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Abstract

We present two short proofs for Diestel’s criterion that a connected graph has
a normal spanning tree provided it contains no subdivision of a countable clique in
which every edge has been replaced by uncountably many parallel edges.

Mathematics Subject Classifications: 05C05, 05C63

1 Overview

This paper continues a line of inquiry started in [8] with the aim to find efficient algorithms
for constructing normal spanning trees in infinite graphs. A rooted spanning tree T of
a graph G is called normal if the end vertices of any edge of G are comparable in the
natural tree order of T . Intuitively, all the edges of G run ‘parallel’ to branches of T , but
never ‘across’.

Every countable connected graph has a normal spanning tree, but uncountable graphs
might not, as demonstrated by complete graphs on uncountably many vertices. While
exact characterisations of graphs with normal spanning trees exist, see e.g. [6, 7], these
may be hard to verify in practice. The most applied sufficient condition for normal
spanning trees is the following criterion due to Halin [4], and its strengthening due to
Diestel [2], see also [7, §6] for an updated proof.

Theorem 1 (Halin). Every connected graph without a TKℵ0 has a normal spanning tree.

Theorem 2 (Diestel). Every connected graph without fat TKℵ0 has a normal spanning
tree.
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Here, a TKℵ0 is a subdivision of the countable clique Kℵ0 , and a fat TKℵ0 is a
subdivision of the multigraph obtained from a Kℵ0 by replacing every edge with ℵ1 parallel
edges.

Until recently, only fairly involved proofs of these results were available: Halin’s origi-
nal proof employing his theory of simplicial decompositions [4], and Diestel’s proof strat-
egy building on the forbidden minor characterisation for normal spanning trees [2, 7]. In
[8], however, the present author found a simple greedy algorithm which constructs the
desired normal spanning tree in Halin’s Theorem 1 in just ω many steps. The purpose
of this note is to provide two simple proofs also for Theorem 2, one of them again an
ω-length algorithm.

Notably, this algorithm also yields a new, local version of Theorem 2: Given a set of
vertices U of a connected graph G, there exists a normal tree of G containing U provided
every fat TKℵ0 in G can be separated from U by a finite set of vertices, see Theorem 5
below. Furthermore, both Halin’s and Diestel’s criterions are sufficient for a normal
spanning tree, but by no means necessary, as a fat TKℵ0 by itself does admit a normal
spanning tree. Our algorithm allows us to strengthen these results in the following way:
A connected graph has a normal spanning tree if and only if its vertex set is a countable
union of sets each separated from any fat TKℵ0 by a finite set of vertices, Theorem 6.

2 Tree orders and normal trees

We follow the notation in [1]. The tree-order 6T of a tree T with root r is defined by
setting u 6T v if u lies on the unique path from r to v in T . Then 6T is a partial order.
For a vertex v of T , let dve := {t ∈ T : t 6T v} be the down-closure v in T , the nodes on
the r − v path in T .

For rooted trees that are not necessarily spanning, one generalises the notion of nor-
mality as follows: A rooted tree T ⊆ G is normal (in G) if the end vertices of any T -path
in G (a path in G with end vertices in T but all edges and inner vertices outside of T ) are
comparable in the tree order of T . If T is spanning, this clearly reduces to the definition
given in the introduction. If T ⊆ G is normal, then the set of neighbours N(D) of any
component D of G − T forms a chain in T , i.e. all vertices of N(D) are comparable in
6T . Moreover, incomparable nodes v, w of any normal tree T ⊆ G are separated in G by
dve ∩ dwe.

The following well-known consequence of Jung’s criterion [6] about the existence of
normal spanning trees has been pointed out in [5, Lemma 7.2] and will be used later.

Fact 3. Let G be a graph with a normal spanning tree. Then for every connected subgraph
C ⊆ G and every r ∈ C there is a normal spanning tree of C with root r.

For distinct vertices v, w ofG we denote by κ(v, w) = κG(v, w) the (vertex-)connectivity
between v and w in G, i.e. the largest size of a family of independent (i.e. pairwise
internally-disjoint) v−w paths. If v and w are non-adjacent, this is by Menger’s theorem
for infinite graphs [1, Proposition 8.4.1] equivalent to the minimal size of a v−w separator
in G.
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Note that a fat TKℵ0 has only ℵ1 many edges in total. Hence, the following fact
observed by Halin [3, (15)] follows readily by selecting the desired paths for a TKℵ0

recursively in ω1 steps, so at any point during the construction there are only countably
many vertices to avoid.

Fact 4. Let U be a countable set of vertices in G. There is a fat TKℵ0 with branch
vertices U if and only if κ(u, v) is uncountable for all u 6= v ∈ U .

3 The first proof

First proof of Theorem 2. By induction on |G|. We may assume that |G| is uncountable.
Suppose we have a continuous1 increasing ordinal-indexed sequence (Gi : i < σ) of induced
subgraphs all of size less than |G| with G =

⋃
i<σ Gi such that

(i) the end vertices of any Gi-path2 in G have infinite connectivity in Gi, and

(ii) the end vertices of any Gi-path in G have uncountable connectivity in G.

Then we can construct normal spanning trees Ti of Gi extending each other all with
the same root by (transfinite) recursion on i. If ` < σ is a limit, by continuity of our
sequence we may simply define T` =

⋃
i<` Ti. For the successor case, suppose that Ti

is already defined. By (ii), the neighbourhood N(C) is finite for every component C of
Gi+1 − Gi (otherwise we get a fat TKℵ0 by (ii) and Fact 4), and by (i), N(C) lies on
a chain of Ti (as incomparable vertices in Ti are separated in Gi by the intersection of
their finite down-closures). Let tC ∈ N(C) be maximal in the tree order of Ti, and let
rC be a neighbour of tC in C. By the induction hypothesis and Fact 3, C has a normal
spanning tree TC with root rC . Then Ti together with all TC and edges tCrC is a normal
spanning tree Ti+1 of Gi+1. Once the recursion is complete, T =

⋃
i<σ Ti is the desired

normal spanning tree of G. It remains to construct a sequence (Gi : i < σ) with (i) and
(ii). The reader familiar with elementary submodel techniques such as in [9] may wish to
take a continuous increasing chain (Mi : i < σ) with σ = cf(|G|) of <|G|-sized elementary
submodels Mi of a large enough fragment of ZFC with G ∈ Mi, such that G ⊆

⋃
i<σMi.

Then Gi = G ∩Mi is as required.
In what follows, however, we assume no such familiarity and outline a direct construc-

tion: Enumerate V (G) = {vi : i < σ = |G|} and put G0 := {v0}. If ` < σ is a limit, set
G` :=

⋃
i<`Gi and note that properties (i) and (ii) are preserved under increasing unions.

To define Gi+1 from Gi, we use a countable closure argument. Set G0
i := G[Gi ∪ vi+1]

and construct Gn+1
i from Gn

i by adding, for every pair v, w ∈ V (Gn
i ) with κG(v, w) at

most countable, an inclusion-wise maximal family of independent v−w paths in G to Gn
i ,

and for all remaining pairs some ℵ0 many independent v − w paths in G to Gn
i . Then

Gi+1 := G
[⋃

n∈NG
n
i

]
is as desired: any Gi+1-path from v to w witnesses that κG(v, w)

was uncountable, giving (ii), and so we have added infinitely many independent v − w
paths to Gi+1 in the process, giving (i).

1The sequence (Gi : i < σ) is continuous if for every limit ordinal ` < σ we have G` =
⋃

i<`Gi.
2A path with end vertices in Gi but all edges and inner vertices outside of Gi.
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4 The second proof

Our second proof extracts the closure properties (i) and (ii) in the previous construction,
and combines them into a single algorithm constructing the normal spanning tree in ω
many steps, avoiding ordinals and transfinite constructions altogether.

Second proof of Theorem 2. For every pair of distinct vertices v and w of G with κ(v, w)
at most countable, fix a maximal collection Pv,w = {P 1

v,w, P
2
v,w, . . .} of independent v−w

paths in G. Construct a countable chain T0 ⊆ T1 ⊆ T2 ⊆ · · · of rayless normal trees in
G with the same root r ∈ V (G) as follows: Put T0 = {r}, and suppose Tn has already
been defined. Since Tn is a rayless normal tree, any component D of G− Tn has a finite
neighbourhood N(D) in Tn, because N(D) is linearly ordered in the tree ordering. Let
tD ∈ N(D) be maximal in the tree order of Tn, and let rD be a neighbour of tD in D.
For each pair v 6= w ∈ N(D) with countable connectivity select the path PD

v,w with least
index in Pv,w intersecting D. The argument in [1, Theorem 8.2.4] shows that any finite
set of vertices in a connected graph is contained in a finite normal tree with arbitrarily
prescribed root. Hence, in each component D there is a finite tree TD with root rD that
is normal in D and contains all vertices of PD

v,w ∩D for all v 6= w ∈ N(D) with κ(v, w) at
most countable. Then Tn together with all TD and edges tDrD is a rayless normal tree in
G with root r extending Tn. This completes the construction.

The union T =
⋃
n∈N Tn with root r is a normal tree in G. We claim that T is spanning

unless G contains a fat TKℵ0 . If T is not spanning, consider a component C of G − T .
Then N(C) ⊆ T is infinite: otherwise, N(C) ⊆ Tn for some n ∈ N, but then we would
have extended Tn into C because C was a component of G − Tn, a contradiction. For
every n, let Dn be the unique component of G− Tn containing C.

By Fact 4, it suffices to show that κ(v, w) is uncountable for every v 6= w ∈ N(C).
Consider a T -path P from v to w with its interior P̊ completely contained in C. If
κ(v, w) was countable, then by maximality of Pv,w there is P k

v,w ∈ Pv,w containing an
interior vertex x of P . Let m be minimal with v, w ∈ Tm. Since the PDn

v,w are pairwise
distinct, the path P k

v,w was selected as PDn
v,w for some n with m 6 n 6 m + k. But then

x ∈ P k
v,w ∩ P̊ ⊆ PDn

v,w ∩Dn ⊆ Tn+1 ⊆ T contradicts that P is a T -path.

5 Local versions of Diestel’s criterion

By a slight modification of this ω-length algorithm, one readily obtains a proof of the
following results, which answer [7, Problem 3].

Theorem 5. A set of vertices U in a connected graph G is contained in a normal tree of
G provided every fat TKℵ0 in G can be separated from U by a finite set of vertices.

Proof. Let U be a set of vertices such that every fat TKℵ0 in G can be separated from
U by a finite set of vertices. Use the algorithm from Section 4, but only extend Tn into
components D of G − Tn with U ∩ D 6= ∅. Additionally, make sure to include at least
one vertex from U ∩D.

the electronic journal of combinatorics 28(3) (2021), #P3.59 4



Then T =
⋃
Tn is normal and it remains to argue that U is contained in T . Otherwise,

there is a component C of G− T containing a vertex from U . As in Section 4, this gives
us a fat TKℵ0 in G, and it is readily verified that this fat TKℵ0 cannot be separated from
U by a finite set of vertices, cf. [8, Proof of Theorem 3, item (2)].

Theorem 6. A connected graph has a normal spanning tree if and only if its vertex set
is a countable union of sets each separated from any fat TKℵ0 by a finite set of vertices.

Proof. For the forward implication, recall that the levels of any normal spanning tree can
be separated by a finite set of vertices from any ray, and hence in particular from any fat
TKℵ0 . Conversely, let {Vn : n ∈ N} be sets of vertices in G with V (G) =

⋃
n∈N Vn such

that each Vn can be separated from any fat TKℵ0 by a finite set of vertices. Adapt the
algorithm from Section 4, so that when extending Tn into a component D of G− Tn, we
additionally include a vertex vD ∈ D ∩ VnD

where nD minimal such that VnD
∩D 6= ∅.

Then T =
⋃
Tn is normal and it remains to argue that it is spanning. Otherwise,

there is a component C of G − T and we may choose nC ∈ N to be minimal such that
C contains a vertex from VnC

. As in Section 4, this component C gives us a fat TKℵ0 in
G, and it is readily verified that this fat TKℵ0 cannot be separated from

⋃
n6nC

Vn by a
finite set of vertices, cf. [8, Proof of Theorem 3, item (2)]. This, however, means that our
fat TKℵ0 cannot be separated from one of the Vn for some n 6 nC , a contradiction.
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