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Abstract

A subset of vertices of a graph is minimal if, within all subsets of the same size,
its vertex boundary is minimal. We give a complete, geometric characterization of
minimal sets for the planar integer lattice X. Our characterization elucidates the
structure of all minimal sets, and we are able to use it to obtain several applications.
We show that the neighborhood of a minimal set is minimal. We characterize
uniquely minimal sets of X: those which are congruent to any other minimal set of
the same size. We also classify all efficient sets of X: those that have maximal size
amongst all such sets with a fixed vertex boundary. We define and investigate the
graph G of minimal sets whose vertices are congruence classes of minimal sets of X
and whose edges connect vertices which can be represented by minimal sets that
differ by exactly one vertex. We prove that G has exactly one infinite component,
has infinitely many isolated vertices and has bounded components of arbitrarily large
size. Finally, we show that all minimal sets, except one, are connected.
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1 Introduction

The classical isoperimetric problem can be stated as follows: amongst all closed curves
in the plane with fixed length, characterize those that enclose the maximal area. The
solution to this isoperimetric problem is the circle. By a simple scaling argument, this
problem is easily seen to be equivalent to the following dual problem:

Problem 1. Amongst all closed curves in the plane that enclose a fixed area, characterize
those that have minimal length.

The isoperimetric problem dates back to antiquity, as documented in Virgil’s account of
the founding of Carthage in the Aeneid. However, the first steps towards a solution of
Problem 1 were given relatively recently by Steiner in the 19th century. In this article, we
give a solution to the discrete graph-theoretic analogue of Problem 1.

Discrete isoperimetric problems have been studied extensively in graph theory, and
there are many applications in areas such as network design and the theory of error
correcting codes [Har04, HLW06]. Given a graph X with vertex set V (X), the vertex
boundary of A ⊂ V (X) is defined by

∂A := {u ∈ V (X) \ A | there exists v ∈ A such that (u, v) ∈ E(X)}.

The vertex isoperimetric problem for a graph X is the following:

Problem 2. Amongst all subsets of V (X) with a fixed number of vertices, characterize
those that have minimal size vertex boundary.

The sets that appear as solutions to Problem 2 are called minimal.

The isoperimetric problem for the integer lattice in the plane

In this article we study the graph X = Z2
`1

with vertex set X0 = Z2 and edges connecting
all pairs of vertices `1-distance one apart. A nested sequence of minimal sets for X is given
by Wang–Wang [WW77].

Our approach differs from the usual one of finding a sequence of minimal sets, in that
we give a geometric characterization of every minimal set. While circles are the natural
geometric solution to Problem 1, there can be many different congruence classes of minimal
sets in X of a given size and our result exactly describes these solutions. This approach
lets us prove many applications that allow us to better understand the collection of all
minimal sets.

Before describing our results, we first establish some notation. We consider subsets of
X0 up to the following natural equivalence relation: we say two subsets A,B ⊂ X0 are
congruent if there is a graph automorphism φ of X such that φ(A) = B. It is clear that if
A and B are congruent, then A is minimal if and only if B is minimal.

Given natural numbers α, β ∈ N, we define B(α, β) to be the set of vertices (x, y) ∈ X0

that satisfy 0 6 y − x 6 α and 0 6 y + x 6 β. Similarly, given even integers α, β ∈ N,
we define B̂(α, β) to be the set of vertices (x, y) ∈ X0 that satisfy 0 6 y − x 6 α and
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−1 6 y+x 6 β−1. A box is a non-empty subset of X0 that is congruent to either B(α, β)
or B̂(α, β) for some α, β. The enclosing box of a set A, denoted enc(A), is the smallest
box containing A. Examples of sets and their enclosing boxes are shown in Figure 1.1.

Since boxes are parametrized by numbers α, β ∈ N, it is easier to determine whether
a box is minimal than it is to determine whether an arbitrary set of vertices is minimal.
Therefore, our broad strategy in solving Problem 2 is to compare an arbitrary set to its
enclosing box. We show that for minimal sets, the enclosing box can be obtained by
“saturating” a set, i.e. by adding vertices that do not increase the boundary. In the course
of our proof, we classify precisely which boxes are minimal, see Remark 5.14.

X0 \A1 is not a union of cones

N = 1, E = 1

A1 is not minimal

X0 \A4 is a union of cones

N = 10, E = 10

A4 is minimal

X0 \A2 is a union of cones

N = 0, E = −6

A2 is not minimal

A2 A4A1

X0 \A3 is a union of cones

N = 2, E = 0

A3 is not minimal

A3

Figure 1.1: Examples of sets Ai ⊂ X0 and their enclosing boxes. Black vertices are
contained in Ai and white vertices are contained in enc(Ai) \ Ai.

A cone is a subset of X0 congruent to the set {(x, y) | y − x > 0, y + x > 0}. As a
precursor to our main result, we give a necessary condition for minimality: if a set A is
minimal, then its complement X0 \ A is a union of cones and furthermore, its enclosing
box enc(A) is also minimal. Although this is far from a complete classification of minimal
sets — which we give in Theorem A — it demonstrates the important role of the enclosing
box in determining minimality.

If A1 is the set shown in Figure 1.1, its complement X0 \ A1 is not a union of cones.
This follows as any cone containing the white vertex in enc(A1) \ A1 must also contain
a vertex of A1, and so X0 \ A1 is not a union of cones. Thus A1 is not minimal by the
preceding necessary condition. Similarly, A2 can be seen not to be minimal since its
enclosing box enc(A2) is not minimal. However, to say whether or not A3 and A4 are
minimal is a slightly more delicate matter, since both A3 and A4 satisfy the preceding
necessary condition for minimality. To see why A3 is not minimal and A4 is, we use a
numerical invariant of a box called its excess.

Denoted Ex(B), the excess of a box B measures how much larger a box is than the
smallest minimal set A with |∂A| = |∂B|; see Definition 4.1. In particular, the excess of a
box is non-negative if and only if the box is minimal. An explicit formula for the excess of
a box is given in Theorem 5.13. In particular, this implies a box B(α, β) is minimal if it
satisfies |β − α| 6 1 + min(

√
4α + 1,

√
4β + 1), and this bound is close to tight. Thus, a

box is minimal if it is sufficiently close to being a square.
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Our main theorem, stated below, gives two related characterizations of minimal sets in
terms of their enclosing boxes.

Theorem A (Theorem 7.8). Let A ⊂ X0 with N := |enc(A) \ A| and E := Ex(enc(A)).
Then the following are equivalent:

1. A is minimal;

2. |∂A| = |∂(enc(A))| and N 6 E;

3. X0 \ A is a union of cones and N 6 E.

Going back to the examples in Figure 1.1, a straightforward application of Theorem 5.13
— the formula for the excess of a box — tells us that A3 does not satisfy N 6 E, but A4

does. Since X0 \ A3 and X0 \ A4 are both unions of cones, Theorem A can be used to
deduce that A3 is not minimal and A4 is minimal.

Applications

If A ⊂ X0, then the neighborhood of A, denoted N(A), is the set N(A) = A ∪ ∂A.
The neighborhood of a Wang–Wang set is a Wang–Wang set; see Figure 2.1. Hence,
neighborhoods of the specific minimal sets exhibited by Wang–Wang for (Zd, `1) are also
minimal. We use our characterization of all minimal sets given in Theorem 7.8 to show
that minimality in X is preserved when passing to neighborhoods.

Theorem B. If A ⊂ X0 is a minimal set, then N(A) is a minimal set.

A natural question to consider is whether minimal sets of a fixed size are unique up to
congruence. More formally, A ⊂ X0 is uniquely minimal if A is minimal and any minimal
set containing the same number of vertices as A is congruent to A. We completely classify
uniquely minimal sets:

Theorem C (Theorem 8.8). A subset of X0 is uniquely minimal if and only if it is
congruent to either B(2n, 2n) or B(n, n+ 1) for some n ∈ N.

As well as understanding individual minimal sets, we also want to understand the
structure of the collection of all minimal sets. To do this, we initiate the study of the graph
G of minimal sets. Vertices of G are congruence classes of minimal sets. Two vertices v and
w in G are joined by an edge if there exist representative minimal sets A ∈ v and B ∈ w
whose symmetric difference has size one. The graph G has a natural grading corresponding
to the sizes of representative minimal sets. The induced subgraphs of G containing all
congruence classes of minimal sets of size at most 10 and 41 are shown in Figures 1.2
and 1.3 respectively.

We exhibit the following features of G:

Theorem D. Let G be the graph of minimal sets. Then:

1. G contains a single infinite component (Corollary 8.9);
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B(0, 0)

B(1, 1)

B(0, 2)

B(1, 2)

B̂(2, 2)

B(1, 3)

B(2, 2) B(2, 3)

B̂(2, 4)

B(2, 4)

B(3, 3)

B(2, 5)

B(3, 4)

Figure 1.2: The induced subgraph of G containing congruence classes of minimal sets of
size at most 10. All boxes are labelled using Notation 5.5.

(a) The induced subgraph of G of congruence
classes of minimal sets of size up to 41. The
graded structure of the graph is shown where
vertices representing sets of larger sizes appear
above and are shaded with a darker color than
those representing smaller sizes.

(b) The same graph as on the left displayed
here in a different layout. Isolated vertices and
finite size components are towards the center
of the graph. The darkness of the shading of
vertices is still proportional to the size of the
corresponding sets.

Figure 1.3
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2. G contains finite components of arbitrarily large height (Theorem 8.11), where the
height of a component is the maximal length of a nested sequence of minimal sets in
it;

3. G contains infinitely many isolated vertices (Theorem 8.11).

We note that the infinite sequence of nested minimal sets constructed by Wang–Wang
is contained in the unique infinite component of G.

At the beginning of the introduction we mentioned two equivalent formulations of the
isoperimetric problem in the Euclidean plane: maximizing the area enclosed by a curve of
fixed length, or minimising the length of a curve enclosing a fixed area. We thus consider
the following discrete isoperimetric problem dual to Problem 2:

Problem 3. Amongst all subsets of X0 with a fixed vertex boundary, characterize those
with maximal size.

We say a subset of X0 is an efficient set if it is a solution to Problem 3. Every efficient
set is minimal (see Lemma 8.1), but, in contrast with the continuous case, not every
minimal set is efficient. We give an explicit solution to Problem 3:

Theorem E (Lemma 8.3). A subset of X0 is efficient if and only if it is congruent to
either B(n, n), B(n, n+ 1) or B(2n, 2n+ 2) for some n ∈ N.

While writing this article, we learned that Theorem E was essentially already known.
Vainsencher–Bruckstein characterize sets that are both efficient and minimal, which they
call Pareto optimal sets [VB08]. However, by Wang–Wang’s result and an easy argument,
it follows that efficient sets are always minimal, giving the above theorem. We note that
our proof is independent of that of Vainsencher–Bruckstein.

Consider the partial order on the set of minimal sets, where A ≺ B if there exists a
nested sequence A0 ⊂ A1 ⊂ · · · ⊂ An of minimal sets with |Ai+1| = |Ai|+ 1, A0 congruent
to A and An congruent to B. In other words, there is a strictly grade-increasing path in G
from A to B. A minimal set is immortal if it lies in an infinite chain of this poset and is
mortal otherwise. A minimal set is dead if it is maximal in this poset. We characterize
mortal and dead sets:

Theorem F. Let A ⊂ X0 be a minimal set. Then:

1. A is dead if and only if it is a box that is not efficient (Theorem 8.5).

2. A is mortal if and only if its enclosing box is dead (Proposition 8.6).

We note that by Theorem E we get an explicit characterization of mortal and dead
sets in terms of box parametrizations.

A set A ⊂ X0 is connected if its induced subgraph is connected. It can be seen in
Figure 1.2 that the box B(0, 2) is minimal but is not connected. We show that, up to
congruence, this is the only minimal set that is not connected.
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Theorem G (Theorem 7.1). A minimal set in X is connected if and only if it is not
congruent to B(0, 2).

Other Related Works

A complete solution to Problem 2 is known for very few graphs. Much of the literature
has focused on exhibiting a sequence of minimal sets, i.e. a sequence (An) where each An
is a minimal set consisting of exactly n vertices. Finding such a sequence is NP-hard for a
general graph (see [Har04]) and such sequences can typically be described only in special
cases for graphs with an abundance of symmetry.

Harper exhibited a nested sequence of minimal sets for the d-dimensional hypercube
Qd, where Qd is a graph on the vertex set {0, 1}d with an edge between a pair of binary
strings that differ in a single coordinate [Har66]. This result was extended to (Pq)

d, the
d-fold product of paths on q vertices [Chv75, Mog83, BL91a]. For (Kq)

d, the d-fold product
of complete graph on q vertices, lower bounds and asymptotic solutions for the vertex
isoperimetric problem are given in [Har99]. In constrast with Qd, there is no nested
sequence of minimal sets for (Kq)

d. The vertex isoperimetric problem on an n-dimensional
even discrete torus was solved by [Rio98] and [Kar82] (see also [BL09]). More generally, in
[BS02] the authors provide a general local-global principle to solve the vertex isoperimetric
problem in all cartesian powers of a graph G whenever G and G×G admit a particular
solution for the problem.

The isoperimetric problem has also been studied on infinite graphs, including integer
lattices. Let Zd`1 (respectively Zd`∞) be the graph on the vertex set Zd where two vertices
are joined by an edge if their `1-distance (respectively `∞-distance) is 1. As already
mentioned, Wang–Wang [WW77] exhibit a nested sequence of minimal sets in Zd`1 . Sieben
gives a formula for the size of the vertex boundary of a minimal set of size n in this graph
under the assumption that such sets are connected [Sie08]. This is then used to analyze
strategies for what are called polyomino achievement games. Radcliffe–Veomett obtain a
nested sequence of minimal sets in Zd`∞ [VR12].

The edge boundary of a subset of a graph is defined to be the set of edges that are
incident to both a vertex of this subset and to a vertex outside this subset. The edge
isoperimetric problem has also been well-studied for the various graphs mentioned above,
namely, by [Har64, Lin64, Ber67, Har76] for Qd, by [Lin64] for (Kq)

d and [BL91b] for
(Pq)

d and Zd`1 . For a useful survey on the edge isoperimetric problem on graphs see [Bez99].
Recently, [BE18] studied the edge isoperimetric problem for Zd`∞ and Zd with respect to
any Cayley graph.

Many of these preceding results use a technique called compression or normalization
that replaces a vertex set A ⊂ V (X) with a set c(A) ⊂ V (X) such that |A| = |c(A)| and
|∂A| > |∂(c(A))|; see [Har66]. Whilst this technique is well-suited to finding a sequence of
minimal sets, it does not generally allow one to give a structural characterization of all
minimal sets.
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Outline

In Section 2 we review the sequence of minimal sets constructed by Wang–Wang [WW77].
In Section 3 we introduce the notion of a saturated set. In Sections 4 and 5 we define the
excess of a set and give an explicit formula for the excess of a box (Theorem 5.13). In
Section 6 we show in Proposition 6.1 that all saturated minimal sets are boxes. Combined
with our formula for the excess of box, we prove the first part of Theorem A, thus
characterizing all minimal sets in terms of their enclosing boxes. In Section 7 we introduce
cones and show that up to congruence, there is a unique disconnected minimal set. We
also prove the second part of Theorem A and show the neighborhood of a minimal set is
minimal. In Section 8 we study the graph G and classify which sets are efficient, uniquely
minimal, dead and mortal.
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and suggestions. In particular, Theorem 7.9 was proven only after it was suggested by
the referee as a potential application. We are thankful for helpful discussions with Joseph
Briggs, who introduced us to Harper’s Theorem. We also thank Nir Lazarovich for helpful
comments and suggestions.

2 Wang–Wang sets

We recall the nested sequence of minimal sets in X constructed by Wang–Wang.

a

A

B

cd

D

b

x

y

C

Figure 2.1: The black vertices denote the `1–ball WWr(n) for some integer n > 2. The
oriented lines show how one obtains the vertices xr(n)+1, . . . , xr(n+1).

Throughout this article, we fix the graph X with vertex set X0 = Z2, where two
vertices (x, y), (x′, y′) ∈ X0 are joined by an edge if and only if |x− x′|+ |y − y′| = 1.
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Wang–Wang gave a nested sequence, WW1 ⊂ WW2 ⊂ . . . , of minimal sets in X such
that |WWn| = n for all n > 1 [WW77]. Throughout this article, a Wang–Wang set is a
subset A ⊂ X0 that is congruent to WWn for some n. In the upcoming sections, we utilize
them to prove our characterization of minimal sets in X.

In order to define the sets (WWi), it is enough to define a sequence of vertices (xi) for
1 6 i 6 n such that WWn = {x1, . . . , xn}. The first five vertices in this sequence are given
by coordinates:

x1 = (0, 0), x2 = (1, 0), x3 = (0, 1), x4 = (−1, 0), x5 = (0,−1)

Note that {x1, . . . , x5} is the `1-ball in X of radius 1 centered at x1. Let r(n) := 2n2+2n+1
denote the size of an `1-ball in X of radius n. Suppose that the vertices x1, . . . , xr(n) have
already been defined and that WWr(n) = {x1, . . . , xr(n)} is the `1–ball of radius n centered
at x1, i.e., WWr(n) = {x ∈ X | |x| 6 n} (where |.| is the `1–norm).

We use Figure 2.1 to define the vertices xr(n)+1, . . . , xr(n+1). We first set xr(n)+1 to
be the specific vertex adjacent to WWr(n) shown as vertex a in Figure 2.1. The vertices

xr(n)+1, . . . , xr(n)+n are those along the oriented line segment
−→
aA ordered by the given

orientation. The next set of vertices are those along the segment
−→
bB, then those on

−→
cC, and

finally those on
−→
dD (where each such sequence is again ordered by the given orientation).

The following lemma follows immediately from Wang–Wang’s result:

Lemma 2.1. Let A,B ⊂ X0. If A is minimal and |A| 6 |B|, then |∂A| 6 |∂B|. If in
addition |∂A| = |∂B|, then B is minimal.

Proof. For every m > 2, it is easy to verify that either |∂WWm+1| = |∂WWm| or
|∂WWm+1| = |∂WWm| + 1. It follows that |∂WWn| 6 |∂WWm| if n 6 m. As every
Wang–Wang set is minimal, |∂WW|A|| = |∂A| and |∂WW|B|| 6 |∂B|; thus |∂A| 6 |∂B|.
Now suppose that |∂A| = |∂B|. If for some C ⊂ X0 we have |B| = |C|, then as |A| 6 |C|,
we have |∂B| = |∂A| 6 |∂C|. Thus B is minimal.

3 Saturated sets

We define the notion of a saturated set, a subset of X0 with the property that if any
additional vertex is added to this set, then its boundary must increase.

Definition 3.1. A set A ⊂ X0 is saturated if |∂(A ∪ {v})| > |∂A| for all v ∈ X0 \ A.

A configuration is a subset (F,N) ⊂ X0 ×X0 such that F ∩N = ∅. We say that two
configurations (F,N) and (F ′, N ′) are congruent if there is an automorphism φ ∈ Aut(X)
such that (F ′, N ′) = (φ(F ), φ(N)). A set A ⊂ X0 contains the configuration (F,N) if
F ⊂ A and N ∩ A = ∅. Some configurations are shown in Figure 3.1.

Lemma 3.2. If A ⊂ X0 is saturated, then A does not contain a configuration congruent
to one shown in Figure 3.1.
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a b c d

Figure 3.1: Four configurations (F,N) are shown, where elements of F are shown as
black vertices and elements of N are shown as white vertices. Lemma 3.2 ensures that a
saturated set cannot contain a configuration congruent to one of the ones above.

Proof. Suppose A contains a configuration (F,N) from Figure 3.1, and let v ∈ N . By
definition v /∈ A. Furthermore, it is straightforward to check that ∂(A ∪ {v}) 6 ∂A,
contradicting our assumption that A is saturated.

4 Excess

We introduce excess, a number associated to a subset A ⊂ X0 that we will use in later
sections to characterize minimal sets and to study the structure of the graph of minimal
sets.

Definition 4.1. The excess of A ⊂ X0 is defined to be

Ex(A) := max
{
|A| − |B|

∣∣ B ⊂ X0 is minimal and |∂A| = |∂B|
}
.

The following lemma shows that the excess of A is well-defined.

Lemma 4.2. For any finite A ⊂ X0, there exists a minimal set B ⊂ X0 such that
|∂A| = |∂B|.

Proof. We first claim that if n > 6, then there exists a minimal set B with |∂B| = n.
Indeed, as noted in the proof of Lemma 2.1, for every m > 2 either |∂WWm+1| = |∂WWm|
or |∂WWm+1| = |∂WWm| + 1. Moreover, {|∂WWm| | m ∈ N} is unbounded. Since
|∂WW2| = 6, the claim follows.

If |A| = 1, then A is minimal. Otherwise, |A| > 2 = |WW2|, so Lemma 2.1 ensures
that |∂A| > |WW2| = 6. By the preceding claim, there exists a minimal set B with
|∂A| = |∂B|.

The next two lemmas follow almost immediately from the definition of excess.

Lemma 4.3. A finite set A ⊂ X0 is minimal if and only if Ex(A) > 0.

Proof. If A is minimal, then by taking B = A in the definition of excess, we get
that Ex(A) > 0. For the converse, if Ex(A) > 0, then there exists a minimal set B
such that |∂A| = |∂B| and |A| − |B| > 0. Thus, A is minimal by Lemma 2.1.

Lemma 4.4. If A,A′ ⊂ X0 are finite and |∂A| = |∂A′|, then Ex(A)−Ex(A′) = |A|− |A′|.
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Proof. Since |∂A| = |∂A′|, there exists a minimal set B ⊂ X0 such that Ex(A) = |A|− |B|
and Ex(A′) = |A′| − |B|. Thus,

Ex(A)− Ex(A′) =
(
|A| − |B|

)
−
(
|A′| − |B|

)
= |A| − |A′|.

5 Boxes

In this section, we define boxes. These are sets that are bounded by lines of slope 1 and
−1. We prove some key facts regarding these sets and give an explicit formula for their
excess. As a consequence, we determine which boxes are minimal sets.

Proposition 5.6 demonstrates that the following definition of a box is equivalent to the
one given in the introduction.

Definition 5.1. A box in X is a nonempty subset of X0 of the form

B(a, b, c, d) := {(x, y) ∈ X0 | a 6 y − x 6 b and c 6 y + x 6 d}

for some a, b, c, d ∈ Z.

Convention 5.2. There is an ambiguity when giving coordinates for boxes, which only
arises for degenerate boxes of the form B(a, b, c, d) where either a = b or c = d. For
example, B(0, 0, 0, 3) and B(0, 0, 0, 2) are the same box. To remedy this issue and ensure
boxes can be uniquely parametrized, given a box B(a, b, c, d) we implicitly assume that a
and c are maximal and that b and d are minimal out of all possible choices.

Given a subset A ⊂ X0, recall that N(A) := A t ∂A. We next show that boxes are
saturated. In the next section, we prove a converse to this statement for minimal sets (see
Proposition 6.1).

Lemma 5.3. Every box is saturated.

Proof. Let B = B(a, b, c, d) be a box. Suppose v = (x, y) ∈ X0 \B. As v /∈ B, x and y do
not satisfy one of the four defining equations of B. Without loss of generality, we assume
x+ y > d. It follows that (x+ 1, y) and (x, y + 1) are adjacent to v and not contained in
N(B). As |N(B ∪ {v})| > |N(B)|+ 2, we have

|∂(B ∪ {v})| = |N(B ∪ {v})| − |B ∪ {v}| > (|N(B)|+ 2)− (|B|+ 1) = |∂B|+ 1 > |∂B|,

demonstrating that B is saturated.

An extremal line of a box B(a, b, c, d) is the set of solutions in Z2 to one of the four
equations y − x = a, y − x = b, y + x = c or y + x = d. By the above convention, a box
intersects each of its extremal lines in at least one point. A corner of the box B is an
element of B that lies on the intersection of two distinct extremal lines. A box has either
zero, two, or four corners. An example of a box with two corners is shown in the left of
Figure 5.1 and one with no corners is shown on the right of that figure.
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y+x=0

y+x=9

y−x=0

y−x=4

x

y

(a) The box B(0, 4, 0, 9) = B(4, 9).

y+x=−1

y+x=5

y−x=0

y−x=4

x

y

(b) The box B(0, 4,−1, 5) = B̂(4, 6).

Figure 5.1

Definition 5.4. The modulus of a box B(a, b, c, d) is the unordered pair {b− a, d− c}.

When Convention 5.2 is followed, it is evident that the modulus of a box is well-defined
and is invariant under congruence. We intuitively expect that a box of modulus {α, β}
is minimal when |α − β| is small. We precisely quantify how small |α − β| must be in
Theorem 5.13 and Remark 5.14.

We now show that a box of modulus {α, β} is congruent to a “standard box” B(α, β)
or B̂(α, β) as defined below.

Notation 5.5. Define
B(α, β) := B(0, α, 0, β)

for any α, β ∈ N, and
B̂(α, β) := B(0, α,−1, β − 1)

for any even α, β ∈ N (see Figure 5.1 for examples).

Proposition 5.6. Let B = B(a, b, c, d) be a box. If B has no corners, then b − a and
d− c are both even and B is congruent to B̂(b− a, d− c). Otherwise, B is congruent to
B(b− a, d− c).

Proof. Suppose first that B contains no corners. Then the intersection of the line y−x = a
with the line y + x = c does not have integer coordinates, so a and c have opposite parity.
Similarly, we deduce that a and d have opposite parity and that b and c have opposite
parity. Thus b − a and d − c must both be even. Let u be the vertex of B which lies
on the the line y = x + a and has minimal y-value of all such possible choices. We
can apply a translation which sends u to the origin (0, 0). The resulting box is then
B(0, b− a,−1, d− c− 1) = B̂(b− a, d− c) as desired.

On the other hand, suppose that B contains a corner v. Then there exists an automor-
phism of X sending v to the origin that maps B to the box B(b− a, d− c).

The next two lemmas calculate the size of a box and its boundary.
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Lemma 5.7. Let B be a box with modulus {α, β}. Then |∂B| = α + β + 4.

Proof. Let B = B(a, b, c, d) be a box of modulus {α = b − a, β = d − c}. We can
assume without loss of generality that α 6 β. First suppose that α = 0, in which case
B is congruent to B(0, β). Note that Convention 5.2 implies β must be even. Since
|∂B(0, 0)| = 4 and |∂B(0, 2n+2)| = |∂B(0, 2n)|+2 for every n ∈ N, it follows by induction
that |∂B(0, β)| = β + 4 for all even β.

We thus assume that α > 1. If α = β = 1, then B is congruent to B(1, 1) and
the formula |∂B| = α + β + 4 = 6 clearly holds. We thus also assume that β > 2 and
proceed by induction on β. We assume that the lemma is true for all boxes of modulus
{α′, β′}, where max(α′, β′) < β. Let L and L+ be the lines with equations y = −x+ d and
y = −x+ d+ 1 respectively. Let V := ∂(L ∩B) ∩ L+ and observe that |V | = |L ∩B|+ 1.
Let B′ = B(a, b, c, d− 1). Since d− c > 2 and b− a > 1, the preceding parametrization
of B′ is consistent with Convention 5.2. Thus B′ has modulus {α, β − 1}. We observe
that N(B) = N(B′) t V and B = B′ t (B ∩ L). The claim now follows from the equation
below, where the last equality uses our induction hypothesis.

|∂B| = |N(B)| − |B| = (|N(B′)|+ |V |)− (|B′|+ |L ∩B|) = |∂B′|+ 1 = α + β + 4.

Lemma 5.8. Let α, β ∈ N, we have that

|B(α, β)| =
⌊
αβ + α + β + 2

2

⌋
.

Moreover, if α and β are both even, then

|B̂(α, β)| = αβ + α + β

2
.

Proof. Let p : X0 → Z be the projection map given by (x, y) 7→ y − x. Let B be a box
and let I be the interval p(B). Thus |B| =

∑
i∈I |p−1(i) ∩ B|. We break the proof into

cases depending on the type of box B and the parity of α and β.
We first analyze the case where B = B(α, β). Suppose β is even. It follows that

|p−1(i)| = β
2

+ 1 for even i ∈ I and |p−1(i)| = β
2

for odd i ∈ I. Thus, if α is even, then

|B| =
(α

2
+ 1
)(β

2
+ 1

)
+

(
α

2

β

2

)
=
αβ + α + β + 2

2
=

⌊
αβ + α + β + 2

2

⌋
.

If α is odd, we have:

|B| =
(
α + 1

2

)(
β

2
+ 1

)
+

(
α + 1

2

)(
β

2

)
=
αβ + α + β + 1

2
=

⌊
αβ + α + β + 2

2

⌋
.

The last equality follows since αβ+α+β+1
2

is equal to |B| and hence it is an integer.

On the other hand, suppose that β is odd. In this case, it follows that |p−1(i)| = β+1
2

for all i ∈ I. Thus,

|B| =
α∑
j=0

β + 1

2
= (α + 1)

(
β + 1

2

)
=
αβ + α + β + 1

2
=

⌊
αβ + α + β + 2

2

⌋
.
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Finally, let B = B̂(α, β) where both α and β are even. It follows that |p−1(i)| = β
2

for

even i ∈ I and |p−1(i)| = β
2

+ 1 for odd i ∈ I. Thus,

|B| =
(α

2
+ 1
) β

2
+
α

2

(
β

2
+ 1

)
=
αβ + α + β

2
.

Remark 5.9. If α, β ∈ N are both even, then by Lemma 5.7 and Lemma 5.8 we have
|∂B̂(α, β)| = |∂B(α, β)| and |B̂(α, β)|+ 1 = |B(α, β)|.

A standard line is a set of the form {(x, y) | y − x = w} or {(x, y) | y + x = w} for
some w ∈ Z. The following lemma allows us to take a nested sequence of subsets of a box,
all with the same size boundary. This lemma will be used in Sections 7 and 8.3 as well as
here.

Lemma 5.10. Let B be a box of modulus {α, β}, and let L be an extremal line of B. Set
n = |L ∩B| − 1. Then the following are true:

1. If α, β > 2, then there exist sets B = B0 ⊃ B1 ⊃ . . . ⊃ Bn such that |∂Bi| = |∂Bi−1|
for all 1 6 i 6 n.

2. Ex(B) 6 n

3. If L′ is a standard line that intersects B, then Ex(B) 6 |L′ ∩B|.

Proof. Without loss of generality, we may assume that B = B(a, b, c, d) and that L is the
line with equation y = −x+ d.

We first suppose that α, β > 2, and we prove claims (1) and (2) in this case. Let
v1 = (x1, y1), . . . , vn+1 = (xn+1, yn+1) be the vertices of L ∩B, ordered so that x1 < x2 <
. . . < xn+1. Let Bi := B \ {v1, . . . , vi}. It follows from our hypothesis on the modulus of
B that, for each 1 6 i 6 n, the vertices (xi, yi), (xi − 1, yi), (xi + 1, yi) and (xi, yi − 1) are
each contained in N(Bi) and (xi, yi + 1) is not. Thus N(Bi−1) = N(Bi)t {(xi, yi + 1)} for
each 1 6 i 6 n, and so |∂Bi| = |∂Bi−1|. This shows (1). To see (2), note that Bn+1 is a
box whose modulus is either {α− 1, β} or {α, β − 1}. By Lemma 5.7, |∂Bn+1| = |∂B| − 1.
Thus, any minimal set of size |Bn+1| = |B| − (n+ 1) must have boundary of size at most
|∂B| − 1. It follows that Ex(B) 6 n. Thus, (2) follows in this case.

We now suppose that β := d − c > α := b − a and that α 6 1, and we prove (2)
for this remaining case. As before, let L be the line with equation y = −x + d. Since
α 6 1, L intersects B in a single vertex v. It follows that B′ := B \ v is a box and is
of strictly smaller modulus. Thus Lemma 5.7 implies that |∂B′| < |∂B|. It follows from
Lemma 2.1 that any minimal set of size at most |B| − 1 has boundary of size at most
|∂B| − 1. This implies Ex(B) 6 0 as required. If Q is any other extremal line of B, then
|Q ∩B| > |L ∩B| = 1 and we also get that Ex(B) 6 |Q ∩B| − 1. Thus, (2) follows.

Finally, to see (3), suppose L′ is a standard line that intersects B, and let L′′ be the
extremal line of B that is parallel to L′. It follows that |L′′ ∩B| 6 |L′ ∩B|+ 1. By what
we have shown, we get that Ex(B) 6 |L′′ ∩B| − 1 as required.
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Remark 5.11. By considering the box B = B(2, 2), which has excess one, we see that the
bounds for Ex(B) given in the previous lemma are sharp. See also Lemma 5.12 for more
boxes where the bound is achieved.

To calculate the excess of an arbitrary box, we first compute the excess of a box with
modulus {α, β}, where |α− β| 6 1.

Lemma 5.12. For every n ∈ N,

• Ex
(
B(2n, 2n)

)
= n;

• Ex
(
B(2n+ 2, 2n+ 3)

)
= n;

• Ex
(
B(2n+ 1, 2n+ 1)

)
= n;

• Ex
(
B(2n+ 1, 2n+ 2)

)
= n;

• Ex
(
B̂(2n, 2n)

)
= n− 1.

Proof. We first remark that if A ⊂ X0 is minimal, then |∂A| = |∂WW|A||. Thus for any
minimal set A of X, Ex(A) = max{k | |∂WW|A|−k| = |∂WW|A||}.

Let Y be one of B(2n, 2n), B(2n+ 2, 2n+ 3) , B(2n+ 1, 2n+ 1) or B(2n+ 1, 2n+ 2).
Then Y is congruent to a Wang–Wang set WWm for some m. It can be verified by
Lemma 5.10(1) that |∂WWm−i| = |∂WWm| if and only if i 6 n. This gives the required
formula for the excess of Y . Finally, by Lemma 4.4 and Remark 5.9, Ex

(
B̂(2n, 2n)

)
=

Ex
(
B(2n, 2n)

)
− 1 = n− 1.

We are now ready to calculate the excess of any box.

Theorem 5.13. Suppose α, β ∈ N. Let r := α+β
2

, k := |β−α|
2

. Then

Ex
(
B(α, β)

)
=

⌊
brc − k2

2

⌋
.

Moreover, when α, β ∈ N are even, then

Ex
(
B̂(α, β)

)
=
r − k2 − 2

2
.

Proof. By applying an automorphism of X, we may assume that β > α. Note that
α = r − k and β = r + k. We break the argument into two cases.
Case A: α and β have the same parity.

In this case, r and k are both integers. Lemma 5.8 yields the equations:

|B(r, r)| =
⌊
r2 + 2r + 2

2

⌋
=

⌊
r2

2

⌋
+ r + 1,

|B(r − k, r + k)| =
⌊
r2 − k2 + 2r + 2

2

⌋
=

⌊
r2 − k2

2

⌋
+ r + 1.
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Setting r = 2m+ ε where ε ∈ {0, 1} and m ∈ Z, we get the equation:⌊
r2 − k2

2

⌋
−
⌊
r2

2

⌋
=

⌊
ε2 − k2

2
+ 2m2 + 2mε

⌋
−
⌊
ε2

2
+ 2m2 + 2mε

⌋
=

⌊
ε− k2

2

⌋
It follows from Lemma 5.7 that |∂B(r, r)| = |∂B(r − k, r + k)|. Lemma 4.4 then implies

Ex(B(α, β)) = Ex
(
B(r − k, r + k)

)
= Ex

(
B(r, r)

)
− |B(r, r)|+ |B(r − k, r + k)|

= Ex
(
B(r, r)

)
+

⌊
r2 − k2

2

⌋
−
⌊
r2

2

⌋
=

⌊
Ex
(
B(r, r)

)
+
ε− k2

2

⌋
.

When r is even (and so ε = 0), Ex
(
B(r, r)

)
= r

2
by Lemma 5.12. Substituting this into

the above equation yields

Ex
(
B(α, β)

)
=

⌊
r − k2

2

⌋
=

⌊
brc − k2

2

⌋
.

When r is odd (and so ε = 1), Ex
(
B(r, r)

)
= r−1

2
by Lemma 5.12. Thus,

Ex
(
B(α, β)

)
=

⌊
r − 1

2
+

1− k2

2

⌋
=

⌊
brc − k2

2

⌋
.

Case B: α and β have different parity. We can write r = s+ 1
2

and k = t+ 1
2
, for some

s, t ∈ Z. Note that brc = s, so we need to show

Ex
(
B(α, β)

)
=

⌊
s− t2 − t− 1

4

2

⌋
=

⌊
s

2
− 1

8

⌋
− t2 + t

2
(5.1)

The last equality follows since t2 + t is even. Lemma 5.8 now yields

|B (s, s+ 1)| =

⌊
s2 + 3s+ 3

2

⌋
|B(α, β)| = |B(s− t, s+ t+ 1)| =

⌊
s2 + 3s+ 3− t2 − t

2

⌋
= |B (s, s+ 1)| − t2 + t

2
,

where the last equality follows again because t2 + t is even.
As in Case A,

Ex
(
B(s− t, s+ t+ 1)

)
= Ex (B (s, s+ 1))− |B (s, s+ 1)|+ |B(s− t, s+ t+ 1)|

= Ex (B (s, s+ 1))− t2 + t

2
,

So by Equation 5.1, we need only to verify that Ex (B (s, s+ 1)) =
⌊
s
2
− 1

8

⌋
, or equivalently:⌊

s

2
− 1

8
− Ex (B (s, s+ 1))

⌋
= 0.
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Lemma 5.12 ensures Ex(B(s, s+ 1)) = s
2
− 1 when s is even, and Ex(B(s, s+ 1)) = s

2
− 1

2

when s is odd, so the preceding equation is satisfied in both cases.
Finally, Lemma 4.4 and Remark 5.9 imply that Ex

(
B̂(α, β)

)
= Ex

(
B(α, β)

)
− 1 =

r−k2−2
2

for even α, β ∈ N.

Remark 5.14. By combining Lemma 4.3 and Theorem 5.13, we have a complete characteri-
zation of which boxes are minimal.

6 Characterizing minimal sets

In this section we prove Theorem 6.4, giving our first characterization of minimal sets in
the graph X = Z2

`1
. We also prove Proposition 6.8, which characterizes boxes as precisely

the sets that are both saturated and `∞-connected.

We first explain how to deduce Theorem 6.4 from the following proposition, whose
proof occupies the remainder of this section.

Proposition 6.1. If A ⊂ X is minimal and saturated, then it is a box.

Definition 6.2. Given a finite set A ⊂ X0, the enclosing box, denoted enc(A), is the
smallest box that contains A.

The enclosing box of a set is well-defined, as the intersection of boxes is itself a box.
The enclosing box of a minimal set is the unique smallest saturated set containing it:

Lemma 6.3. Let A ⊂ X0 be a minimal set, and let A = A0 ⊂ A1 ⊂ A2 ⊂ . . . be a
(possibly finite) maximal sequence of nested minimal sets such that |Ai+1| = |Ai|+ 1 for
each i. Then AN = enc(A) for some N > 0 and |∂A| = |∂(enc(A))|.

Proof. Let N > 0 be the largest integer such that |∂AN | = |∂A|. Such an integer exists as
there are minimal sets with arbitrarily large boundaries (see the proof of Lemma 4.2 for
instance). To prove the lemma, it suffices to show that AN = enc(A).

We first claim that AN must be saturated. For a contradiction, suppose otherwise. It
follows there exists a set A′N ⊃ AN (not necessarily equal to AN+1) such that |∂A′N | = |∂AN |
and |A′N | = |AN | + 1. By Lemma 2.1, A′N is minimal. The maximality of our nested
sequence, ensures it contains a set AN+1. As AN+1 is minimal and |AN+1| = |A′N |, it
follows that |∂AN+1| = |∂AN |, contradicting our choice of N .

As AN is saturated and minimal, it is a box by Proposition 6.1. If enc(A) 6= AN ,
then enc(A) must be a proper subset of AN . However, in this case, we then have that
|∂(enc(A))| < |∂AN | by Lemma 5.7, contradicting our choice of N . Thus AN = enc(A),
and the lemma follows.

We are ready to prove our first characterization of minimal sets, using Proposition 6.1.

Theorem 6.4. Let A ⊂ X0, N := |enc(A) \A| and E = Ex(enc(A)). Then A is minimal
if and only if |∂A| = |∂(enc(A))| and E > N .
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Proof. First suppose A is minimal. By Lemma 6.3, |∂A| = |∂ enc(A)|. Thus by Defini-
tion 4.1, E > N . Conversely, suppose that |∂A| = |∂(enc(A))| and E > N . It follows from
Definition 4.1 that there exists a minimal set C such that |∂C| = |∂(enc(A))| = |∂A| and

|C| = |enc(A)| − E 6 |enc(A)| −N = |A|.

By Lemma 2.1, A is minimal.

We now begin our proof of Proposition 6.1. We first establish some terminology
regarding the `∞-metric on X0. We recall the `∞-metric (also known as the Chebyshev,
maximum, or chessboard metric) on X0, which is defined by

d∞
(
(x, y), (x′, y′)

)
:= max

(
|x− x′|, |y − y′|

)
.

Two vertices u, v ∈ X0 are said to be `∞-adjacent if d∞(u, v) = 1. An `∞-path is a sequence
(ui)

n
i=0 of elements of X0 such that ui−1 and ui are `∞-adjacent for every 0 < i 6 n. A

subset A ⊂ X0 is `∞-connected if any pair of vertices in A are the endpoints of an `∞-path
contained in A. An `∞-component of A is a maximal `∞-connected subset of A.

Remark 6.5. When we use the terms path, connected and adjacent without the prefix `∞,
it is assumed we are referring to these properties in the graph X or equivalently, in X(0)

equipped with `1-metric.

The next two lemmas will be needed to prove Proposition 6.8, our characterization of
boxes.

Lemma 6.6. Suppose A ⊂ X0 is saturated and C ⊆ A is an `∞-component of A that is
not contained in a standard line. Then C contains a pair of adjacent vertices.

Proof. As C is `∞-connected and not contained in a standard line, it contains an `∞-path
γ = (u0, . . . un) such that u0 and un do not lie on the same standard line. We assume no
ui is adjacent to ui+1, otherwise we are done. Thus there exists an i such that ui−1, ui and
ui+1 do not lie in the same standard line. By applying an automorphism of X, we may
assume ui−1 = (1,−1), ui = (0, 0) and ui+1 = (1, 1). As A ⊇ C is saturated, Lemma 3.2
ensures that (1, 0) is contained in A. As C is an `∞-component of A, (1, 0) ∈ C. We are
done as (1, 0) is adjacent to ui.

Lemma 6.7. If A ⊂ X0 is a finite saturated set, then every `∞-component of A is a box.

Proof. Let C be an `∞-component of A. If C is contained in a standard line, then we
are done. Otherwise, by Lemma 6.6, C contains two adjacent vertices. In particular,
C contains a box that is not contained in a standard line. Thus, up to congruence, C
contains a box B = B(a, b, c, d) that is not contained in a standard line and is maximal,
i.e. is not contained in any other box contained in C. We will show that B = C.

Assume for a contradiction that B is a proper subset of C. As C is `∞-connected,
there exists an `∞-path from B to C \B which is contained in C. Thus, there are vertices
w = (x, y) ∈ B and v = (x′, y′) ∈ C \ B which are `∞-adjacent. By symmetry, we may
assume that x′ + y′ > d.
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We claim that we may assume that x+ y = d. For suppose that x+ y 6= d, then as w
is `∞ adjacent to v, we have x+ y = d− 1 and v = (x+ 1, y+ 1). At least one of (x, y+ 1)
or (x+ 1, y) is contained in B, since B is not contained in a standard line. By replacing w
with such a vertex, we may assume x+ y = d.

y + x = d

w
v

z

Figure 6.1

We now show that the box B′ := B(a, b, c, d+ 1) is contained in C, contradicting the
maximality of B. We first show that C contains a vertex of B′ \B. If v ∈ B′, then we are
done. Otherwise, either x′ + y′ = d+ 2, or y′ − x′ < a, or y′ − x′ > b. If y′ − x′ < a and
x′+y′ 6= d+2 — as is shown in Figure 6.1 — then v = (x+1, y) and y−x = a. As B is not
contained in a standard line, (x− 1, y + 1) ∈ A. Thus by Lemma 3.2, z := (x, y + 1) ∈ A.
Since C is an `∞-component of A, we have that z ∈ C ∩ (B′ \ B). If y′ − x′ > b and
x′ + y′ 6= d+ 2, then a similar argument demonstrates that B′ \B contains a vertex of C.
Finally, if x′ + y′ = d + 2, then v = (x + 1, y + 1). As B is not contained in a standard
line, either (x + 1, y − 1) ∈ B or (x − 1, y + 1) ∈ B. By Lemma 3.2, (x + 1, y) ∈ A in
the first case and (x, y + 1) ∈ A in the second. In either case, using the fact that C is an
`∞-component of A, we deduce there exists a vertex in C ∩ (B′ \B).

Figure 6.2: Black vertices are in B and white vertices are in B′ \B, where B′ = B(0, 8, 0, 5)
and B = B(0, 8, 0, 4). The three overlapping Swiss crosses can be used to deduce, via
Lemma 3.2, that if C contains a single vertex of B′ \B, then B′ ⊂ C.

By the previous paragraph, there exists a vertex z = (x′′, y′′) ∈ C ∩ (B′ \B). Note that
(x′′, y′′− 1) ∈ B. If (x′′, y′′− 2) ∈ B, then (x′′ + 1, y′′− 1) ∈ C by Lemma 3.2. Similarly, if
(x′′ − 1, y′′) ∈ B, and if (x′′ − 2, y′′) ∈ B, then (x′′ − 1, y′′ + 1) ∈ C. By repeating these
arguments, we see that B′ ⊂ A (see Figure 6.2) as claimed, and we get a contradiction.

The following proposition characterizes `∞-connected, saturated subsets of X0 as boxes.

Proposition 6.8. A finite subset A ⊂ X0 is a box if and only if it is `∞-connected and
saturated.
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Proof. If A is a box, then it is finite, `∞-connected and saturated by Lemma 5.3. For the
other direction, Lemma 6.7 implies that an `∞-connected saturated set is a box.

The next two lemmas, together with Proposition 6.8, show that a finite minimal
saturated subset of X0 is a box (Proposition 6.1).

Lemma 6.9. Let A ⊂ X0 be a finite, saturated subset, and let C1 and C2 be distinct
`∞-components of A such that there exists a vertex (x, y) ∈ ∂C1 ∩ ∂C2. Then C1 and C2

are boxes, and, up to applying an automorphism of X, (x − 1, y) is a corner of C1 and
(x + 1, y) is a corner of C2. Moreover, if C is an `∞-component of A with (x, y) ∈ ∂C,
then C is equal to either C1 or C2.

Proof. By Lemma 6.7, C1 and C2 are boxes. By possibly applying an automorphism of X,
we assume that (x− 1, y) ∈ C1.

Note that (x, y) /∈ A and (x, y ± 1) /∈ A, for otherwise C1 and C2 would be joined
by an `∞-path in A. Thus it must be the case that (x + 1, y) ∈ C2. In particular, the
only vertices of A adjacent to (x, y) are (x− 1, y) and (x+ 1, y). It follows that the only
`∞-components of A which contain (x, y) in their boundary are precisely C1 and C2.

Moreover, (x − 1, y ± 1) /∈ A since A cannot contain configuration (d) in Figure 3.1
by Lemma 3.2. We deduce that (x − 1, y) and (x + 1, y) are corners of C1 and C2

respectively.

For the next lemma, we let c(A) denote the number of `∞-components of a subset
A ⊂ X0.

Lemma 6.10. Let A be a finite saturated subset of X0. Then there exists a set A′ ⊂ X0

such that |A′| = |A| and |∂A′| 6 |∂A| − (c(A)− 1). In particular, if A is minimal, then it
is `∞-connected.

Proof. We first recall that every `∞-component of A is a box by Lemma 6.7. We prove the
lemma by induction on c(A) = n. The base case n = 1 trivially follows by setting A′ = A.
When n = 2, then A′ is obtained from A by translating one of the two `∞-components to
reduce the boundary of the set by 1 (this is possible as these components are boxes). Now
suppose c(A) > 2 and that for all finite saturated sets S, with c(S) < c(A) there exists a
set S ′ ⊂ X such that |S ′| = |S| and |∂S ′| 6 |∂S| − (c(S)− 1).

Given a box B = B(a, b, c, d) we say that the line y = −x+ d is the NE extremal line
of B and that the line y = −x+ c is a SW extremal line of B. Consider the smallest box
containing A and let L be its NE extremal line. Let C be an `∞-component of A which
contains a vertex of L. Since A is saturated, so is C and hence by Proposition 6.8, the set
C is a box. Let C̄ = A \C. By Lemma 6.9, any vertex of ∂C ∩ ∂C̄ is adjacent to a corner
of C that does not lie on L. Thus, |∂C ∩∂C̄| 6 2, and we get that: |∂C|+ |∂C̄| 6 |∂A|+ 2.

We will now show that we can replace C̄ by a different set so that the union of this
set with C satisfies the claim. If |C̄| = 1, then c(A) = 2 and we reduce to a base case.
If |C̄| = 2, then set W := {(0, 0), (−1, 1)}. Otherwise set W = WW|C̄|. Now since A is
saturated, C̄ is also saturated and we have c(C̄) = c(A)− 1 = n− 1. By the induction
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Figure 6.3: Arranging W and C to get A′

hypothesis, there exists a set P such that |P | = |C̄| and |∂P | 6 |∂C̄| − (n− 2). As W is
minimal, |∂W | 6 |∂P |. Thus, |∂W | 6 |∂C̄| − (n− 2).

We now translate W and C appropriately in order to define A′. Let Q be the line
given by y + x = 0. Since W is a Wang–Wang set of size greater than two or is congruent
to {(0, 0), (−1, 1)}, we can apply an automorphism so that W ⊂ {(x, y) | y + x 6 0} and
|W ∩Q| > 2. Thus there exists some v ∈ ∂W that is adjacent to two vertices of W ∩Q.
Let u ∈ C be a vertex on the SW extremal line of C. By translating C, we can suppose
that u and v coincide. Setting A′ := W ∪ C, we get (see Figure 6.3)

|∂A′| 6 |∂C|+ |∂W | − 3.

Thus

|∂A′| 6 |∂C|+ |∂W | − 3 6 |∂C|+ |∂C̄| − (n− 2)− 3 6 |∂A| − (n− 1)

and
|A′| = |W |+ |C| = |C̄|+ |C| = |A|.

This concludes the proof of the lemma.

Proof of Proposition 6.1. Suppose A ⊂ X0 is minimal and saturated. By Lemma 6.10, A
is `∞-connected. Lemma 6.7 now implies that A is a box.

7 Minimal sets and cones

In this section we prove another characterization of minimal sets in terms of cones and
show that (almost) all minimal sets are connected. We also show the neighborhood of a
minimal set is minimal.

7.1 Minimal sets are connected

Theorem 7.1. A minimal set in X is connected if and only if it is not congruent to
B(0, 2).

Before proving the above theorem, we need to first define cones and prove a series of
lemmas.
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Definition 7.2. A cone is a subset of X0 congruent to C0 := {(x, y) | y−x > 0, y+x > 0}.
An extremal ray of the cone C0 is the intersection of C0 with either the line y = x or
y = −x. An extremal ray of a cone is the image of an extremal ray of C0 under the given
congruence. A cone at the vertex v ∈ X0 is a cone whose two extremal rays intersect at v.
If v ∈ X0, then the cone above v is a cone at v that is translation-equivalent to C0; the
cone to the right of v is a cone at v that is translation-equivalent to C0 rotated clockwise
90◦. The cones below v and to the left of v are defined analogously.

Remark 7.3. Given any box B ⊂ X0, it readily follows that X0 \ B is a finite union of
cones.

Lemma 7.4. Let A ⊂ X0 be a finite set such that |enc(A) \A| < Ex(enc(A)) and X0 \A
is a union of cones. Suppose v ∈ A and there is a cone C based at v such that C∩A = {v}.
Without loss of generality, we can suppose v = (0, 0) and that C is the cone above v. Then
(−1,−1), (0,−1), (1,−1) ∈ A.

Proof. Suppose B = B(a, b, c, d) := enc(A). Let A′ := A \ {v}. Observe that X0 \ A′ is a
union of cones, C is disjoint from A′ and that 1 6 |B \ A′| 6 Ex(B). We will show that
w−1 = (−1,−1), w0 = (0,−1) and w1 = (1,−1) are in A. By symmetry, we need only
show w0 and w1 are in A.

w0 ∈ A. If w0 /∈ A, then w0 is contained in a cone C0 disjoint from A, which we may
assume is at w0. Since v /∈ C0, C0 must either be below, to the left or to the right of w0.
In either of the latter two cases, C0 ∪ C contains either the intersection of the extremal
line y − x = b with B or the intersection of the extremal line y + x = d with B. As,
|(C0 ∪C)∩B| 6 |B \A′| 6 Ex(B), this contradicts Lemma 5.10(2). Thus we may assume
that C0 is the cone below w0.

Note that v does not lie on the extremal line y−x = a nor the extremal line y+x = c, for
otherwise C contains the intersection of an extremal line with B and we get a contradiction
as in the previous paragraph. Let L be the line of slope −1 passing through v. Let
φ : X0 → X0 be the translation (x, y) 7→ (x − 1, y). As v does not lie on y − x = a or
y + x = c, given a vertex u ∈ L∩B it follows that either u ∈ C ∩B ∩L or φ(u) ∈ C0 ∩B.
It follows that

|B ∩ L| 6 |C ∩B ∩ L|+ |C0 ∩B ∩ L| 6 |C ∩B|+ |C0 ∩B| 6 |B \ A′| 6 Ex(B). (7.1)

As v does not lie on y−x = a or y+x = c, either L is an extremal line of B or (0, 1) ∈ B. If
L is an extremal line, then this contradicts Lemma 5.10(2). If not, then (0, 1) ∈ C∩(B \L),
so |C ∩ L ∩ B| < |C ∩ B|. Thus the inequality in (7.1) is strict, contradicting Lemma
5.10(3). We deduce that w0 ∈ A.

w1 ∈ A. Suppose w1 /∈ A. Then there is a cone C1 based at w1 that does not intersect
A. Since v /∈ C1, C1 must be either below or to the right of w1. In either case, if L is the
line through v and w1, then B ∩ L ⊆ C t C1 and so

|B ∩ L| 6 |C1 ∩B ∩ L|+ |C ∩B ∩ L| 6 |C1 ∩B|+ |C ∩B| 6 |B \ A′| 6 Ex(B). (7.2)
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If L an extremal line of B, then (7.2) contradicts Lemma 5.10(2). We thus assume L is
not an extremal line of B.

We claim that the inequality |B ∩L| 6 Ex(B) above is strict. If we show this, then we
get a contradiction by Lemma 5.10(3), and we can deduce that w1 ∈ A as required. We
first observe that as L is not an extremal line of B and as w0 = (0,−1) ∈ B (by what we
have already shown), we must have that (1, 0) ∈ B. There are now two cases depending
on whether or not w1 ∈ B. If w1 /∈ B, then the line y − x = −1 = a through (0,−1)
and (1, 0) is an extremal line of B. Furthermore, as Ex(B) > 0, it follows from Lemma
5.10(2) that b− a > 2. Thus, we conclude that (0, 1) ∈ (B ∩ C) \ L. We thus deduce that
|C ∩ L ∩B| < |C ∩B| and that the inequality in (7.2) is strict, proving the claim when
w1 /∈ B.

If w1 ∈ B \ A, then Ex(B) > |B \ A| + 1 > 2. Lemma 5.10(2) then implies that
every extremal line of B contains at least three vertices, and so b − a, d − c > 4. As
v, w1, (0,−1), (1, 0) ∈ B, it follows that B \ L must intersect at least one of C or C1, and
so either |C ∩ L ∩B| < |C ∩B| or |C1 ∩ L ∩B| < |C1 ∩B|. In either case, we deduce as
before that the inequality in (7.2) is strict as required.

Lemma 7.5. Up to congruence, B(0, 2) is the only disconnected box that is a minimal
set. In particular, if B is a box with Ex(B) > 0, then B is connected.

Proof. Suppose B is a disconnected box that is a minimal set. Then it contains more than
one vertex and is contained in a standard line. Thus B is congruent to B(0, 2n) for some

n > 0. Note that Ex(B) = n(1−n)
2

by Theorem 5.13. Lemma 4.3 implies n = 1 and so
B = B(0, 2). Furthermore, as Ex(B) = 0, the second claim follows.

The following lemma is the inductive step in our proof of Proposition 7.7.

Lemma 7.6. Let A be a connected minimal set such that X0 \ A is a union of cones.
Suppose A′ ⊆ A is also minimal, enc(A′) = enc(A) and A\A′ = {v}. Then A′ is connected
and there exists a cone C based at v such that C ∩A′ = ∅. In particular, X0 \A′ is also a
union of cones.

Proof. Since A and A′ are minimal and enc(A) = enc(A′), Lemma 6.3 ensures |∂A| = |∂A′|.
As |∂A| = |∂A′|, A′ ⊂ A, |A| = |A′| + 1 and A is connected, there exists some vertex
w ∈ ∂A adjacent to v which is not in N(A′). In particular, w is adjacent to v and no
other vertex in A. Without loss of generality, we can suppose v = (0, 0) and w = (0, 1).
Suppose R+ and R− are the rays {(x, y) | y− x = 0, y > 1} and {(x, y) | y+ x = 0, y > 1}
respectively. Since b := (1, 1) is adjacent to w, it is not contained in A. As X0 \ A is a
union of cones, b is contained in a cone C ′ that is disjoint from A. Since C ′ cannot contain
v, it must contain the ray R+, so that R+ ∩ A = ∅. A similar argument using (−1, 1)
allows one to deduce R− ∩ A = ∅. Let C be the cone above v. As A is connected and
{w} ∪R− ∪R+ do not contain vertices of A, it follows that C ∩ A′ = ∅. Since X \ A is a
union of cones, X \ A′ = C ∪ (X \ A) is also a union of cones.

Let B := enc(A) = enc(A′). Since A′ is minimal, we have |B \ A′| 6 Ex(B), and
so |B \ A| 6 Ex(B) − 1. Thus Lemma 7.4 can be applied to A, v and C to deduce
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that (−1,−1), (0,−1), (1,−1) ∈ A′. We now show A′ is connected. We pick arbitrary
p, q ∈ A′ and show that p and q can be joined by a path in A′. Since A is connected,
there exists a simple path P = (p = v0, v1, . . . , q = vm) in A. If P is a path in A′ we
are done. If not, then vi = (0, 0) for some 0 < i < m. Since P is simple, vj ∈ A′

for all j 6= i. Thus vi−1 and vi+1 are contained in A′ and are adjacent to v, and so
vi−1, vi+1 ∈ {(−1, 0), (1, 0), (0,−1)}. Since (−1,−1), (0,−1), (1,−1) ∈ A′, vi−1 and vi+1

can be joined by a path (vi−1 = u0, u1, . . . , ut = vi+1) in A′. Thus (p = v0, . . . , vi−1 =
u0, . . . , ut = vi+1, . . . vm = q) is a path from p to q in A′.

The next proposition describes the geometry of a minimal set.

Proposition 7.7. Suppose A ⊂ X0 is minimal and n := |enc(A) \ A| > 0. Then there
exists a nested sequence A = A0 ⊂ A1 ⊂ · · · ⊂ An = enc(A) of connected minimal sets
such that |Ai| = |Ai−1|+ 1 with the following property. For i > 0 and vi ∈ Ai \Ai−1, there
exists a cone Ci based at vi such that Ci ∩ Ai−1 = {vi}. In particular, A is connected and
X0 \ A is a union of cones.

Proof. Since n > 0, Ex(enc(A)) > 0 and so enc(A) is connected by Lemma 7.5. By Lemma
6.3, there exists a nested sequence A = A0 ⊂ A1 ⊂ · · · ⊂ An = enc(A) of minimal sets such
that |Ai+1| = |Ai|+ 1. Since An = enc(A) is connected and X0 \ An is a union of cones
(by Remark 7.3), we can apply Lemma 7.6 successively to give the desired conclusion.

Proof of Theorem 7.1. Suppose A is a minimal set that is not connected. Proposition 7.7
implies that A = enc(A). By Lemma 7.5, A is congruent to B(0, 2). Since Ex(B(0, 2)) = 0,
Theorem 6.4 ensures B(0, 2) is indeed minimal.

7.2 A characterization of minimal sets using cones

We can refine Theorem 6.4 by providing an additional characterization of minimal sets
using cones.

Theorem 7.8. Let A ⊂ X0 with N := |enc(A) \ A| and E := Ex(enc(A)). Then the
following are equivalent:

1. A is minimal;

2. |∂A| = |∂(enc(A))| and N 6 E;

3. X0 \ A is a union of cones and N 6 E.

Proof. The equivalence of (1) and (2) follows from Theorem 6.4. Theorem 6.4 and
Proposition 7.7 tell us that (1) implies (3). All that remains is to show (3) implies (1).

Let A ⊂ X0 with |B \ A| 6 Ex(B), where B := enc(A). Suppose X0 \ A is a union of
cones. Since Ex(B) > 0, B is minimal by Lemma 4.3. Let D be a minimal set such that
A ⊂ D ⊆ B, with |D| minimal among all such choices. Notice that enc(D) = B.

For contradiction, suppose A is not minimal. Then A ( D, so pick v ∈ D \ A. As
X0\A is a union of cones, there exists a cone C ′ containing v and disjoint from A. Without
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loss of generality, we may suppose C ′ faces upwards (i.e. it lies above some vertex) and
that v ∈ D ∩C ′ has maximal y-coordinate out of all vertices in D ∩C ′. Let C be the cone
above v. Since C ⊂ C ′ and v has maximal y coordinate, C is a cone above v such that
C ∩D = {v}.

Since D is a minimal set, Proposition 7.7 ensures X0 \D is a union of cones. Moreover,
since A ( D ⊆ B, |B \D| < |B \ A| 6 Ex(B). Without loss of generality, we can assume
that v = (0, 0). Lemma 7.4 now implies that (−1,−1), (0,−1) and (1,−1) are in D \ {v}.
As (−1,−1), (0,−1), (1,−1) ∈ D and C ∩D = {v}, it follows that |∂(D \ {v})| = |∂D|.
Theorem 6.4 thus ensures D\{v} is minimal. Since A ⊆ D\{v} ( D ⊆ B, this contradicts
our choice of D. Thus A is minimal as required.

7.3 Neighborhoods of minimal sets are minimal

We recall that if A ⊆ X0, then its neighborhood N(A) is defined to be the set A ∪ ∂A.
The aim of this section is to prove the following:

Theorem 7.9. If A ⊆ X0 is minimal, then N(A) is also minimal.

We will use Theorem 7.8 to prove Theorem 7.9. We first analyze the excess of enc(N(A))
and the difference N ′ = | enc(N(A)) \N(A)|.

Lemma 7.10. For a finite set A ⊂ X0, enc(N(A)) = N(enc(A)).

Proof. Suppose enc(A) = B(a, b, c, d). We first observe that N(enc(A)) is the box B′ :=
B(a − 1, b + 1, c − 1, d + 1). As A ⊆ enc(A), we have N(A) ⊆ N(enc(A)) = B′ and
so enc(N(A)) ⊆ B′. Since A intersects all four extremal lines of enc(A), it follows
N(A) intersects all four extremal lines of B′, and so B′ ⊆ enc(N(A)). Therefore B′ =
enc(N(A)) = N(enc(A)).

Lemma 7.11. Let A be a minimal set. Then

1. |enc(N(A)) \N(A)| = |enc(A) \ A|.

2. Ex(enc(N(A))) = Ex(enc(A)) + 1

Proof. Since A is minimal, by Theorem 6.4 we have |∂A| = |∂ enc(A)|. By Lemma 7.10
we have

| enc(N(A)) \N(A)| = | enc(N(A))| − |N(A)|
= |N(enc(A))| − |N(A)|
= (| enc(A)|+ |∂ enc(A)|)− (|A|+ |∂A|)
= | enc(A)| − |A|
= | enc(A) \ A|.

For the proof of part (2), suppose enc(A) is congruent the box B(α, β) (or B̂(α, β)).
Using Lemma 7.10, we get enc(N(A)) is congruent to B(α+ 2, β + 2) (or B̂(α+ 2, β + 2)).
Then by the formula for the excess of a box in Theorem 5.13, we get Ex(enc(N(A))) =
Ex(enc(A)) + 1.
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For a cone C in X, let C̊ denote the collection of points not contained in any extremal
line of C. Note that C̊ is itself a cone.

Lemma 7.12. Let A ⊂ X0 be a minimal set. Suppose v ∈ A and C is a cone based at v
such that C ∩ A = {v}. Then N(A \ C) = N(A) \ C̊.

Proof. Without loss of generality, we can suppose v = (0, 0) and that C is the cone above v.
By Lemma 7.4, (−1,−1), (0,−1), (1,−1) ∈ A. Suppose x ∈ N(A \C). Then x is adjacent
or equal to some y ∈ A \ C. Since y /∈ C, x /∈ C̊. Since y ∈ A, it follows x ∈ N(A) \ C̊,
and so N(A \ C) ⊆ N(A) \ C̊.

Conversely, suppose x ∈ N(A)\C̊. Then x is adjacent or equal to some y ∈ A. If y /∈ C,
then x ∈ N(A \C). If y ∈ C, then y = (0, 0). Since (0, 1) ∈ C̊, x is equal to one of (−1, 0),
(0,−1) or (1, 0). In all three cases, x is adjacent to one of (−1,−1), (0,−1), (1,−1) ∈ A\C
and so x ∈ N(A \ C). Therefore N(A) \ C̊ ⊆ N(A \ C) as required.

Proposition 7.13. If A ⊂ X0 is a minimal set, then X0 \N(A) is a union of cones.

Proof. By Proposition 7.7, there is a nested sequence A = A0 ⊂ A1 ⊂ · · · ⊂ An = enc(A)
of minimal sets and a sequence C1, . . . , Cn of cones such that Ai \ Ai−1 = {vi} and Ci
is based at vi with Ci ∩ Ai = {vi}. In particular, A = enc(A) \ ∪ni=1Ci. By successively
applying Lemma 7.12 and using Lemma 7.10, we see that

N(A) = N(enc(A) \ ∪ni=1Ci)

= N(enc(A)) \ ∪ni=1C̊i

= enc(N(A)) \ ∪ni=1C̊i

As N(A) = enc(N(A)) \ ∪ni=1C̊i and by Remark 7.3, X0 \N(A) is a union of cones.

Proof of Theorem 7.9. Combine Lemma 7.11, Proposition 7.13 and Theorem 7.8.

8 The graph of minimal sets

In this section, we study the graph of minimal sets, G (see the introduction for a definition).

8.1 Dead and mortal sets

A finite subset A ⊂ X0 is efficient if for every B ⊂ X0, |∂B| = |∂A| implies |A| > |B|, and
we say that A is inefficient otherwise. Equivalently, A is efficient if |∂B| = |∂A| implies
that Ex(A) > Ex(B) by Lemma 4.4. The main result of this subsection is Theorem 8.5,
which characterizes dead sets (defined in the introduction) as inefficient sets, which in
turn are classified in terms of specific boxes (Lemma 8.3), and Theorem 8.6 characterizing
mortal sets.

We first show that efficient sets are boxes and are minimal:

Lemma 8.1. Every efficient set is minimal, saturated and a box.
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Proof. Let A be an efficient set. By Lemma 4.2, there exists a minimal set A′ such that
|∂A′| = |∂A|. Since A is efficient, we have |A| > |A′|. If A is not minimal, then there exists
a minimal set A′′ such that |A′′| = |A| > |A′| and |∂A′′| < |∂A| = |∂A′|. This contradicts
Lemma 2.1, so A must be minimal. If A is not saturated, then there exists a vertex v such
that |∂(A ∪ {v})| 6 |∂A|, which contradicts Lemma 2.1 and the fact that A is minimal
and efficient. Proposition 6.1 now implies that every efficient set is a box.

We say A ⊂ X0 is a Wang–Wang box if it is simultaneously a box and a Wang–Wang
set.

Remark 8.2. A subset of X0 is a Wang–Wang box if and only if it is congruent to either
B(m,m) or B(m,m+ 1) for some m ∈ Z (recall Notation 5.5).

We now characterize efficient sets.

Lemma 8.3. A subset of X0 is efficient if and only if it is congruent to either a Wang–
Wang box or B(m− 1,m+ 1) for some odd m ∈ N.

Proof. Let B be an efficient set. By Lemma 8.1, B is a box. Remark 5.9 implies that
no box of the form B̂(α, β) is efficient. It thus follows from Proposition 5.6 that B is
congruent to B(α, β) for some α, β ∈ Z. Without loss of generality, we may assume that
β > α, and we set r = α+β

2
and k = β−α

2
. Note that α = r − k and β = r + k.

Suppose first that α and β have the same parity. Then r and k are both integers. By
Lemma 5.7, |∂B(r − k, r + k)| = |∂B(r, r)|. Since B is efficient, Theorem 5.13 gives:

Ex(B(r − k, r + k)) =

⌊
brc − k2

2

⌋
> Ex(B(r, r)) =

⌊
brc
2

⌋
.

By the above equation, either k = 0, or r is odd and k = 1. Thus B is either the
Wang–Wang box B(α, α) or the box B(m− 1,m+ 1) for m odd, respectively.

On the other hand, suppose α and β have different parity. Then r = s+ 1
2

and k = t+ 1
2

for some s, t ∈ N. By Lemma 5.7, |∂B(r− k, r+ k)| = |∂B(r− 1/2, r+ 1/2)|. By applying
Theorem 5.13 and using that B is efficient and t2 + t is even, we get the following:

Ex(B(r−k, r+k)) =

⌊
s− t2 − t− 1

4

2

⌋
=

⌊
s− 1

4

2

⌋
− t2 + t

2
> Ex(B(r−1/2, r+1/2)) >

⌊
s− 1

4

2

⌋
Thus t2 + t 6 0, which implies t = 0 and hence β = α + 1. Thus B is congruent to
B(α, α + 1), which is a Wang–Wang box.

For the converse, suppose we are given a Wang–Wang box WWn. By Lemma 5.3, a box
is saturated. This implies |∂WWn+1| > |∂WWn|. Since WWn+1 is minimal, Lemma 2.1
ensures that given any B ⊂ X0 with |B| > |WWn| then |∂B| > |∂WWn|. Thus a Wang–
Wang box WWn is efficient. By Lemma 5.7 and Theorem 5.13, for odd m, we have
|∂B(m− 1,m+ 1)| = |∂B(m,m)| and Ex(B(m− 1,m+ 1)) = Ex(B(m,m)). As B(m,m)
is efficient, B(m− 1,m+ 1) is also.

Before proving the next result, we first show that one can always add a vertex to a
box such that the resulting set has boundary one larger than the box, as long as the box
contains at least two vertices.
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Lemma 8.4. Let B ⊂ X0 be a box containing at least two vertices. Then |∂(B ∪ {v})| =
|∂B|+ 1 for some v ∈ X0 \B.

Proof. Let (x, y) be a vertex of B with y maximal. Suppose first that (x + 1, y) ∈ B.
Since B is saturated by Lemma 5.3, it follows from Lemma 3.2 that (x− 1, y) /∈ B. The
claim now follows for this case by noting that |∂

(
B ∪ {(x, y + 1)}

)
| = |∂B|+ 1. A similar

argument shows the claim when (x− 1, y) ∈ B.
Next consider the case where (x − 1, y) /∈ B and (x + 1, y) /∈ B. Suppose first that

(x, y − 1) ∈ B. As B is a box with (x, y) ∈ B and (x + 1, y) /∈ B, it follows that
(x+ 2, y) /∈ B∪∂B. The claim now follows by noting that |∂

(
B∪{(x+ 1, y)}

)
| = |∂B|+ 1.

Finally, suppose that (x, y− 1) /∈ B. In this case, as B is a box and |B| > 2, we must have
that either (x− 1, y − 1) ∈ B or (x+ 1, y − 1) ∈ B. Without loss of generality, suppose
the former is true. As B is saturated, Lemma 3.2 implies that (x− 2, y − 1) /∈ B. It now
follows that |∂

(
B ∪ {(x− 1, y)}

)
| = |∂B|+ 1.

We now give a characterization of dead sets.

Theorem 8.5. Let A ⊂ X0 be a minimal set. The following are equivalent:

1. A is dead.

2. A is an inefficient box.

3. A is a box that is not congruent to either a Wang–Wang box or to a box of the form
B(m− 1,m+ 1) for odd m ∈ Z.

Proof. Suppose A is dead. We first show that A is saturated. Let v ∈ X0 \ A. If
|∂(A t {v})| 6 |∂A|, then Lemma 2.1 would imply that A t {v} is minimal, contradicting
the hypothesis that A is dead. Thus |∂(A t {v})| > |∂A| for all v ∈ X0 \A, ensuring that
A is saturated. Since A is saturated and minimal, Proposition 6.1 implies it is a box. Since
a set with one vertex is not dead, |A| > 1. Hence Lemma 8.4 ensures that there exists
a vertex v ∈ X0 \ A such that |∂(A ∪ {v})| = |∂A|+ 1. Since A is dead, A ∪ {v} is not
minimal and so there exists a minimal set C such that |C| = |A|+ 1 and |∂C| < |∂A|+ 1.
As A is minimal, Lemma 2.1 implies |∂C| = |∂A|. Thus A is an inefficient box.

Now suppose A is an inefficient box. Since A is saturated by Lemma 5.3, |∂(A∪{v})| >
|∂A| for every v ∈ X0 \ A. As A is inefficient, there exists a set C such that |C| > |A|
and |∂C| = |∂A|. Lemma 2.1 now implies that A ∪ {v} isn’t minimal for any v ∈ X0 \ A.
Hence, A is dead. The equivalence of (2) and (3) is shown in Lemma 8.3.

Finally, we characterize mortal sets:

Theorem 8.6. A minimal set is mortal if and only if its enclosing box is dead.

Proof. Let A be a minimal set. We first show that A is mortal if and only if enc(A) is
mortal. By Lemma 6.3, there exists a sequence A = A0 ⊂ A1 ⊂ · · · ⊂ enc(A) of nested
minimal sets such that |Ai+1| = |Ai| + 1. Thus, if A is mortal, so is enc(A). On the
other hand, suppose enc(A) is mortal. By Lemma 6.3, any maximal nested sequence
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A = A′0 ⊂ A′1 ⊂ . . . of minimal sets with |A′i+1| = |A′i| + 1 must include enc(A) and, in
particular, must be finite as enc(A) is mortal. Thus, A is mortal.

Consequently, in order to prove the theorem, we need to show that a box B is mortal if
and only if it is dead. Since dead sets are mortal, this reduces to demonstrating that a box
which is not dead is immortal. By Theorem 8.5 we only need to show that Wang–Wang
boxes and B(m − 1,m + 1), for odd m ∈ Z, are immortal sets. Wang–Wang boxes
are immortal because they are contained in the infinite nested sequence of minimal sets
(WWn)∞n=1.

Let B = B(m − 1,m + 1) for some odd m ∈ Z. Let v = (0,m) and B′ := B t {v}.
Since v is not contained in B but is adjacent to (0,m − 1), (1,m) ∈ B, it follows that
|∂B′| = |∂B| + 1. By Lemma 5.7, Lemma 5.8 and as m is odd, |B| = |B(m,m)|
and |∂B| = |∂B(m,m)|. Since B(m,m) is a Wang–Wang box and in particular, it is
saturated, then any minimal set of size |B|+ 1 must have boundary strictly greater than
|∂B|. Thus, B′ is a minimal set. By Lemma 6.3, there exists a sequence of minimal
sets B ⊂ B′ ⊂ · · · ⊂ enc(B′) such that the size of the symmetric difference between
consecutive sets in this sequence is one. As enc(B′) = B(m,m+ 1) is a Wang–Wang set
(see Remark 8.2), it is immortal. Thus, B is immortal as well.

8.2 Uniquely minimal sets

In this subsection, we characterize uniquely minimal sets in X. Recall from the introduction
that the grading of a vertex of G is the size of one of its representatives, and uniquely
minimal sets correspond exactly to vertices of G that are unique out of vertices of the
same grading.

Lemma 8.7. Let WWn be a Wang–Wang set that is not a box. Then there exists a
minimal set A such that |A| = n and A is not congruent to WWn.

Proof. The box B := enc(WWn) is congruent to B(α, β) where either α = β or α+ 1 = β.
By Lemma 5.12 and Theorem 6.4, k := |B| − |WWn| 6 Ex(B) 6 α

2
. Since k > 1

(as WWn is not a box), Lemma 5.12 implies that either α > 3 or α = β = 2 (indeed,
Ex(B(2, 3)) = 0). In the latter case, k = 1 and n = 4, so we observe that |B̂(2, 2)| = |WW4|
and |∂B̂(2, 2)| = |∂WW4|. Since B̂(2, 2) is not congruent to WW4, we are done.

Therefore, we may assume α > 3. Let B′ := B(α − 1, β + 1). By Lemma 5.7,
|∂B| = |∂B′|. By Lemma 5.8,

|B| =
⌊
αβ + α + β + 2

2

⌋
|B′| =

⌊
(α− 1)(β + 1) + α + β + 2

2

⌋
=

⌊
αβ + 2α + 1

2

⌋
.

Thus, we have that |B| − 1 6 |B′| 6 |B| in both the case that α = β and that β = α + 1.
Note that the line y = x contains bβ+1

2
+ 1c vertices of B′. Since k 6 α

2
< β+1

2
, by

Lemma 5.10 there exists some set A such that |∂A| = |∂B| = |∂WWn|, |A| = |B| − k =
|WWn|, and enc(A) = B′. In particular, A must be minimal. Since B′ = enc(A) and
B = enc(WWn) are not congruent, A and WWn are not congruent.
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Theorem 8.8. A subset of X0 is uniquely minimal if and only if it is congruent to either
B(2n, 2n) or B(n, n+ 1) for some n ∈ N.

Proof. Suppose A is uniquely minimal. Since WW|A| is minimal and |WW|A|| = |A|, A
must be congruent to WW|A|. By Lemma 8.7, A must be a box. We note that A cannot
be congruent to B(r, r) for odd r ∈ N, since Lemma 5.7 and Lemma 5.8 imply that
|B(r − 1, r + 1)| = |B(r, r)| and |∂B(r − 1, r + 1)| = |∂B(r, r)|. Thus A is a box of the
form B(2n, 2n) or B(n, n+ 1) for some n ∈ N by Remark 8.2.

For the converse, suppose B is congruent to B(2n, 2n) or B(n, n+ 1) for some n ∈ N.
In particular, B is congruent to a Wang–Wang set, so it is minimal. Suppose A is another
minimal set such that |A| = |B|. It follows that |∂A| = |∂B|. By Lemma 8.3 B is efficient.
Since |A| = |B|, we get that A is also efficient. Furthermore, Lemma 8.3 also implies that
any efficient set of size |B| is actually congruent to B, hence A is congruent to B.

Corollary 8.9. The graph G contains exactly one infinite connected component.

Proof. Let C be an infinite component of G. As there are only finitely many sets (up to
congruence) of any given size, there exists a number m0 such that C contains a vertex of
grading m for every m > m0. By Theorem 8.8, B(2n, 2n) is uniquely minimal for every n.
Thus, C contains B(2n, 2n) for every n sufficiently large, and so C is the unique infinite
component of G.

8.3 Finite components

In this subsection, we show that G contains infinitely many isolated vertices and finite
components with arbitrarily many vertices. To do so, we prove the following more general
result that gives sufficient conditions for a vertex of G to be contained in a finite component,
i.e. a component of G that is a finite subgraph. Moreover, the possible gradings of vertices
in this component is exactly described. Recall from the introduction that the height of a
component is the maximal length of a nested sequence of minimal sets in it.

Proposition 8.10. Let B ⊂ X be a box such that:

1. Ex(B) = d > 0

2. The modulus {α, β} of B satisfies α, β > 2

3. Given any standard line L, B ∩ L is either empty or contains at least d+ 2 vertices.

4. B is a dead set

Let C be the component of G containing the vertex representing B. Then, for any vertex in
C representing a set A, we have that |B|−d 6 |A| 6 |B| and that enc(A) is congruent to B.
Furthermore, C contains a vertex representing a set of size k for every |B| − d 6 k 6 |B|.
In particular, C is finite and has height exactly d+ 1.
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Proof. We first prove the final claim. Let B = B0 ⊃ B1 ⊃ · · · ⊃ Bn be the sets given by
Lemma 5.10 where |∂Bi| = |∂B| and n = |L∩B| − 1 > d+ 1 (where L is an extremal line
of B). As Ex(B) = d, we have that Bi is minimal for each i 6 d. The claim follows.

Now let C ′ be the set of all vertices in C represented by a set C such that there exists
a path C = C0, . . . , Cn = B in G with n 6 d and |Ci+1| = |Ci|+ 1 for all 0 6 i < n. As
Ex(B) = d, for all C ∈ C ′ we must have that |∂C| = |∂B| and, consequently by Lemma 6.3,
we have that enc(C) = B. Thus, to prove the remaining claims of the theorem, it is enough
to show that C ′ = C. Additionally, as C is connected, it is enough to show that given any
vertex v in G, represented by a set A, that is adjacent to a vertex in C ′, represented by a
set C, then v ∈ C ′. Let A and C be such sets.

Suppose first that A ⊂ C. Then |A| = |C| − 1 > |B| − d− 1 (by the definition of C ′)
and by (3) it follows that A contains a vertex in every standard line which has non-empty
intersection with B. Thus enc(A) = B. However, by Theorem 6.4, we must have that
|A| > |B| − d. Consequently, v ∈ C ′. On the other hand, suppose that C ⊂ A. As
enc(C) = B and as B is dead, we must also have that v ∈ C ′. Thus, C ′ = C as claimed.

Theorem 8.11. The graph G has finite components of arbitrarily large height and it
contains infinitely many isolated vertices.

Proof. Let α = 2l3 + l2 + l and β = 2l3 + l2 − l for some integer l > 3. Note that α and β
are always positive. Consider the box B = B(α, β). Then B is not congruent to the box
B(m − 1,m + 1) for any odd integer m, and B is not congruent to a Wang–Wang box.
Therefore by Theorem 8.5, B is a dead set.

By Proposition 5.13, we have that Ex(B) = l3. Furthermore, given any standard line
L, B ∩L is either empty or contains at least min(α

2
+ 1, β

2
+ 1) = l3 + l2

2
− l

2
+ 1 vertices. In

particular, as l > 3, B ∩ L is either empty or contains at least l3 + 2 = Ex(B) + 2 vertices.
Thus by Proposition 8.10, the component of G containing B is finite and has height at
least l3. As this is true for any l > 3, the first claim follows.

Now let α = k2 + k and β = k2 − k for some integer k > 4. Then we claim that the
box B = B(α, β) is an isolated vertex of G. By Theorem 5.13, Ex(B) = 0. As above, for
any standard line L, B ∩L is either empty or contains at least 2 vertices. Also B is a dead
set by Theorem 8.5. Therefore by Proposition 8.10, B is an isolated vertex of G. Thus G
contains infinitely many isolated vertices.
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