proof, by using the assumption that X is twin-free. For
all g ∈ G, we have

NX(g)× {0} = ϕ
(
NX(g)× {0}

)
(ϕ(v) = v for all v ∈ G× {0})

= ϕ
(
NBX(g, 1)

)
(definition of BX)

= NBX

(
ϕ(g, 1)

)
(ϕ is an automorphism)

= NBX(g
′, 1) (where ϕ(g, 1) = (g′, 1))

= NX(g
′)× {0} (definition of BX).

SinceX is twin-free, this implies g = g′, so ϕ(g, 1) = (g′, 1) = (g, 1), which means ϕ(v) = v
for all v ∈ G × {1}. Since this equality also holds for all v ∈ G × {0}, we conclude that
ϕ is the identity element of AutBX, and is therefore in the subgroup AutX × S2.

5 Review of direct products

Definition 5.1 ([8, p. 36]). The direct product of two graphs X and Y is the graph X×Y
with V (X × Y ) = V (X)× V (Y ), and

(x1, y1) is adjacent to (x2, y2) in X × Y ⇐⇒ x1 is adjacent to x2 in X, and
y1 is adjacent to y2 in Y .

Remark 5.2 ([8, p. 36]). The literature has numerous other names for the direct product,
including “tensor product,” “Kronecker product,” “cardinal product,” and “conjunction.”

The graph X in Theorem 1.1 is allowed to have edge-colours and multiple edges, but
the theory of automorphisms of direct products does not seem to have been developed in
this generality, so:

Assumptions 5.3. In this section (and, therefore, in Corollaries 1.5 and 1.6), graphs do
not have edge-colours or multiple edges (but they may have loops).

As was mentioned in Section 1, we have BX = X ×K2. Generalizing the comments
there about AutBX, it is clear that AutX×AutY is a subgroup of Aut(X×Y ), and that
if this subgroup happens to be all of Aut(X ×Y ), then X and Y must be connected, and
must also be twin-free. (We ignore the situation where one of the graphs is the one-vertex
trivial graph.)

For direct products of non-bipartite graphs, the converse holds if and only if a certain
“coprimality” condition holds. However, instead of stating the full strength of this classical
theorem of W.Dörfler, we present only a simpler, weakened version of the result:

Theorem 5.4 (Dörfler, cf. [4] or [8, Thm. 8.18, p. 103]). Let X and Y be twin-free,
connected, non-bipartite graphs of relatively prime orders. Then Aut(X × Y ) = AutX ×
AutY .

The situation is more complicated (and not yet understood) when one of the factors
of a direct product is bipartite. However, the following facts shed some light, as will be
seen in the proposition that follows.

the electronic journal of combinatorics 28(3) (2021), #P3.5 7



Facts 5.5. Let X and Y be connected graphs.

1. The Cartesian skeleton of X is a certain graph SX that is defined from X, such
that V (SX) = V (X) [8, Defn. 8.2, p. 95].

2. Every automorphism of X×Y is also an automorphism of S(X×Y ) [8, Prop. 8.11,
p. 97].

3. IfX and Y are twin-free (and have more than one vertex), then S(X×Y ) = SX�SY
[8, Prop. 8.10, p. 96], where � denotes the Cartesian product [8, p. 35].

4. If |V (X)| is relatively prime to |V (Y )|, then Aut(X � Y ) = AutX × AutY [8,
Cor. 6.12, p. 70].

5. If X is not bipartite, then SX is connected [8, Prop. 8.13(i), p. 98].

6. If Y is bipartite, then SY has precisely two connected components, and their vertex
sets are the bipartition sets of Y [8, Prop. 8.13(ii), p. 98].

The following straightforward consequence of these facts is presumably known to ex-
perts, but we do not have a reference. The gist is that, in order to understand the
automorphism group of X × Y , where Y is bipartite, it often suffices to understand the
special case where Y = K2.

Proposition 5.6. Let X and Y be twin-free, connected graphs that have at least one edge,
such that:

1. X is not bipartite,

2. Y is bipartite, with bipartition V (Y ) = Y0 ∪ Y1, such that

(a) |Y0| and |Y1| are relatively prime to |V (X)|, and
(b) either Y has an automorphism that interchanges Y0 and Y1, or |Y0| 6= |Y1|, and

3. AutBX = AutX × S2.

Then Aut(X × Y ) = AutX × AutY .

Proof. Let ϕ ∈ Aut(X × Y ). From Fact 6, we know that SY has two connected compo-
nents C0 and C1, where V (C0) = Y0 and V (C1) = Y1. By Facts 2 and 3, we have

ϕ ∈ Aut
(
S(X × Y )

)
= Aut(SX � SY ) = Aut(SX � (C0 ∪ C1)

)
.

If |V (C0)| = |V (C1)|, then (by hypothesis (2b)) Y has an automorphism that interchanges
C1 and C2; therefore, we may assume that ϕ fixes each connected component of SX �SY .
This means that ϕ restricts to an automorphism ϕi of SX � Ci (for i = 0, 1). Since SX
is connected (by Fact 5), and the connected component Ci is obviously also connected,
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Fact 4 (and hypothesis (2a)) tells us that there exist permutations χi of V (X) and ηi
of Yi, such that

ϕ(x, y) =
(
χi(x), ηi(y)

)
for all x ∈ V (X) and y ∈ Yi.

Choose adjacent vertices y0 and y1 of Y , with yi ∈ Yi, and let y′i = ηi(yi). Let B and B′
be the subgraphs of X×Y induced by V (X)×{y0, y1} and V (X)×{y′0, y′1}, respectively,
so B′ = ϕ(B). By definition of the direct product, the maps (x, i) 7→ (x, yi) and (x, i) 7→
(x, y′i) are isomorphisms from BX to B and B′. Therefore, the map (x, i) 7→

(
χi(x), i

)
is

an automorphism of BX. So Assumption (3) tells us that χ0 = χ1. This means that the
V (X)-component of ϕ(x, y) depends only on x. (And we already knew that the V (Y )-
component of ϕ(x, y) depends only on y.) This easily implies ϕ ∈ AutX × AutY .

Proof of Corollary 1.5. Combine Theorem 5.4 and Proposition 5.6 (and note that The-
orem 1.1 verifies hypothesis 5.6(3)).

Proof of Corollary 1.6. Since |V (X)| is relatively prime to |V (Y )|, we may assume
|V (X)| is odd (by interchanging X and Y , if necessary). We may also assume Y is
bipartite, for otherwise Corollary 1.5(1) applies. Now, we verify the hypotheses of Corol-
lary 1.5(2). Since |V (Y0)| = |V (Y1)| = |V (Y )|/2, we know that hypothesis (2a) holds.
Since Y is vertex-transitive (because it is a Cayley graph), hypothesis (2b) also holds.
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