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Abstract

In 1963, Corrádi and Hajnal showed that if G is an n-vertex graph with n > 3k
and δ(G) > 2k, then G will contain k disjoint cycles; furthermore, this result is best
possible, both in terms of the number of vertices as well as the minimum degree.
In this paper we focus on an analogue of this result for theta graphs. Results from
Kawarabayashi and Chiba et al. showed that if n = 4k and δ(G) > d52ke, or if n is
large with respect to k and δ(G) > 2k + 1, respectively, then G contains k disjoint
theta graphs. While the minimum degree condition in both results are sharp for
the number of vertices considered, this leaves a gap in which no sufficient minimum
degree condition is known. Our main result in this paper resolves this by showing
if n > 4k and δ(G) > d52ke, then G contains k disjoint theta graphs. Furthermore,
we show this minimum degree condition is sharp for more than just n = 4k, and
we discuss how and when the sharp minimum degree condition may transition from
d52ke to 2k + 1.

Mathematics Subject Classifications: 05C35

1 Introduction

All graphs in this paper are simple, unless otherwise noted. Additionally, “disjoint” is
always taken to mean “vertex-disjoint.” We say “G contains H” to mean that the graph
G contains the graph H as a subgraph. Given a graph G, we use V (G) and E(G) to
denote the sets of vertices and edges of G, respectively, and for a vertex v, we use v ∈ G
to denote v ∈ V (G). For a subgraph H of G, and for a vertex v ∈ G (where v is not
necessarily in H), the neighborhood of v in H is denoted by NH(v), and the number of
neighbors of v in H will be written by dH(v). We use |G| for |V (G)|, G for the complement
of G, and δ(G) for its minimum degree. Furthermore, σ2(G) denotes the minimum Ore
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degree (sometimes called the minimum degree sum), which is given by the minimum of
dG(x) + dG(y) over all non-adjacent pairs of distinct vertices x and y in G (when G is
complete, we say σ2(G) =∞).

The notation Kn is used to denote the complete graph on n vertices, and Kk1,...,kt is
the complete t-partite graph with parts of size k1, . . . , kt. For graphs G and H, G ∪ H
represents the disjoint union of G and H, and G∨H is the join of G and H. Furthermore
for positive integers p > 2, pH denotes the disjoint union of p copies of H.

A chorded cycle is a graph with a spanning cycle and at least one additional edge. A
theta graph is a graph formed by connecting two distinct vertices with three independent
paths. The notation θi,j,k is used to denote a theta graph formed by connecting two
distinct vertices with three independent paths of length i, j, and k, respectively (length
refers to the number of edges). For example K−4 , which is obtained by removing an edge
from K4, can also be denoted as θ1,2,2. Lastly, the Paw is the 4-vertex graph formed by
adding an edge to K1,3.

In 1963, Corrádi and Hajnal verified a conjecture of Erdős by proving the following.

Theorem 1 (Corrádi and Hajnal [3]). For all k ∈ Z+, if G is an n-vertex graph with
n > 3k and δ(G) > 2k, then G contains k disjoint cycles.

This result is sharp both in terms of the number of vertices as well as the minimum
degree. Additionally, Theorem 1 has been extended in several ways by finding sharp
minimum degree conditions guaranteeing the existence of a fixed number of objects such
as chorded cycles [4], chorded cycles with at least two chords [5], and even combinations
of cycles and chorded cycles [1, 10], to name a few. In this paper we consider an analogue
to Theorem 1 regarding theta graphs, with the first result towards this type of analogue
given in [6].

Theorem 2 (Kawarabayashi [6]). For all k ∈ Z+, if G is an n-vertex graph with n = 4k
and δ(G) > 5

2
k, then G contains a K−4 -factor.

Note that a K−4 -factor is a spanning subgraph consisting of disjoint copies of K−4 . Since
the smallest theta graph possible is K−4 , we immediately deduce the following corollary,
which is actually equivalent to Theorem 2. We add the ceiling notation for the purposes
of better discussing the sharpness of the statement.

Corollary 3. For all k ∈ Z+, if G is an n-vertex graph with n = 4k and δ(G) > d5
2
ke,

then G contains k disjoint theta graphs.

Both Theorem 2 and Corollary 3 are sharp in multiple senses. First, since no theta
graph exists on fewer than four vertices, we cannot have k disjoint theta graphs in a graph
with fewer than 4k vertices. Furthermore, Kk−1,b 3k+1

2
c,d 3k+1

2
e is a graph on 4k vertices with

minimum degree d5
2
ke − 1 that does not have k disjoint theta graphs (this is discussed in

Section 2). This shows the minimum degree condition in Theorem 2 and Corollary 3 is
best possible.

However Corollary 3 is restricted to only when n = 4k. This leads to a natural
question of what minimum degree conditions suffice to guarantee k disjoint theta graphs
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when n > 4k? This question was partially answered by Chiba et al. in the following
theorem and subsequent corollary.

Theorem 4 (Chiba-Fujita-Kawarabayashi-Sakuma [2]). Let k ∈ Z+, let α = 9600k2 +
36k + 11, and let ck = 4(3k + 1)α3(k−1)(3(2k − 1))2(k−1) + (12 + α)(k − 1). If G is an
n-vertex graph with n > ck and δ(G) > 2k, then one of the following holds:

(i) G contains k vertex-disjoint theta graphs;

(ii) k > 2 and K2k−1 ∨ pK2 ⊆ G ⊆ K2k−1 ∨ pK2 for some integer p > k;

(iii) k = 1 and each block of G is either a K2 or a cycle.

Corollary 5. For all k ∈ Z+, if G is an n-vertex graph with n > ck and δ(G) > 2k + 1,
then G contains k disjoint theta graphs.

The example given in (ii) of Theorem 4 shows that the minimum degree condition in
Corollary 5 is sharp. Thus, Corollaries 3 and 5 provide sharp minimum degree conditions
of d5

2
ke and 2k + 1, respectively, when n = 4k and n > ck, respectively. The purpose of

this paper is to address the gap when 4k < n < ck in which we have no minimum degree
condition, let alone a sharp one, that guarantees the existence of k disjoint theta graphs.

That said, in [7], it is shown that every n-vertex graph with n > 4k and δ(G) >
1
2
(n+ k− 1) has k disjoint copies of K−4 , and furthermore the minimum degree condition

in this statement is sharp. However in this paper we do not restrict ourselves to only
finding disjoint copies of K−4 . As a result, it is possible that a much lower minimum
degree condition suffices to guarantee k disjoint theta graphs. Indeed, our following main
result extends the minimum degree condition in Theorem 2 and Corollary 3 for all n-vertex
graphs with n > 4k.

Theorem 6. For all k ∈ Z+, if G is an n-vertex graph with n > 4k and δ(G) > d5k
2
e,

then G contains k disjoint theta graphs.

As mentioned, Kk−1,b 3k+1
2
c,d 3k+1

2
e is a 4k-vertex graph with minimum degree d5

2
ke − 1,

that does not contain k disjoint theta graphs. Thus, Theorem 6 is best possible for general
graphs, both in terms of the number of vertices as well as the minimum degree.

The breakdown of this paper is as follows. In Section 2, we construct graphs that
show the minimum degree condition in Theorem 6 is sharp for all n-vertex graphs with
4k 6 n < 5k. The proof of Theorem 6 is distributed across Sections 3 and 4. In particular,
Section 3 contains notation and structural lemmas that will be used throughout the cases
presented in Section 4. Lastly in Section 5, we use a result of Komlós in [8] to consider
if perhaps the minimum degree condition in Theorem 6 can be reduced to 2k + 1 if we
restrict n to be at least 5k. In addition, we use a result of Kühn, Osthus, and Treglown
in [9] to discuss minimum degree sum versions, and we pose questions regarding potential
future work.
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2 Sharpness

In this section we construct a family of graphs that show Theorem 6 is sharp when
4k 6 n < 5k. In the following we will use the identities that for x, y ∈ Z, bx− y

2
c = x−dy

2
e,

dx− y
2
e = x− by

2
c, and x = bx

2
c+ dx

2
e.

Define G(t, n) = Kt,bn−t
2
c,dn−t

2
e. For k, n ∈ Z+ such that 4k+1 6 n 6 5k, define Hk,n =

G(5k−n, n). Observe that the partite sets of Hk,n are of size 5k−n, bn− 5k
2
c = n−d5k

2
e,

and dn− 5k
2
e = n− b5k

2
c. Note that since n 6 5k, it is possible that 5k − n = 0 making

Hk,n bipartite. Further as n > 4k+ 1, the partite set of size 5k−n is the smallest partite
set, and it has size at most k − 1. So δ(Hk,n) = (5k − n) + (n− d5k

2
e) = b5k

2
c. However,

the partite sets of size n− b5k
2
c and n− d5k

2
e have the same size exactly when k is even.

Thus when k is even, b5k
2
c = d5k

2
e so that δ(Hk,n) = d5k

2
e. When k is odd, b5k

2
c = d5k

2
e−1

so that δ(Hk,n) = d5k
2
e − 1.

We claim that the only way to find k disjoint theta graphs in Hk,n is to use every
vertex. Observe that the maximum number of 4-vertex theta graphs in Hk,n is 5k − n,
which leaves n− 4(5k − n) = 5n− 20k vertices in Hk,n. The maximum number of theta
graphs on at least five vertices that can be formed from 5n−20k vertices is 5n−20k

5
= n−4k.

This yields a total of (5k − n) + (n− 4k) = k disjoint theta graphs. Thus, the maximum
number of disjoint theta graphs that can be found in Hk,n is k, and furthermore this
requires all the vertices of Hk,n.

Define H ′k,n to be the graph formed from Hk,n by deleting a vertex from the largest

partite set (i.e., the partite set of size n − b5k
2
c). We claim that H ′k,n is our sharpness

example to Theorem 6, when 4k 6 n < 5k. First observe that 4k 6 |H ′k,n| < 5k, and
by the work in the previous paragraph, H ′k,n does not have k disjoint theta graphs. To

find the minimum degree of H ′k,n, recall δ(Hk,n) = d5k
2
e when k is even and δ(Hk,n) =

d5k
2
e − 1 when k is odd. When k is even, the partite sets of size n − b5k

2
c and n − d5k

2
e

are the same, so that forming H ′k,n lowers the minimum degree by exactly one; hence

δ(H ′k,n) = d5k
2
e − 1. When k is odd, the partite set of size n− b5k

2
c has exactly one more

vertex than the partite set of size n − d5k
2
e, so that forming H ′k,n does not change the

minimum degree; hence δ(H ′k,n) = d5k
2
e − 1. It is also worth noting that when k is odd,

σ2(H
′
k,n) = 2(d5k

2
e − 1) = 5k − 1, and when k is even, σ2(H

′
k,n) = 2(d5k

2
e − 1) = 5k − 2.

Thus H ′k,n shows that Theorem 6 is sharp when 4k 6 n < 5k. Furthermore, H ′k,4k is
exactly the graph constructed in [6] used to show Theorem 2 and Corollary 3 are sharp.

3 Setup and Structural Lemmas

In this section we provide the setup behind our proof of Theorem 6. In addition, we
present notation and structural lemmas that will be used throughout the proof of Theorem
6, which is primarily contained in Section 4.
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3.1 Notation

Let G be a graph, v ∈ V (G), and A and B be two subsets of V (G), not necessarily
disjoint. We let NB(v) denote NG(v)∩B, and let both ‖v,B‖ and dB(v) denote |NB(v)|.
We also let ‖A,B‖ =

∑
v∈A ‖v,B‖. For every collection of subgraphs H of G, we let

V (H) =
⋃
H∈H V (H). If H is a subgraph of G, we often replace V (H) with H in the

above notation (e.g., NH(v) = NV (H)(v), ‖v,H‖ = ‖v, V (H)‖, and ‖A,H‖ = ‖A, V (H)‖).
Similarly, we often replace V (H) with H when H is a collection of subsets of G (e.g.,
‖A,H‖ = ‖A, V (H)‖). Furthermore, this notation is symmetric so that ‖A,B‖ = ‖B,A‖.

If G is a graph and A ⊆ V (G), we let G[A] denote the subgraph of G induced by
the vertices of A. If H is a subgraph of G, we let H + A = G[V (H) ∪ A] and H − A =
G[V (H) \ A]. If |A| is small, we often replace A with the vertices of A in the above
notation (e.g., if A = {v}, we use H+v = H+A and H−v = H−A). If F is a subgraph
of G, we let H + F = H + V (F ) and H − F = H − V (F ).

A (T , R)-partition of a graph G is a partition of G into a collection, denoted by T ,
of k − 1 disjoint theta graphs, and an induced subgraph R that contains no theta graph.
We will use the notation T ∈ T to mean that T is one of the disjoint theta graphs in the
collection T . Here we emphasize that for every vertex v ∈ G, either v ∈ R, or v ∈ T for
some T ∈ T , and furthermore, dG(v) = ‖v, T ‖+ ‖v,R‖.

3.2 Setup

We now begin the proof of Theorem 6. Suppose on the contrary that for some k ∈ Z+,
there exist n-vertex graphs with n > 4k and minimum degree at least d5

2
ke that do not

contain k disjoint theta graphs. Among these graphs choose G to be one that is edge-
maximal with respect to not having k disjoint theta graphs. That is, G does not contain
k disjoint theta graphs, however for all e /∈ E(G), G + e does contain k disjoint theta
graphs. Since G cannot be complete (otherwise it would contain k disjoint theta graphs
as n > 4k), such e /∈ E(G) exists.

Since G + e contains k disjoint theta graphs, G must contain k − 1 disjoint theta
graphs, and furthermore these theta graphs cover all but at least four vertices of G. That
is, G contains a (T , R)-partition in which |R| > 4.

Among all (T , R)-partitions of G, we define an optimal (T , R)-parition to be one such
that all of the following hold:

(O1) |V (T )| is minimized;

(O2) subject to (O1), the number of chorded cycles in T is maximized;

(O3) subject to (O1) and (O2), the length of the longest path in R is maximized;

(O4) subject to (O1) - (O3), when R ∈ {P4, C4, Paw}, R ∈ {C4, Paw} is preferred over
P4;

(O5) subject to (O1) - (O4), when R ∈ {C4, Paw}, G[T ] ∼= K4 is preferred over G[T ] ∼=
K−4 , for T ∈ T ;
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(O6) if all previous have been satisfied, we prefer R ∼= Paw over R ∼= C4.

Since we have already shown G contains a (T , R)-partition in which |R| > 4, (O1)
implies that |R| > 4 even when the partition is optimal. In all the following, we now fix
a T and R such that they form an optimal (T , R)-partition, and let P denote a longest
path in R.

3.3 Structural Lemmas

We now prove a series of structural lemmas that will be used throughout Sections 3 and 4.

Lemma 7. Let v ∈ R and T ∈ T . Then ‖v, T‖ 6 4, and furthermore:

1. if ‖v, T‖ = 4, then |T | = 4;

2. if ‖v, T‖ = 3, then either |T | = 4, or

(a) G[T ] ∼= θ1,2,3, and the neighors of v are exactly the vertices not incident to the
chord of T , or

(b) G[T ] ∼= K2,3, and G[T + v] ∼= K3,3.

Proof. Fix v ∈ R and T ∈ T . Observe first that every theta graph has a Hamiltonian
path; fix such a path and call it PT . For any two vertices v1, v2 on PT , we let v1PTv2
denote the subpath of PT starting at v1 and ending at v2.

If ‖v, T‖ > 4, then let x1, x2, x3, x4 be neighbors of v appearing along PT in this
order (not necessarily consecutive). Furthermore, choose these so that v has no other
neighbors in x1PTx4. Observe that we can replace T with a theta graph formed from v
and x2PTx4, which is a chorded cycle. This implies x1 and x2 are consecutive along PT ,
and furthermore, x1 is an endpoint of PT , otherwise we contradict (O1) in both instances.
By symmetry, x3 and x4 are also consecutive along PT , and x4 is the other endpoint of
PT . This also implies T is a chorded cycle, otherwise we contradict (O2). So T has a
Hamiltonian cycle, and up to relabelling the vertices and PT , x2 and x3 are consecutive
along PT . Thus |T | = 4, and if ‖v, T‖ > 4, then ‖v, T‖ = 4.

Now suppose ‖v, T‖ = 3 with neighbors x1, x2, x3 appearing along PT in this order
(not necessarily consecutive). In all the following, assume |T | > 5.

Claim 8. We may assume x1 and x3 are the endpoints of PT .

Proof. If not then without loss of generality, let p1 be the endpoint of PT such that x1
is an interior vertex on the path p1PTx2. By replacing T with the chorded cycle formed
from v and x1PTx3, we see that p1 and x1 must be consecutive along PT otherwise we
contradict (O1), and additionally x3 is an endpoint of PT . This same replacement now
implies that T is a chorded cycle, otherwise we contradict (O2).

Since T is a chorded cycle, it has a Hamiltonian cycle; denote the Hamilton cycle
by CT = p1PTx3p1 where we can rechoose PT if necessary so that x3 is an endpoint.
We see that there is at most one vertex between xi and xi+1 for i ∈ {1, 2}, otherwise v
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together with the path from xi+1 along CT to xi that includes p1, forms a theta graph with
fewer vertices than T , contradicting (O1). Furthermore, if xi and xi+1 are consecutive
along CT , then we can form our desired Hamiltonian path in T with, up to relabelling,
x1 and x3 as its endpoints. So we may assume |T | = 6, and label the vertices so that
CT = p1x1p2x2p3x3p1.

Recall that T must be a chorded cycle. If a chord of the form x1x2 exists, then
G[{v, x1, p2, x2}] forms K−4 . If a chord of the form p1p2 exists, then G[{v, p1, x1, p2, x2}]
forms a theta graph on five vertices. If a chord of the form x1p3 exists, then G[{v, x1, p3, x3,
p1}] forms a theta graph on five vertices. Each of these contradict (O1), and since every
chord in T must look like one of these, this proves the claim.

If T is a chorded cycle, then by relabelling the vertices and PT , we may assume PT
together with the edge x1x3 creates a Hamiltonian cycle of T . If there are at least two
interior vertices in x1PTx2, then we can replace T with a chorded cycle formed from x1, v,
and x2PTx3, contradicting (O1). By symmetry, the same holds for x2PTx3, and since
|T | > 5, there is exactly one interior vertex in each of x1PTx2 and x2PTx3; call them w1

and w2, respectively.
If x2 is incident to a chord, say x2x3, then we replace T with the theta graph

G[{v, x2, w2, x3}], contradicting (O1). A similar argument holds if x2x1 is a chord. If
x1w2 is a chord, then we replace T with the theta graph G[{v, x1, x3, w2}], contradicting
(O1). A similar argument holds if x3w1 is a chord. Thus, the only chord in T is w1w2

so that G[T ] ∼= θ1,2,3 and the neighbors of v are exactly the vertices not incident to the
chord of T .

So we assume T is not a chorded cycle. Since T is a theta graph, x1 and x3 are adjacent
to distinct vertices u and u′, respectively. Furthermore, we may assume u is an interior
vertex to u′PTx3. If x2 is a vertex in x1PTu

′ (other than x1), then we can replace T with
the chorded cycle formed from v, x1PTx2, and uPTx3, which contradicts (O2). Thus by
symmetry x2 is an interior vertex in uPTu

′. If there are two interior vertices in uPTu
′, then

we can replace T with the theta graph formed from v, x1PTu
′, and uPTx3, contradicting

(O1). Thus, x2 is the only interior vertex to uPTu
′. If there is an interior vertex to x1PTu

′,
then we can replace T with a theta graph formed from v and u′PTx3, contradicting (O1).
So by symmetry, PT is x1u

′x2ux3 so that G[T ] ∼= K2,3 and G[T + v] ∼= K3,3. This proves
the lemma.

As a result of Lemma 7, we adopt the following conventions to label the vertices of
T based on G[T ]. If |T | = 4 for some T ∈ T , then we use the convention that V (T ) =
{x1, x2, y1, y2} where x1x2 is a chord and y1y2 may or may not exist. If G[T ] ∼= K2,3,
then let {a1, a2, a3} and {b1, b2} be the bipartite sets of T . If G[T ] ∼= θ1,2,3, then let
V (T ) = {f1, f2, g1, g2, g3} so that f1, f2 are the vertices of degree 3, g3 is adjacent to both
f1 and f2, and figi forms an edge for i ∈ {1, 2}.

Lemma 9. Let v, v′ ∈ R and T ∈ T such that ‖v, T‖ > ‖v′, T‖. Then each of the
following hold:

• if G[T ] ∼= θ1,2,3, then ‖v′, T‖ 6 2.
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• if G[T ] ∼= K2,3 and vv′ ∈ E(G), then ‖v′, T‖ 6 2

• if G[T ] ∼= K2,3, vv
′ ∈ E(G), and ‖{v, v′}, T‖ = 5, then NT (v) = {a1, a2, a3} and

NT (v′) = {b1, b2}.

Proof. Suppose G[T ] ∼= θ1,2,3 and ‖v, T‖ > ‖v′, T‖ > 3. Then by Lemma 7, NT (v) =
NT (v′) = {g1, g2, g3}. However, G[{v, v′, g1, g2}] is a theta graph with fewer vertices than
T , contradicting (O1).

Now suppose G[T ] ∼= K2,3 and vv′ ∈ E(G). If ‖v, T‖ > ‖v′, T‖ > 3, then by Lemma 7,
NT (v) = NT (v′) = {a1, a2, a3}. However, G[{v, v′, a1, a2}] is a theta graph with fewer
vertices than T , contradicting (O1). If ‖{v, v′}, T‖ = 5, then ‖v, T‖ = 3 and ‖v′, T‖ = 2.
By Lemma 7, NT (v) = {a1, a2, a3}. If say v′a1 ∈ E(G), then we can replace T with
G[{v, v′, a1, b1, a2}], which contains θ1,2,3, increasing the number of chorded cycles in T ,
contradicting (O2).

Lemma 10. Let p be an endpoint of P and v ∈ R \ P . Then for all T ∈ T , both of the
following hold:

1. if ‖v, T‖ = 4, then ‖p, T‖ = 0;

2. ‖{p, v}, T‖ 6 6, and if equality holds, then G[T ] ∼= K−4 , ‖p, T‖ = 4, and NT (v) =
{y1, y2}.

Proof. Fix T ∈ T and v ∈ R \ P . If ‖v, T‖ = 4, then by Lemma 7, |T | = 4. Since we are
assuming v ∈ R \ P exists, we do not necessarily prefer K4 over K−4 in T . Thus, for all
u ∈ T , replacing T with the theta graph in T −u+ v results in a partition of G satisfying
(O1) and (O2). So if p has any neighbor in T , say u, then this new optimal partition
contradicts (O3). This proves 10.1.

Now suppose ‖{p, v}, T‖ > 6. By Lemma 7 and 10.1, 3 6 ‖p, T‖ 6 4 and 2 6 ‖v, T‖ 6
3. Further, by Lemmas 7 and 9, either |T | = 4 or G[T ] ∼= K2,3. If G[T ] ∼= K2,3, then
NT (p) = NT (v) = {a1, a2, a3}. However, we can replace T with T − a1 + v and P with
P + a1, contradicting (O3).

So |T | = 4. Since 3 6 ‖p, T‖ 6 4 and 2 6 ‖v, T‖ 6 3, there exists u ∈ NT (p) such
that v is adjacent to at least two vertices in T − u. If G[T ] ∼= K4, then we can replace T
with T − u+ v, and P with P + u, contradicting (O3). Thus, G[T ] ∼= K−4 .

If NT (v) 6= {y1, y2}, then without loss of generality, we may assume vx1 ∈ E(G) and
furthermore, py1 ∈ E(G), as ‖p, T‖ > 3. If T − y1 + v forms a theta graph, then we can
replace T with this theta graph, and replace P with P+y1, contradicting (O3). Therefore,
we must have ‖v, T‖ = 2, ‖p, T‖ = 4, with vy1 ∈ E(G). However, we can replace T with
T − y2 + v and P with P + y2, which again contradicts (O3).

Thus NT (v) = {y1, y2}, and since we assumed ‖{p, v}, T‖ > 6, Lemma 7 implies we
must have equality with ‖p, T‖ = 4.

Lemma 11. Suppose |P | > 2. Let p and p′ be the endpoints of P , let v ∈ R \ P , and let
T ∈ T . If F = {p, p′, v}, then ‖F, T‖ 6 8, and if equality holds, then ‖v, T‖ = 0.
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Proof. Let F = {p, p′, v} and let T ∈ T such that ‖F, T‖ > 8. Recall that since v ∈ R\P
exists, we do not prefer K4 over K−4 in T .

If ‖v, T‖ = 4, then by Lemma 10.1, ‖{p, p′}, T‖ = 0, which contradicts ‖F, T‖ > 8.
If ‖v, T‖ = 3, then by Lemma 10.2, ‖p, T‖ 6 2 and ‖p′, T‖ 6 2. However this

contradicts ‖F, T‖ > 8.
Suppose ‖v, T‖ = 2. If ‖p, T‖ = 4, then by Lemma 10.2, G[T ] ∼= K−4 and NT (v) =

{y1, y2}. If p′ is adjacent to either yi, then we can replace T with the theta graph T−yi+p,
and we can replace P with the path formed from P − p + yi + v, which is longer than
P contradicting (O3). Therefore since ‖F, T‖ > 8, we must have NT (p′) = {x1, x2}.
However, we can replace T with the theta graph in T − y1 + p′, and we can replace P
with the longer path formed from P − p′ + y1 + v, again contradicting (O3).

So ‖p, T‖ 6 3 and by symmetry, ‖p′, T‖ 6 3. Furthermore, since ‖F, T‖ > 8, we have
equality and ‖p, T‖ = ‖p′, T‖ = 3. By Lemmas 7 and 9, either |T | = 4 or G[T ] ∼= K2,3.
If G[T ] ∼= K2,3, then by Lemma 7 NT (p) = NT (p′) = {a1, a2, a3}. If v is adjacent to any
ai, then we can replace T with T − ai + p and replace P with the path P − p + ai + v,
contradicting (O3). So NT (v) = {b1, b2}. However we can replace T with T − a1 + v and
replace P with the path P + a1, contradicting (O3). Thus, |T | = 4.

Suppose first that NT (v) = {y1, y2}. Since ‖p, T‖ = 3, we may assume without loss
of generality that p is adjacent to y1. However, since ‖p′, T‖ = 3, we can replace T with
T − y1 + p′ and replace P with P − p′+ y1 + v contradicting (O3). Thus NT (v) 6= {y1, y2}
and without loss of generality, we assume v is adjacent to x1. Since ‖v, T‖ = 2, v has
exactly one more neighbor in T , and without loss of generality we may assume that it
is not y1. Note that T − y1 + v is a theta graph. Thus, if either p or p′ is adjacent to
y1, we can replace T with T − y1 + v and replace P with P + y1 contradicting (O3). So
NT (p) = NT (p′) = {x1, x2, y2}. If the other neighbor of v is x2, then we replace T and P
with T − y2 + v and P + y2 respectively. If the other neighbor of v is y2, then we replace
T and P with T − x2 − y1 + p + v and P − p + x2 + y1, respectively. In either situation
we contradict (O3), and this completes the case where ‖v, T‖ = 2.

If ‖v, T‖ = 1, then without loss of generality we may assume ‖p, T‖ = 4 and ‖p′, T‖ >
3. By Lemma 7, |T | = 4. Let u be the neighbor of v in T . If u is also a neighbor of p′,
then we replace T and P with T −u+p and P −p+u+v, respectively, which contradicts
(O3). So u is not a neighbor of p′. However, we can now replace T and P with T − u+ p′

and P − p′ + u+ v, respectively, which contradicts (O3).
Thus, ‖v, T‖ = 0, and by Lemma 7, ‖F, T‖ = 8.

Lemma 12. Let H be a subgraph of G such that G[V (H)] contains no theta graph.
Suppose Q1 and Q2 are disjoint paths in H. Then ‖Q1, Q2‖ 6 2.

Proof. Suppose on the contrary that ‖Q1, Q2‖ > 3. If there exists a vertex v ∈ Q1 such
that ‖v,Q2‖ > 3, then G[v + Q2] contains a theta graph. Therefore, there exist two
distinct vertices v1, v2 ∈ Q1 such that ‖vi, Q2‖ > 1 for i ∈ {1, 2}. Let ui be the neighbor
of vi in Q2, where possibly u1 = u2. Observe that v1Q1v2 together with u1Q2u2 forms a
cycle. So if any edge exists between Q1 and Q2 other than v1u1 and v2u2, we can find a
theta graph in G[V (Q1) ∪ V (Q2)].
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4 Proof of Theorem 6

This section contains the majority of the proof of Theorem 6 broken into cases depending
on R. We first show that V (R) = V (P ); that is, R contains a Hamiltonian path. We
then show that |R| 6 4. Recall that since we are considering an optimal (T , R)-partition
of G, we can conclude that |R| = 4. Since R has no theta graph and has a Hamiltonian
path, this implies R ∈ {P4, C4, Paw}. We then show R ∼= Paw, and ultimately derive a
contradiction in this final case.

4.1 V (R) 6= V (P )

Suppose V (R) 6= V (P ); that is, R \ P 6= ∅. We first show that R is not an independent
set, so that |P | > 2 with distinct endpoints. We then find a vertex v in R \ P such that
‖v,R‖ 6 2, and use Lemma 11 to arrive at a contradiction.

Lemma 13. R is not an independent set; that is, |P | > 2.

Proof. Suppose on the contrary, that R is an independent set. Then we can view any
vertex in R as the endpoint of P . So for any v, v′ ∈ R, by Lemma 10, ‖{v, v′}, T‖ 6 6 for
all T ∈ T , and if equality holds, then ‖v, T‖ = 4 and NT (v′) = {y1, y2}. However, since
v and v′ can both play the role of p, we cannot have equality so that ‖{v, v′}, T‖ 6 5.

So

2(
5

2
k) 6 ‖{v, v′}, T ‖+ ‖{v, v′}, R‖ 6 5(k − 1) + 0,

which is a contradiction.

Lemma 14. There exists a vertex v ∈ R \ P such that ‖v,R‖ 6 2.

Proof. Let Q be a longest path in R \P . If Q is trivial, say just a vertex v, then the only
possible neighbors of v in R are vertices on P . Thus, ‖v, P‖ 6 2, else there exists a theta
graph in R. So we may assume Q is nontrivial, and let q and q′ be its endpoints.

Suppose that ‖q, R‖ > ‖q′, R‖ > 3 so that ‖{q, q′}, R‖ > 6. Since these are endpoints
of a longest path in R \ P , the only neighbors of q and q′ are on Q and P . By Lemma
12, ‖Q,P‖ 6 2, and in particular, ‖{q, q′}, P‖ 6 2. If either ‖q,Q‖ > 3 or ‖q′, Q‖ > 3,
then we can find a theta graph in G[Q]. Therefore we must have ‖q,Q‖ = ‖q′, Q‖ =
‖{q, q′}, P‖ = 2.

Since we are assuming ‖q, R‖ > ‖q′, R‖ > 3, we must also have ‖q, P‖ = ‖q′, P‖ = 1.
However, we can easily find a cycle using all the vertices of Q and the vertices of P
between the neighbors of q and q′ on P , and we have extra edges in G[Q] so that we find
a theta graph in R. So either ‖q, R‖ 6 2 or ‖q′, R‖ 6 2, which proves the lemma.

By Lemma 14, there exists v ∈ R\P such that ‖v,R‖ 6 2. For i ∈ {0, 1, 2, 3, 4} define
Ti = {T ∈ T : ‖v, T‖ = i}, and let ti = |Ti|. Thus, t0 + t1 + t2 + t3 + t4 = k − 1. Note
that ‖v,R‖ 6 2 so that

5

2
k 6 ‖v, T ‖+ ‖v,R‖ 6 0t0 + 1t1 + 2t2 + 3t3 + 4t4 + 2. (1)
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Let F = {p, p′, v} where p and p′ are the endpoints of P . By Lemma 11, ‖F, Ti‖ 6 8ti
for i ∈ {0, 1, 2}. By Lemma 10, ‖F, T3‖ 6 7t3 and ‖F, T4‖ = 4t4. Because p and p′ are
the ends of a longest path P in R, ‖{p, p′}, R‖ = ‖{p, p′}, P‖. To avoid a theta graph,
‖{p, p′}, P‖ 6 4. Thus ‖F,R‖ 6 6 so that

3(
5

2
k) 6 ‖F, T ‖+ ‖F,R‖ 6 8t0 + 8t1 + 8t2 + 7t3 + 4t4 + 6. (2)

Adding (1) and (2), yields the following contradiction:

10k 6 8t0 + 9t1 + 10t2 + 10t3 + 8t4 + 8

6 10(t0 + t1 + t2 + t3 + t4) + 8

= 10(k − 1) + 8

= 10k − 2.

This completes the case in which V (R) 6= V (P ).

4.2 V (R) = V (P )

In the remainder of Section 4, we assume V (R) = V (P ). That is, P is a Hamiltonian
path in R, and ‖v,R‖ = ‖v, P‖ for all v ∈ G. Recall that |R| > 4. So we may define
distinct vertices p, q, q′, and p′ so that p and p′ are the endpoints of P , and q and q′ are
the neighbors of p and p′, respectively, along P .

Lemma 15. Suppose |R| > 5. Then for all r ∈ V (P ) \ {p, q, q′, p′}, if F = {p, q, r, q′, p′},
then ‖F, T‖ 6 12 for all T ∈ T .

Proof. Fix T ∈ T and suppose ‖F, T‖ > 13. Thus, there exists some v ∈ F such that
‖v, T‖ > 3. So by Lemma 7, either |T | = 4, G[T ] ∼= θ1,2,3, or G[T ] ∼= K2,3. If G[T ] ∼= θ1,2,3,
then by Lemmas 7 and 9, there exists at most one vertex v ∈ F such that ‖v, T‖ = 3,
and as a result, ‖F − v, T‖ 6 8. However, this contradicts ‖F, T‖ > 13.

Similarly if G[T ] ∼= K2,3, Lemmas 7 and 9 imply ‖{p, q}, T‖ 6 5, ‖{p′, q′}, T‖ 6 5, and
‖r, T‖ 6 3. Therefore equality holds in each of these inequalities, andNT (r) = {a1, a2, a3}.
ThenG[{a1, a2, b1, p, q}] is a theta graph, andG[{a3, b2, q′, p′}] is a C4. Now we can connect
a3 to q′ via an independent path through r, creating another theta graph, a contradiction.

So we may assume |T | = 4. Suppose that for each i ∈ {1, 2}, G[{p, q, xi, yi}] contains
a theta graph. Let Q1 = x1y1, Q

′
1 = x2y2, and Q2 be the path from r to p′ along P . By

Lemma 12, if ‖Q1, Q2‖ > 3, then G[V (Q1) ∪ V (Q3)] contains a theta graph. However
we are also assuming G[{p, q, x2, y2}] does as well, a contradiction. So ‖Q1, Q2‖ 6 2, and
similarly, ‖Q′1, Q2‖ 6 2. Thus, ‖{r, q′, p′}, T‖ 6 4, which implies ‖{p, q}, T‖ > 9, which
cannot happen by Lemma 7.

So without loss of generality, suppose G[{p, q, x1, y1}] does not contain a theta graph,
but suppose G[{p, q, x2, y2}] does contain a theta graph. Let Q1 = x1y1, Q2 = pq, and Q′2
be the path from r to p′ along P . By Lemma 12, ‖Q1, Q2‖ 6 2 and ‖Q1, Q

′
2‖ 6 2; the

former is true because G[{p, q, x1, y1}] does not contain a theta graph, and the latter is
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true because otherwise we can replace T with two disjoint theta graphs in a manner similar
to the previous case. Since ‖F, T‖ > 13, we have ‖{x2, y2}, F‖ > 9. So either ‖x2, F‖ = 5
or ‖y2, F‖ = 5. If ‖y2, F‖ = 5, then for any vertex u ∈ {p, q, q′, p′}, P − u+ y2 contains a
theta graph. Therefore T − y2 + u cannot form a theta graph, which implies ‖u, T‖ 6 2
for each u ∈ {p, q, q′, p′}. However this implies ‖r, T‖ > 5 contradicting Lemma 7. So
we may assume ‖x2, F‖ = 5 and ‖y2, F‖ = 4. Observe that both P − p − q + x2 and
P − q′ − p′ + x2 contain theta graphs. Let Q1 = y1x1y2, Q2 = pq, and Q′2 = q′p′, so that
by Lemma 12 ‖Q1, Q2‖ 6 2 and ‖Q1, Q

′
2‖ 6 2, otherwise we replace T with two disjoint

theta graphs similar to the above. Thus ‖{p, q}, T‖ 6 4 and ‖{p′, q′}, T‖ 6 4, which
implies ‖r, T‖ > 5, contradicting Lemma 7.

Thus we may assume G[{p, q, x1, y1}] and G[{p, q, x2, y2}] do not contain theta graphs.
So by Lemma 12, ‖{p, q}, T‖ 6 4, and by symmetry, ‖{p′, q′}, T‖ 6 4. Thus ‖r, T‖ > 5,
again contradicting Lemma 7.

Lemma 16. |R| = 4.

Proof. If on the contrary |R| > 5, then there exists r ∈ V (P ) \ {p, q, q′, p′}, and we
can let F = {p, q, r, q′, p′}. Note that ‖r, P‖ 6 4, otherwise R will contain a theta
graph. Furthermore, since |R| = |P | > 5, P − p − q has a spanning path on at least
three vertices, and we can consider pq as a path on two vertices. Therefore by Lemma 12,
‖{p, q}, P −p−q‖ 6 2, which implies ‖{p, q}, P‖ 6 4, and by symmetry, ‖{q′, p′}, P‖ 6 4.
Thus ‖F,R‖ 6 12. By Lemma 15,

5(
5

2
k) 6 ‖F, T ‖+ ‖F,R‖ 6 12(k − 1) + 12,

which yields 12.5k 6 12k and k 6 0, a contradiction.
So |R| 6 4, and since we are considering an optimal (T , R)-partition so that |R| > 4,

we have |R| = 4 as desired.

Since R has a Hamiltonian path and contains no theta graphs, R ∈ {P4, C4, Paw}.
We consider each case separately.

4.2.1 R ∼= P4

Observe that when R ∼= P4, we still do not prefer K4 over K−4 in T . However in this case,
we will seek to replace T and R with a new partition satisfying (O1) - (O3), in which R
is replaced with either C4 or the Paw, contradicting (O4).

Lemma 17. If R ∼= P4, then ‖R, T‖ 6 10 for all T ∈ T .

Proof. Suppose ‖R, T‖ > 11. Then either there exists u ∈ R such that ‖u, T‖ = 4, or
there exists adjacent vertices in R, v and w such that ‖v, T‖ = ‖w, T‖ = 3. In either
case, by Lemmas 7 and 9, |T | = 4.

Suppose ‖p, T‖ = 4. Note that for all v ∈ T , T − v + p is a theta graph. Thus, for all
v ∈ T , ‖v, P‖ 6 2 as otherwise we can replace T with T − v + p and replace R with the
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C4 or Paw in P − p+ v which contradicts (O4). However this implies ‖R, T‖ 6 8 in this
case.

Now suppose ‖p, T‖ = 3. Without loss of generality, we may assume p is adjacent to
both x1 and y1. Note that ‖y2, P − p‖ 6 1, otherwise we can replace T with the theta
graph T − y2 + p and replace R with either C4 or the Paw in P − p + y2, contradicting
(O4). Note also that ‖x2, P − p‖ 6 2, otherwise we can replace T with the theta graph
P − p + x2 and replace R with the Paw in T − x2 + p, contradicting (O4). Similarly,
‖y1, P −p‖ 6 2. Lastly, ‖x1, P −p‖ 6 2, otherwise we can replace T with the theta graph
P − p + x1 and replace R with either C4 or the Paw in T − x1 + p, contradicting (O4)
(recall that ‖p, T‖ = 3 so that p is adjacent to either x2 or y2). Therefore ‖T, P − p‖ 6 7.
However, since ‖p, T‖ = 3, we get ‖P, T‖ 6 10 a contradiction.

So ‖p, T‖ 6 2 and by symmetry, ‖p′, T‖ 6 2. By Lemma 7 and the assumption
‖R, T‖ > 11, we have 7 6 ‖{q, q′}, T‖ 6 8 and 3 6 ‖{p, p′}, T‖ 6 4. Without loss of
generality, we may assume qy1, q

′y1 ∈ E(G). If either p or p′ is adjacent to two vertices of
{x1, x2, y2}, say p, then we can replace T with the theta graph T − y1 + p and replace R
with the Paw in P − p+ y1. Now because ‖{p, p′}, T‖ > 3, we can conclude without loss
of generality that py1 ∈ E(G) and p′ is adjacent to a vertex of {x1, x2, y2}. Then we can
replace T with the theta graph P − p′ + y1 and replace R with the Paw in T − y1 + p′, a
contradiction.

Since R ∼= P4, ‖P,R‖ = 6. Thus by Lemma 17,

4(
5

2
k) 6 ‖P, T ‖+ ‖P,R‖ 6 10(k − 1) + 6,

which yields 10k 6 10k − 4, a contradiction.

4.2.2 R ∼= C4

We continue to label the vertices in R as p, q, q′, p′, only now we know pp′ ∈ E(G) and
‖P,R‖ = 8. Recall that now K4 is preferred over K−4 .

It is worth mentioning that when R ∈ {C4, Paw}, the arguments used in some of the
proofs are similar to those in [6], and at times, are exactly the same. However our proofs
must additionally consider more possibilities for T , and so we include these arguments
as well as the ones done in [6] for the sake of completeness. We also note that in some
instances, our arguments are more concise.

Lemma 18. For all T ∈ T , ‖R, T‖ 6 10, unless G[R + T ] ∼= (K4 ∪K1) ∨K3, in which
case ‖R, T‖ = 11.

Proof. Suppose ‖R, T‖ > 11. Then either there exists u ∈ R such that ‖u, T‖ = 4, or
there exists adjacent vertices in R, v and w such that ‖v, T‖ = ‖w, T‖ = 3. In either
case, by Lemmas 7 and 9, |T | = 4.

Claim 19. G[T ] ∼= K4.
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Proof. Let G[T ] ∼= K−4 so that y1y2 /∈ E(G). Suppose ‖p, T‖ = 4. Note that ‖y1, R‖ 6 2,
otherwise we replace T with the K4 in T − y1 + p and replace the C4 in R with either
another C4 or Paw in R − p + y1. Similarly, ‖y2, R‖ 6 2. Note also that ‖x1, R‖ 6 3,
otherwise we replace T with two disjoint theta graphs in T − x1 + p and R − p + x1.
Similarly, ‖x2, R‖ 6 3, however this contradicts ‖R, T‖ > 11.

Now suppose ‖p, T‖ = 3. Without loss of generality, NT (p) is either {x1, x2, y1} or
{x1, y1, y2}. Suppose first NT (p) = {x1, x2, y1}. Note that ‖y2, R‖ 6 1, otherwise we can
replace T with the K4 in T − y2 + p and replace R with either another C4 or Paw in
R − p + y2. Note also that ‖y1, R‖ 6 3, as otherwise we can replace T with two disjoint
theta graphs in T − y1 + p and R− p+ y1. Lastly, ‖xi, R‖ 6 3 for i ∈ {1, 2}, otherwise we
can replace T with the theta graph in R−p+xi and replace R with the Paw in T −xi+p,
contradicting (O6). However, this implies ‖R, T‖ 6 10, a contradiction.

So we assume ‖p, T‖ = 3 and NT (p) = {x1, y1, y2}. Note that ‖x2, R‖ 6 2, otherwise
we can replace T with two disjoint theta graphs in T−x2+p and R−p+x2. Furthermore,
if ‖x2, R‖ = 2, then x2q

′ /∈ E(G), otherwise we replace T with the theta graph in T−x2+p
and replace the C4 in R with the Paw in R− p+ x2. Similarly, ‖yi, R‖ 6 3 for i ∈ {1, 2},
and if equality holds, then yiq

′ /∈ E(G). Now, if ‖yi, R‖ 6 2 for each i ∈ {1, 2}, then
we obtain ‖R, T‖ 6 10, which is a contradiction. So without loss of generality, suppose
‖y1, R‖ = 3 so that y1 is adjacent to p, q, and p′. Observe that py1p

′p forms a triangle.
Since y1q

′ /∈ E(G), ‖q′, T‖ 6 1, otherwise we could replace T with the theta graph in
T − y1 + q′ and replace the C4 in R with the theta graph in R − q′ + y1. Similarly,
‖q, T‖ 6 2. However, this implies ‖R, T‖ 6 10, a contradiction.

So ‖p, T‖ 6 2. However since G[R] ∼= C4, by symmetry, ‖v, T‖ 6 2 for all v ∈ R. But
now ‖R, T‖ 6 8, a contradiction. This proves the claim.

Here we label the vertices of T as x1, x2, x3, x4. Suppose ‖p, T‖ = 4. So for x ∈ T ,
‖x,R‖ 6 3, otherwise we replace T with two disjoint theta graphs in T − x + p and
R− p+ x. Furthermore, ‖x,R‖ = 3 only if xq′ /∈ E(G), otherwise we replace T with the
K4 in T − x+ p and replace the C4 in R with the Paw in R− p+ x. Since ‖R, T‖ > 11,
we may assume ‖xi, R‖ = 3 for i ∈ {1, 2, 3} and ‖x4, R‖ > 2. Thus for i ∈ {1, 2, 3},
xiq, xip

′ ∈ E(G) and xiq
′ /∈ E(G). If x4p

′ ∈ E(G), then we replace T with the K4 in
G[{x1, x2, p, q}] and replace the C4 in R with the Paw in G[{x3, x4, q′, p′}]. A similar
contradiction arises if x4q ∈ E(G). So as ‖R, T‖ > 11, we must have x4q

′ ∈ E(G), which
yields G[R + T ] ∼= (K4 ∪K1) ∨K3.

So suppose ‖p, T‖ 6 3, and since G[R] ∼= C4, by symmetry ‖v, T‖ 6 3 for all v ∈
R. Again by the symmetry of R, we may assume ‖{p, q, q′}, T‖ = 9 and ‖p′, T‖ > 2.
Without loss of generality, we may assume NT (p) = {x1, x2, x3}, {x1, x2} ⊂ NT (q), and
x1 ∈ NT (q′). This implies p′ cannot be adjacent to two vertices from {x2, x3, x4}, otherwise
we replace T with two disjoint theta graphs in T − x1 + p′ and R − p′ + x1. As a result
‖p′, T‖ 6 2, however since ‖R, T‖ > 11, we have equality and in particular, x1p

′ ∈ E(G).
However, we can replace T with two disjoint theta graphs in T −x1+p and R−p+x1.

Lemma 20. There exists T̃ ∈ T such that ‖R, T̃‖ > 11; that is, G[R+T̃ ] ∼= (K4∪K1)∨K3.
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Figure 1: Labeling for G[R + T̃ ]

Proof. Suppose on the contrary, ‖R, T‖ 6 10 for all T ∈ T . Since R ∼= C4, we have
‖R,R‖ = 8. This yields

4(
5

2
k) 6 ‖R, T ‖+ ‖R,R‖ 6 10(k − 1) + 8 = 10k − 2,

which implies 10k 6 10k − 2, a contradiction.
Thus, there exists some T̃ ∈ T such that ‖R, T̃‖ > 11. By Lemma 18, equality holds

and G[R + T̃ ] ∼= (K4 ∪K1) ∨K3.

Let T̃ ∈ T be as given by Lemma 20, and consider G[R+ T̃ ]. We now introduce nota-
tion similar to that in [6]. Label the vertices V (R) = {a, b, c, d} and V (T̃ ) = {e, f, g, h} as
follows. Label d ∈ R such that ‖d, T̃‖ = 1, and let e be its neighbor in T̃ . Let a, b, c ∈ R
such that ad, cd ∈ E(G), and let {f, g, h} = NT̃ (a). See Figure 1.

Let F = {a, b, c, d, e, f}, X = {a, c, e}, Y = {b, f}, and A = X ∪ Y . Note that
all vertices in X are symmetric and both vertices in Y are symmetric. Furthemore, we
can replace T̃ and R with G[{a, b, g, h}] and G[{c, d, e, f}], respectively to obtain a new
optimal partition, which we will denote by (T ′, R′). Therefore, all previous lemmas that
apply to (T , R), also apply to (T ′, R′); for example, Lemma 7 implies ‖v, T‖ 6 4 for all
v ∈ F and T ∈ T .

In the following we seek bounds on ‖F, T‖ for all T ∈ T \ T̃ , depending on ‖d, T‖.

Lemma 21. If ‖d, T‖ = 4 for some T ∈ T \ T̃ , then ‖F, T‖ 6 12.

Proof. Let T ∈ T \ T̃ and assume ‖d, T‖ = 4. By Lemma 7, we know either G[T ] ∼= K4

or G[T ] ∼= K−4 . First we claim

NT (X) ∩NT (Y ) = ∅. (3)

Suppose, to the contrary, there is a vertex v ∈ NT (X) ∩ NT (Y ). Without loss of
generality, let v ∈ NT (e) ∩NT (f). Then G[d ∪ V (T )− v], G[v, e, f, g], and G[a, b, c, h] all
contain K−4 , a contradiction. Note that if instead we have v ∈ NT (b) ∩ NT (f) for some
v ∈ T , we can still find three copies of K−4 by swapping b and g in the three previously
listed. We thus also have

NT (b) ∩NT (f) = ∅. (4)
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By (3), the following is true for all v ∈ V (T ):

Either ‖v, A‖ = ‖v,X‖ and ‖v, Y ‖ = 0 or

‖v, A‖ = ‖v, Y ‖ and ‖v,X‖ = 0; hence ‖v,A‖ 6 3. (5)

If ‖v, A‖ 6 2 for all v ∈ T , then ‖F, T‖ 6 12. So we must have some v ∈ T with
‖v,A‖ = 3. We consider two cases: ‖y1, A‖ = 3 and G[T ] ∼= K−4 , or ‖x1, A‖ = 3.

First assume ‖y1, A‖ = 3 and G[T ] ∼= K−4 . We claim ‖x1, X‖ = ‖x2, X‖ = ‖y2, X‖ =
0. Suppose not and assume without loss of generality that e is adjacent to one of
x1, x2, y2. Then G[e, x1, x2, y2] contains Paw, G[b, f, g, h] contains K4, and G[a, c, d, y1]
contains K−4 , contradicting (O6). Thus ‖x1, X‖ = ‖x2, X‖ = ‖y2, X‖ = 0 and by (4),
‖x1, A‖, ‖x2, A‖, ‖y2, A‖ 6 1. Now ‖A, T‖ 6 6 so ‖F, T‖ 6 12 as desired. Because y1 and
y2 are symmetric in K−4 , we may assume ‖y1, A‖ 6 2 and ‖y2, A‖ 6 2 for the rest of the
proof when G[T ] ∼= K−4 .

In the second case, assume ‖x1, A‖ = 3. By (3), since NT (X) ∩ NT (Y ) = ∅, we may
further assume ‖x1, X‖ = 3.

We claim ‖x2, X‖ 6 2. Suppose not and assume ‖x2, X‖ = 3. Then if ey1 ∈
E(G), then G[a, c, d, x1] contains K−4 , G[b, f, g, h] contains K4, and when G[T ] ∼= K−4 ,
G[e, y1, y2, x2] contains Paw which contradicts (O6) and when G[T ] ∼= K4, G[e, y1, y2, x2]
contains K−4 which gives k disjoint theta graphs, a contradiction. So ey1 /∈ E(G) and
by symmetry we conclude, ‖y1, X‖ = 0 and also ‖y2, X‖ = 0. By (4), ‖y1, A‖ 6 1 and
‖y2, A‖ 6 1. Thus ‖A, T‖ = ‖x1, A‖+ ‖x2, A‖+ ‖y1, A‖+ ‖y2, A‖ 6 3 + 3 + 1 + 1 = 8 so
‖F, T‖ 6 12 as desired. Hence we may assume that ‖x2, X‖ 6 2.

If G[T ] ∼= K4, then x2, y1, y2 are all symmetric (replace x2 with y1 or y2 in the argument
above) and if G[T ] ∼= K−4 , we have already argued that ‖y1, A‖ 6 2 and ‖y2, A‖ 6 2.
Hence ‖v,A‖ 6 2 for all v ∈ {x2, y1, y2}. If ‖v, A‖ 6 1 for any one v ∈ {x2, y1, y2},
then ‖A, T‖ 6 8 so ‖F, T‖ 6 12 as desired. Hence we may assume ‖x2, A‖ = ‖y1, A‖ =
‖y2, A‖ = 2. By (4) and (5), we have ‖x2, X‖ = ‖y1, X‖ = ‖y2, X‖ = 2. In particular,
since ‖{x2, y1}, X‖ = 4, we may assume without loss of generality, ey1, ex2 ∈ E(G). Then
G[a, c, d, x1] contains K−4 , G[b, f, g, h] contains K4, and when G[T ] ∼= K−4 , G[e, y1, y2, x2]
contains Paw which contradicts (O6) and when G[T ] ∼= K4, G[e, y1, y2, x2] contains K−4
which gives k disjoint theta graphs, a contradiction.

Lemma 22. If ‖d, T‖ = 3 for some T ∈ T \ T̃ , then ‖F, T‖ 6 13.

Proof. Let T ∈ T \ T̃ , suppose ‖d, T‖ = 3 and assume to start G[T ] ∼= θ1,2,3. Recall that
(T , R) and (T ′, R′) are both optimal partitions of G such that d ∈ V (R) ∩ V (R′) and
F = V (R) ∪ V (R′). Therefore by Lemma 9, for all v ∈ F − d, ‖v, T‖ 6 2, which implies
‖F, T‖ 6 13 as desired.

Next assume G[T ] ∼= K2,3. By Lemma 7, da1, da2, da3 ∈ E(G). Furthermore, by
Lemmas 7 and 9, ‖u, T‖ 6 3 for all u ∈ Y and ‖v, T‖ 6 2 for all v ∈ X, respectively.
We may assume there exists v ∈ X such that ‖v, T‖ = 2, otherwise the lemma holds;
without loss of generality say ‖c, T‖ = 2. If say ca1 ∈ E(G), then we can replace T with
G[c, d, a1, a2, b1] ∼= θ1,2,3, which contradicts (O2). Thus, NT (c) = {b1, b2}.
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If bbi ∈ E(G) (or symmetrically fbi), then T can be replaced in T with G[b, c, b1, b2, a1]
∼= θ1,2,3 which contradicts (O2). If bai ∈ E(G) (or symmetrically fai), then T and T̃ can
be replaced in T by G[c, e, g, h] ∼= K−4 and a θ1,2,3 in G[a, b, f, d, ai] which contradicts
(O2). Thus ‖b, T‖ = ‖f, T‖ = 0, and ‖F, T‖ 6 13 as desired.

Now |T | = 4. We may assume that either NT (d) = {x1, x2, y1}, or NT (d) = {x1, y1, y2}
and G[T ] ∼= K−4 .

Case 22.1. NT (d) = {x1, x2, y1}.
Using arguments similar to the ones used in the proofs of (3), (4), and (5), we can

observe:

NT\{x1,x2}(X) ∩NT\{x1,x2}(Y ) = ∅ and NT\{x1,x2}(b) ∩NT\{x1,x2}(f) = ∅. (6)

Now (6) implies ‖yi, A‖ 6 3 for each i ∈ {1, 2}, and furthermore, equality implies
‖yi, X‖ = 3, and if ‖yi, A‖ = 2, then NA(yi) ⊆ X.

Next we claim ‖x1, A‖ 6 3. If not, then ‖x1, X‖ > 2 and ‖x1, Y ‖ > 1. Be-
cause a, c, e are symmetric and b, f are symmetric, without loss of generality we may
assume ax1, cx1, fx1 ∈ E(G). Now G[b, e, g, h] is K4, G[a, c, f, x1] contains K−4 , and when
G[T ] ∼= K−4 , G[d, x2, y1, y2] contains Paw which contradicts (O6) and when G[T ] ∼= K4,
G[d, x2, y1, y2] contains K−4 which gives k disjoint theta graphs, a contradiction. Hence
‖x1, A‖ 6 3 and by symmetry, ‖x2, A‖ 6 3.

We further claim that if ‖x1, A‖ = 3, then ‖x1, X‖ = 3. If this were not the case, by the
argument in the previous paragraph, we must have ‖x1, X‖ = 1 and ‖x1, Y ‖ = 2. Without
loss of generality, say x1a ∈ E(G). Then G[b, f, a, x1] is K4, G[c, e, g, h] is K−4 , and when
G[T ] ∼= K−4 , G[d, x2, y1, y2] contains Paw which contradicts (O6) and when G[T ] ∼= K4,
G[d, x2, y1, y2] contains K−4 which gives k disjoint theta graphs, a contradiction. Thus if
‖x1, A‖ = 3, then ‖x1, X‖ = 3. By symmetry the same is true for x2.

Now we may assume ‖T,A‖ > 11, else the lemma holds. So ‖v,A‖ = 2 for at most
one v ∈ T , and ‖u,A‖ = 3 for all u ∈ T − v. Without loss of generality, we may assume
‖x1, A‖ = 3, and by the previous paragraph, ‖x1, X‖ = 3. Recall that since ‖yi, A‖ > 2
for each i ∈ {1, 2}, NA(yi) ⊆ X. We also know that either ‖y1, X‖ = 3 or ‖y2, X‖ = 3.

Suppose ‖y1, X‖ = 3, and without loss of generality cy2, ey2 ∈ E(G). Now G[b, f, g, h]
is K4 and G[c, e, x1, y2] and G[a, d, y1, x2] both contain K−4 resulting in k disjoint theta
graphs, a contradiction. Next suppose instead that ‖y2, X‖ = 3, and without loss of
generality, cy1, ey1 ∈ E(G). Now G[b, f, g, h] is K4 and G[c, d, y1, x2] and G[a, e, x1, y2]
both contain K−4 resulting in k disjoint theta graphs, a contradiction. This completes the
case.

Case 22.2. NT (d) = {x1, y1, y2} and G[T ] ∼= K−4 .

Using arguments similar to the ones used in the proofs of (3), (4), and (5), we can
observe:

NT\{x1}(X) ∩NT\{x1}(Y ) = ∅ and NT\{x1}(b) ∩NT\{x1}(f) = ∅. (7)

This implies that for any v ∈ T − x1, ‖v,A‖ 6 3, and if ‖v,A‖ > 2, then ‖v, A‖ =
‖v,X‖. Note that if we can show ‖T,A‖ 6 10, then the lemma holds.
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Suppose to start that ‖y1, A‖ = 3 so that ‖y1, X‖ = 3. If one of y2, x1, x2 is adjacent
to say e ∈ X, then G[b, f, g, h] is K4, G[a, c, d, y1] is K−4 , and G[e, x1, x2, y2] contains Paw
which contradicts (O6). Thus ‖T − y1, X‖ = 0, which implies ‖x1, A‖ = ‖x1, Y ‖ 6 2, and
by (7), ‖x2, A‖ 6 1 and ‖y2, A‖ 6 1. This implies ‖T,A‖ 6 7 so that the lemma holds.
So we may assume ‖y1, A‖ 6 2 and by symmetry, ‖y2, A‖ 6 2.

By (7), ‖x2, A‖ 6 3, and since ‖yi, A‖ 6 2 for i ∈ {1, 2}, we may assume ‖x1, A‖ > 4,
otherwise the lemma holds. Since ‖x1, A‖ 6 5 as |A| = 5, we may assume without
loss of generality that ‖y1, A‖ = 2 and ‖x2, A‖ > 2, or again the lemma holds. This
implies ‖y1, A‖ = ‖y1, X‖ and ‖x2, A‖ = ‖x2, X‖ so that y1 and x2 have a common
neighbor in X, say e. Thus G[d, e, y1, x2] contains K−4 . Since ‖x1, A‖ > 4, we may
assume x1c, x1b ∈ E(G), so that G[b, c, x1, y2] contains a Paw. However, this leaves
G[a, f, g, h] ∼= K4, and using these to replace T,R, and T̃ , respectively, contradicts (O6).

This completes both cases and proves the lemma.

Our next goal is to bound ‖F, T‖ in the remaining cases when ‖d, T‖ 6 2 for some
T ∈ T \ T̃ . To do this, it will be helpful to look at ‖{c, d}, T‖, which we will denote by
x = ‖{c, d}, T‖ in the following. By Lemma 7, ‖v, T‖ 6 4 for all v ∈ F , so that:

if x ∈ {0, 1, 2}, then ‖F, T‖ = ‖{a, b, e, f}, T‖+ x 6 16 + x. (8)

Note (8) holds for x > 3 as well but we can develop stronger inequalities in these
cases which we do now. By Lemma 18, the only way for ‖R, T‖ = 11, is either x = 4 and
‖d, T‖ ∈ {1, 3}, or x = 7. The same is true for ‖R′, T‖ = 11 (recallR′ = G[{c, d, e, f}]). So
if x = 4 and ‖d, T‖ ∈ {1, 3}, or if x = 7, then ‖F, T‖ = ‖R, T‖+‖R′, T‖−x 6 22−x 6 18.
For all other possibilities, we get ‖F, T‖ 6 20−x as both ‖R, T‖, ‖R′, T‖ 6 10 by Lemma
18.

Now using these last two inequalities for ‖F, T‖, we have the following:

if x = 4 and ‖d, T‖ ∈ {1, 3}, then ‖F, T‖ 6 18,

otherwise if x ∈ {3, 4, 5, 6} then ‖F, T‖ 6 20− x. (9)

This leads immediately to the following lemma.

Lemma 23. If ‖d, T‖ 6 1 for some T ∈ T \ T̃ , then ‖F, T‖ 6 18.

Proof. Since x = ‖{c, d}, T‖ 6 5, (8) and (9) immediately imply ‖F, T || 6 18 as desired.

Lemma 24. If ‖d, T‖ = 2 for some T ∈ T \ T̃ , then ‖F, T‖ 6 16.

Proof. Here we still let x = ‖{c, d}, T‖. If ‖d, T‖ = 2, then 2 6 x 6 6. Since ‖d, T‖ = 2,
if x ∈ {4, 5, 6}, then by (9), the lemma holds.

Suppose x = 2 so that ‖c, T‖ = 0. We may assume ‖{a, b, e, f}, T‖ > 15, otherwise the
lemma holds. Without loss of generality, assume ‖a, T‖ = ‖b, T‖ = 4 and ‖e, T‖, ‖f, T‖ >
3. By Lemma 7, |T | = 4. Let {u, v} = NT (d). ThenG[c, f, g, h] containsK4, G[a, b, V (T )\
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{u, v}] contains K−4 , and when G[T ] ∼= K4, G[d, e, u, v] contains K−4 resulting in k disjoint
theta graphs and when G[T ] ∼= K−4 , G[d, e, u, v] contains Paw which contradicts (O6).

Now suppose x = 3 so that ‖c, T‖ = 1. Since ‖R, T‖ 6 10, ‖{a, b}, T‖ 6 7, and
similarly ‖{e, f}, T‖ 6 7. If in either of these two inequalities seven can be replaced with
six, then ‖F, T‖ 6 16 as desired. So we may assume ‖{a, b}, T‖ = ‖{c, d}, T‖ = 7, and
furthermore by Lemma 7, |T | = 4. Because ‖{e, f}, T‖ = 7 and ‖d, T‖ = 2, there is
some v ∈ V (T ) such that vd, ve, vf ∈ E(G). Now G[v, d, e, f ] contains K−4 . Because
‖{a, b}, T‖ = 7, one of a or b is adjacent to all vertices of V (T ) \ {v}. Then either
G[a, V (T )\{v}] and G[b, c, g, h] both contain K−4 or G[b, V (T )\{v}] and G[a, c, g, h] both
contain K−4 ; both situations yield k disjoint theta graphs, a contradiction.

For i ∈ {0, 1, 2, 3, 4} define Ti = {T ∈ T \ T̃ : ‖d, T‖ = i}, and let ti = |Ti|. Thus,
t0 + t1 + t2 + t3 + t4 = k − 2. By Lemmas 21, 22, 23, and 24, we have:

6

(
5

2
k

)
= 15k 6 ‖F, T \ T̃‖+ ‖F,R+ T̃‖ 6 18t0 + 18t1 + 16t2 + 13t3 + 12t4 + 30. (10)

We also have the following equation based on the degree of d:

5

2
k 6 dG(d) = 0t0 + t1 + 2t2 + 3t3 + 4t4 + 3. (11)

Now taking 2× (10) +4× (11) gives:

40k 6 36t0 + 40t1 + 40t2 + 38t3 + 40t4 + 72. (12)

By the definition of the ti, we have that
4∑
i=0

ti = k − 2. From this equation we get:

(36t0 + 40t1 + 40t2 + 38t3 + 40t4) + 72 6 40(k − 2) + 72 = 40k − 8. (13)

Now (13) and (12) contradict each other. This concludes the case when R ∼= C4.

4.2.3 R ∼= Paw

Suppose there exists T ∈ T such that G[T ] ∼= K−4 . When considering G[R + T ], suppose
we replace T with a K4 and replace R with a C4. This results in a partition that satisfies
(O1) - (O4), yet contradicts (O5), even though we have replaced R ∼= Paw with a C4. We
make note of this as we will use this in the arguments below.

We now label the vertices of R so that V (R) = {a, b, c, d} where ‖a,R‖ = 1 and
‖b, R‖ = 3. Let B = G[b, c, d]. We consider ‖R, T‖ based on the value of ‖a, T‖ for
T ∈ T .

Lemma 25. If ‖a, T‖ 6 1 for some T ∈ T , then ‖R, T‖ 6 12

Proof. Suppose ‖R, T || > 13. Lemma 7 implies ‖B, T‖ 6 12 so that we must have
‖a, T‖ = 1, ‖B, T‖ = 12, and furthermore |T | = 4. Without loss of generality, ax1 or ay1 is
an edge of G. Then G[a, b, x1, y1] and G[c, d, x2, y2] both contain K−4 , a contradiction.
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Lemma 26. If ‖a, T‖ = 2 for some T ∈ T , then ‖R, T‖ 6 10.

Proof. Suppose ‖R, T‖ > 11. Then there must exist a vertex v ∈ R such that ‖v, T‖ > 3.
By Lemmas 7 and 9, if G[T ] ∼= θ1,2,3 or G[T ] ∼= K2,3, we get at most two vertices of R
each with three neighbors in T so that ‖R, T‖ 6 10. Thus |T | = 4, and we consider three
cases based on the neighbors of a: ax1, ax2 ∈ E(G), ax1, ay1 ∈ E(G) and G[T ] ∼= K−4 ,
and ay1, ay2 ∈ E(G) and G[T ] ∼= K−4 .

Suppose to start ax1, ax2 ∈ E(G) (note in this case G[T ] may be either K4 or K−4 ). If
‖y1, B‖ > 2, then G[a, x1, x2, y2] and G[b, c, d, y1] both contain K−4 , a contradiction. Thus
‖y1, B‖ 6 1 and by symmetry, ‖y2, B‖ 6 1. Now ‖B, T‖ 6 8 so ‖R, T‖ 6 10 as desired.

Next assume ax1, ay1 ∈ E(G) and G[T ] ∼= K−4 . If ‖y2, B‖ > 2, then G[a, x1, y1, x2]
and G[b, c, d, y2] both contain K−4 , a contradiction. If ‖x2, B‖ = 3, then G[b, c, d, x2]
is K4 and G[a, x1, y1, y2] contains Paw contradicting (O5). Similarly, if ‖y1, B‖ = 3,
then G[b, c, d, y1] contains K4 and G[a, x1, x2, y2] contains Paw contradicting (O5). Thus
‖B, T‖ 6 8 so ‖R, T‖ 6 10 as desired.

Finally assume ay1, ay2 ∈ E(G) and G[T ] ∼= K−4 . If ‖x1, B‖ = 3, then G[b, c, d, x1]
contains K4 and G[a, y1, x2, y2] is C4 contradicting (O5). Thus ‖x1, B‖ 6 2 and by
symmetry ‖x2, B‖ 6 2. If ‖y1, B‖ = 3, then G[b, c, d, y1] contains K4 and G[a, x1, x2, y2]
contains Paw, contradicting (O5). Thus ‖y1, B‖ 6 2 and by symmetry ‖y2, B‖ 6 2. Now
‖B, T‖ 6 8 so ‖R, T‖ 6 10 as desired.

Lemma 27. If ‖a, T‖ = 3 for some T ∈ T , then ‖R, T‖ 6 8.

Proof. Suppose ‖a, T‖ = 3 and ‖R, T‖ > 9, and thus ‖B, T‖ > 6. If G[T ] ∈ {θ1,2,3, K2,3},
then there exists v ∈ T such that ‖v,B‖ > 2. However, we can replace T with the theta
graph in B + v, contradicting (O1).

So |T | = 4. We consider two cases based on the neighbors of a: ax1, ax2, ay1 ∈ E(G),
and ax1, ay1, ay2 ∈ E(G) with G[T ] ∼= K−4 .

First assume ax1, ax2, ay1 ∈ E(G). If for i ∈ {1, 2}, ‖yi, B‖ > 2, then T − yi + a and
B + yi each contain a K−4 , a contradiction. When G[T ] ∼= K−4 , we claim ‖y2, B‖ = 0
and ‖x1, B‖, ‖x2, B‖ 6 2. For otherwise, if ‖y2, B‖ = 1, then G[a, x1, x2, y1] is K4 and
G[b, c, d, y2] contains Paw which contradicts (O5). Also if ‖x1, B‖ = 3, then G[b, c, d, x1]
contains K4 and G[a, y1, y2, x2] contains Paw which again contradicts (O5). By symmetry,
it follows that ‖x2, B‖ 6 2. Thus when G[T ] ∼= K−4 , we have ‖B, T‖ 6 5, a contradiction
to ‖R, T‖ > 9. When G[T ] ∼= K4, x1, x2, y1 are all symmetric so because we have already
argued that ‖y1, B‖ 6 1, we also know by symmetry that ‖x1, B‖, ‖x2, B‖ 6 1. If
‖y2, B‖ > 2, then G[b, c, d, y2] and G[a, x1, x2, y1] both contain K−4 , a contradiction. Thus
when G[T ] ∼= K4, ‖B, T‖ 6 4, again a contradiction.

Finally assume ax1, ay1, ay2 ∈ E(G) and G[T ] ∼= K−4 . If u ∈ {x2, y1, y2}, satisfies
‖u,B‖ > 2, then T −u+a and B+u each contain K−4 , a contradiction. Since ‖B, T‖ > 6,
we must have ‖x1, B‖ = 3. However, B+x1 is a K4 and T −x1 + a is a C4, contradicting
(O5).

Lemma 28. If ‖a, T‖ = 4 for some T ∈ T , then ‖R, T‖ 6 8.
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Proof. By Lemma 7, |T | = 4. If ‖v,B‖ > 2 for some v ∈ T , then B + v and T − v + a
both contain K−4 , a contradiction. Thus ‖v,B‖ 6 1 for all v ∈ T . Now ‖B, T‖ 6 4 and
‖R, T‖ 6 8 as desired.

For i ∈ {0, 1, 2, 3, 4} define Ti = {T ∈ T : ‖a, T‖ = i}, and let ti = |Ti|. Thus,
t0 + t1 + t2 + t3 + t4 = k − 1. Looking at the degree of a, we have:

5

2
k 6 dG(a) = 0t0 + 1t1 + 2t2 + 3t3 + 4t4 + 1. (14)

By Lemmas 25, 26, 27, and 28, we get:

4

(
5

2
k

)
6 ‖R, T ‖+ ‖R,R‖ 6 12t0 + 12t1 + 10t2 + 8t3 + 8t4 + 8. (15)

Now (14) ×4 + (15) ×3 gives:

40k 6 36t0 + 40t1 + 38t2 + 36t3 + 40t4 + 28. (16)

By the definition of the ti, we have that
4∑
i=0

ti = k − 1. From this equation we get:

(36t0 + 40t1 + 38t2 + 36t3 + 40t4) + 28 6 40(k − 1) + 28 = 40k − 12. (17)

Now (16) and (17) contradict each other. This concludes the case when R ∼= Paw.
The proof of Theorem 6 is now complete.

5 Minimum Degree Transition and Ore Versions

Theorem 6 shows that when n > 4k, every n-vertex graph with minimum degree at least
d5
2
ke contains k disjoint theta graphs, and in Section 2, we show this condition is sharp

when 4k 6 n < 5k. At the same time Theorem 4 shows that when n > ck (as defined
in Theorem 4), every n-vertex graph with minimum degree at least 2k + 1 contains k
disjoint theta graphs, and furthermore this condition is sharp for n > ck. In this section,
we discuss when and how the sharp minimum degree condition may transition from d5

2
ke

to 2k+ 1 as n goes from 5k to ck. In addition, we consider minimum Ore degree versions,
and we conclude with some questions for further research.

First, we present some terminology and notation that will be used in the theorems
below. Given a graph H, an optimal coloring of H is a proper vertex-coloring using
exactly χ(H) colors. Over all optimal colorings of H, the size of the smallest color class
is denoted by σ(H). The critical chromatic number of H, denoted χcr(H), is given by
(χ(H)− 1)|H|
|H| − σ(H)

. As an example, σ(K2,3) = 2 and χcr(K2,3) = 5
3
. This notation allows us

to understand the following results of Komlós in [8], and Kühn, Osthus, and Treglown in
[9], regarding near packings of graphs.
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Theorem 29 (Komlós [8]). For every graph H and ε > 0, there exists n0 = n0(H, ε)
such that for every n > n0 the following holds: if G is an n-vertex graph with δ(G) >(

1− 1
χcr(H)

)
n, then G contains a collection of disjoint copies of H that covers all but at

most εn vertices of G.

Theorem 30 (Kühn-Osthus-Treglown [9]). For every graph H and for every ε > 0, there
exists n0 = n0(H, ε) such that for every n > n0 the following holds: if G is an n-vertex

graph with σ2(G) > 2
(

1− 1
χcr(H)

)
n, then G contains a collection of disjoint copies of H

that covers all but at most εn vertices of G.

Using these theorems, we can prove the following result regarding disjoint theta graphs.

Proposition 31. For every rational number a
b
> 5 and every real ε > 0, there exists

k0 = k0(ε, a, b) such that for every k > k0 the following holds:

(1) if G is an n-vertex graph where n = ak
b(1−ε) and δ(G) > 2k

1−ε , then G contains k
disjoint theta graphs, and

(2) if G is an n-vertex graph where n = ak
b(1−ε) and σ2(G) > 4k

1−ε , then G contains k
disjoint theta graphs.

Proof. Fix a rational number a
b
> 5 and a real number ε > 0. Since a

b
> 5, there exists

t > 3 and 0 6 r < b such that a = (t+ 2)b+ r. Let H = K2b,bt+r. Observe that |H| = a,
and since t > 3, σ(H) = 2b. So χcr(H) = a

tb+r
. Furthermore, H contains b disjoint copies

of K2,3; that is, H contains b disjoint theta graphs.
Using this H and ε, let n0 be given from Theorem 29. Let k0 be such that a

b
k0 > n0,

let k > k0, and let n = ak
b(1−ε) . Observe(

1− 1

χcr(H)

)
n =

(
1− tb+ r

a

)
ak

b(1− ε)
=

(
((t+ 2)b+ r)− tb− r

a

)
ak

b(1− ε)
=

(
2b

a

)
ak

b(1− ε)
=

2k

1− ε
.

Therefore by Theorem 29, if G is an n-vertex graph with n = ak
b(1−ε) and δ(G) > 2k

1−ε ,
then G contains a collection of disjoint copies of H that covers all but at most εn vertices.
Since each copy of H contains b disjoint theta graphs, the number of disjoint theta graphs
in G is at least b(n−εn|H| ) = b( ak

b(1−ε)
(1−ε)
a

) = k, which proves (1).

By Theorem 30, if G is an n-vertex graph with n = ak
b(1−ε) and σ2(G) > 4k

1−ε , then G
contains a collection of disjoint copies of H that covers all but at most εn vertices. The
same calculation as above then proves (2).

Again using Theorem 30, we can obtain the following minimum Ore degree result for
some n-vertex graphs with 4k 6 n < 5k.
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Proposition 32. For every ε, 0 < ε < 1
8
, there exists n0 = n0(ε) such that for all n > n0,

if G is an n-vertex graph with 4k+8εn 6 n < 5k and σ2(G) > 5k+10εn, then G contains
k disjoint theta graphs.

Proof. Fix ε where 0 < ε < 1
8
, let C =

⌊
1
ε

⌋
, and let h = 2

⌊
C(1−ε)

2

⌋
. For each graph on

at most h vertices together with our choice of ε, Theorem 30 provides some n0. In the
following, let n0 be the largest value over all possible n0 for graphs on at most h vertices
together with our choice of ε.

Choose n > n0 and k > 1 such that 4k + 8εn 6 n < 5k. Let G be an n-vertex graph
with σ2(G) > 5k + 10εn. Furthermore, let k′ =

⌈
Ck
n

⌉
.

Let G(t, n) = Kt,bn−t
2
c,dn−t

2
e where 1 6 t 6 n

4
. Observe that χcr(G(t, n)) = 2n

n−t . Let

H = G(5k′ − h, h) so that |H| = h. Our goal is to show that H has at least k′ disjoint
theta graphs, then show that Theorem 30 implies that all but at most εn vertices of G
are covered by disjoint copies of H, and finally show that the number of copies of H in G
is at least k

k′
so that G contains k disjoint theta graphs.

Claim 33. 4k′ 6 h < 5k′.

Proof. Observe:

h = 2

⌊
C(1− ε)

2

⌋
6 C(1− ε) and k′ =

⌈
Ck

n

⌉
>
Ck

n
. (18)

Thus, h
k′
6 C(1−ε)n

Ck
< n

k
. Since n < 5k, we have h

k′
< n

k
< 5. Thus, h < 5k′.

To show h > 4k′, note k′ =
⌈
Ck
n

⌉
6 Ck

n
+1. Further, h = 2

⌊
C(1−ε)

2

⌋
> 2

(
C(1−ε)

2
− 1
)

=

C(1− ε)− 2. Since C =
⌊
1
ε

⌋
6 1

ε
, we can show C(1− ε)− 2 > C − 3. Thus, h > C − 3.

Since 4k + 8εn 6 n, we deduce k
n
6 1−8ε

4
. Observe:

k′

h
6

Ck
n

+ 1

C − 3

=
k

n
+

1

C − 3
+
k

n

3

C − 3

6
k

n
+

1

C − 3
+

3

C − 3

(
1− 8ε

4

)
=
k

n
+

7− 24ε

4(C − 3)

We wish to show 7−24ε
4(C−3) 6 2ε, which is equivalent to showing 7

8
1
ε
6 C. Indeed, since

C = b1
ε
c, we have 1

ε
− 1 6 C 6 1

ε
, and since ε < 1

8
, we get 7

8
1
ε
< 1

ε
− 1 6 C. Therefore

7−24ε
4(C−3) 6 2ε, and we have

k′

h
6
k

n
+ 2ε. (19)

So h >
4k′

4k
n

+ 8ε
, and since 4k + 8εn 6 n, we deduce that 4k

n
+ 8ε 6 1. Thus, h > 4k′.
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Claim 34. H has k′ disjoint theta graphs.

Proof. Since h < 5k′, we have 5k′ − h > 0. Thus, by the definition of H as H =
G(5k′ − h, h), H is a tripartite graph. As a result, we can construct, 5k′ − h disjoint
copies of K−4 that uses all 5k′ − h vertices from the partite set of size 5k′ − h, and then
uses x1 = b3

2
(5k′ − h)c and x2 = d3

2
(5k′ − h)e vertices from each of the remaining two

partite sets (we will decide which later). This leaves us to construct h−4k′ disjoint copies
of K2,3, which uses y1 = b5

2
(h − 4k′)c and y2 = d5

2
(h − 4k′)e vertices from each of the

remaining two partite sets (we will decide which later).
Observe that x1 +x2 + y1 + y2 = 2h− 5k′ = h− (5k′−h), which is exactly the number

of vertices in the remaining two partite sets. As a result, there are enough vertices in
the two remaining partite sets to form all of our desired copies of K−4 and K2,3. By the
construction of H, these remaining partite sets are as equal as possible, except that one
may be larger than the other by exactly one. Observe that similarly, x1 + y2 and x2 + y1
are either the same or they differ by exactly one. So if x1 + y2 = x2 + y1, then because
x1 + x2 + y1 + y2 = h− (5k′ − h), the two remaining partite sets also have the same size
and we can find our desired theta graphs. If say x1+y2 = x2+y1+1, then similarly one of
the partite sets has one more vertex than the other. So we take the x1 + y2 vertices from
that larger set and x2 + y1 vertices from the smaller, to find our desired theta graphs. A
similar argument holds if x1 + y2 + 1 = x2 + y1. In any case, we obtain k′ disjoint theta
graphs in H.

To show Theorem 30 implies that all but at most εn vertices ofG are covered by disjoint

copies of H, note that by the construction of H, χcr(H) = 2h
2h−5k′ . So 2

(
1− 1

χcr(H)

)
n =

5k′n
h

. By (19), k′

h
6 k

n
+ 2ε, so that 5k′n

h
6 5n( k

n
+ 2ε) = 5k + 10εn. Therefore, σ2(G) >

5k + 10εn > 2
(

1− 1
χcr(H)

)
n, and by Theorem 30, all but at most εn vertices of G are

covered by disjoint copies of H.
In particular, G contains at least n−εn

h
disjoint copies of H, each of which contains

k′ disjoint theta graphs by Claim 34. Thus, G has at least n−εn
h
k′ disjoint theta graphs.

Recall that by (18), h 6 C(1− ε) and k′ > Ck
n

, so we have n−εn
h
k′ > n(1−ε)Ck

C(1−ε)n = k disjoint
theta graphs in G, as desired.

To the authors’ knowledge, the only known n-vertex graphs with minimum degree
d5
2
ke−1 that do not have k disjoint theta graphs, each satisfies n < 5k. So in some sense,

(1) from Proposition 31 provides an indication that perhaps when n > 5k, a minimum
degree near 2k (perhaps 2k+ 1) is sufficient enough to guarantee k disjoint theta graphs.
That is to say, perhaps the sharp minimum degree in Theorem 6 transitions to the sharp
minimum degree in Theorem 4 exactly at n = 5k and then that minimum degree holds
for all n > 5k. Proposition 32 and (2) from Proposition 31 seem to indicate a similar idea
when considering minimum Ore degree versions. These results lead the authors to pose
the following questions.

Question 35. Let k ∈ Z+, and let G be an n-vertex graph. When n > 5k and δ(G) >
2k + 1, will G always contain k disjoint theta graphs?
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Question 36. Let k ∈ Z+, and letG be an n-vertex graph. When n > 4k and σ2(G) > 5k,
will G always contain k disjoint theta graphs?

Question 37. Let k ∈ Z+, and let G be an n-vertex graph. When n > 5k and σ2(G) >
4k + 1, will G always contain k disjoint theta graphs?

Recall that the graphs described in (ii) of Theorem 4, have at least 4k vertices, min-
imum degree 2k, minimum Ore degree 4k, and do not have k disjoint theta graphs.
Therefore, if either Question 35 or Question 37 can be answered in the affirmative, then
the results would be best possible. Similarly, H ′k,n as described in Section 2, is an n-vertex
graph with 4k 6 n < 5k, such that when k is odd, σ2(H

′
k,n) = 5k−1, and does not contain

k disjoint theta graphs. Hence if Question 36 can be answered in the affirmative, then
the result would also be best possible.

Lastly, the authors would like to thank the anonymous referees for their careful reading
of this manuscript. Their suggestions and comments have improved the quality of this
paper.
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[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a
graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423–439.

[4] D. Finkel, On the number of independent chorded cycles in a graph, Discrete Math.
308 (2008) no. 22, 5265–5268.

[5] R. Gould, K. Hirohata, and P. Horn, Independent cycles and chorded cycles in graphs,
J. Comb. 4 (2013), no. 1, 105–122.

[6] K. Kawarabayashi, K−4 -factor in a graph, J. Graph Theory 39 (2002), 111–128.

[7] K. Kawarabayashi, Vertex-disjoint copies of K−4 , Discuss. Math. Graph Theory 24
(2004), 249–262.

[8] J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000), no. 2, 203–218.
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