
A Consecutive Lehmer Code for

Parabolic Quotients of the Symmetric Group

Wenjie Fang
Laboratoire Informatique Gaspard Monge
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Abstract

In this article we define an encoding for parabolic permutations that distin-
guishes between parabolic 231-avoiding permutations. We prove that the compo-
nentwise order on these codes realizes the parabolic Tamari lattice, and conclude a
direct and simple proof that the parabolic Tamari lattice is isomorphic to a certain
ν-Tamari lattice, with an explicit bijection. Furthermore, we prove that this bijec-
tion is closely related to the map Θ used when the lattice isomorphism was first
proved in (Ceballos, Fang and Mühle, 2020), settling an open problem therein.
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1 Introduction

A (right) inversion of a permutation w is a pair of indices (i, j) with i < j such that
w(i) > w(j). The number of inversions of w can therefore be regarded as a degree of
disorder of w. The Lehmer code associated with w, attributed to Lehmer [9] but can
be traced back to Laisant [8], is the integer tuple whose ith entry counts the number of
inversions of w of the form (i, ·).

Björner and Wachs defined a “consecutive” version of the Lehmer code in [2, Section 9],
which we shall call the BW-code of w. This encoding associates an integer tuple with a
permutation w whose ith entry counts the length k of the longest sequence such that (i, j)
is an inversion for all j ∈ {i+1, i+2, . . . , i+k}.

In contrast to the original Lehmer code, the BW-code no longer uniquely determines
a permutation. However, the permutations with the same BW-code form an interval in
the (left) weak order on the group of all permutations, the symmetric group [2, Proposi-
tion 9.10]. This (left) weak order is defined by containment of (right) inversion sets.

Another consequence of [2, Proposition 9.10] is that among all permutations with the
same BW-code, there is a unique permutation w which avoids the pattern 231, i.e., in
which no three indices i < j < k exist such that w(k) < w(i) < w(j), and this permutation
minimizes the number of inversions among all permutations with the same BW-code as w.

Let us denote the symmetric group of degree n by Sn, and its subset of all 231-avoiding
permutations by Sn(231). The (left) weak order on Sn is a lattice, i.e., every two elements
have a unique lower bound and a unique upper bound. This property was established
independently by Guilbaud and Rosenstiehl [7] and Yanagimoto and Okamoto [15]. The
restriction of this lattice to Sn(231) was proved to be a sublattice by Björner and Wachs
[2, Theorem 9.6(i)] and a quotient lattice by Reading [13, Theorem 5.1]. In fact, the
resulting lattice incarnates the famous Tamari lattice denoted by Tn, first defined by
Tamari in [14]. We can thus see the BW-code as a concrete and simple way to quotient
the weak order on Sn into Tn.

An analogue of 231-avoiding permutations for parabolic quotients of Sn was intro-
duced by Mühle and Williams in [10], and it was shown that these permutations constitute
a quotient lattice (but no longer a sublattice) of the corresponding (left) weak order, the
parabolic Tamari lattice [10, Theorem 1]. Since any parabolic quotient of Sn is naturally
indexed by a composition α of n, we call the resulting lattice the α-Tamari lattice Tα.
The main purpose of this article is to define a parabolic analogue of the BW-code; see
Definition 6. We prove that the componentwise order on these parabolic BW-codes is
isomorphic to Tα.

It was shown in [10, Theorem 1] that Tα is in fact a quotient lattice of the weak order
on Sα with respect to a certain equivalence relation Rα on Sα. The corresponding equiv-
alence classes form intervals in the weak order and if two α-permutations are equivalent,
then one can be obtained from the other by a sequence of certain local moves. Moreover,
each equivalence class contains a unique (α, 231)-avoiding permutation which is also the
smallest element in the corresponding weak order interval. Globally, determining whether
two α-permutations are equivalent is quite tedious, because one essentially has to compare
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the smallest elements in the corresponding equivalence classes. Our parabolic BW-code
provides a simple criterion for equivalence, because we prove that two α-permutations are
equivalent with respect to Rα if and only if they have the same code; see Lemma 17.

If we denote the set of parabolic BW-codes by Cα and the componentwise order on
integer tuples (of the same length) by 6comp, then our first main result follows immediately.

Theorem 1. For every n > 0 and every integer composition α of n it holds that Tα ∼=
(Cα,6comp).

Originally, the Tamari lattice was defined in terms of a “rotation” operation on paren-
thesizations, binary trees or equivalently Dyck paths. A northeast path is a lattice path in
N2 comprised of north steps (marked by N) and east steps (marked by E) of unit length.
A Dyck path of semilength n is equivalent to a northeast path that stays weakly above
the staircase path (NE)n and uses n north and n east steps.

A rotation of a northeast path exchanges two portions of the path under certain
conditions, and Tn arises as the rotation order on the set of Dyck paths of semilength n.
An extension of this construction was introduced by Préville-Ratelle and Viennot in [12].
In that paper, the set of all northeast paths weakly above a fixed northeast path ν, which
start and end at the same coordinates as ν, was considered. Ordering this set by rotation
produces another lattice, the ν-Tamari lattice [12, Theorem 1.1].

For any composition α = (α1, α2, . . . , αr) of n, we can define the α-bounce path
να = Nα1Eα1Nα2Eα2 · · ·NαrEαr . It was established by Ceballos, Fang and Mühle in
[3, Theorem II] that Tα is isomorphic to the να-Tamari lattice. The proof of this result is
rather technical, using some deep lattice-theoretic properties of Tα, namely the fact that
Tα is extremal and is thus uniquely determined by its Galois graph. The second main
contribution of this article is a much simpler and direct proof of this result.

In general, the ν-Tamari lattice admits a simple encoding as the componentwise order
on so-called ν-bracket vectors, given by Ceballos, Padrol and Sarmiento in [4, Theo-
rem 4.2]. If ν = να, then the corresponding bracket vectors can be converted in a simple
way into parabolic BW-codes. Since both parabolic BW-codes and bracket vectors are
ordered componentwise, the proof of the next result follows readily.

Theorem 2 ([3, Theorem II]). For every n > 0 and every integer composition α of n,
the να-Tamari lattice is isomorphic to Tα.

The original proof of Theorem 2 in [3] did not provide an explicit map between the
two lattices, but rather passed through their Galois graphs, whose elements are related
by a map Θ between the two lattices. In [3], it was postulated as Open Problem 2.23
to prove that Θ extends to a full lattice isomorphism, not limited to elements of the
Galois graphs. Using parabolic BW-codes, by introducing a stack processing procedure
on (α, 231)-avoiding permutations, we settle this open problem affirmatively, while giving
another interpretation of parabolic BW-codes; see Corollary 40.

In Section 2, we recall the basic definitions regarding parabolic quotients of the sym-
metric group, parabolic pattern avoidance and the weak order. In Section 3, we define
the parabolic BW-codes and prove Theorem 1.
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In Section 4, we first recall the definitions of Dyck paths and northeast paths, as
well as ordinary Tamari lattices and ν-Tamari lattices. We then prove Theorem 2 in
Section 4.3 by describing an explicit conversion from parabolic BW-codes to να-bracket
vectors. Finally, in Section 5, after introducing some classical constructions that we need,
we give a combinatorial interpretation of the map Θ mentioned after Theorem 2 in terms
of a certain stack-processing procedure, and relate the bijection between parabolic BW-
codes and να-bracket vectors to Θ, thus solving [3, Open Problem 2.23].

2 α-permutations and the α-Tamari lattice

Throughout this article, we fix an integer n > 0 and define [n]
def
= {1, 2, . . . , n}.

2.1 α-permutations

Let α = (α1, α2, . . . , αr) be a composition of n. For a ∈ [r], we define

sa
def
= α1 + α2 + · · ·+ αa,

and we set s0
def
= 0. The set {sa−1+1, sa−1+2, . . . , sa} is the ath α-region.

The indicator map %α : [n] → [r] is defined by %α(i) = a if and only if sa−1 < i 6 sa.
In other words, %α(i) is the index of the α-region containing i. When no confusion will
arise, we will drop the subscript α. For three indices i < j < k with %(i) < %(k), we say
that j is in an α-region strictly between i and k if %(i) < %(j) < %(k).

Let Sn denote the symmetric group of degree n. We are interested in the subset of
α-permutations , defined by

Sα
def
= {w ∈ Sn | if %(i) = %(i+ 1), then w(i) < w(i+ 1)}.

Clearly, if α = (1, 1, . . . , 1), then Sα = Sn.

Remark 3. If we consider the subgroup G
def
= S|α1| × S|α2| × · · · × S|αr| of Sn, then we

may identify Sα with the set of minimal-length representatives of the left cosets in Sn/G.

An α-permutation w ∈ Sα has an (α, 231)-pattern if there are three indices i < j < k—
each in different α-regions—such that wi < wj and wi = wk + 1. If w does not have an
(α, 231)-pattern, then w is (α, 231)-avoiding . Let Sα(231) denote the set of (α, 231)-
avoiding permutations .

Remark 4. In the case α = (1, 1, . . . , 1), the (α, 231)-avoiding permutations are exactly
the classical 231-avoiding permutations: one can either require wi = wk + 1 or not, since
if w has any 231-pattern, then one can find one with the extra condition wi = wk + 1.
In the general case, these notions differ since i could belong to the same α-region as j.
For example, 3 24 1 belongs to S(1,2,1)(231) whereas it has a classical 231-pattern with
elements in different α-regions.
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2.2 The weak order

For w ∈ Sα, we define its (right) inversion set by

Inv(w)
def
=
{

(i, j) | i < j and wi > wj
}
.

This enables us to define a partial order—the (left) weak order—on Sα by setting

u 6L v if and only if Inv(u) ⊆ Inv(v).

Two permutations u, v ∈ Sα form a cover relation—denoted by u lL v—if u <L v and
there is no w ∈ Sα with u <L w <L v. It follows from the analogous property of the weak
order on the full group Sn that in Sα we have ulL v if and only if there are two indices
i < j in different α-regions, such that ui = uj − 1, and

vk =


uj, if k = i,

ui, if k = j,

uk, otherwise.

The partially ordered set (Sn,6L) is a lattice by [15, Theorem 2.1]; see also [7]. For
an arbitrary composition α of n, it follows from [1, Theorem 4.1] that (Sα,6L) is an
interval of (Sn,6L), and thus also a lattice.

The partially ordered set Tα
def
=
(
Sα(231),6L

)
is the α-Tamari lattice. This name is

justified by the following result.

Theorem 5 ([10, Theorem 1]). Tα is a lattice for every n > 0 and every integer compo-
sition α of n.

3 A generalized Lehmer code for Sα

3.1 Encoding α-permutations

We consider the following set of integer tuples.

Definition 6. Let Cα denote the set of all integer tuples (c1, c2, . . . , cn) with the following
properties:

(C1) 0 6 ci 6 n− s%(i) for all i ∈ [n];

(C2) ci 6 ci+1 for all i ∈ [n− 1] such that %(i) = %(i+ 1);

(C3) csa 6 ci − sa + s%(i) for all i ∈ [sr−2] and all a ∈
{
%(i)+1, %(i)+2, . . . , r−1

}
such

that ci > sa − s%(i).

The set C(1,1,...,1) is precisely the set of integer tuples defined in [2, Definition 9.1].
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Remark 7. The statement of (C3) is directly true if a = r and trivial if i > sr−2, hence
the restriction to i ∈ [sr−2] and a < r.

Indeed, by (C1), cn = 0 so that the implication required by (C3) is trivially satisfied
when a = r. If i > sr−2, then %(i) > r − 1, so that the only case one could consider is
again a = r.

For example, with n = 3 and α = (2, 1), all conditions boil down to 0 6 c1 6 c2 6 1
and c3 = 0, hence three solutions. With n = 3 and α = (1, 2), one gets 0 6 c1 6 2 and
0 6 c2 6 c3 6 0, again providing three solutions. One can check that they are indeed the
codes obtained in Table 1 (right column).

To see all conditions of the definition play a role, one has to consider compositions of
at least three parts and at least one greater than one. For example, if α = (1, 2, 1), one
gets the following set of relations: 0 6 c1 6 3, 0 6 c2 6 c3 6 1, c4 = 0, and the extra
condition coming from (C3): c1 > 2 ⇒ c3 6 c1 − 2. In practice, we have twelve tuples
satisfying all conditions except the last one and this last condition gets rid of (2, 0, 1, 0)
and (2, 1, 1, 0), hence providing a total of ten solutions. One can check that these solutions
are exactly the codes obtained in Figure 2 (bottom elements in each cell of the drawing).

Given two tuples a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) we write a 6comp b if
ai 6 bi for all i ∈ [n]. We claim in Theorem 1 that the poset (Cα,6comp) is isomorphic to
Tα. For example, one can check, again on Figure 2 that the bottom elements are indeed
(partially) ordered by the componentwise order on their tuples.

As a first step towards proving Theorem 1, we associate an integer tuple with each
w ∈ Sα.

Definition 8. For w ∈ Sα, we define its α-code by

codeα(w)
def
= (c1, c2, . . . , cn),

where
ci

def
= max

{
k | wi > ws%(i)+1, wi > ws%(i)+2, . . . , wi > ws%(i)+k

}
.

In other words, ci counts the number of consecutive entries in the one-line notation
of w that are smaller than wi, starting from the first entry in the α-region immediately
after that of i. For α = (1, 1, . . . , 1), Definition 8 agrees with [2, Definition 9.9].

If codeα(w) = (c1, c2, . . . , cn), then we say that wi sees wk if 0 < k−s%(i) 6 ci. Clearly,
if wi sees wk, then (i, k) ∈ Inv(w), and wi sees exactly ci elements for each index i.

In terms of patterns, ci is the number of 21-patterns where the 2 is at position i that
are not 231-patterns. Examples of codes of α-permutations are shown in Table 1 and
Figure 2.

3.2 Properties of the encoding

Lemma 9. For w ∈ Sα it holds that codeα(w) ∈ Cα.

Proof. Let w ∈ Sα and codeα(w) = (c1, c2, . . . , cn). Let i ∈ [n]. The maximal number of
inversions of the form (i, k) is n− s%(i), because wi < wk for all k ∈ {i+1, i+2, . . . , s%(i)}.
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Hence, ci 6 n − s%(i), which establishes (C1). If %(i) = %(i+ 1), then wi < wi+1 by
construction, and thus ci 6 ci+1. This establishes (C2).

Now let a ∈
{
%(i)+1, %(i)+2, . . . , r

}
be such that ci > sa − s%(i). In particular, wi

sees wsa , meaning that wi > wsa . Since wsa is the rightmost, hence largest, element of its
region, wi also sees any wj which is seen by wsa . This implies that ci > csa + sa − s%(i),
which is (C3).

Theorem 1.1 in [10] establishes that the α-Tamari lattice arises as a quotient lattice of
the weak order on Sα. This is established by proving that for every w ∈ Sα there exists
a unique maximal (α, 231)-avoiding permutation below w in the weak order. The next
lemma records this fact.

Lemma 10 ([10, Lemma 3.8]). For w ∈ Sα, the set {w′ ∈ Sα(231) | w′ 6L w} has a
greatest element denoted by π↓α(w).

We may thus regard π↓α as a map from Sα to Sα(231). The next lemma characterizes
the preimages of this map.

Lemma 11 ([10, Lemma 3.16]). Let u, v ∈ Sα with ulL v. The following are equivalent.

(i) There are indices i < j < k, each in different α-regions, such that vk < vi < vj,
vi = vk + 1 and Inv(v) \ Inv(u) =

{
(i, k)

}
,

(ii) π↓α(u) = π↓α(v).

We now prove that codeα is an order-preserving map from (Sα,6L) to (Cα,6comp).

Lemma 12. Let u, v ∈ Sα with u lL v. Then codeα(u) 6comp codeα(v), and these
tuples differ by at most one element. Moreover, codeα(u) = codeα(v) if and only if
π↓α(u) = π↓α(v).

Proof. Let ulL v and codeα(u) = (a1, a2, . . . , an) and codeα(v) = (b1, b2, . . . , bn).
By assumption, Inv(v) \ Inv(u) =

{
(i, k)

}
for some indices i < k in different α-regions

such that vi = vk + 1. It follows that any entry which sees vk must be greater than vi,
and any entry which does not see vi must be smaller than vk. Thus, aj = bj for all j 6= i.
By construction, ui = vk and uk = vi. Since ui < uk, we conclude that ui does not see uk.

If vi sees vk, then ai < bi. This is the case precisely when every j in α-regions strictly
between i and k satisfies vj < vi, which by Lemma 11 means that π↓α(u) 6= π↓α(v).

If vi does not see vk, then there exists an index j in an α-region strictly between i and
k such that vi < vj, which by Lemma 11 is equivalent to π↓α(u) = π↓α(v). If we choose j
as small as possible with this property, then any j′ < j in an α-region strictly between i
and k satisfies vi > vj′ , and thus ui = vk > vj′ = uj′ , which entails ai = bi.

Corollary 13. If u 6L v, then codeα(u) 6comp codeα(v).

Proof. This follows from repeated application of Lemma 12.

Lemma 14. Let u, v ∈ Sα(231). If codeα(u) 6comp codeα(v), then u 6L v.
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Proof. Let codeα(u) = (a1, a2, . . . , an) and codeα(v) = (b1, b2, . . . , bn) be chosen in such a
way that codeα(u) 6comp codeα(v).

Assume that there exists (i, k) ∈ Inv(u)\Inv(v), and among all these inversions choose
(i, k) such that ui − uk is minimal. Since (i, k) is not an inversion of v, we have vi < vk,
so that vi does not see vk. Since ai 6 bi it follows that ui does not see uk either. Since
ui > uk, %(i) < %(k) and there exists a smallest index j with %(i) < %(j) < %(k) and
ui < uj. Since u ∈ Sα(231), we have that ui > uk + 1.

Now, there cannot be any element between uk + 1 and ui − 1 in the same α-region
as uj. Indeed, if this was the case, since uj > ui, uj−1 would be such an element. But,
since it is seen by ui by minimality of j, and since bi > ai, the value vj−1 would be seen
by vi, so that vk > vi > vj−1. In that case, (j − 1, k) would be an inversion of u, not an
inversion of v and would violate the minimality of (i, k) among such elements as defined
earlier. So all elements between uk and ui belong to α-regions different from the α-region
containing uj. Thus, among those, there is a smallest one u` (which is not uk but can be
ui) that is on the left of uj. This element belongs to an (α, 231)-pattern in u: (`, j, `′),
where `′ is the position of u` − 1 in u, which is a contradiction.

Therefore, our assumption must have been wrong, and it follows Inv(u) ⊆ Inv(v), thus
u 6L v by definition.

Note that we never used in the previous proof that v is (α, 231)-avoiding. This makes
sense thanks to Lemma 10: its property has no equivalent going upwards so u and v do
not play symmetrical roles.

3.3 Decoding α-codes

We proceed to prove that codeα is a bijection from Sα(231) to Cα.

Lemma 15. If w ∈ Sα(231), then the leftmost 0 in codeα(w) corresponds to the position
of the 1 in the one-line notation of w.

Proof. Let codeα(w) = (c1, c2, . . . , cn), and let jo ∈ [n] be such that wjo = 1. Moreover,
if j = min{i | ci = 0}, then j 6 jo, since cjo = 0. Let wj = a. Since the entries in an
α-region are ordered increasingly, a is the smallest element in its α-region.

Now, define m = min(w1, w2, . . . , wj). Then, if m 6= a, since m is strictly to the left
of a in w, it cannot be 1 either, so that we have a 231 pattern with the values m, a,
and m − 1 necessarily in that order in w and in different regions. Otherwise m = a. If
m 6= 1, the region of a cannot be the rightmost region of w since a − 1 did not appear
in this prefix of w. Let b be the smallest element in the

(
%(j) + 1

)
-st α-region, and let

k = s%(j) + 1, i.e., wk = b. Since cj = 0, we have a < b. We then have a 231 pattern with
the values a, b, and a− 1. So a = 1 and j = jo.

Proposition 16. For c ∈ Cα there exists a unique w ∈ Sα(231) such that codeα(w) = c.
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α w codeα(w)

(1) 1 (0)

(2) 1 2 (0, 0)

(1, 1) 1 2 (0, 0)

2 1 (1, 0)

(3) 1 2 3 (0, 0, 0)

(2, 1) 1 2 3 (0, 0, 0)

1 3 2 (0, 1, 0)

2 3 1 (1, 1, 0)

(1, 2) 1 2 3 (0, 0, 0)

2 1 3 (1, 0, 0)

3 1 2 (2, 0, 0)

(1, 1, 1) 1 2 3 (0, 0, 0)

1 3 2 (0, 1, 0)

2 1 3 (1, 0, 0)

2 3 1 (0, 1, 0)

3 1 2 (2, 0, 0)

3 2 1 (2, 1, 0)

Table 1: The α-permutations for any composition α of n 6 3 together with their corre-
sponding α-codes.

Proof. We proceed by induction on n. For n 6 3, the claim can be checked directly
(see Table 1), which establishes the induction base. Assume that the claim holds for all
compositions of n′ < n.

Let c = (c1, c2, . . . , cn) ∈ Cα. By definition, cn = 0, which enables us to define
jo = min

{
j ∈ [n] | cj = 0

}
. By (C2), jo = sa−1 + 1 for some a ∈ [r], meaning that jo is

the first element in the ath α-region.
Let α′ = (α′1, α

′
2, . . . , α

′
r′) be the unique composition of n − 1 which is obtained by

subtracting 1 from αa. (If αa = 1, then we simply remove this part.) We define s′a′ =
α′1 + α′2 + · · ·+ α′a′ , and we obtain

s′b =

{
sb, if b < a,

sb − 1, if b > a.

We define c′ = (c′1, c
′
2, . . . , c

′
n−1) by setting

c′i =


ci, i < jo and ci < sa−1 − s%α(i),

ci − 1, i < jo and ci > sa−1 − s%α(i),

ci+1, i > jo.
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It is straightforward to check that c′ ∈ Cα′ . By induction hypothesis, there exists a unique
w′ ∈ Sα′(231) with codeα′(w

′) = c′.
We now “inject” 1 into w′ to construct a permutation w ∈ Sn via

wi =


w′i + 1, if i < jo,

1, if i = jo,

w′i−1 + 1, if i > jo.

Since jo is the first element in the ath α-region, it follows that w ∈ Sα. Assume that w
has an (α, 231)-pattern (i, j, k). Since w′ ∈ Sα′(231), it must be that k = jo, and wi = 2.
By construction, w′i = 1, implying that c′i = 0. Since i < jo, it follows that ci = 0,
contradicting the choice of jo. Thus, w ∈ Sα(231). By construction, it follows that w is
the only (α, 231)-avoiding permutation with codeα(w) = c.

(2,6, 0, 1, 3, 1, 1, 0)
↑

(1,5, –, 1,3,1,1, 0)
↑

(1,4, –,1,2, 0, 0, –)
↑

(1,3, –, 0, 1, –, 0, –)
↑

(0, 2, –, –, 1, –, 0, –)
↑

(–,2, –, –,1, –, 0, –)
↑

(–,1, –, –, 0, –, –, –)
↑

(–, 0, –, –, –, –, –, –)
↑

→

→

→

→

→

→

→

→

1

1 2

1 3 2

1 4 3 2

5 1 4 3 2

5 1 4 3 6 2

5 1 4 7 3 6 2

5 8 1 4 7 3 6 2

Figure 1: Decoding the (2, 3, 2, 1)-code (2, 6, 0, 1, 3, 1, 1, 0). The arrows indicate the left-
most zero in each step; the red digits indicate the positions that see the left-most zero.

Figure 1 illustrates the procedure described in the proof of Proposition 16. We may
now conclude the proof of our first main theorem.

Proof of Theorem 1. Proposition 16 establishes that Sα(231) and Cα are in bijection, and
Corollary 13 and Lemma 14 establish that for u, v ∈ Sα(231) we have u 6L v if and only
if codeα(u) 6comp codeα(v). This finishes the proof.

In fact, the preimages of the maps codeα : Sα → Cα and π↓α : Sα → Sα(231) coincide.

Lemma 17. For u, v ∈ Sα we have codeα(u) = codeα(v) if and only if π↓α(u) = π↓α(v).

Proof. Let u, v ∈ Sα. Let codeα(u) = (a1, a2, . . . , an) and codeα(v) = (b1, b2, . . . , bn).
If u 6L v, then the desired equivalence follows by repeatedly applying Lemma 12.
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Otherwise, u and v are incomparable. By [1, Theorem 4.1], (Sα,6L) is a lattice and
thus the meet w = u ∧L v exists and satisfies w 6L u and w 6L v. If π↓α(u) = π↓α(v),
then π↓α(u) = π↓α(w), by Lemma 10. It follows that codeα(u) = codeα(w) = codeα(v) by
Lemma 12.

Conversely, let codeα(u) = codeα(v). Lemma 10 implies π↓α(u) 6L u and π↓α(v) 6L

v. In view of the previous reasoning we find codeα
(
π↓α(u)

)
= codeα(u) = codeα(v) =

codeα
(
π↓α(v)

)
. Proposition 16 thus implies π↓α(u) = π↓α(v).

Figure 2 shows the weak order on S(1,2,1) with the preimages of the map π↓(1,2,1)

indicated. The bottom elements in each highlighted region correspond exactly to the(
(1, 2, 1), 231

)
-avoiding permutations. The elements are also labeled by their associated

(1, 2, 1)-codes.

1 2 3 4
(0, 0, 0, 0)

2 1 3 4
(1, 0, 0, 0)

1 2 4 3
(0, 0, 1, 0)

3 1 2 4
(2, 0, 0, 0)

2 1 4 3
(1, 0, 1, 0)

1 3 4 2
(0, 1, 1, 0)

4 1 2 3
(3, 0, 0, 0)

3 1 4 2
(1, 0, 1, 0)

2 3 4 1
(0, 1, 1, 0)

4 1 3 2
(3, 0, 1, 0)

3 2 4 1
(1, 1, 1, 0)

4 2 3 1
(3, 1, 1, 0)

Figure 2: The weak order on S(1,2,1), where the permutations are labeled by their (1, 2, 1)-
codes.

4 The α-Tamari lattices and the ν-Tamari lattices

Among other things, [10] introduces a bijection Θ from Sα(231) to a certain family of
northeast paths, denoted by Lνα . This map was simplified in [3] and used to show that
the lattice Tα is isomorphic to a certain lattice on Lνα , denoted by Tνα [3, Theorem II].
The proof of this result is only partially bijective, and relies on structural properties of
both lattices, namely that they are both extremal and have isomorphic Galois graphs.

In the following, we show that our parabolic BW-codes induce a more direct and
combinatorial proof of the isomorphism between Tα and Tνα (Theorem 2). We start with
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the definitions of related objects, then we will show that our parabolic BW-codes for Tα
are in bijection with να-bracket vectors in Tνα , leading to the wanted isomorphism.

4.1 Dyck paths and the ordinary Tamari lattice

We first consider up steps (of the form U
def
= (1, 1)) and down steps (of the form D

def
=

(1,−1)). A Dyck path of semilength n is a lattice path using only up and down steps,
starting and ending on the x-axis and never going below it. Consequently, any Dyck path
uses as many up steps as it uses down steps. Let Dn denote the set of Dyck paths of
semilength n. The ordinate of a lattice point on a Dyck path is simply the value of its
y-coordinate.

If P ∈ Dn, then any up step U on P has a matching down step: this is the first down
step D on P whose starting point has the same ordinate as the ending point of U . In
particular, the portion of P strictly between U and D is a Dyck path (of strictly smaller
semilength) in its own right.

A valley of P is a lattice point V on P preceded by a down step and followed by an
up step. The rotation of P by a valley V is the Dyck path P ′ ∈ Dn obtained by swapping
the down step before V and the portion of P (weakly) between the up step after V and
its matching down step. The reflexive and transitive closure of this operation yields a
partial order on Dn.

The set of Dyck paths ordered by this rotation order forms the (ordinary) Tamari
lattice Tn, first described in [14].

Remark 18. It may not be immediately clear from this definition, but the ordinary Tamari
lattice is a particular instance of an α-Tamari lattice (see Section 2.2), namely when
α = (1, 1, . . . , 1); see [2, Section 9].

4.2 Northeast paths and the ν-Tamari lattice

Now, we consider north steps (of the form N
def
= (0, 1)) and east steps (of the form

E
def
= (1, 0)). A northeast path of length n is a lattice path using k north and n − k east

steps which starts on the x-axis. The height of a lattice point on a northeast path is the
value of its y-coordinate. A valley of a northeast path µ is a lattice point V on µ preceded
by an east step and followed by a north step.

Given a northeast path ν, a ν-path is a northeast path which shares the starting and
ending points with ν and never goes below ν. Let Lν denote the set of ν-paths. The
horizontal distance of a lattice point Q on µ ∈ Lν , denoted by horizν(Q), is the largest
number of east steps that can be added to Q without crossing to the other side of ν.

The rotation of µ by a valley V is the path µ′ ∈ Lν obtained by exchanging the
east step before V with the portion of µ between V and the next lattice point W on µ
satisfying horizν(V ) = horizν(W ). In this situation, we write µlν µ

′. See Figure 3 for an
illustration. The reflexive and transitive closure of this operation yields a partial order
on Lν .
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µµ′

ν ν

µ′

ν
2 1

1

3 2

2 1 0

1 0

V

W

lν

Figure 3: Example of horizontal distance and cover relation in Tν for northeast paths.

For any northeast path ν, the set of ν-paths ordered by this rotation order forms the
ν-Tamari lattice Tν introduced in [12].

Remark 19. Note that the definition implies that Tν ∼= Tn when ν = (NE)n. The isomor-
phism is given by substituting north steps by up steps and east steps by down steps.

4.3 The α-Tamari lattices are certain ν-Tamari lattices

In [4], it was shown that the ν-Tamari lattice can be realized using the componentwise
order on so-called ν-bracket vectors. If ν is a northeast path of length n, then the minimal
ν-bracket vector is the vector bmin consisting of n+1 entries, whose i-th entry is the height
of the i-th lattice point on ν. If ν has k north steps, then the fixed positions are the entries
f0, f1, . . . , fk, where fi is the position of the last appearence of i in bmin. An integer vector
b with n+ 1 entries is a ν-bracket vector , if it has the following three properties:

(B1) for 0 6 s 6 k, we have b(fs) = s;

(B2) for 1 6 i 6 n+ 1, we have bmin(i) 6 b(i) 6 k;

(B3) if b(i) = s, then for all j with i < j < fs, we have b(j) 6 s.

The set of ν-bracket vectors is denoted by Bν . The following theorem was proven by
means of an explicit bijection in [4, Section 4].

Theorem 20 ([4, Theorem 21]). For any northeast path ν, the ν-Tamari lattice Tν is
isomorphic to

(
Bν ,6comp

)
.

It was shown in [3, Theorem II], that the α-Tamari lattice is isomorphic to a certain
ν-Tamari lattice, namely, when ν is the α-bounce path, defined by

να
def
= Nα1Eα1Nα2Eα2 · · ·NαrEαr , (1)

where α = (α1, α2, . . . , αr). The proof given in [3] is rather indirect and exploits certain
lattice-theoretic properties of the α- and the ν-Tamari lattices. In this section, we give a
direct proof using the realization of Tα as the componentwise order on α-codes established
in Theorem 1.
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In particular, we construct a bijection from the α-codes to the να-bracket vectors.
Let us adapt the definitions to the particular case of να. The minimal να-bracket vector ,
denoted by bmin

α , is defined by

bmin
α (k)

def
=


i+ sa−1 − 1, if k = 2sa−1 + i for 0 < i 6 αa,

sa, if k = 2sa−1 + αa + i for 0 < i 6 αa,

n, if k = 2n+ 1.

We write Bα instead of Bνα for the set of να-bracket vectors.
For b ∈ Bα, by (B1), there are n + 1 positions with fixed value in a vector of length

2n+ 1. For simplification, we define a reduced version of να-bracket vectors. For b ∈ Bα,
we define its να-reduced vector r by

r(sa−1 + i)
def
= b(2sa−1 + αa + i)

for 1 6 i 6 αa. It is clear that r is obtained from b by removing components whose
indices are fixed positions. To recover b from r, we only need to fill in the positions of
the fixed positions according to (B1). Let Λred denote the “reduction” map from b to r,
and let Λext be its inverse.

Such να-reduced vectors thus inherit the following properties from να-bracket vectors.

Proposition 21. A vector r ∈ Nn is a να-reduced vector if, and only if:

(R1) for 1 6 i 6 n, we have s%(i) 6 r(i) 6 n;

(R2) for all i, j with i < j 6 s%(r(i)+1)−1, we have r(j) 6 r(i).

Proof. Let b be the να-bracket vector corresponding to r. We only need to show that the
conditions for r are equivalent to those for b.

Condition (B1) for b is satisfied by construction. The equivalence between (B2) for b
and (R1) for r is trivial given the definition of bmin

α .
Now for the equivalence between (B3) for b and (R2) for r, we observe that for (B3) to

hold for b, for each i with b(i) = k, we only need to check for all j with i < j 6 2s%(k+1)−1,
since all indices from 2s%(k+1)−1 + 1 to fk are fixed positions.

We can thus take Proposition 21 as the definition of να-reduced vectors without passing
through να-bracket vectors, and we denote by Rα the set of all να-reduced vectors. By
Proposition 21, (Rα,6comp) is isomorphic to the να-Tamari lattice. We also have the
following property.

Proposition 22. Given a να-reduced vector r, for any indices i < j with %(i) = %(j), we
have r(i) > r(j).

Proof. Let k = r(i). By (R1), we have k > s%(i), and thus s%(k+1)− 1 > s%(i)+1− 1 > s%(i).
Since %(i) = %(j), we have i < j 6 s%(i) 6 s%(k+1) − 1. Then (R2) in Proposition 21 states
that r(j) 6 k = r(i).
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(2, 6, 0, 1, 3, 1, 1, 0)

∈

C(2,3,2,1)

ΓR−→ (8, 4, 8, 6, 5, 8, 8, 8)

∈

R(2,3,2,1)

Λext−→ (0,1, 8, 4,2,3,4, 8, 6, 5,5,6, 8, 8,7, 8,8)

∈

B(2,3,2,1)

Figure 4: Illustration of the map ΓR.

c ∈ C(1,2,1) ΓR(c) ∈ R(1,2,1) Λext ◦ ΓR(c) ∈ B(1,2,1)

(0, 0, 0, 0) (1, 3, 3, 4) (0, 1,1,2, 3, 3,3, 4,4)
(1, 0, 0, 0) (2, 3, 3, 4) (0, 2,1,2, 3, 3,3, 4,4)
(0, 0, 1, 0) (1, 4, 3, 4) (0, 1,1,2, 4, 3,3, 4,4)
(2, 0, 0, 0) (3, 3, 3, 4) (0, 3,1,2, 3, 3,3, 4,4)
(1, 0, 1, 0) (2, 4, 3, 4) (0, 2,1,2, 4, 3,3, 4,4)
(0, 1, 1, 0) (1, 4, 4, 4) (0, 1,1,2, 4, 4,3, 4,4)
(3, 0, 0, 0) (4, 3, 3, 4) (0, 4,1,2, 3, 3,3, 4,4)
(3, 0, 1, 0) (4, 4, 3, 4) (0, 4,1,2, 4, 3,3, 4,4)
(1, 1, 1, 0) (2, 4, 4, 4) (0, 2,1,2, 4, 4,3, 4,4)
(3, 1, 1, 0) (4, 4, 4, 4) (0, 4,1,2, 4, 4,3, 4,4)

Table 2: Illustration of the map ΓR for α = (1, 2, 1).

For any composition α, we define a transform ∆R on Rα such that(
∆R(r)

)
i

def
= r(2s%(i) − α%(i) − i+ 1)− s%(i).

More intuitively, to obtain ∆R(r), we first split r into regions according to α, then reverse
each region while subtracting sk on the kth region. We denote by ΓR its inverse. Although
both ∆R and ΓR depend on α, the composition α should always be clear from the context.
The transformation ∆R relates α-codes with Rα.

Figure 4 illustrates the map ΓR on the (2, 3, 2, 1)-code (2, 6, 0, 1, 3, 1, 1, 0), and Table 2
illustrates this bijection for α = (1, 2, 1).

Proposition 23. Given a composition α of n, the transformation ∆R is a bijection from
Rα to Cα.

Proof. First, for r ∈ Rα, let c = ∆R(r) and let us check that c satisfies the conditions in
Definition 6 using those in Proposition 21 for r. By (R1) for r and the definition of ∆R,
clearly c satisfies (C1). Proposition 22 and the definition of ∆R imply that c satisfies
(C2). To check (C3) for c given that it satisfies (C2), we only need to show that, for any
i and j such that %(i) < %(j), if ci > s%(j) − s%(i), then we have cj + s%(j) 6 ci + s%(i).
Translating to r, we need to check that, for any i′ and j′ with %(i′) < %(j′), if r(i′) > s%(j′),
then we have r(j′) 6 r(i′). Now, suppose that r(i′) > s%(j′). We have %(r(i′) + 1) > %(j′)
by the definition of %. As the values are integers, we have %(j′) 6 %(r(i′) + 1)− 1, which
means j′ 6 s%(j′) 6 s%(r(i′)+1)−1, and by (R2), we have r(j′) 6 r(i′). Therefore, c also
satisfies (C3).
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Now for the reverse direction, given c ∈ Cα, let r = ΓR(c). It is clear that (C1)
translates directly to (R1). We only need to show that (R2) holds for r. Suppose that
1 6 i < j 6 s%(r(i)+1)−1. If %(i) = %(j), by the definition of ΓR and (C2) on c, we have
r(j) 6 r(i). Now we check the case %(i) < %(j). When translated to c, (R2) in this case
means that we need to check for any i′ < j′ such that %(i′) < %(j′) 6 %(ci′ + s%(i′) + 1)− 1,
we have cj′ + s%(j′) 6 ci′ + s%(i′). By (C2), we may assume that j′ = sa for some a. By the
definition of %, we see that %(sa) 6 %(ci′ + s%(i′) + 1)− 1 implies sa < ci′ + s%(i′) + 1, thus
sa 6 ci′ + s%(i′) since they are integers. By (C3), we have csa 6 ci′ − sa + s%(i′). Therefore,
(R2) holds for r, meaning that r ∈ Rα.

This allows us to conclude to the announced simple proof of Theorem 2.

Proof of Theorem 2. Let Tνα denote the να-Tamari lattice. We have the following isomor-
phisms of lattices:

Tα
Thm. 1∼=

(
Cα,6comp

) Prop. 23∼=
(
Rα,6comp

) trivial∼=
(
Bα,6comp

) Thm. 20∼= Tνα .

Note that the proof of Theorem 2 in [3] relies on lattice-theoretic properties of Tα and
Tνα , and is only partially bijective. Our proof here is fully bijective, which gives a clearer
vision of the isomorphism.

5 A combinatorial anti-isomorphism on the να-Tamari lattice

As mentioned at the beginning of Section 4, the original proof of Theorem 2 used the
bijection Θ first defined in [10], but only to show that it extends to an isomorphism
between the Galois graphs of Tα and Tνα . It is then natural to ask whether Θ extends
to all elements of Tα and Tνα , and this question was stated in [3] as Open Problem 2.23.
Comparing with the bijection in our proof of Theorem 2 from Tα to Tνα , we may wonder
if it is equivalent in some sense to Θ.

We now provide a direct combinatorial interpretation of this equivalence, using our
parabolic BW-codes and constructions from [3]. This settles [3, Open Problem 2.23].
More precisely, using a stack-processing procedure and the α-code for Tα, we will show
that Θ is in fact an anti-isomorphism from Tα to TFlip(να), where Flip(να) is essentially
the northeast path να read backwards. To this end, we will need to consider Dyck paths
with certain sequence statistics, which are then used to prove that our α-codes are closely
related to the bijection Θ.

5.1 ν-Tamari lattices are intervals of ordinary Tamari lattices

It was shown in [12, Theorem 3] in terms of binary trees that every ν-Tamari lattice is iso-
morphic to an interval in some ordinary Tamari lattice. This result was obtained through
a bijection in [12, Section 2 and 3] between binary trees and pairs of non-crossing lattice
paths, which is equivalent to the bijection β in [5] between Dyck paths and parallelogram
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ν

µ

ν = [1, 2, 1, 0, 1, 0]

µ = [0, 1, 1, 2, 0, 1] P = U2D1U3D2U2D2U1D3U2D1U1D2

Figure 5: An example of the bijection Dyck.

polyominoes (see [5, Section 4]). We now restate the bijection β for our need, based on
the definition of its inverse defined in [5, Section 4].

A northeast path is uniquely determined by the lengths of the runs of east steps at
each height. In other words, if ν is a northeast path, then we can write it uniquely as

ν = Ea0NEa1N · · ·Eak−1NEak .

By abuse of notation we will also write ν = [a0, a1, . . . , ak]. Now, if µ ∈ Lν with µ =
[b0, b1, . . . , bk], then we have

∑k
i=0 ai =

∑k
i=0 bi = m and

∑j
i=0 ai >

∑j
i=0 bi for all 0 6

j 6 k. We may have ai = 0 or bi = 0 for some indices i.

Construction 24. Given a northeast path ν composed of k north steps and n − k east
steps, and for any µ ∈ Lν , we write ν and µ under the form ν = [a0, a1, . . . , ak] and
µ = [b0, b1, . . . , bk]. We define the Dyck path Dyck(ν, µ) of semilength n+ 1 by

Dyck(ν, µ)
def
= Ua0+1Db0+1 · · ·Uak+1Dbk+1.

Conversely, if P ∈ Dn+1 we can recover the pair (ν, µ) satisfying P = Dyck(ν, µ) by
looking at the lengths of the runs of up and down steps in P , which determine the ai’s
and bi’s, respectively.

The map Dyck is a bijection from the set{
(ν, µ) | ν has length n and µ ∈ Lν

}
to Dn+1, and is illustrated in Figure 5. It was proved in [12], in terms of binary trees,
that Dyck is an order isomorphism.

Proposition 25 ([12, Theorem 3]). Given a northeast path ν of length n, the map Dyck
is an isomorphism from Tν to an interval Iν of Tn+1.

5.2 Two sequence statistics of Dyck paths

In preparation of things to come, we now consider an anti-isomorphism Conj of Tn in
terms of Dyck paths, first defined by Deutsch in [6], that exchanges two particular sequence
statistics on Dyck paths. The exchange property can be deduced from the recent work
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of Pons on Tamari interval posets [11]; see the paragraph after Theorem 23 therein. We
translate the appropriate specialization of her result to the framework of Dyck paths. We
then relate Conj and these statistics to ν-Tamari lattices via the map Dyck.

A rising contact of a Dyck path P is an up step in P that starts on the x-axis. Every
Dyck path P of length n > 0 can be uniquely decomposed into P = P`UPrD with P`, Pr
both Dyck paths, by taking P` to be the sub-path before the last rising contact of P . We
denote by ε the empty Dyck path, and we define an involution Conj recursively by

Conj(ε)
def
= ε, Conj(P`UPrD)

def
= Conj(Pr)UConj(P`)D. (2)

The following is well-known and can be proven by induction using the decomposition
P = P`UPrD.

Proposition 26. The involution Conj is an anti-isomorphism of Tn.

We define Conj′
def
= Dyck−1 ◦Conj ◦Dyck, which is simply Conj conjugated to the

domain of ν-paths using Dyck. See Figure 6 for an example of Conj and Conj′.
Given a northeast path ν, we denote by Flip(ν) the northeast path obtained by

reversing ν and exchanging north and east steps. Geometrically, Flip(ν) is ν reflected
across a diagonal of slope −1. It is known that, for (ν ′, µ′) = Conj′(ν, µ), we have
ν = Flip(ν) (see [12, Theorem 2 and 3]). We have the following corollary.

Corollary 27. The bijection Conj′ is an anti-isomorphism between Tv and TFlip(v).

We now consider two statistics on Dyck paths that are interchanged by Conj. Given a
Dyck path P , we define its descent run sequence, denoted by Drun(P ) and indexed from
0 to n, as follows. We write P = Dc0UDc1U · · ·UDcn with some ci > 0 (again, noting
c0 = 0), then we take Drun(P )i = cn−i for all 0 6 i 6 n. The map Drun is injective
because P can be reconstructed from the ci’s.

We now define another sequence statistic. The contact sequence of P , denoted by
Cont(P ) and indexed from 0 to n, is obtained by taking Cont(P )0 the number of rising
contacts of P , and Cont(P )i the number of rising contacts of the sub-Dyck path strictly
between the i-th up step and its matching down step.

Examples for Cont and Drun are given in Figure 6. The following result, also il-
lustrated in Figure 6, is well-known and can be proven inductively. In terms of binary
trees, Cont (resp. Drun) describes maximal left (resp. right) descending paths, and the
counterpart of Conj on binary trees is taking the vertical mirror image.

Proposition 28 (See [11]). For any Dyck path P , we have Cont(P ) = Drun
(
Conj(P )

)
.

As Dyck is bijective, let (ν, µ) = Dyck−1(P ), and define Drun(ν, µ) = Drun(P ) and
Cont(ν, µ) = Cont(P ). Suppose that ν = [a0, a1, . . . , ak] and µ = [b0, b1, . . . , bk]. Then
we have

Drun(ν, µ) = Drun(P ) = (bk + 1, 0ak , bk−1 + 1, 0ak−1 , . . . , b0 + 1, 0a0 , 0). (3)
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Dyck

P = Dyck(ν, µ)

ν = [1, 2, 1, 0, 0, 0, 1]

µ = [0, 0, 2, 1, 0, 1, 1]

Drun(P ) = (2, 0, 2, 1, 2, 3, 0, 1, 0, 0, 1, 0, 0)

Cont(P ) = (2, 4, 0, 2, 2, 0, 1, 0, 0, 0, 0, 1, 0)

Conj

P ′ = Conj(P )

Dyck−1

(ν ′, µ′) = Conj′(ν, µ)

ν ′ = [0, 4, 1, 0, 1, 0]

µ′ = [0, 0, 1, 1, 3, 1]

Conj′

10

1

1

2

43

321

10

0

0 1 432

4 5

4

3 4

Drun(P ′) = (2, 4, 0, 2, 2, 0, 1, 0, 0, 0, 0, 1, 0)

Cont(P ′) = (2, 0, 2, 1, 2, 3, 0, 1, 0, 0, 1, 0, 0)

1

Figure 6: Example of the bijections Conj and Conj′ and how they transform the statistics
Cont and Drun. The reverse horizontal distances of points on the lower paths are also
given.

Here “0a” means the entry 0 repeated a times. For an expression of Cont, we need some
more definitions. We define the reverse horizontal distance to µ of a lattice point Q on ν,
denoted by horiz′µ(Q), to be the number of west steps (−1, 0) we can take from Q before
crossing to the other side of µ. See Figure 6 for an example. This figure also illustrates
the following result.

Proposition 29. Let P = Dyck(ν, µ) with ν, µ northeast paths of length n. Take the
sequence (di)06i6n with di = horiz′µ(Qi), where Qi is the (i+ 1)-st lattice point of µ. Then
we have

Cont(ν, µ)0 =
∣∣{` | 0 6 ` 6 n, d` = 0}

∣∣;
Cont(ν, µ)i =

∣∣{` | i < ` 6 n, d` = di + 1,∀i < m 6 `, dm > di}
∣∣. (4)

Proof. Assume that ν = [a0, a1, . . . , ak] and µ = [b0, b1, . . . , bk]. For each 0 6 i 6 k, there
are ai + 1 lattice points of height i on ν, and the (i + 1)-st consecutive run of up steps
of P consists of ai + 1 steps. According to the construction of Dyck, the (i + 1)-st up
step in P corresponds to a lattice point Qi on ν. Moreover, Qi is the leftmost point with
height j on ν if and only if the corresponding up step is the first in the j-th run of up
steps in P .
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We now prove that di is the ordinate of the starting point of the (i+ 1)-st up step in
P . We proceed by induction. For i = 0, we have d0 = 0 = horiz′µ(Q0), as ν and µ start
at the origin. Now suppose that di−1 is the ordinate of the starting point of the i-th up
step in P . We have two cases.

(i) If Qi is not the leftmost lattice point with its height, then its corresponding up step
in P directly comes after the one associated with Qi−1. Thus, the ordinate of the
starting point of this up step is di−1 + 1 = di.

(ii) If Qi is the leftmost lattice point with height `, then its corresponding up step is the
first up step of the next run after the up step associated with Qi−1. The ordinate of
the up step associated with Qi is thus di−1 + 1 − (b` + 1), taking into account the
length of the `-th run of down steps in P . This is also equal to di, as we reach Qi

from Qi−1 by a north step, and it takes b` less west steps to cross µ from Qi than
from Qi−1.

We thus conclude the induction. Now (4) is a translation of the definition of Cont in
terms of the di’s.

5.3 Two ways from (α, 231)-avoiding permutations to α-paths

Recall that we have fixed a composition α = (α1, α2, . . . , αr) of n, and that sa = α1 +
α2 + · · · + αa for a ∈ [r]. Moreover, recall the definition of the α-bounce path from (1).
We usually say α-path rather than να-path.

We now define two bijections from (α, 231)-avoiding permutations to α-paths. The
first one uses the α-code from Section 3.1, and sends w ∈ Sα(231) to ϕ(w) ∈ Lνα satisfying
ϕ(w) = [f0, f1, . . . , fn], where

fi
def
=
∣∣∣{j | 1 6 j 6 n, codeα(w)j + s%(j) = i

}∣∣∣. (5)

For example, for α = (1, 3, 1, 2) and w = 5 3 4 7 1 2 6 ∈ Sα(231), we have codeα(w) =
(2, 2, 2, 3, 0, 0, 0) and ϕ(w) = [0, 0, 0, 1, 0, 1, 2, 3]. Note that the first entry of ϕ(w) is always
0.

Proposition 30. The map ϕ is an isomorphism from Tα to Tνα.

Proof. We write ϕ(w) = [f0, f1, . . . , fn]. By the definition of ∆R, we have

fi =
∣∣∣{j | 1 6 j 6 n,∆−1

R
(
codeα(w)

)
j

= i
}∣∣∣.

We may rephrase this using να-reduced vectors. Let r = ΓR
(
codeα(w)

)
denote the να-

reduced bracket vector associated with w. Then,

fi =
∣∣∣{j | 1 6 j 6 n, rj = i

}∣∣∣− 1.
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Now, if b = Λext(r) is the associated να-bracket vector, then the number of entries equal
to i in b is fi + 1. According to [4, Definition 26], there exists a unique να-path with
as many lattice points of height i as there are entries equal to i in b. (See also item (ii)
in the proof of [4, Proposition 27].) We conclude that the να-path associated with b is
precisely ϕ(w).

Therefore, ϕ is precisely the isomorphism used in the proof of Theorem 2.

The second bijection, denoted by Θ, from (α, 231)-avoiding permutations to α-paths
was first defined in [10]. We will use an equivalent definition derived from [3], using a
family of trees called α-trees, which we will not explicitly define.

Construction 31. Given w ∈ Sα(231), we construct a labeled plane tree T (w) by an
insertion procedure. We start with a node labeled n + 1 as the root, and we read the
elements of w from left to right. Upon reading of an element w(i), we start a walk from
the root. When we reach a node v with label `, if w(i) < `, then we move to the left-most
child of v; otherwise, we move to the first sibling of v on its right. When the destination
node does not exist, we add it with label w(i) and terminate the walk. The labeled plane
tree thus obtained is denoted by T (w).

Now we construct a northeast path P from T (w). If the root of T (w) has k children,
then we start P with k north steps. Then, for each a ∈ [r], we inspect the elements w(i)
in the a-th α-region from right to left, i.e., i runs from sa down to sa−1 + 1. For each
such w(i), let vi be the node with label w(i) in T (w), and we append ENki to P , where
ki is the number of children of vi. We define Θ(w) to be the path P thus obtained. See
Figure 7 for an example.

5 3 4 10 1 2 7 6 9 13 14 8 11 12 ∈ Sα(231)w =

1 2

3 4

5

6

7

8

9

10

11 12

13 14

T (w) Θ(w)

Figure 7: Example of Θ(w) for w ∈ Sα(231) with α = (1, 3, 1, 2, 4, 3).

For w ∈ Sα(231), the tree T (w) from Construction 31 has the following immediate
property.
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Proposition 32 ([3]). For w ∈ Sα(231), let T (w) be the labeled plane tree constructed
in Construction 31. Reading the labels of T (w) in postorder (i.e., for each node u, the
children of u are increasing in order from left to right, all greater than u) gives 1, 2, . . . , n.

Remark 33. The map Θ in Construction 31 is in fact Θ−1◦Flip in [3]. We have altered the
definition here for simplicity. In Construction 31, the tree T (w) is a labeled version of an α-
tree, and the map from w to T (w) is the map Λperm in [3]. Moreover, the map from T (w) to
Θ(w) is Ξnn in that article, but our definition here is adapted from Lemma 1.31 of the same
article. The validity of our definition of Θ is ensured by [3, Propositions 1.33 and 1.34].
The property in Proposition 32 follows from [3, Construction 1.14].

5.4 A stack-processing procedure

We now give another combinatorial definition of ϕ. For w ∈ Sα(231), we define the
companion of an element w(i) in w to be the last element it sees, or w(s%(i)) when w(i)
sees no element. Then we can define ϕ(w) = [f0, f1, . . . , fn], where fi is the number of
elements in w with w(i) as its companion. We check that this definition of fi is the
same as (5). We define the following stack processing that can be used to compute the
companions of elements of w.

Construction 34. Given w ∈ Sα(231), we start with an empty stack S and then perform
the following steps on the α-regions in reverse order, i.e., k runs from r down to 1.

• (Popping) For i from 1 to αk, consider the i-th element w(sk−1 + i) in region k.
Pop elements from the stack until the top one is larger than w(sk−1 + i).

• (Pushing) For i from 1 to αk, push the element w(sk − i+ 1) into the stack.

There are n elements in w, and each element passes through two steps, totaling to 2n
steps. See Figure 8 for an example.

Remark 35. Note that in terms of popping elements we only need the popping step for
the last element in each region, as it is also the largest. However, taking the popping
step for each element into account is important to understand the link between ϕ and
Θ. Namely, given w ∈ Sα(231), the number of elements popped out in the popping step
of w(i) is the number of children of the node with label w(i) in T (w) (Proposition 38),
which is in turn the length of the corresponding run of north steps in Θ(w).

Lemma 36. For w ∈ Sα(231), at each step of the stack processing of w with the stack
S, we have:

(i) the elements of S are increasing from top to bottom;

(ii) for elements in S, their indices in w are increasing from top to bottom.

Proof. For the first point, we proceed by induction on the number of steps. The claim is
clearly satisfied at the beginning, when S is empty. The popping step maintains the claim.
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6 6

6
2

6
2
1

6
2

7

3
4
7

7
5

∈ Sα(231)35 4 7 21 6

(3 steps)

(2 steps)

pop for pop for push

pop for push

pop for pop for pop for push

pop for push

2 26 6

1 1

3 34 47 7

5 5

Figure 8: An example of stack processing for w = 5347126 ∈ Sα(231) with α = (1, 3, 1, 2).

Suppose that we are now pushing an element w(i) into S. If w(i) is the last element in
its region, then by induction hypothesis, all elements smaller than w(i) should have been
popped out; otherwise, the top of the stack is w(i + 1) > w(i). In both cases, pushing
w(i) maintains our claim. We thus conclude the induction.

For the second point, we observe that the claim is valid for the empty stack, and the
pushing steps maintain the claim, since all the elements in the same region are pushed
consecutively starting with the last element in the region. The popping steps clearly also
maintains the claim.

Proposition 37. For w ∈ Sα(231), we consider the popping step of an element w(i) in
the stack processing of w with stack S. If after that popping step S is not empty with top
element w(j), then the companion of w(i) is w(j − 1); if S is empty, then the companion
of w(i) is w(n).

Proof. Assume that there is an index ` such that s%(i) < ` < j and w(`) > w(i). We take
the smallest such index `. Then w(`) cannot be popped out of S before the treatment of
the region %(i), since an element w(`′) that pops w(`) out must have s%(i) < `′ < ` and
w(`′) > w(`) > w(i), violating the minimality of `. At this moment, w(j) is also in S.
By Lemma 36(ii), w(j) is below w(`). Since w(j) is on top of S after the popping step
of w(i), there is some w(i′) in the same region of i with i′ < i that popped w(`) out,
meaning that w(`) < w(i′) < w(i), contradicting our hypothesis. Therefore, such w(`)
does not exist. From the definition of the popping step, we have w(j) > w(i). Thus, the
companion of w(i) is w(j − 1). In the case of empty stack, it means that no element in
previously inserted regions is larger than w(i), thus the companion of w(i) is w(n).
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5.5 Stack processing and the bijection Θ

We now describe a link between stack processing of w ∈ Sα(231) and the tree T (w) in
Construction 31. Given 1 6 k 6 r, the nodes of region k of T (w) are those with labels
corresponding to the values of w in the k-th α-region. We say that the root is of region
0, and that the region r + 1 is empty. From the insertion procedure, for a node of region
k with its parent of region k′, we have k > k′. The active nodes for region k are nodes of
region k′ > k whose parent is of region k′′ < k.

Proposition 38. For w ∈ Sα(231), consider the stack processing of w with stack S. For
1 6 k 6 r + 1, the elements in S after processing the k-th α-region are exactly the labels
of the active nodes for region k in T (w).

Furthermore, for a node u in T (w), the labels of its children are exactly the elements
popped out by the label of u in the stack processing of w.

Proof. Let Ek be the set of elements in S after processing the k-th α-region, and let Lk
be the set of labels of the active nodes of region k in T (w). We show that Ek = Lk. We
proceed by induction on k from r+ 1 to 1. For k = r+ 1, the set Er+1 is empty, and there
are no active nodes for region r+ 1, so we have Er+1 = Lr+1. Suppose that Ek+1 = Lk+1.
We observe that, by Construction 34 and Lemma 36(i), we have

Ek = (Ek+1 \Rk) ∪ {w(i) | %(i) = k}, (6)

where Rk = {w(i) | %(i) > k,w(i) < w(sk)}.
Now, by the definition of active nodes, we split Lk into two parts, L

(1)
k for nodes of

region k, and L
(2)
k for other nodes. It is clear that L

(1)
k = {w(i) | %(i) = k}. A node

with label in L
(2)
k must be in some region k′ > k, and its parent in some other region

k′′ < k < k + 1. Therefore, L
(2)
k ⊆ Lk+1. Conversely, let u be a node with labels in Lk+1,

and let v be the parent of u in region kv. If kv < k, then u is also in L
(2)
k ; otherwise, if

kv = k, then u is not in L
(2)
k . We thus have

Lk = (Lk+1 \R′k) ∪ {w(i) | %(i) = k}. (7)

Here, R′k is the set of labels of nodes whose parents are of region k.
Now, by the construction of T (w) in Construction 31, labels in R′k must be in some

region k′ > k, and they are smaller than some element in region k of w, therefore smaller
than w(sk). We thus have R′k ⊆ Rk. Conversely, suppose that Rk \R′k is not empty, and
let w(i) ∈ Rk \ R′k and u the node in T (w) with w(i) as label. We have %(i) > k and
w(i) < w(sk). Let v be the parent of u in T (w), and w(j) the label of v. As w(i) ∈ R′k, we
know that v is in some region kv < k. Suppose that v′ is the node with label w(sk). As
w(i) < w(sk), by Proposition 32, u precedes v′ in postorder. By the construction of T (w),
we know that the region of a node is always strictly smaller than that of its children,
and weakly smaller than that of its siblings to the right. Therefore, the node v of region
kv < k must not be a descendant of v′ of region k. If v′ is a descendant of v, as u precedes
v′ in postorder, meaning that v′ must be a sibling of u to the right, or a descendant of
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such a sibling, which is impossible because u is in region %(i) > k. Therefore, v′ and v
are not comparable in T (w), and along with the fact that u precedes v′ in postorder, v
also precedes v′ in postorder. Now take the rightmost child of v, say u′ with label w(i′),
which also precedes v′ in postorder. We have w(j) = w(i′) + 1 and w(sk) > w(j) by
Proposition 32. Furthermore, v is in region kv < k, while v′ is in region k and u′ is in a
region ku′ > %(i) > k. We thus have an (α, 231)-pattern w(j), w(sk), w(i′) in w, which is
not possible. Therefore, w(i) cannot exist, and we have R′k = Rk.

Comparing (6) and (7), along with R′k = Rk and the induction hypothesis Ek+1 =
Lk+1, we have Ek = Lk, concluding the induction. Therefore, the first part of our claim
holds for all 1 6 k 6 r + 1.

For the second part, let w(i) be the label of u and w(j) an element popped out by w(i)
in the stack processing, and v the node with w(j) as label. Suppose that u is of region
ku. By the first part of our claim, v is an active node for region ku − 1 but not for region
ku. Therefore, the parent of v is of region ku. By Proposition 32, the label of the parent
of v must be the first element in region ku larger than w(j), which is w(i) according to
the popping step of region ku. Thus, u is the parent of v, and we have the second part of
our claim.

We now prove that the isomorphism ϕ from Tα to Tvα is closely related to Θ defined
in [3]; see Section 5.3

Theorem 39. Let α = (α1, α2, . . . , αr). For w ∈ Sα(231), we have(
να, ϕ(w)

)
= Conj′

(
Flip(να),Flip

(
Θ(w)

))
.

Proof. By definition of Conj′ and Proposition 28, we only need to show that

Drun
(
να, ϕ(w)

)
= Cont

(
Flip(να),Flip

(
Θ(w)

))
,

as Drun is injective. For the pair
(
να, ϕ(w)

)
, we observe that

να = [0, 0α1−1, α1, 0
α2−1, α2, . . . , 0

αr−1, αr],

with 0k standing for k entries of 0. Suppose that ϕ(w) = [f0, f1, . . . , fn]. We have

Drun
(
να, ϕ(w)

)
= (fsr + 1, 0αr , fsr−1 + 1, fsr−2 + 1, . . . , fsr−1+1 + 1, 0αr−1 , . . . ,

fs1−1 + 1, . . . , f0 + 1, 0α1 , 0).
(8)

Now for the pair
(
να,Θ(w)

)
, for 0 6 i 6 2n, let Q′i the (i + 1)-st lattice point Q′i

on να in reverse order. We define d′i to be the number of north steps (0, 1) we can take
from Q′i without crossing to the other side of Θ(w). It is clear that d′i is also the reverse
horizontal distance of the (i+ 1)-st lattice point of Flip(να) with respect to Flip

(
Θ(w)

)
.

By Proposition 29,

Cont
(
Flip(να),Flip

(
Θ(w)

))
0

=
∣∣{` | 1 6 ` 6 2n, d′` = 0}

∣∣;
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Cont
(
Flip(να),Flip

(
Θ(w)

))
i

=
∣∣{` | i < ` 6 2n, d′` = d′i + 1,∀i < m 6 `, d′m > d′i}

∣∣.
Consider the stack processing of w with stack S. We now show that the number of

elements in the stack after i steps of stack processing is d′i. We proceed by induction on
the number of steps we have taken in the stack processing. In the initial stage, d′0 = 0
agrees with the empty stack. When dealing with region k, we first perform the popping
step. By the construction of Θ(w), for the i-th element in region k, the number of children
of its correspondent node, which is also the number elements popped out by w(sk−1 + i)
by Proposition 38, is the number of north steps of Θ(w) on abscissa sk − i + 1, which
is exactly d′2n−2sk+i−1 − d′2n−2sk+i. Then for the pushing step, the stack size increases by
1 at each step, just as when we pass from d′2n−sk+i−1 to d′2n−sk+i. We thus conclude the
induction.

We now show that Drun
(
να, ϕ(w)

)
= Cont

(
Flip(να),Flip

(
Θ(w)

))
. First, we know

that d′i is weakly decreasing for i from 2(n− sk) + 1 to 2(n− sk) + αk for all 1 6 k 6 r,

and by definition, Cont
(
Flip(να),Flip

(
Θ(w)

))
takes the form

(gsr , 0
αr , gsr−1, gsr−2, . . . , gsr−1 , 0

αr−1 , . . . , gs1−1, . . . , g0, 0
α1 , 0).

Here, (gi)06i6n is a sequence of positive integers. The last 0 is from the last point, because
it does not have any lattice point after it. In comparison to Drun

(
να, ϕ(w)

)
, it is clear

that we only need to prove g` = f` + 1 for all `.
For ` = n, according to Proposition 37, an element w(j) has w(n) as its companion

if and only if the stack is empty after its popping step, which is equivalent to d′j = 0.
Therefore, gn = fn + 1. For ` = 0, it is clear that g0 = 1 = f0 + 1, since να starts with a
north step.

For 0 < ` < n, we know that f` is the number of nodes with w(`) as companion, which
is also the number of times we see w(`+ 1) at the top of the stack during a popping step
according to Proposition 37. Suppose that w(` + 1) is the i-th element in region k, thus
`+1 = sk−1 + i. We know that w(`+1) is pushed into the stack at step 2(n−sk−1)− i+1.
Suppose that there are p = d′2(n−sk−1)−i elements before w(`+ 1) is pushed down, we have

d′2(n−sk−1)−i+1 = p+1. Then w(`+1) is popped out once d′j 6 p. When we see w(`+1) on

top of the stack, we must have d′j = p+1 before it is popped. This is exactly the definition
of Cont(Flip(να),Flip(Θ1(w)))2(n−sk−1)−i, which is also gsk−1+i−1. We thus know that
gsk−1+i−1 is the number of times we see w(`+ 1) on the top of the stack, the first time it
is pushed, the other times we have an element whose companion is w(`). We thus have
g` = gsk−1+i−1 = f` + 1. It follows that Drun(να, ϕ(w)) = Cont(Flip(να),Flip(Θ(w))),
which concludes the proof.

An example of the proof of Theorem 39 can be seen in Figure 9. We thus solve [3, Open
Problem 2.23].

Corollary 40. The map Flip ◦Θ is an anti-isomorphism between Tα and TFlip(να).

Proof. This is a consequence of Theorem 39, and Propositions 27 and 30.
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5 3 4 10 1 2 7 6 9 13 14 8 11 12 ∈ Sα(231)

Companion index: 3 | 6, 6, 9 | 5 | 7, 8 | 11, 12, 14, 14 | 14, 14, 14

Drun : (6, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 3, 2, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0)

Dyck(Flip(να),Flip(Θ(w)))

Dyck(να, ϕ(w))

Cont : (6, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 3, 2, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0)

(να, ϕ(w))

0000
1

2
3
3200

1

2
3
4
43

4
5
56

442
3
4
5
3

4

(να,Θ(w)) (Flip(να),Flip(Θ(w)))

Figure 9: An example of the transfer of statistics in the two ways of looking at parabolic
objects.

Remark 41. There is a typo in [3, Open Problem 2.23]. The statement should include
“lattice anti-isomorphism” instead of “lattice isomorphism”, as we can also see in Figure 11
therein.
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