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Abstract

We present two short proofs for Diestel’s criterion that a connected graph has
a normal spanning tree provided it contains no subdivision of a countable clique in
which every edge has been replaced by uncountably many parallel edges.

Mathematics Subject Classifications: 05C05, 05C63

1 Overview

This paper continues a line of inquiry started in [8] with the aim to find efficient algorithms
for constructing normal spanning trees in infinite graphs. A rooted spanning tree T of
a graph G is called normal if the end vertices of any edge of G are comparable in the
natural tree order of T'. Intuitively, all the edges of G run ‘parallel’ to branches of T', but
never ‘across’.

Every countable connected graph has a normal spanning tree, but uncountable graphs
might not, as demonstrated by complete graphs on uncountably many vertices. While
exact characterisations of graphs with normal spanning trees exist, see e.g. [6, 7], these
may be hard to verify in practice. The most applied sufficient condition for normal
spanning trees is the following criterion due to Halin [4], and its strengthening due to
Diestel [2], see also [7, §6] for an updated proof.

Theorem 1 (Halin). Every connected graph without a TK™ has a normal spanning tree.

Theorem 2 (Diestel). Every connected graph without fat TK™ has a normal spanning
tree.
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Here, a TK™ is a subdivision of the countable clique K™, and a fat TK™ is a
subdivision of the multigraph obtained from a K™ by replacing every edge with R; parallel
edges.

Until recently, only fairly involved proofs of these results were available: Halin’s origi-
nal proof employing his theory of simplicial decompositions [4], and Diestel’s proof strat-
egy building on the forbidden minor characterisation for normal spanning trees [2, 7]. In
[8], however, the present author found a simple greedy algorithm which constructs the
desired normal spanning tree in Halin’s Theorem 1 in just w many steps. The purpose
of this note is to provide two simple proofs also for Theorem 2, one of them again an
w-length algorithm.

Notably, this algorithm also yields a new, local version of Theorem 2: Given a set of
vertices U of a connected graph G, there exists a normal tree of G containing U provided
every fat TK™ in G can be separated from U by a finite set of vertices, see Theorem 5
below. Furthermore, both Halin’s and Diestel’s criterions are sufficient for a normal
spanning tree, but by no means necessary, as a fat 7K by itself does admit a normal
spanning tree. Our algorithm allows us to strengthen these results in the following way:
A connected graph has a normal spanning tree if and only if its vertex set is a countable
union of sets each separated from any fat 7K™ by a finite set of vertices, Theorem 6.

2 Tree orders and normal trees

We follow the notation in [1]. The tree-order <r of a tree T with root r is defined by
setting u <7 v if u lies on the unique path from r to v in T. Then <7 is a partial order.
For a vertex v of T, let [v] := {t € T": t <7 v} be the down-closure v in T, the nodes on
the r — v path in T

For rooted trees that are not necessarily spanning, one generalises the notion of nor-
mality as follows: A rooted tree T' C G is normal (in G) if the end vertices of any T-path
in G (a path in G with end vertices in T but all edges and inner vertices outside of T') are
comparable in the tree order of T". If T' is spanning, this clearly reduces to the definition
given in the introduction. If 7 C G is normal, then the set of neighbours N (D) of any
component D of G — T forms a chain in 7', i.e. all vertices of N(D) are comparable in
<r. Moreover, incomparable nodes v, w of any normal tree T" C G are separated in G by
[v] N Jw].

The following well-known consequence of Jung’s criterion [6] about the existence of
normal spanning trees has been pointed out in [5, Lemma 7.2] and will be used later.

Fact 3. Let G be a graph with a normal spanning tree. Then for every connected subgraph
C C G and every r € C' there is a normal spanning tree of C with root r.

For distinct vertices v, w of G we denote by k(v, w) = kg (v, w) the (vertex-)connectivity
between v and w in G, i.e. the largest size of a family of independent (i.e. pairwise
internally-disjoint) v — w paths. If v and w are non-adjacent, this is by Menger’s theorem
for infinite graphs [1, Proposition 8.4.1] equivalent to the minimal size of a v —w separator

in G.
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Note that a fat 7K™ has only 8; many edges in total. Hence, the following fact
observed by Halin [3, (15)] follows readily by selecting the desired paths for a TK™°
recursively in w; steps, so at any point during the construction there are only countably
many vertices to avoid.

Fact 4. Let U be a countable set of vertices in G. There is a fat TK™ with branch
vertices U if and only if k(u,v) is uncountable for all u # v € U.

3 The first proof

First proof of Theorem 2. By induction on |G|. We may assume that |G| is uncountable.
Suppose we have a continuous® increasing ordinal-indexed sequence (G;: i < o) of induced
subgraphs all of size less than |G| with G = {J,_, G, such that

(i) the end vertices of any G;-path? in G have infinite connectivity in G;, and

(77) the end vertices of any G;-path in G have uncountable connectivity in G.

Then we can construct normal spanning trees T; of G; extending each other all with
the same root by (transfinite) recursion on i. If £ < o is a limit, by continuity of our
sequence we may simply define 7, = |J,_,T;. For the successor case, suppose that T;
is already defined. By (7i), the neighbourhood N(C') is finite for every component C' of
Giy1 — G; (otherwise we get a fat TK™ by (ii) and Fact 4), and by (i), N(C) lies on
a chain of T; (as incomparable vertices in T; are separated in G; by the intersection of
their finite down-closures). Let tc € N(C) be maximal in the tree order of T;, and let
rc be a neighbour of ¢ in C. By the induction hypothesis and Fact 3, C' has a normal
spanning tree T with root ro. Then T; together with all T and edges tor¢ is a normal
spanning tree Tj;; of G 1. Once the recursion is complete, T' = | J,_, 7} is the desired
normal spanning tree of G. It remains to construct a sequence (G;: i < o) with (i) and
(7). The reader familiar with elementary submodel techniques such as in [9] may wish to
take a continuous increasing chain (M;: i < o) with 0 = ¢f(|G]) of <|G|-sized elementary
submodels M; of a large enough fragment of ZFC with G' € M;, such that G C J,_, M;.
Then G; = G N M; is as required.

In what follows, however, we assume no such familiarity and outline a direct construc-
tion: Enumerate V(G) = {v;: i < 0 = |G|} and put Gy := {w}. If £ < o is a limit, set
Gy = |U,-, Gi and note that properties (i) and (i7) are preserved under increasing unions.
To define G;4; from G;, we use a countable closure argument. Set GY := G[G; U v, ]
and construct G from G? by adding, for every pair v,w € V(G}) with kg(v,w) at
most countable, an inclusion-wise maximal family of independent v —w paths in G to G7,
and for all remaining pairs some ¥, many independent v — w paths in G' to G}'. Then
Git1 = G[U,cn G7] is as desired: any Gyyi-path from v to w witnesses that rg(v, w)
was uncountable, giving (i7), and so we have added infinitely many independent v — w
paths to G;41 in the process, giving (7). O]

IThe sequence (G;: i < o) is continuous if for every limit ordinal £ < o we have Gy = Ui G-
2A path with end vertices in G; but all edges and inner vertices outside of G.
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4 The second proof

Our second proof extracts the closure properties (i) and (ii) in the previous construction,
and combines them into a single algorithm constructing the normal spanning tree in w
many steps, avoiding ordinals and transfinite constructions altogether.

Second proof of Theorem 2. For every pair of distinct vertices v and w of G with (v, w)
at most countable, fix a maximal collection P, ,, = {P&w, Pqiw, ...} of independent v—w
paths in GG. Construct a countable chain Ty C Ty C 75 C - -+ of rayless normal trees in
G with the same root r € V(G) as follows: Put Ty, = {r}, and suppose T,, has already
been defined. Since T, is a rayless normal tree, any component D of G — T}, has a finite
neighbourhood N (D) in T,,, because N(D) is linearly ordered in the tree ordering. Let
tp € N(D) be maximal in the tree order of T,,, and let rp be a neighbour of ¢ in D.
For each pair v # w € N (D) with countable connectivity select the path P, with least
index in P, ,, intersecting D. The argument in [1, Theorem 8.2.4] shows that any finite
set of vertices in a connected graph is contained in a finite normal tree with arbitrarily
prescribed root. Hence, in each component D there is a finite tree Tp with root rp that
is normal in D and contains all vertices of P, N D for all v # w € N(D) with (v, w) at
most countable. Then T, together with all T and edges tprp is a rayless normal tree in
G with root r extending 7;,. This completes the construction.

The union T' = |J,,cy T With root 7 is a normal tree in G. We claim that 7" is spanning
unless G contains a fat TK™. If T is not spanning, consider a component C' of G — T.
Then N(C') C T is infinite: otherwise, N(C') C T,, for some n € N, but then we would
have extended 7, into C' because C' was a component of G — T,,, a contradiction. For
every n, let D,, be the unique component of G — T}, containing C'.

By Fact 4, it suffices to show that x(v,w) is uncountable for every v # w € N(C).
Consider a T-path P from v to w with its interior P completely contained in C. If
k(v,w) was countable, then by maximality of P,,, there is P* € P,, containing an

VW
interior vertex x of P. Let m be minimal with v,w € T,,. Since the Pf&; are pairwise
distinct, the path Pf,w was selected as Pv% for some n with m < n < m + k. But then
T e Pf’;w np - Pvlij; N D, CT,y1 CT contradicts that P is a T-path. O

5 Local versions of Diestel’s criterion

By a slight modification of this w-length algorithm, one readily obtains a proof of the
following results, which answer [7, Problem 3].

Theorem 5. A set of vertices U in a connected graph G is contained in a normal tree of
G provided every fat TK™ in G can be separated from U by a finite set of vertices.

Proof. Let U be a set of vertices such that every fat TK™ in G can be separated from
U by a finite set of vertices. Use the algorithm from Section 4, but only extend 7T, into
components D of G — T, with U N D # @. Additionally, make sure to include at least
one vertex from U N D.
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Then T' = |J 7, is normal and it remains to argue that U is contained in 7. Otherwise,
there is a component C' of G — T containing a vertex from U. As in Section 4, this gives
us a fat TK™ in G, and it is readily verified that this fat 7K™ cannot be separated from
U by a finite set of vertices, cf. [8, Proof of Theorem 3, item (2)]. O

Theorem 6. A connected graph has a normal spanning tree if and only if its vertex set
is a countable union of sets each separated from any fat TK® by a finite set of vertices.

Proof. For the forward implication, recall that the levels of any normal spanning tree can
be separated by a finite set of vertices from any ray, and hence in particular from any fat
TK™. Conversely, let {V,,: n € N} be sets of vertices in G with V(G) = |J,,cy Va such
that each V,, can be separated from any fat TK™ by a finite set of vertices. Adapt the
algorithm from Section 4, so that when extending 7;, into a component D of G — T,,, we
additionally include a vertex vp € D NV, where np minimal such that V,,, N D # @.
Then T' = |J T, is normal and it remains to argue that it is spanning. Otherwise,
there is a component C' of G — T and we may choose ng € N to be minimal such that
C contains a vertex from V,,,. As in Section 4, this component C gives us a fat TK™ in
G, and it is readily verified that this fat 7K™ cannot be separated from Un@C V, by a
finite set of vertices, cf. [8, Proof of Theorem 3, item (2)]. This, however, means that our
fat TK™ cannot be separated from one of the V,, for some n < n¢, a contradiction. [
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