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Abstract

We show that the diameter of connected k-colorable graphs with minimum de-

gree > δ and order n is at most
(
3− 1

k−1

)
n
δ − 1, while for k = 3, it is at most

57n
23δ +O (1).

Mathematics Subject Classifications: 05C35, 05C15, 05C12

1 Introduction

This paper is concerned with the maximum diameter of connected graphs, namely how it
depends on the order and the minimum degree, and possibly on further graph properties.
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The history of this problem goes back to the following theorem, which was discovered
multiple times [1, 6, 8, 9]:

Theorem 1. For a fixed minimum degree δ > 2 and n→∞, for every n-vertex connected
graph G, we have diam(G) 6 3n

δ+1
+O(1).

Note that Theorem 1 is sharp (even for δ-regular graphs [2]), but all the known con-
structions have complete subgraphs, whose order increases with δ. Erdős, Pach, Pollack,
and Tuza [6] conjectured that the upper bound of Theorem 1 can be improved, if we
restrict the clique size of the graph:

Conjecture 2 ([6]). Let r, δ > 2 be fixed integers and let G be a connected graph of
order n and minimum degree δ.

(i) If G is K2r-free and δ is a multiple of (r − 1)(3r + 2) then, as n→∞,

diam(G) 6
2(r − 1)(3r + 2)

(2r2 − 1)
· n
δ

+O(1)

=

(
3− 2

2r − 1
− 1

(2r − 1)(2r2 − 1)

)
n

δ
+O(1).

(ii) If G is K2r+1-free and δ is a multiple of 3r − 1, then, as n→∞,

diam(G) 6
3r − 1

r
· n
δ

+O(1) =

(
3− 2

2r

)
n

δ
+O(1).

Furthermore, they created examples showing that if Conjecture 2 is true, then it is
sharp.

Part (ii) of Conjecture 2 for r = 1 was already proved in Erdős et al. [6].
Czabarka, Dankelmann and Székely [3] proved a weaker version of Conjecture 2 (ii)

for r = 2:

Theorem 3. For every connected 4-colorable graph G of order n and minimum degree
δ > 1, diam(G) 6 5n

2δ
− 1.

In [4] we gave an unexpected counterexample for Conjecture 2 (i) for every r > 2 and
δ > 2(r − 1)(3r + 2)(2r − 3). The question whether Conjecture 2 (i) holds in the range
(r − 1)(3r + 2) 6 δ 6 2(r − 1)(3r + 2)(2r − 3) remains open. The counterexample led to
the following modification of Conjecture 2, which no longer requires cases for the parity
of the order of the excluded complete subgraph:

Conjecture 4 ([4]). For every k > 3 and δ > d3k
2
e − 1, if G is a Kk+1-free (in a weaker

version of the conjecture: k-colorable) connected graph of order n and minimum degree
at least δ, diam(G) 6

(
3− 2

k

)
n
δ

+O(1) as n→∞.
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In this paper, we follow the restrictive approach of Czabarka, Dankelmann and Székely
[3] and work on the weaker version of Conjecture 4. In other words, we use a stronger
hypothesis (k-colorable instead of Kk+1-free) than what Erdős, Pach, Pollack, and Tuza
[6] used. In our work on upper bounds on the diameter, we only assume minimum
degree at least δ, a weaker assumption than minimum degree δ. Section 2 shows that
some k-colorable (in particular 3-colorable) connected graphs realizing the maximum
diameter among such graphs with given order and minimum degree have certain canonical
properties. Hence at proving upper bounds on the diameter, we can assume that those
canonical properties hold.

Section 3 gives a linear programming duality approach to the maximum diameter
problem. With this approach, proving upper bounds to the diameter boils down to solving
a packing problem in a graph, such that a certain value is reached by the objective
function. (If a packing with that value is given, the task of checking whether the packing
is feasible is trivial.) Using this duality approach for canonical connected k-colorable
graphs, we obtain

Theorem 5. Assume k > 3. If G is a connected k-colorable graph of minimum degree at
least δ > 1, then

diam(G) 6
3k − 4

k − 1
· n
δ
− 1 =

(
3− 1

k − 1

)
n

δ
− 1.

This corroborates the conjecture of Erdős et al. in the sense that the maximum
diameter among all graphs investigated in Theorem 5 is

(
3−Θ

(
1
k

) )
n
δ
. A corollary of

Theorem 5 is the conclusion of Theorem 3, if the graph in question is 3-colorable (instead
of 4-colorable).

Section 4 applies the inclusion-exclusion (sieve) formula to give upper bounds locally
for the number of vertices in connected 3-colorable graphs with the canonical properties.
In Section 5, we define a number of global variables that play a role in the diameter
problem, and turn the upper bounds from Section 4 into linear constraints for the global
variables. (This approach was motivated by the flag algebra method of Razborov [11].) A
linear program of fixed size for the global variables arises, and solving this linear program
proves our main positive result:

Theorem 6. For every connected 3-colorable graph G of order n and minimum degree at
least δ > 1,

diam(G) 6
57n

23δ
+O(1),

where the O(1) term may depend on δ but not on n.

Note that as 57/23 ≈ 2.47826..., this is an improvement on the 5
2
· n
δ
− 1 upper bound

for 4-colorable graphs of large order in Theorem 3. In Theorem 12, in a restricted case
that does not include the likely optimal construction in [4], we prove the weaker version
of Conjecture 4 for k = 3.
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2 Clump Graphs

Let us be given a k-colorable connected graph G of order n and minimum degree at least
δ. Recall that the eccentricity of a vertex is the largest distance measurable from the
vertex in the graph. Let x be a vertex whose eccentricity is diam(G).

Take a fixed good k-coloring of G. Let layer Li denote the set of vertices at distance
i from x, and a clump in Li be the set of vertices in Li that have the same color. The
number of layers is diam(G) + 1.

Let c(i) ∈ {1, 2, . . . , k} denote the number of colors used in layer Li by our fixed
coloring. We can assume without loss of generality that in G, two vertices in layer Li,
which are differently colored, are joined by an edge in G, and also that two vertices in
consecutive layers, which are differently colored, are also joined by an edge in G. We
call this assumption saturation. Assuming saturation does not make loss of generality, as
adding these edges does not decrease degrees, keeps the fixed good k-coloring, and does
not reduce the diameter, while it makes the graph more structured for our convenience.

From the layered and saturated graph G above, we create a (weighted) clump graph
H. Vertices of H correspond to the clumps of G. Two vertices of H are connected by an
edge if there is at least one edge between the corresponding clumps in G. H is naturally
k-colored and layered, based on the coloring and layering of G. With a slight abuse of
notation, we denote the layers of H by Li as well. We assign as weights to each vertex of
the clump graph the number of vertices in the corresponding clump in G.

Given a (positive integer)-weighted graph H, it defines a graph G, whose weighted
clump graph is H, by blowing up vertices of H into as many copies as their weight is.
The degree of a vertex v in G is the sum of the weights of neighbors of the vertex u in H,
if v was created by blowing up u; diam(G) = diam(H); and the number of vertices in G
is the sum of the weights of all vertices in H. We use the letters X, Y, Z to denote three
unspecified but different colors from our k colors.

Theorem 7. Assume k > 3. Let G′ be a k-colorable connected graph of order n, diameter
D and minimum degree at least δ. Then there is a k-colored connected graph G of the
same parameters, with layers L0, . . . , LD, which is saturated, and for which the following
statements hold for every i (0 6 i 6 D − 1):

(i) If c(i) = 1, then c(i+ 1) 6 k − 1.

(ii) The number of colors used to color the set Li ∪ Li+1 is min(k, c(i) + c(i + 1)). In
particular, when c(i) + c(i+ 1) 6 k, then Li and Li+1 do not share any color.

(iii) If c(i) = k, then i > 2 and c(i+ 1) > 2.

(iv) If |Li| > c(i), i.e., Li contains two vertices of the same color, then i > 0 and
c(i) + max

(
c(i− 1), c(i+ 1)

)
> k.

Proof. After having proved a part of the Theorem 7, we will assume that G′ itself already
satisfies that property when we complete the proof of the remaining statements. When
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we create new G′ graphs, they will still satisfy the already checked parts, in other words,
we do not regress to issues that we already resolved. We fix a k-coloring of G′, let x0 be a
vertex of eccentricity D in G′, and let L0, . . . , LD be the distance layering of G′. Without
loss of generality, we assume that G′ is saturated.

(i) Select G = G′ with the same k-coloring, The statement follows from the fact that
every vertex in Li+1 has a neighbor in Li; therefore if color X appears in Li+1, then Li
has at least one color different from X.

If (ii) or (iv) is not satisfied in G′, our general strategy is the following: create a new
k-coloring of the vertices of G′ such that the set of the vertices in any clump of any layer
does not change, vertices of different color will remain differently colored, and in the new
coloring the already proven statements still hold. We saturate G′ in the new coloring (by
adding new edges, if needed) to obtain G. Now we complete this strategy for (ii), and
postpone the proof of (iv) till the end.

If (ii) fails in G′, consider the smallest i, such that the set Li ∪ Li+1 contains fewer
than min(k, c(i) + c(i + 1)) colors. As L1 has a single vertex to which all vertices of L2

is adjacent to, i > 0. Observe that there are different colors X, Y such that X is used
in both of Li and Li+1, while Y is not used in Li ∪ Li+1. We define a new coloring by
switching colors X and Y in all Lj for all j > i + 1. This is a good coloring, in which
Li ∪ Li+1 uses one more color. Repeated application of this procedure yields a k-coloring
where (ii) holds.

The hard part of this theorem is (iii). If c(i) = k, then by (i) i > 2. If c(i + 1) = 1
(i.e., if (iii) fails), then we will move clumps within Li−1 ∪Li, and recolor the graph, such
that the resulting layered colored graph will have the same required parameters as G′,
creating no violations of (i), (ii), and reducing the number of violations of (iii) in G′.

Let X be the color used on Li+1.
Assume first that Li−2 contains a color different from X. Let S be the set of vertices

in Li that is colored X. Move the vertices of S from Li to Li−1 without recoloring them,
either merging them into the X-colored clump of Li−1 or creating one, if no such clump
existed in Li−1. Add new edges to achieve saturation. In the resulting graph, the layer
indexed by i contains k − 1 colors, reducing the number of violations of (iii) in G′, and
not creating any violation of (i) or (ii).

Hence in the following we may assume that c(i− 2) = 1 and Li−2 is colored with color
X. By (i), we have c(i− 1) 6 k − 1. If c(i− 1) < k − 1, then there is a color Y not used
in Li−2 ∪Li−1. Recolor G′ by switching colors X and Y in Lj (0 6 j 6 i− 2) and recover
saturation. In the new coloring Li−2 has a color different from X, and we are back to the
case we already handled above.

Hence in the rest we may assume that c(i−2) = c(i+1) = 1, c(i) = k, c(i−1) = k−1,
and both Li−2 and Li+1 are colored with X. Let Y, Z be two arbitrary colors different from
X, and S be the set of vertices in Li−1 ∪ Li colored with X, Y or Z. We will repartition
and recolor (only with colors X, Y, Z) the vertices in S, and possibly recolor Li+1 from
color X to color Y . If we recolor Li+1, then we exchange the colors X and Y in all layers
Lj for j > i+ 2. After these steps, we recover saturation in G′. After the changes, in G′

both Li−1 and Li will contain fewer than k colors, and in the resulting k-colored graph
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the diameter, the order and minimum degree condition do not change, and no instances
violating (i) and (ii) will be created, and we reduced the number of violations of (iii). The
difficulty is in maintaining the minimum degree condition in G′ along these operations.
This is what we check next, and the repartitioning and recoloring of the vertices in S will
depend on some inequalities between certain clump sizes.

If y is a vertex not in Li−2 ∪ Li−1 ∪ Li ∪ Li+1 or y is not colored with X, Y or Z in
the graph before the operations, then the neighborhood set of y does not change. If y
is a vertex in Li−2 ∪ Li−1 ∪ Li ∪ Li+1 colored with one of X, Y, Z, then the symmetric
difference between the new and old neighborhood set of Y is a subset of S. Therefore
we only need to check the minimum degree condition for vertices colored X, Y or Z in
Li−2 ∪ Li−1 ∪ Li ∪ Li+1, and we have to show that after the operations they have at least
as many X, Y, Z colored neighbors in Li−2∪Li−1∪Li∪Li+1 as before the operations. For
any j (1 6 j 6 4), we will denote by xj, yj and zj the number of vertices in Li+j−3 colored
X, Y and Z in G′ respectively, before the operations. The k > 3 assumption, together
with the fact that Li−1 has no color X by (ii), implies that x1, y2, z2, y3, z3 and x4 are
positive.

We have several cases to consider. Initially we have |Li−2| = x1, |Li−1| = y2 + z2,
|Li| = x3 + y3 + z3 and Li+1 = x4. We will recolor the vertices in the single clump in
Li+1 from color X to color Y and switch colors X and Y in all Lj for j > I + 1, change
Li and Li−1 such that we still have |Li−1 ∪ Li| = |Li−1| + |Li| = y2 + z2 + x3 + y3 + z3
by merging some of their clumps into a single clump and adding edges so saturation is
maintained. Li−1 will have at most 2 colors, Y and Z, and Li will have at most 2 colors,
X and Y . This, it is enough to describe the clumps and their sizes after the change in
Li−1 and in Li.

X

x1

Y

y2

Z

z2

Y

y3

X

x3

Z

z3

X

x4

X

x1

Y

y2 + y3

Z

z2

Z

z3

X

x3

Y

y4

Figure 1: When x3 > y3, before and after the operations (left and right).

1 x3 > y3 or x3 > z3. (See Figure 1)
It suffices to handle the case x3 > y3, as the case x3 > z3 can be handled similarly.
After the change we have in Li−1 a clump of size y2 + y3 of color Y , and a clump
of size z2 of color Z in Li−1; also we have in Li a clump of size x3 of color X and a
clump of size z3 of color Z.
Note that, as claimed, |Li−1 ∪ Li| did not change. We verify the minimum degree
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condition. Let d(Wi) to denote the number of neighbors of a vertex w from the clump
colored W in layer Li among the X, Y, Z colored vertices of Li−2 ∪ Li−1 ∪ Li ∪ Li+1

before the operations, and d′(Wi) to denote the degree of a vertex w′ from the clump
colored W in layer Li among the X, Y, Z colored vertices of Li−2 ∪ Li−1 ∪ Li ∪ Li+1

after the operations. We have:

d′(Xi−2) = d(Xi−2) + y3 > d(Xi−2),

d′(Yi−1) = x1 + z2 + x3 + z3 = d(Yi−1),

d′(Zi−1) = x1 + y2 + z3 + y3 = d(Zi−1),

d′(Xi) = y2 + y3 + z2 + z3 + x4 > y2 + y3 + z2 + z3 = d(Xi),

d′(Zi) = y2 + y3 + x3 + x4 = d(Zi),

d′(Yi+1) = x3 + z3 = d(Xi+1) + (x3 − y3) > d(Xi+1).

X

x1

Y

y2

Z

z2

Y

y3

X

x3

Z

z3

X

x4

X

x1

Y

x3

Z

z2

X

y3 + y2

Z

z3

Y

x4

Figure 2: The case when x3 < min(y3, z3), and x3 > y2, before and after the operations
(left and right).

2 x3 < y3 and x3 < z3 and (x3 > y2 or x3 > z2). (See Figure 2.)
We may assume x3 > y2, as x3 > z2 can be handled similarly. After the change we
have in Li−1 a clump of size x3 of color Y and a clump of size z2 of color Z; and we
have in Li a clump of size y3 + y2 of color X and a clump z3 of color Z.

Note that |Li−1∪Li| did not change. When we verify the minimum degree condition,
we use the notation of Case 1 . We have:

d′(Xi−2) = d(Xi−2),

d′(Yi−1) = x1 + y2 + y3 + z2 + z3 > x1 + z2 + x3 + z3 = d(Yi),

d′(Zi−1) = x1 + x3 + y2 + y3 = d(Zi−1),

d′(Xi) = x3 + x4 + z2 + z3 = d(Yi),

d′(Zi) = x3 + x4 + y2 + y3 = d(Zi),

d′(Yi+1) = d(Xi+1) + y2.

At this point, we are left with checking the satement for x3 < min(y3, z3, y2, z2). We
split this into two cases.
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X

x1

Y

y2

Z

z2

Y

y3

X

x3

Z

z3

X

x4

X

x1

Y

y2 + x3

Z

z2

X

y3 + z3

Y

x4

Figure 3: The case x3 6 max(y2, y3, z2, z3) and z2 > y3, before and after the operations.

3 x3 < min(y3, z3, y2, z2) and z2 > y3.
See Figure 3 for the changes. When we check the degrees, we use the notation
introduced in Case 1 :

d′(Xi−2) = d(Xi−2) + x3,

d′(Yi−1) = x1 + z2 + y3 + z3 > x1 + z2 + x3 + z3 = d(Yi−1),

d′(Zi−1) = x1 + y2 + x3 + y3 + z3 > x1 + y2 + y3 + x3 = d(Zi−1),

d′(Xi) = z2 + y2 + x3 + x4 > y2 + y3 + x3 + x4 = d(Zi),

d′(Yi+1) = d(Xi+1).

X

x1

Y

y2

Z

z2

Y

y3

X

x3

Z

z3

X

x4

X

x1

Y

y2 + z2

X

y3 + x3

Z

z3

Y

x4

Figure 4: The case x3 6 max(y2, y3, z2, z3) and z2 < y3, before and after the operations.

4 x3 < min(y3, z3, y2, z2) and z2 < y3.
First note that the clump colored X in Li can simply be moved into Li−1 keeping
the minimum degree condition. After this move on the left side of Figure 4, we
see the mirror image of the left side of Figure 3, just the numbers are different.
The operations for this case, which are the “mirror image”, of the operations in the
previous case, is shown in Figure 4. Because of the symmetry, we do not delve into
the details.
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This concludes the proof of (iii)
Finally, to prove part (iv), take the least i, such that |Li| > c(i), but c(i) + max

(
c(i−

1), c(i+ 1)
)
< k. As |L0| = c(0) = 1, this means i > 0. First we show that we may assume

that Li−1∪Li∪Li+1 misses some color X. Indeed, if all colors appear in Li−1∪Li∪Li+1,
let X be a color not used in Li−1 ∪ Li and Y be a color not used in Li ∪ Li+1. Create a
new coloring of G by switching the colors X, Y in Lj for all j > i + 1. After the switch,
X is missing from Li−1 ∪ Li ∪ Li+1.

Since |Li| > c(i), there are two vertices x, y in Li that are colored the same. Recolor
x with color X. This is a valid coloring, in which Li contains one more color then before.
Repeating this procedure produces a coloring, in which |Li| = ci or c(i)+max

(
c(i−1), c(i+

1)
)
= k. Repeating this procedure recursively for the next least i, we can eliminate one

after the other the i’s that fail (iv), not creating any instances where the first three
statements would fail.

The main use of the previous theorem is that we can reduce our problem to graphs that
satisfy the conclusion of the theorem, i.e., to graphs whose clump graphs are canonical:

Definition 8. We call a k-colored weighted clump graph H canonical, if there is a graph
G satisfying the conclusions of Theorem 7, such that the clump graph of G is H. In other
words, H has D + 1 layers L0, L1, . . . , LD, where D = diam(H), and for each 1 6 i < D
we have

(i) If |Li| = 1, then |Li+1| 6 k − 1.

(ii) The number of colors used to color the set Li ∪ Li+1 is min
(
k, |Li| + |Li+1|

)
. In

particular, when |Li|+ |Li+1| 6 k, then Li and Li+1 do not share any color.

(iii) If |Li| = k, then i > 2 and |Li+1| > 2.

(iv) If Li has a weight that is bigger than 1, then i > 0 and |Li|+max
(
|Li−1|, |Li+1|

)
> k.

Note that (ii) implies that the edges missing between Li and Li+1 form a matching of
size max

(
0, |Li|+ |Li+1| − k

)
. In particular, when |Li ∪ Li+1| 6 k then all edges between

Li and Li+1 are present.
We will use property (i) of canonical graphs in the proof of Theorem 5, and properties

(i), (ii) and (iii) in the following Corollary that will be needed for the proof of Theorem 6.

Corollary 9. In a 3-colored canonical clump graph, the following sets of colors are possible
in two consecutive layers:

X
∣∣∣Y, X∣∣∣Y Z, Y Z∣∣∣X, XY ∣∣∣XZ, XY ∣∣∣XY Z, XY Z∣∣∣XY, XY Z∣∣∣XY Z. (1)
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3 Duality

In this Section we assume that k is fixed. Now we look differently at our diameter problem:
how small n can be, such that a connected k-colorable graph of order n, minimum degree
at least δ, and diameter D exists? Let Hk,δ,D denote the family of canonical clump graphs
(of diameter D) that arises from connected k-colorable graphs G with diameter D and
minimum degree at least δ, when the order of G is unspecified. Fix an H ∈ Hk,δ,D,
and consider the following packing problem for H: assign non-negative real dual weights
u(y) > 0 to y ∈ V (H), and

Maximize δ ·
∑

y∈V (H)

u(y),

subject to condition

∀x ∈ V (H)
∑

y∈V (H):xy∈E(H)

u(y) 6 1. (2)

Theorem 10. Fix an integer k > 2. Assume that there exist constants ũ > 0, C, such
that for all positive integers D and δ, and all H ∈ Hk,δ,D, in the linear program (2) the
optimum is at least

ũδD + Cδ. (3)

Then, for any k-colorable connected graphs G on n vertices and with minimum degree δ
we have

diam(G) 6
1

ũ
· n
δ
− C

ũ
. (4)

Proof. Any H ∈ Hk,δ,D is the clump graph of saturated graph G with diameter D. G can
be reconstructed by assigning w(x) > 1 integer weights for all vertices of H, such that we
assign 1 to the vertex in L0. Now n = |V (G)| =

∑
x∈V (H)

w(x).

Consider the optimization problem

Minimize
∑

x∈V (H)

w(x),

subject to condition

∀y ∈ V (H)
∑

x∈V (H):xy∈E(H)

w(x) > δ. (5)

We use the trivial inequality of the duality of linear programming [5]: namely, for any u
and w feasible solutions, by (5) and (2), we have:

δ
∑

y∈V (H)

u(y) 6
∑

y∈V (H)

u(y)
∑

x∈V (H):xy∈E(H)

w(x)

=
∑

x∈V (H)

w(x)
∑

y∈V (H):xy∈E(H)

u(y) 6
∑

x∈V (H)

w(x).

As the objective function reaches δ
∑

y∈V (H) u(y) > ũδD + Cδ, the theorem follows.
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Proof of Theorem 5. Assume k > 3. Consider a k-colorable canonical clump graph H
with layers L0, . . . , LD. We are going to find a good packing u on the vertices of H as
required to use Theorem 10. The dual weighting u will take at most 2k − 2 different
values, and every layer will get the same total dual weight.

Let i be an integer, 0 6 i 6 D. Set L−1 = LD+1 = ∅.
If |Li| 6 k − 1, then assign the dual weight k−1

(3k−4)|Li| to every v ∈ Li. This makes the

total dual weight of Li exactly k−1
3k−4 , and the dual weight of every v ∈ Li at least 1

3k−4 .
If |Li| = k, let Xi be the (possibly empty) set of vertices in Li connected to every

vertex in Li−1 ∪ Li+1, and set Yi = Li \ Xi. By definition, none of the colors in Li−1
appear in Xi, so |Xi| 6 k − |Li−1|. Since H is canonical, by Definition 8 (i) we have
|Li−1| > 2. Therefore 0 6 |Xi| 6 k − 2, and Yi 6= ∅.

Set the dual weight of every v ∈ Xi to 1
3k−4 , and the dual weight of every v ∈ Yi to

1
3k−4 −

1
(3k−4)(k−|Xi|) . As |Yi| = k − |Xi|, the total dual weight of Li is

|Xi|
3k − 4

+ (k − |Xi|)
(

1

3k − 4
− 1

(3k − 4)(k − |Xi|)

)
=

k − 1

3k − 4
.

Moreover, as k − |Xi| > 2, the dual weight of v ∈ Yi is at least 1
2(3k−4) .

Now take vertex x of H. Then x ∈ Lj for some 0 6 j 6 D. We are going to check
that the neighbors of x have a total dual weight of at most 1.

If |Lj| 6 k − 1, or (|Lj| = k and x ∈ Xj), then the weight of x is at least 1
3k−4 . Since

the open neighborhood of x is a subset of (Lj−1 ∪Lj ∪Lj+1) \ {x}, the sum of the weight

of its neighbors is at most 3(k−1)
3k−4 −

1
3k−4 = 1.

If |Lj| = k and x ∈ Yj, then there is a y ∈ Lj−1∪Lj+1 such that the open neighborhood
of x is contained by (Lj−1 ∪ Lj ∪ Lj+1) \ {x, y}. As the sum of the weights of x and y is

at least 1
3k−4 , the total weight of the neighbors of x at at most 3(k−1)

3k−4 −
1

3k−4 = 1.

The total dual weight of the vertices in H is k−1
3k−4(D + 1). Now Theorem 5 follows

from Theorem 10 with ũ = C = k−1
3k−4 .

Using k = 3, we get a weaker version of Theorem 3:

Corollary 11. If G is connected 3-colorable graph of order n and minimum degree δ > 1,

diam(G) 6
5n

2δ
− 1.

4 Inclusion-Exlcusion (Sieve) for the case k = 3

Let us be given a 3-colorable saturated connected graph G of order n and minimum degree
at least δ, which maximizes the diameter D among such graphs. By Theorem 7, we may
assume without loss of generality that the clump graph of G is canonical. Furthermore,
Corollary 9 tells what kind of color sets can be in consecutive layers. We often use these
facts without explicit reference in the future. Let `i = |Li| denote the number of vertices
in the ith layer of G. As we are about to prove Theorem 6, we can assume without loss
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of generality that `i 6 3δ. Indeed, if G does not satisfy this inequality, eliminate vertices
from clumps with excess above δ, to obtain the graph G′ on n′ vertices. G′ still satisfies
the conditions of Theorem 6, and therefore its conclusion with n′ replacing n. Hence G
also satisfies the conclusion of Theorem 6. We are going to build lower bounds for the
sum of a couple of consecutive `i’s, from which we derive lower bounds for n. The key
tool is the inclusion-exclusion formula for the size of the union of the open neighborhoods
of some vertices. Note that a vertex in Li can have neighbors only in Li−1, Li, Li+1. We
denote the open neighborhood of vertex z by N(z). In Subsection 4.1 we do this approach
when the vertices are taken from different clumps from the same Li, in Subsection 4.2 we
do this for vertices taken from two consective layers. Recall that c(i) denotes the number
of clumps in Li. Let S = {i : c(i) = 1} be the set of singles. We use the notation xi, yi, zi
to represent the number of vertices in the clumps with color Xi, Yi, Zi, respectively. Here
Xi, Yi, Zi can be any of the colors A,B,C of the 3-coloring, but they must be different
colors. For the ease of computation we introduce L−1 = LD+1 = ∅, so `−1 = `D+1 = 0.

4.1 Sieve for neighborhoods of vertices from one layer

Here we assume 0 6 i 6 D. We will only need the cases when c(i) 6= 3
Case 1. c(i) = 1. We obviously have `i−1 + `i+1 > δ, which we will express as

2`i−1 + 2`i + 2`i+1 > 2δ + 2`i. (6)

Case 2. c(i) = 2 We have 2`i−1 + `i + 2`i+1 > 2δ from the fact that vertices from either
color in the ith layer have at least δ neighbors. We will express this as

2`i−1 + 2`i + 2`i+1 > 2δ + `i. (7)

4.2 Sieve by two consecutive layers

Now we assume 0 6 i < D, so i+ 1 6 D.
Case 1. i ∈ S, i+ 1 ∈ S. We have

`i−1 + `i + `i+1 + `i+2 > 2δ. (8)

Case 2. i ∈ S, i+ 1 /∈ S. By Corollary 9 we have c(i+ 1) = 2. Apply (6) to Li to obtain
2`i−1 + 2`i+1 > 2δ, apply (7) to Li+1 to obtain 2`i + `i+1 + 2`i+2 > 2δ, and average into

`i−1 + `i +
3

2
`i+1 + `i+2 > 2δ. (9)

Case 3. i /∈ S, i+ 1 ∈ S. Like in Case 2, we obtain

`i−1 +
3

2
`i + `i+1 + `i+2 > 2δ. (10)
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Case 4. i /∈ S, i+ 1 /∈ S. In this case Li and Li+1 must share a color, and by Corollary 9
their union must use all 3 colors. We can assume without loss of generality that none of
Xi, Yi, Xi+1, Zi+1 is empty. Take xi ∈ Xi, yi ∈ Yi, xi+1 ∈ Xi+1, zi+1 ∈ Zi+1. Considering
the neighborhood of xi, we have

δ 6 `i−1 + |Yi|+ |Zi|+ |Yi+1|+ |Zi+1|, (11)

considering the neighborhood of xi+1, we have

δ 6 `i+2 + |Yi|+ |Zi|+ |Yi+1|+ |Zi+1|, (12)

considering the neighborhood of yi, we have

δ 6 `i−1 + |Xi|+ |Zi|+ |Xi+1|+ |Zi+1|, (13)

considering the neighborhood of zi+1, we have

δ 6 `i+2 + |Xi|+ |Yi|+ |Xi+1|+ |Yi+1|. (14)

Weighting (11) and (12) with 1/3, (13) and (14) with 2/3, and summing them up, we
obtain

`i−1 +
4

3
[`i + `i+1] + `i+2 > 2δ. (15)

Adding up (8), (9,) (10), (15) for i = 1, . . . , D − 1, we obtain

4n+
∑

(i,j):i/∈S
j /∈S,|i−j|=1

1

3
`i +

∑
i:i+1∈S,i/∈S

1

2
`i +

∑
i:i−1∈S,i/∈S

1

2
`i > 2Dδ +O(δ). (16)

The O(δ) error term arises from the fact that certain `i terms, at the front and at the
end, do not arise four times, as many times they are counted in 4n.

4.3 Sieve for neighborhoods of vertices from three consecutive layers

We are going to give lower bounds to

2(`i−2 + `i−1 + `i + `i+1 + `i+2) = 2|Li−2 ∪ Li−1 ∪ Li ∪ Li+1 ∪ Li+2| (17)

using inclusion-exclusion, based on a case analysis of the color content of Li−1, Li, Li+1.
Case 1. i − 1 /∈ S, i /∈ S, i + 1 /∈ S. In particular by Corollary 9 we have that for
j ∈ {i − 1, i}, Lj and Lj+1 share a color and their union contains all three colors. The
analysis boils down to two subcases:
Subcase 1.1. Li−1 and Li+1 share at least two colors. We may assume in this case that
none of Xi−1, Yi−1, Xi, Zi, Xi+1, Yi+1 is empty.
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Take yi−1 ∈ Yi−1, xi−1 ∈ Xi−1, zi ∈ Zi, xi+1 ∈ Xi+1 and yi+1 ∈ Yi+1. Using inclusion-
exclusion we have

|N(yi−1) ∪N(zi) ∪N(xi+1)| > 3δ − (|Xi−1|+ `i + |Yi+1|).

and
|N(xi−1) ∪N(zi) ∪N(yi+1)| > 3δ − (|Yi−1|+ `i + |Xi+1|).

Combining the two inequalities above we obtain

2(`i−2 + `i−1 + `i + `i+1 + `i+2) > 6δ − 2`i − `i−1 − `i+1. (18)

Subcase 1.2. Li−1 and Li+1 share only one color. We may assume that Li−1 = Xi−1∪Yi−1;
Li+1 = Yi+1 ∪ Zi+1 where none of Xi−1, Yi−1, Yi+1, Zi+1, Xi, Zi is empty.
Let xi−1 ∈ Xi−1, yi−1 ∈ Yi−1, xi ∈ Xi, zi ∈ Zi, yi+1 ∈ Yi+1, zi+1 ∈ Zi+1. Inclusion-exclusion
gives

|N(xi−1) ∪N(zi) ∪N(yi+1)| > 3δ − (|Yi−1|+ `i + |Zi+1|),

and
|N(yi−1) ∪N(xi) ∪N(zi+1)| > 3δ − (|Zi−1|+ `i + |Yi+1|).

We obtain (18), like in the previous subcase.
Case 2. i − 1 /∈ S, i ∈ S, i + 1 /∈ S. We may assume Li = Zi, and for j ∈ {i − 1, i + 1}
Lj = Xj ∪Yj, where none of Xi+1, Yi+1, Xi−1, Yi−1, Zi is empty. This can be handled like
Subcase 1.1 to obtain (18).
Case 3. i − 1 ∈ S, i ∈ S, i + 1 ∈ S. We can assume Li−1 = Xi−1, Li = Yi, Li+1 = Zi+1

(in case Li+1 = Xi+1, switch colors X and Z in layers Lj for j > i + 1). Select xi−1 ∈
Xi−1, yi ∈ Yi, zi+1 ∈ Zi+1, and apply inclusion-exclusion for |N(xi−1) ∪ N(yi) ∪ N(zi+1)|
to obtain

2(`i−2 + `i−1 + `i + `i+1 + `i+2) > 6δ − 2`i.

Case 4. i− 1 ∈ S, i ∈ S, i+ 1 /∈ S. As the clump graph is canonical, c(i+ 1) = 2. Hence
we can assume Li−1 = Xi−1, Li = Yi, Li+1 = Xi+1 ∪ Zi+1. Applying inclusion-exclusion
for the neighborhoods of representative elements, we obtain

|N(xi−1) ∪N(yi) ∪N(xi+1)| > 3δ − `i − |Zi+1|

and
|N(xi−1) ∪N(yi) ∪N(zi+1)| > 3δ − `i − |Xi+1|.

Combining the last two displayed formulae, we obtain

2(`i−2 + `i−1 + `i + `i+1 + `i+2) > 6δ − 2`i − `i+1,

which is even stronger than (18).
Case 5. i− 1 /∈ S, i ∈ S, i+ 1 ∈ S. This is a mirror image of Case 4, so we have

2(`i−2 + `i−1 + `i + `i+1 + `i+2) > 6δ − `i−1 − 2`i.

the electronic journal of combinatorics 28(3) (2021), #P3.52 14



Case 6. i−1 ∈ S, i /∈ S, i+1 ∈ S. We may assume Xi−1 = Li−1, Yi∪Zi = Li, Xi+1 = Li+1,
where Xi−1, Yi, Zi, Xi+1 are nonempty. Select xi−1 ∈ Xi−1, yi ∈ Yi, zi ∈ Zi, xi+1 ∈ Xi+1.
Clearly

|Li−2 ∪ Li−1 ∪ Li ∪ Li+1 ∪ Li+2| >
> |N(xi−1) ∪N(xi+1)|+ |N(yi) ∪N(zi)| − |(N(xi−1) ∪N(xi+1)) ∩ (N(yi) ∪N(zi))| >

> (2δ − `i) + (2δ − `i−1 − `i+1)− `i = 4δ − 2`i − `i−1 − `i+1.

We conclude

2(`i−2 + `i−1 + `i + `i+1 + `i+2) > 8δ − 4`i − 2`i−1 − 2`i+1. (19)

Case 7. i − 1 ∈ S, i /∈ S, i + 1 /∈ S. We may assume Xi−1 = Li−1, Yi ∪ Zi = Li, where
Xi−1, Yi, Zi and Xi+1 are nonempty. Select xi−1 ∈ Xi−1, yi ∈ Yi, zi ∈ Zi, xi+1 ∈ Xi+1.
Clearly

|Li−2 ∪ Li−1 ∪ Li ∪ Li+1 ∪ Li+2| > |N(xi−1) ∪N(xi+1) ∪N(yi) ∪N(zi)|
> (2δ − `i) + (2δ − `i−1 − `i+1)− `i
= 4δ − 2`i − `i−1 − `i+1.

We conclude (19) again.
Case 8. i − 1 /∈ S, i /∈ S, i + 1 ∈ S. As this is the mirror image of Case 7’, we arrive at
the same conclusion (19), as the conclusion is symmetric.

For 1 6 i 6 D − 1, we call a triplet of consecutive layers (i − 1, i, i + 1) singular, if
i /∈ S and (i+1 ∈ S or i−1 ∈ S). Let s denote the number of singular triplets. Summing
up the lower bounds to (17) obtained in the 8 cases, we have

10n > 6δD − 2n+O(δ)−
∑
i:i/∈S

i−1,i+1/∈S

(`i−1 + `i+1)−
∑
i:i∈S

i−1,i+1/∈S

(`i−1 + `i+1)

−
∑
i∈S

i−1∈S,i+1/∈S

`i+1 −
∑
i∈S

i−1/∈S,i+1∈S

`i−1 −
∑
i:i/∈S

i−1∈S∨i+1∈S

(−2δ + 2`i + `i−1 + `i+1)

= 6δD − 2n+ 2sδ +O(δ)

−
∑
i:i/∈S

i+1,i+2/∈S

`i −
∑
i:i/∈S

i−1,i−2/∈S

`i −
∑
i:i/∈S

i+1∈S,i+2/∈S

`i −
∑
i:i/∈S

i−1∈S,i−2/∈S

`i

−
∑
i/∈S

i−1,i−2∈S

`i −
∑
i/∈S

i+1,i+2∈S

`i − 2
∑
i:i/∈S

i−1∈S∨i+1∈S

`i −
∑

i:i+1/∈S
i∈S∨i+2∈S

`i −
∑

i:i−1/∈S
i∈S∨i−2∈S

`i

Now we use that∑
i:i+1/∈S

i∈S∨i+2∈S

`i +
∑

i:i−1/∈S
i∈S∨i−2∈S

`i 6
∑
i:i/∈S

i+1/∈S,i+2∈S

`i +
∑
i:i/∈S

i−1/∈S,i−2∈S

`i + 2
∑
i:i∈S

`i
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and

2
∑
i/∈S

`i =

 ∑
i:i/∈S

i+1,i+2/∈S

`i +
∑
i:i/∈S

i+1∈S,i+2/∈S

`i +
∑
i:i/∈S

i+1/∈S,i+2∈S

`i +
∑
i:i/∈S

i+1,i+2∈S

`i



+

 ∑
i:i/∈S

i−1,i−2/∈S

`i +
∑
i:i/∈S

i−1∈S,i−2/∈S

`i +
∑
i:i/∈S

i−1/∈S,i−2∈S

`i +
∑
i:i/∈S

i−1,i−2∈S

`i


to obtain

12n > 6δD + 2sδ +O(δ)− 2
∑
i:i/∈S

`i − 2
∑
i:i/∈S

i−1∈S∨i+1∈S

`i − 2
∑
i:i∈S

`i

= 6δD + 2sδ − 2n+O(δ)− 2
∑
i:i/∈S

i−1∈S∨i+1∈S

`i.

This gives

7n > 3δD + sδ +O(δ)−
∑
i:i/∈S

i−1∈S∨i+1∈S

`i. (20)

5 Optimization

µ α1

or

α2

Figure 5: Visual representation for some variables denoted with Greek letters. Layers
with black filled circles represent the layers whose vertices we count, the empty circles
show how many colors are present in the nearby layers. Gray filled circles represent a
third color that may or may not be present in the layer.

The inequalities (16) and (20) are key constraints for our linear program. The linear
program is in global variables, which are mostly the fraction of vertices of G in certain
type of layers, which live in a neighborhood of certain type of layers. The global variables,
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denoted by Greek letters, will be:

µ =
1

n

∑
i:c(i)=1

`i

α1 =
1

n

∑
i:0<i<D,c(i)=2
i−1,i+1∈S

`i

α2 =
1

n

∑
i:0<i<D,c(i)=2,
i−1∈S,i+1/∈S

`i +
1

n

∑
i:0<i<D,c(i)=2,
i+1∈S,i−1/∈S

`i

φ =
Dδ

n

ψ =
δs

n

Figure 5 illustrates the variables whose definition involves sums. Clearly, all variables are
non-negative. We use Corollary 9 on what kind of layers can be consecutive. From the
definitions, it easily follows that

µ+ α1 + α2 6 1. (21)

We have∑
(i,j):i/∈S

j /∈S,|i−j|=1

`i = 2n(1− α1 − α2 − µ) + nα2 +O(δ) = n

(
2− 2µ− 2α1 − α2 +O

(
δ

n

))
,

since (except possibly for i = D) `i’s accounted for in the definition of µ and αi do not
contribute to the sum on the left side, `i-s accounted for in α2 appear once, and all other
`i’s appear twice. In addition,∑

i:i+1∈S,i/∈S

`i +
∑

i:i−1∈S,i/∈S

`i = n

(
2α1 + α2 +O

(
δ

n

))
.

Using these observations, simple algebra derives from (16)

12φ+ 4µ− 2α1 − α2 6 28 +O

(
δ

n

)
. (22)

From (20), using ∑
i:i/∈S

i−1∈S∨i+1∈S

`i. = n(α1 + α2)

we get

7 > 3φ+ ψ − α1 − α2 +O
(n
δ

)
. (23)
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Let D denote the set of layers with 2 colors, with singles on both side. (Their cardi-
nalities added up to α1.) Let E denote the set of layers that are adjacent to at least one
layer from D. Hence all layers in E are singles. Let F denote the set of remaining layers,
i.e. not in D ∪ E . First note that

|D|+ |E|+ |F| = D + 1. (24)

By the minimum degree condition, for all i : 0 < i < D we have δ 6 `i−1 + `i + `i+1.
Hence, δ|F| 6

∑
i∈F(`i−1 + `i + `i+1) 6 3n(1− α1) +O(δ) and

|F| 6 3(1− α1)
n

δ
+O(1). (25)

It is not difficult to see that |D|+ |E| 6 3s. Using this observation with (24) and (25), we
obtain

3φ =
3δ

n
(|D|+ |E|+ |F| − 1) 6

3δ

n
(3s) +

3δ

n
|F|

and hence

φ 6 3ψ + 3(1− α1) +O

(
δ

n

)
. (26)

We tried to use more inequalities and more variables, splitting α1 further, based on the
number of colors in the layers before and after. Removing redundant variables and con-
ditions, we finalized our linear program based on constraints (21), (22), (23) and (26) as
follows:

Maximize φ =
Dδ

n
subject to

12φ+ 3ψ + 4µ+ 2α1 + α2 6 1

12φ3ψ+ + 4µ− 2α1 − α2 6 28 +O

(
δ

n

)
13φ+3ψ+4µ+− 2α1 − α2 6 70 +O

(
δ

n

)
12φ− 3ψ+4µ + 3α1 6 30 +O

(
δ

n

)
12121212121φ, µ, ψ, α1, α2 > 00 +O

(
δ

n

)
Let x = (x1, x2, x3, x4, x5)

T = (φ, µ, ψ, α1, α2)
T , let A be the 4 × 5 coefficient matrix

above, b = (1, 28, 7, 3)T , and h be any concrete error term in the constraint column
within the O

(
δ
n

)
bounds. Let y = (y1, y2, y3, y4, y5). Consider now four closely related

linear programs:

Ax 6 b + h; x > 0; maximize x1; (27)

Ax 6 b; x > 0; maximize x1; (28)

yA > (1, 0, 0, 0, 0); y > 0; minimize y(b + h)T ; (29)

yA > (1, 0, 0, 0, 0); y > 0; minimize ybT . (30)
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Our standard reference to linear programming is [5]. Note that (27) is identical to the
displayed linear program, and that (27) and (29), and (28) and (30) are dual linear
programs, respectively, and the Duality Theorem of Linear Programming applies to them.
Utilizing the open source online tool [10], we solved (28) with optimum φ = 57

23
attained

at (57
23
, 0, 13

22
, 17
23
, 6
23

)T . By duality, 57
23

is the optimum of (30) as well. The polytope defined
by the constraints of (28) has a feasible solution x∗, for which inequalities in the 3rd, 4th

and 5th constraints hold strictly—just modify the optimal solution by reducing φ a bit.
We want to show that (27) has a finite optimum, if n is sufficiently large. Using the
first and third constraints in (27), we get that 12φ 6 30 + O( δ

n
), which implies that

φ 6 3 for n sufficiently large. Our only concern is whether (27) has a feasible solution
at all, as negative error terms might eliminate it. Clearly x∗ is a feasible solution, if n
is sufficiently large. By the Duality Theorem, (29) has a finite minimum value, which is
equal to the maximum value for (27). As the polytopes of (29) and (30) are the same,
this finite minimum is achieved in one of the finitely many vertices of this polytope, say
y(1), . . . ,y(m), as these linear programs only differ in their objective functions. Now we
have

max x1 in (27) = min
y>0

y(b + h)T =
m

min
i=1

y(i)(b + h)T

>
m

min
i=1

y(i)bT +
m

min
i=1

y(i)hT =
57

23
+O

(
δ

n

)
.

On the other hand,

max x1 in (27) = min
y>0

y(b + h)T =
m

min
i=1

(
y(i)bT + y(i)hT

)
6

m

min
i=1

(
y(i)bT +

m
max
j=1

y(j)hT
)

=
m

min
i=1

y(i)bT +
m

max
i=1

y(i)hT

=
57

23
+O

(
δ

n

)
.

We concluded the proof of Theorem 6. The linear programming arguments above should
be well-known, but we were unable to find a reference.

The following theorem proves the weaker version of Conjecture 4 for k = 3, in a
restricted case of no single layers:

Theorem 12. For every connected 3-colorable graph G of order n and minimum degree
at least δ > 1, such that in the canonical clump graph of G no layer Li is a single for
0 < i < D, we have

diam(G) 6
7n

3δ
+O(1).

Proof. If there are no single color layers besides L0 and LD, in (16) the second and third
sums are zero, and the first is upper bounded by 2

3
n. This yields 14n/3 > 2Dδ + O(δ).

An alternative proof of the theorem is from (20), in which s = 0 and the sum is O(δ) in
this case.
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The theorem also holds if the number of single layers is bounded as n → ∞. We are
not aware of constructions getting close to this upper bound without single layers.
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