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Abstract

In 2003 Grüttmüller proved that if n > 3 is odd, then a partial transversal of
the Cayley table of Zn with length 2 is completable to a transversal. Additionally,
he conjectured that a partial transversal of the Cayley table of Zn with length k
is completable to a transversal if and only if n is odd and either n ∈ {k, k + 1} or
n > 3k − 1. Cavenagh, Hämäläinen, and Nelson (in 2009) showed the conjecture is
true when k = 3 and n is prime. In this paper, we prove Grüttmüller’s conjecture for
k = 2 and k = 3 by establishing a more general result for Cayley tables of Abelian
groups of odd order.

Mathematics Subject Classifications: 05B15, 20K01

1 Introduction

It is well-known that Cayley tables of finite cyclic groups have transversals if and only if
their order is odd. In fact, such Cayley tables have many transversals, most recently shown
by Eberhard, Manners, and Mrazović [2], who proved that the number of transversals in a
Cayley table of Zn is on the order of (e−1/2 + o(1))n!2/nn−1. With this in mind, it seems
plausible that for a positive integer k and a large enough n, any partial transversal of
length k in a Cayley table of Zn is contained in a transversal.

For a finite group G, let C(G) denote the Cayley table of G, and let n > 3 be odd. We say
that a partial transversal P of C(G) is completable if there exists a transversal T ⊆ C(G)
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such that P ⊆ T ; we say that T is a completion of P . First observe that partial transversals
of C(Zn) with length 1, n− 1, or n, are completable. In particular, partial transversals of
length 1 are completable since C(Zn) is decomposable into transversals; note that for Latin
squares in general, completing partial transversals of length 1 is not always possible [7].
Grüttmüller proved an analogous result for partial transversals of C(Zn) with length 2, as
well as other special cases.

Theorem 1 (Grüttmüller [3]). A partial transversal of C(Zn) with length 2 is completable
if and only if n is odd and n > 3.

Theorem 2 (Grüttmüller [4]). Let 2 6 k 6 7. Every partial transversal of C(Zn) with
length k, order n odd, and 3k − 1 6 n 6 21 is completable.

Grüttmüller also established necessary conditions for a partial transversal of C(Zn) with
length k to be completable.

Theorem 3 (Grüttmüller [4]). If k > 3 and every partial transversal of C(Zn) with
length k is completable, then n is odd and either n ∈ {k, k + 1} or n > 3k − 1.

Stemming from this, Grüttmüller made the following conjecture.

Conjecture 4 (Grüttmüller [4]). If k > 1, then every partial transversal of C(Zn) with
length k is completable if and only if n is odd and either n > 3k − 1 or n ∈ {k, k + 1}.

The only known progress on Conjecture 4 is due to Cavenagh, Hämäläinen, and Nelson.

Theorem 5 (Cavenagh et al. [1]). Let n > 11 and n prime. Then any partial transversal
of C(Zn) with length 3 is completable.

In this paper we settle Grüttmüller’s conjecture for the case k = 3. In fact, we prove the
following stronger result.

Theorem 6. For an Abelian group G of odd order n and k ∈ {2, 3}, every partial
transversal of C(G) with length k is completable if and only if either n > 3k − 1 or
n ∈ {k, k + 1}.

Observe that for any Abelian group G of odd order n, a partial transversal of C(G) with
length 1, n − 1, or n is completable for the same reasons as when G is cyclic and thus,
for the same reasons, an appropriate first step in this generalization is to establish the
conditions under which partial transversals of C(G) with lengths 2 and 3 are completable.

Lastly, we mention here that the work cited above was presented in terms of diagonally
cyclic Latin squares. For odd n, a Latin square L ⊆ Zn × Zn × Zn is diagonally cyclic
if (i + 1, j + 1, k + 1) ∈ L whenever (i, j, k) ∈ L. There is a one-to-one correspondence
between diagonally cyclic Latin squares of order n and transversals in C(Zn) as shown in
the following example.
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4 2 0 3 1

2 0 3 1 4

0 3 1 4 2

3 1 4 2 0

1 4 2 0 3

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

L C(Z5)

Figure 1: A diagonally cyclic Latin square of order 5 and its corresponding transversal of
C(Z5).

Example 7. Let L be the diagonally cyclic Latin square of order 5 given in Figure 1.
Note that the first row of L determines L, and the map which associates (0, i, si) ∈ L with
(si − i, i, si) ∈ C(Z5) demonstrates the correspondence between L and the highlighted
transversal of C(Z5).

Thus completing partial Latin squares of order n to diagonally cyclic Latin squares of
order n is equivalent to completing partial transversals of C(Zn) to transversals. With
this in mind, the theorems and conjecture above can be restated using diagonally cyclic
Latin squares. For more on diagonally cyclic Latin squares and related objects, see the
survey by Wanless [6].

2 Coset Blocks and Chains

Let n be a positive odd integer and G be an Abelian group of order n, expressed additively.
We treat C(G) as a Latin square, that is, as a subset of G×G×G, where (a, b, c) ∈ C(G)
if and only if c = a+ b in G.

Observe that when k = 2 or k = 3, Conjecture 4 is true for Abelian groups of prime order
since these groups are cyclic. For the remainder of the paper, we focus on developing
machinery for handling C(G) when G has composite order.

Let n be composite with prime divisor q and m be defined so that n = mq. Define ` so
that q = 2`+ 1. Let H be a subgroup of G of order m. We use 0 for the zero element of H
and for each k ∈ Z and for each g ∈ G, let kg = g + g + · · ·+ g (k times). Note that the
factor group G/H has prime order q and thus G/H is isomorphic to Zq; let µ : Zq → G/H
be such an isomorphism. Let H0 = H and H1, H2, . . . , Hq−1 denote the remaining cosets
of H in G/H, where Hi = µ(i) for each i ∈ Zq.

Observe that for each i, j ∈ Zq, {(a, b, a + b) ∈ C(G) : a ∈ Hi, b ∈ Hj} is a Latin square
which is a subset of Hi ×Hj ×Hi+j that is isomorphic (as a Latin square) to C(H). We
call this Cayley table a coset block of order m in C(G) and we denote it as Ci,j(H;G, µ)
(or when the context makes it unambiguous, simply Ci,j(H)); note that C0,0(H) = C(H).
We denote C0,d(H) ∪ C1,d+1(H) ∪ · · · ∪ Cq−1,d+q−1(H) as the dth block diagonal of C(G)
with respect to (H,µ) and call the 0th block diagonal the main block diagonal.
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For a subset P of C(G), we let P r, P c, and P s denote the set of rows, columns, and symbols
used by the triples in P . Additionally for each i ∈ Zq, let P r

i = P r ∩Hi, P
c
i = P c ∩Hi,

and P s
i = P s ∩Hi.

We begin by observing an invariance in C(G); its use will reduce the complexity of later
arguments.

Observation 8. Let a, b ∈ G, and ψ be an automorphism of G. Then the following are
automorphisms of C(G):

δa,b(x, y, z) = (x+ a, y + b, z + a+ b), and

ψ(x, y, z) = (ψ(x), ψ(y), ψ(z)).

We often leverage that if φ is an automorphism of C(G) and P is a partial transversal
of C(G), then P is completable if and only if φ(P ) is completable as well. In particular,
we frequently assume that (0, 0, 0) belongs to P . Indeed if (a, b, a+ b) ∈ P , then (0, 0, 0) ∈
δ−a,−b(P ), and thus we can work with the image of P instead. Furthermore, for an integer c
relatively prime to |G|, we use that ξc : G→ G given by ξc(g) = cg is an automorphism
of G, and therefore gives rise to an automorphism of C(G).

The constructions used in this paper hinge heavily on building chains, which are now
defined, with examples that follow.

Definition 9. Let G be an Abelian group of odd order mq with q prime, m > 3, and an
order m subgroup H. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq.

Let 1 6 d 6 q−1 and both {xi ∈ Hi : i ∈ Zq} and {yi ∈ Hi : i ∈ Zq} be systems of distinct
representatives (SDRs) of G/H. The partial transversal P = {(xi, yi, xi + yi) : i ∈ Zq}
of C(G) is a (d,H)-chain of C(G) with respect to µ if

xi + yi = xi+`d + yi+(`+1)d for each i ∈ Zq. (1)

Define σ(P ), called the swap of P , as the subset {(xi, yi+d, xi + yi+d) : i ∈ Zq} of C(G).
Since P satisfies the conditions outlined in (1), σ(P ) is also a partial transversal of C(G)
such that P r = σ(P )r, P c = σ(P )c, and P s = σ(P )s. Note that P consists of q cells, each
of which are representatives of distinct coset blocks on the main block diagonal of C(G)
with respect to (H,µ), while those in σ(P ) represent the coset blocks on the dth block
diagonal of C(G) with respect to (H,µ). Furthermore, if T is a completion of P in C(G),
then (T\P ) ∪ σ(P ) is also a transversal of C(G).

Example 10. Let G = Z15, H = {0, 5, 10}, µ : Z5 → G/H be the canonical isomorphism,
and d = 3; so n = 15, m = 3, q = 5, and ` = 2. Then

P = {(0, 5, 5), (6, 6, 12), (7, 12, 4), (13, 8, 6), (9, 14, 8)}

is a (3, H)-chain with respect to µ, as evidenced by the table in Figure 2, and is illustrated
in Figure 3(a). Furthermore P r = {0, 6, 7, 13, 9}, P c = {5, 6, 12, 8, 14}, P s = {5, 6, 12, 8, 4},
and

σ(P ) = {(0, 8, 8), (6, 14, 5), (7, 5, 12), (13, 6, 4), (9, 12, 6)}.
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i 0 1 2 3 4
xi 0 6 7 13 9
yi 5 6 12 8 14

xi + yi 5 12 4 6 8
xi+`d 6 7 13 9 0

yi+(`+1)d 14 5 6 12 8
xi+`d + yi+(`+1)d 5 12 4 6 8

Figure 2: A summary of values corresponding to the construction in Example 10.

0 5 10 1 6 11 2 7 12 3 8 13 4 9 14

5 10 0 6 11 1 7 12 2 8 13 3 9 14 4

10 0 5 11 1 6 12 2 7 13 3 8 14 4 9

1 6 11 2 7 12 3 8 13 4 9 14 5 10 0

6 11 1 7 12 2 8 13 3 9 14 4 10 0 5

11 1 6 12 2 7 13 3 8 14 4 9 0 5 10

2 7 12 3 8 13 4 9 14 5 10 0 6 11 1

7 12 2 8 13 3 9 14 4 10 0 5 11 1 6

12 2 7 13 3 8 14 4 9 0 5 10 1 6 11

3 8 13 4 9 14 5 10 0 6 11 1 7 12 2

8 13 3 9 14 4 10 0 5 11 1 6 12 2 7

13 3 8 14 4 9 0 5 10 1 6 11 2 7 12

4 9 14 5 10 0 6 11 1 7 12 2 8 13 3

9 14 4 10 0 5 11 1 6 12 2 7 13 3 8

14 4 9 0 5 10 1 6 11 2 7 12 3 8 13

0 5 10 1 6 11 2 7 12 3 8 13 4 9 14

0

5

10

1

6

11

2

7

12

3

8

13

4

9

14

0 5 10 1 6 11 2 7 12 3 8 13 4 9 14

5 10 0 6 11 1 7 12 2 8 13 3 9 14 4

10 0 5 11 1 6 12 2 7 13 3 8 14 4 9

1 6 11 2 7 12 3 8 13 4 9 14 5 10 0

6 11 1 7 12 2 8 13 3 9 14 4 10 0 5

11 1 6 12 2 7 13 3 8 14 4 9 0 5 10

2 7 12 3 8 13 4 9 14 5 10 0 6 11 1

7 12 2 8 13 3 9 14 4 10 0 5 11 1 6

12 2 7 13 3 8 14 4 9 0 5 10 1 6 11

3 8 13 4 9 14 5 10 0 6 11 1 7 12 2

8 13 3 9 14 4 10 0 5 11 1 6 12 2 7

13 3 8 14 4 9 0 5 10 1 6 11 2 7 12

4 9 14 5 10 0 6 11 1 7 12 2 8 13 3

9 14 4 10 0 5 11 1 6 12 2 7 13 3 8

14 4 9 0 5 10 1 6 11 2 7 12 3 8 13

0 5 10 1 6 11 2 7 12 3 8 13 4 9 14

0

5

10

1

6

11

2

7

12

3

8

13

4

9

14

(a) (b)

Figure 3: (a) The (3, H)-chain P and its swap σ(P ) given in Example 10 and (b) the offset
P2(5) and its swap given in Example 13. The cells of the chains are shaded and outlined,
while the cells of their swaps are only shaded.

We now present a classification result which highlights how to construct a chain.

Lemma 11. Let G be an Abelian group of odd order mq with q prime, m > 3, and an
order m subgroup H. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq.

Let 1 6 d 6 q − 1. A (d,H)-chain of C(G) with respect to µ is determined by an SDR
of G/H, each being a symbol used by the chain, along with a row used by one cell of the
chain.

Proof. Let S = {si ∈ Hi : i ∈ Zq} be an SDR of G/H, t ∈ Zq, and xt ∈ Ht. Define
yt, xt−d, yt−d, . . . , xt−(q−1)d, yt−(q−1)d by the equations

yt−jd = s2t−2jd − xt−jd for each j ∈ Zq, and

xt−jd = s2t−(2j−1)d − yt−(j−1)d for each nonzero j ∈ Zq. (2)
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These 2q−1 equations uniquely determine the partial transversal P = {(xj, yj, s2j) : j ∈ Zq}
for which

xk + yk = s2k for all k ∈ Zq and

xk+`d + yk+(`+1)d = s2k for all k ∈ Zq with k 6= t− `d.

Hence (1) holds when i 6= t − `d. Thus, to show P is a (d,H)-chain of C(G) with
respect to µ, we must demonstrate that xt−`d+`d + yt−`d+(`+1)d = s2(t−`d), or equivalently
xt + yt+d = s2t+d. Since G is Abelian, we have that

xt + yt+d

= xt + s2t+2d − xt+d
= xt + s2t+2d − s2t+3d + yt+2d

= xt + s2t+2d − s2t+3d + s2t+4d − xt+2d

= xt + s2t+2d − s2t+3d + s2t+4d − s2t+5d + s2t+6d − xt+3d

...

= xt + s2t+2d − s2t+3d + s2t+4d − s2t+5d + s2t+6d − · · · − s2t+(2q−1)d + s2t+2qd − xt+qd

=

q∑
j=2

(−1)js2t+jd +

q∑
j=1

(−1)j+qs2t+(j+q)d

=

q∑
j=2

(−1)js2t+jd −
q∑
j=1

(−1)js2t+jd

= s2t+d.

Therefore, P is a (d,H)-chain of C(G) with respect to µ.

In later arguments we need disjoint chains – chains whose rows, columns, and symbol sets
are disjoint. To that end we make the following observation which allows for the modest
manipulation of a chain.

Definition 12. Let G be an Abelian group of odd order mq with q prime, m > 3, and an
order m subgroup H. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq.

Suppose that P = {(xj, yj, xj + yj) : j ∈ Zq, xj, yj ∈ Hj} is a (d,H)-chain of C(G) with
respect to µ. Let i ∈ Zq and let v ∈ H. Define s = i + d(` + 1) (mod q). Then the
offset Pi(v) of P is the partial transversal of C(G) obtained by replacing (xi, yi, xi + yi)
and (xs, ys, xs + ys) with (xi + v, yi, xi + v + yi) and (xs, ys + v, xs + ys + v) in P . Note
Pi(v) is also a (d,H)-chain of C(G) with respect to µ.

Example 13. Again let G = Z15, H = {0, 5, 10}, µ : Z5 → G/H be the canonical
isomorphism, and d = 3; so n = 15, m = 3, q = 5, and ` = 2. Let P be the (3, H)-chain
of C(G) with respect to µ given in Example 10 and i = 2. So s = 1 and hence

P = {(0, 5, 5), (6, 6, 12), (7, 12, 4), (13, 8, 6), (9, 14, 8)} and

P2(5) = {(0, 5, 5), (6, 11, 2), (12, 12, 9), (13, 8, 6), (9, 14, 8)}.
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Observe that P2(5) is also a (3, H)-chain of C(G) with respect to µ. See Figure 3(b).

In practice, to find a completion of a partial transversal P of C(G), we partition P into
two parts P ′ and P ′′, then find a chain C such that C ∪ P ′ is completable and P ′′ ⊆ σ(C).
Thus if τ is a completion of C ∪ P ′, then (τ\C) ∪ σ(C) is a completion of P in C(G). To
that end we have the following two technical lemmas which allow for the construction of
chains subject to certain conditions.

Lemma 14. Let G be an Abelian group of odd order mq with q prime, m > 3, and an
order m subgroup H. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq.

Let d, i ∈ Zq with d 6= 0. If xi, yi ∈ Hi and yi+d ∈ Hi+d, then there is a (d,H)-chain of C(G)
with respect to µ which contains (xi, yi, xi+yi), and whose swap contains (xi, yi+d, xi+yi+d).

Proof. By Observation 8, we may assume that i = 0 and x0 = y0 = 0. So we must show
that a (d,H)-chain of C(G) with respect to µ exists which contains (0, 0, 0) and whose
swap contains (0, yd, yd).

We begin by letting {si ∈ Hi : i ∈ Zq} be an SDR of G/H for which s0 = 0 and sd = yd.
Using Lemma 11, there is a unique (d,H)-chain P = {(ai, bi, s2i) : i ∈ Zq} of C(G) with
respect to µ for which a0 = 0. Since a0 + b0 = s0 we have b0 = 0, so (0, 0, 0) ∈ P .
Additionally σ(P ) must contain (a0, bd, sd) = (0, bd, yd). So 0 + bd = yd and therefore
bd = yd. Hence (0, yd, yd) ∈ σ(P ).

Lemma 15. Let G be an Abelian group of odd order mq with q prime, m > 3, and an
order m subgroup H. Let µ : Zq → G/H be an isomorphism with µ(t) = Ht for t ∈ Zq.
Suppose

• d, i, j ∈ Zq such that d is nonzero and 2i = 2j + d,
• w, z ∈ Hi, w

′ ∈ Hj, and z′ ∈ Hj+d such that w + z = w′ + z′, and
• X is a collection of triples such that w,w′ /∈ Xr, z, z′ /∈ Xc, and w + z /∈ Xs.

Then there exists a (d,H)-chain of C(G) with respect to µ which is row-, column-, and
symbol-disjoint from X, contains (w, z, w + z), and whose swap contains (w′, z′, w′ + z′) if

• m > 2|X| or
• m > max{|Xr

t | : t ∈ Zq}+ max{|Xc
t | : t ∈ Zq}+ 2 ·max{|Xs

t | : t ∈ Zq}.

Proof. By using an appropriate operation from Observation 8, we may assume i = 0 and
w = z = 0; hence j = `d and z′ = −w′.

First let S = {std ∈ Htd\Xs
td : t ∈ {0, 1, . . . , q − 3}} be a partial SDR of G/H for which

s0 = 0. Note that if m > 2|X|, then

|H(q−2)d| = m > 2|X| > |Xs
(q−2)d|+|{a ∈ H(q−2)d : w′+a−s(q−3)d+s(q−4)d−· · ·+sd ∈ Xs}|,
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or if m > max{|Xr
t | : t ∈ Zq}+ max{|Xc

t | : t ∈ Zq}+ 2 ·max{|Xs
t | : t ∈ Zq}, then

|H(q−2)d| = m > 2 ·max{|Xs
t | : t ∈ Zq} > |Xs

(q−2)d|+ |Xs
(q−1)d|

> |Xs
(q−2)d|+ |{a ∈ H(q−2)d : w′ + a− s(q−3)d + s(q−4)d − · · ·+ sd ∈ Xs

(q−1)d}|.

Hence there exists s(q−2)d ∈ H(q−2)d\Xs
(q−2)d so that w′+ s(q−2)d− s(q−3)d + s(q−4)d−· · ·+ sd

(we denote this sum as s(q−1)d) belongs to H(q−1)d\Xs
(q−1)d. Therefore S ∪ {s(q−2)d, s(q−1)d}

is an SDR of G/H which is disjoint from Xs.

Let P = {(at, bt, at + bt) ∈ Ct,t(H) : t ∈ Zq} be the (d,H)-chain of C(G) with respect to µ
using row 0 and symbols in S ∪ {s(q−2)d, s(q−1)d}. Then (0, 0, 0) ∈ P and, by using the
equations in (2), we have that a`d = s(q−1)d − s(q−2)d + · · ·+ s2d − sd; therefore a`d = w′.
Since b(`+1)d + a`d = s0 = 0, we have that b(`+1)d = z′, and hence (w′, z′, 0) ∈ σ(P ).

At this point, P and X may not be disjoint in rows and columns. In what follows, we use
offsets to make P disjoint from X while maintaining that (0, 0, 0) ∈ P and (w′, z′, 0) ∈ σ(P ).
Suppose that, for some t ∈ Zq, either at ∈ Xr or bt+(`+1)d ∈ Xc. Note that t 6= 0 and
t 6= `d, as {(0, 0, 0), (w′, z′, 0)} is disjoint from X. Consider the sets

X1 = {(a, b, c) ∈ X : a = at + v for some v ∈ H},
X2 = {(a, b, c) ∈ X : b = bt+(`+1)d + v for some v ∈ H},
X3 = {(a, b, c) ∈ X : c = at + bt + v for some v ∈ H}, and

X4 = {(a, b, c) ∈ X : c = at+(`+1)d + bt+(`+1)d + v for some v ∈ H}.

Note that if (a, b, c) ∈ X1, then a ∈ Ht; if (a, b, c) ∈ X2, then b ∈ Ht+(`+1)d; if (a, b, c) ∈ X3,
then c ∈ H2t; and if (a, b, c) ∈ X4, then c ∈ H2t+d. It follows that any triple in X belongs
to at most two subsets Xt, t ∈ {1, 2, 3, 4}. Therefore |X1| + |X2| + |X3| + |X4| 6 2|X|.
Additionally, |X1| 6 max{|Xr

t | : t ∈ Zq}, |X2| 6 max{|Xc
t | : t ∈ Zq}, and |X3|, |X4| 6

max{|Xs
t | : t ∈ Zq}. Now similarly define

R1 = {v ∈ H : a = at + v for some (a, b, c) ∈ X},
R2 = {v ∈ H : b = bt+(`+1)d + v for some (a, b, c) ∈ X},
R3 = {v ∈ H : c = at + bt + v for some (a, b, c) ∈ X}, and

R4 = {v ∈ H : c = at+(`+1)d + bt+(`+1)d + v for some (a, b, c) ∈ X}.

Note that |Rt| = |Xt| for t ∈ {1, 2, 3, 4}. Therefore |R1∪R2∪R3∪R4| < m; so there exists
some v ∈ H\(R1 ∪R2 ∪R3 ∪R4). Then at + v /∈ Xr, bt+(`+1)d + v /∈ Xc, at + bt + v /∈ Xs

2t,
and at+(`+1)d + bt+(`+1)d + v /∈ Xs

2t+d. Then Pt(v) is a (d,H)-chain of C(G) with respect
to µ which still contains (0, 0, 0), whose swap contains (w′, z′, 0), and contains fewer cells
which are not disjoint from X. Proceeding iteratively, we may produce a (d,H)-chain
of C(G) with respect to µ which contains (0, 0, 0), whose swap contains (w′, z′, 0), and is
row-, column-, and symbol-disjoint from X.
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3 Completing Partial Transversals

We begin with a proof of Theorem 6 with k = 2; note that Theorem 1 follows as a special
case when the group G is cyclic.

Proof of Theorem 6 with k = 2. The forward direction is straightforward, so we focus on
the reverse direction. Let n be odd and n > 3. Let P be a partial transversal of C(G) and,
without loss of generality, we may assume P = {(0, 0, 0), (a, b, a + b)} for some nonzero
a, b ∈ G with a+ b 6= 0.

If n is prime, then we may assume G = Zn. There exists v ∈ Zn so that av = b (mod n);
then {(i, vi, i+ vi) : i ∈ Zn} is a completion of P . Now assume n is composite and, if G′ is
any Abelian group of odd order n′ with 3 6 n′ < n, then any partial transversal of C(G′)
with length 2 is completable.

Let G be an Abelian group of odd order n = mq with q prime, m > 3, and an order m
subgroup H. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq. Let
α, β ∈ Zq such that a ∈ Hα and b ∈ Hβ, and thus (a, b, a + b) ∈ Cα,β(H). We consider
four cases.

Case 1: Suppose α = β = 0. By the inductive hypothesis, P has a completion τ0 in C0,0(H).
For each nonzero k ∈ Zq, let τk be a transversal of Ck,k(H). Then τ0 ∪ τ1 ∪ · · · ∪ τq−1 is a
completion of P .

Case 2: Suppose each of α, β, and α + β are nonzero. Again by the inductive hypothesis,
{(0, 0, 0), (α, β, α + β)} has a completion τ ′ in C(Zq). Let σ be the permutation of Zq so
that τ ′ = {(v, σ(v), v + σ(v)) : v ∈ Zq}. Necessarily σ(0) = 0 and σ(α) = β. For each
v ∈ Zq, let τv be a transversal of Cv,σ(v)(H) so that τ0 and τα are completions of {(0, 0, 0)}
and {(a, b, a+ b)} in C0,0(H) and Cα,σ(α)(H), respectively. Then τ0 ∪ τ1 ∪ · · · ∪ τq−1 is a
completion of P .

Case 3: Suppose α and β are nonzero and α+ β = 0. Let c ∈ H so that 2c = a+ b. Then
by Lemma 15 (with X empty), we may define Q = {(xi, yi, xi + yi) ∈ Ci,i(H) : i ∈ Zq} as a
(β − α,H)-chain with respect to µ containing (c, c, a+ b) (which then implies x0 = y0 = c)
and whose swap contains (a, b, a+ b). By the inductive hypothesis, let τ0 be a completion
of {(0, 0, 0), (c, c, a+ b)} in C0,0(H), and for each nonzero v ∈ Zq, let τv be a completion
of {(xv, yv, xv + yv)} in Cv,v(H). Then ((τ0 ∪ τ1 ∪ · · · ∪ τq−1)\Q) ∪ σ(Q) is a completion
of P .

Case 4: Suppose α = 0 and β 6= 0. By Lemma 14, let Q = {(xi, yi, xi + yi) ∈ Ci,i(H) :
i ∈ Zq} be a (β,H)-chain of C(G) with respect to (H,µ) containing (a, a, 2a) and
whose swap contains (a, b, a + b). By the inductive hypothesis, let τ0 be a completion
of {(0, 0, 0), (a, a, 2a)} in C0,0(H), and for each nonzero v ∈ Zq, let τv be a completion
of {(xv, yv, xv + yv)} in Cv,v(H). Then ((τ0 ∪ τ1 ∪ · · · ∪ τq−1)\Q) ∪ σ(Q) is a completion
of P . An identical argument holds if α 6= 0 and β = 0 by using transposes.
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The remainder of this section builds an argument for completing partial transversals
of C(G) with length 3, thereby proving the rest of Theorem 6. In what follows, when a
partial transversal P cannot be completed to a transversal in a Latin square L, we say P
is non-completable in L, or simply non-completable.

Observation 16. Note that Theorem 6 does not guarantee that a partial transversal
in C(G) with length 3 is completable if |G| = 5 or 7. In other words, there may be
non-completable partial transversals of C(G) with length 3 if G is isomorphic to Z5 or Z7.

In fact, there are 100 and 294 partial transversals of C(Z5) and C(Z7) with length 3,
respectively, which are non-completable. These were found by brute-force search and,
conveniently, are easily described in the following way. For p ∈ {5, 7} and |G| = p, the
non-completable partial transversals of C(G) with length 3 are of the form

{(a, b, a+ b), (c+ a, c+ b, 2c+ a+ b), (2c+ a,−c+ b, c+ a+ b)},

where a, b ∈ G, and c is an integer relatively prime to p (any such integer c is sufficient,
but note there are only p − 1 distinct outcomes based on different choices of c). This
partial transversal can be more simply expressed as δa,bξc({(0, 0, 0), (1, 1, 2), (2,−1, 1)}).

With the above classification, we now present two completion results in particular cases.

Lemma 17. Let n ∈ {25, 35, 49}, q be the smallest prime divisor of n, n = mq, G be an
Abelian group of order n, and H be the subgroup of G having order m. If γ is a partial
transversal of C(H) with length 3, then γ is completable in C(G).

Proof. Suppose τ is a completion of γ in C(H). Let µ : Zq → G/H be an isomorphism
with µ(i) = Hi for i ∈ Zq. Then τ is a transversal of C0,0(H) as well. For each
i ∈ {1, 2, . . . , q − 1}, let τi be any transversal of Ci,i(H). Then τ ∪ τ1 ∪ · · · ∪ τq−1 is a
completion of γ in C(G).

Now assume that γ is non-completable in C(H), and let x ∈ H be nonzero. Note
that 〈x〉 = H, and if G is cyclic, we let x = q. Then, by Observation 16, there exist
a, b ∈ H and an integer c relatively prime to m such that γ = δa,bξc(P ), where P =
{(0, 0, 0), (x, x, 2x), (2x,−x, x)}. Observe that δa,bξc is also an invariant map of C(G), as
a, b ∈ G and c is relatively prime to n, except when m = 7 and q = c = 5; in this case use
c = −2. In Figure 4, we give completions of P in all five cases. Therefore, γ is completable
in C(G) as well.

Lemma 18. Let n ∈ {25, 35, 49}. Let G be an Abelian group of odd order n = mq with q
the smallest prime divisor of n, and H be an order m subgroup of G. Let µ : Zq → G/H be
an isomorphism with µ(i) = Hi for i ∈ Zq. Let T1, T2 ∈ C(G) such that (0, 0, 0), T1, and T2
belong to distinct block diagonals of C(G) with respect to (H,µ). If γ = {(0, 0, 0), T1, T2}
is a partial transversal of C(G), then γ is completable in C(G).
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42 34 27
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40 56 26

41 43 14

42 46 11

43 42 15

44 50 24

45 44 12

46 41 10

50 52 32

51 53 34
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53 55 31

54 61 45

55 65 43

56 51 30

60 66 56

61 60 51

62 62 54

63 02 65

64 63 50

65 64 52

66 04 63

(e)

Figure 4: Completions of P as described in Lemma 17 for (a) C(Z25), (b) C(Z5 × Z5),
(c) C(Z35), (d) C(Z49), and (e) C(Z7 × Z7). For each noncyclic group Zp × Zp, we fix
y ∈ G\H; note that 〈x, y〉 = G and each element of G is representable as ax+ by for some
a, b ∈ Zp, and we use ab to represent the element ax+ by in the charts above.

Computer Proof. Despite our best efforts, the only way we found to justify this is through
a brute-force computer search. Let d and e be the indices of the block diagonals with
respect to (H,µ) containing T1 and T2, respectively. Then perform the following procedure:

1. Randomly construct an SDR of G/H including the symbol of T1, then construct
a (d,H)-chain D of C(G) with respect to (H,µ) using the SDR and the row of T1.
Note that T1 ∈ σ(D). If the chain does not avoid (0, 0, 0), then restart the process.

2. Randomly construct an SDR of G/H including the symbol of T2, then construct
an (e,H)-chain E of C(G) with respect to (H,µ) using the SDR and the row of T2.
Note that T2 ∈ σ(E). If the chain does not avoid D or does not avoid (0, 0, 0), then
restart the process.

3. Check that the partial transversal P = (D ∪E ∪ {(0, 0, 0)})∩C(H) with length 3 is
completable in C(H). For this, we simply check that P is not a non-completable
partial transversal of C(H) as classified in Observation 16. If P is non-completable
in C(H), then restart the process.

If the process succeeds, there exists a completion τ0 of P in C(H) and for each nonzero
i ∈ Zq, there exists a completion τi of (D ∪ E) ∩ Ci,i(H) in Ci,i(H), the latter of which
follows from Theorem 1. Then (τ0∪ τ1∪ · · · ∪ τq−1∪σ(D)∪σ(E))\(D∪E) is a completion
of γ in C(G). We provide python code for this procedure, as well as some sample outputs
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here. Note that this routine successfully completed each possible γ, with very infrequent
restarts. This leads us to speculate there are many chains which may be used to produce
a completion, while very few would cause a conflict.

We now present a lemma highlighting how choosing the subgroup H wisely can affect
the location of cells in coset blocks of C(G). Afterward, we describe another brute-force
method for resolving another small case, and then conclude with the remaining proof of
Theorem 6.

Lemma 19. Let p be prime, G = Zp×Zp, and T ∈ C(G). Then there exists a subgroup H
of G with order p such that for all µ : Zp → G/H, T belongs to the main block diagonal
of C(G) with respect to (H,µ).

Proof. Let x1, x2, y1, y2 ∈ Zp so that a = (x1, y1), b = (x2, y2), and T = (a, b, a + b). If
x1 = x2, then b− a ∈ 〈(0, 1)〉. Otherwise, b− a ∈ 〈(1, α)〉, where α = (x2 − x1)−1(y2 − y1).
Hence there exists a subgroup H of G for which b− a ∈ H. So a and b belong to the same
coset (say Hi) of H, and hence T ∈ Ci,i(H).

Observation 20. The following is a näıve brute-force algorithm to determine which
partial transversals of C(G) with length 3 are completable.

• Find the set P of all partial transversals of C(G) with length 3 containing (0, 0, 0).
• Find the set Π of all permutations π of G for which G = {i + π(i) : i ∈ G} and
π(0) = 0. Observe there is a bijection φ : Π→ T , where T is the set containing all
transversals of C(G) containing (0, 0, 0), given by φ(π) = {(i, π(i), i+ π(i)) : i ∈ G}.

• For each π ∈ Π, let Pπ be the set of
(
n−1
2

)
partial transversals in P for which φ(π) is

a completion.
• Compare P to ∪πPπ, with the union taken over each π ∈ Π. If P = ∪πPπ, then all

partial transversals of C(G) with length 3 are completable; otherwise P\(∪πPπ) is
the set of all non-completable partial transversals of C(G) which contain (0, 0, 0).

This algorithm quickly becomes infeasible as |G| increases. However, using this technique
we confirmed all partial transversals in C(Z9) and C(Z3×Z3) with length 3 are completable;
note the former of these two results also follows from Theorem 2. Furthermore, we used
this technique to classify the non-completable partial transversals of C(Z5) and C(Z7) as
given in Observation 16. We also provide python code for this procedure here.

Now we conclude with the remaining argument for Theorem 6.

Proof of Theorem 6 with k = 3. If n = 3 the result is trivial; if n > 11 is prime, then the
result follows from Theorem 5; and if n = 9 the result follows from Observation 20.

Now, assume n > 15 is composite, and if G′ is any Abelian group of odd order n′ with
9 6 n′ < n, then any partial transversal of C(G′) with length 3 is completable in C(G′).
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Let n = mq with q the smallest prime dividing n. Then m > 5, and let H be an order m
subgroup of G. Let µ : Zq → G/H be an isomorphism with µ(i) = Hi for i ∈ Zq.

It is sufficient to show any partial transversal γ of C(G) with length 3 containing (0, 0, 0)
is completable. Let γ = {T0, T1, T2}, where T0 = (0, 0, 0), T1 = (a1, b1, a1 + b1) and
T2 = (a2, b2, a2 + b2). Suppose that T1 ∈ Cα1,β1(H) and T2 ∈ Cα2,β2(H).

First, suppose α1 = α2 = β1 = β2 = 0; hence γ ⊆ C(H). If m > 9, then by our inductive
hypothesis, γ is completable to a transversal τ of C(H). For each nonzero k ∈ Zq, let τk
be a transversal of Ck,k(H). Then τ ∪ τ1 · · · ∪ τq−1 is a completion of γ in C(G). If m < 9,
then necessarily (m, q) ∈ {(5, 3), (5, 5), (7, 3), (7, 5), (7, 7)}. If (m, q) = (5, 3) or (7, 3), then
γ has a completion in C(G) by Theorem 2. Otherwise, γ has a completion in C(G) by
Lemma 17.

Next, suppose two cells belong to the same coset block; without loss of generality, suppose
T1 ∈ C(H) and T2 /∈ C(H). Since m > 3, there exists a completion τ of {T0, T1} in C(H).
We now consider three subcases which are similar to the proof of Theorem 6 when k = 2.

Case 1a: Suppose α2, β2, and α2 +β2 are nonzero. Since q > 3, {(0, 0, 0), (α2, β2, α2 +β2)}
has a completion τ ′ in C(Zq); let σ be a permutation on Zq so that τ ′ = {(v, σ(v), v+σ(v)) :
v ∈ Zq}. Necessarily σ(0) = 0 and σ(α2) = β2. Let τα2 be a completion of {T2} in
Cα2,β2(H), and for each nonzero i ∈ Zq with i 6= α2, let τi be a transversal of Ci,σ(i)(H).
Then τ ∪ τ1 ∪ · · · ∪ τq−1 is a completion of γ in C(G).

Case 1b: Suppose α2 and β2 are nonzero but α2 +β2 = 0; hence a2 + b2 ∈ H. Let T ′ be the
cell in τ whose symbol is a2+b2. By Lemma 15 (with X = ∅), let P be a (β2−α2, H)-chain
with respect to µ containing T ′ and whose swap contains T2. For each nonzero i ∈ Zq, let
τi be a completion of P ∩ Ci,i(H) in Ci,i(H). Then ((τ ∪ τ1 ∪ · · · ∪ τq−1)\P ) ∪ σ(P ) is a
completion of γ in C(G).

Case 1c: Suppose α2 = 0 and β2 is nonzero. Let T ′ be the cell in τ whose row is a2.
By proceeding identically to the argument used in Case 1b, we may again produce a
completion of γ in C(G). An identical argument holds if α2 6= 0 and β2 = 0 by using
transposes.

For the remaining cases, we may assume no two triples in γ belong to the same coset
block. We separate these instances into subcases based on how many cells of γ share a
block diagonal.

Case 2a: Suppose all three triples lie on the same block diagonal; thus α1 = β1 and
α2 = β2. Let τ0, τα1 and τα2 be completions of {T0}, {T1}, and {T2} in C(H), Cα1,α1(H),
and Cα2,α2(H), respectively, and for each i ∈ Zq where i 6= 0, α1, α2, let τi be a transversal
of Ci,i(H). Then τ0 ∪ τ1 ∪ · · · ∪ τq−1 is a completion of γ in C(G).

Case 2b: Suppose two of the three triples lie on the same block diagonal. Without loss of
generality, we may assume α1 = β1 and α2 6= β2. Let λ2 ∈ Zq so that 2λ2 = α2 + β2. Let
X = {T0, T1}. Let T ′ ∈ Cλ2,λ2(H) whose symbol is a2 + b2 and is row- and column-disjoint
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from X; this is possible since m > 3. Since m > 5 > 2|X|, by Lemma 15 there exists a
(β2−α2, H)-chain P with respect to µ which is row-, column-, and symbol-disjoint from X,
T ′ ∈ P , and T2 ∈ σ(P ). Note that (X∪P )∩Ci,i(H) is a partial transversal of Ci,i(H) with
length at most 2; hence for each i ∈ Zq, there exists a completion τi of (X ∪ P ) ∩ Ci,i(H)
in Ci,i(H). Then ((τ0 ∪ τ1 ∪ · · · ∪ τq−1)\P ) ∪ σ(P ) is a completion of γ in C(G).

Case 2c: Suppose all three triples lie on different block diagonals; that is β1−α1 and β2−α2

are distinct and nonzero. If m 6 7, we have that (m, q) = {(5, 3), (7, 3), (5, 5), (7, 5), (7, 7)}.
If (m, q) ∈ {(5, 3), (7, 3)}, then G is cyclic and thus γ is completable in C(G) by Theorem 2.
If (m, q) ∈ {(5, 5), (7, 5), (7, 7)} and G is cyclic, then γ is completable in C(G) by Lemma 18.
Otherwise, (m, q) ∈ {(5, 5), (7, 7)} and G is not cyclic, so by a different choice for H, we
may assume γ has two cells contained in the main block diagonal by Lemma 19; hence
these instances are handled in earlier cases.

Now suppose m > 9. For each i ∈ {1, 2}, let λi ∈ Zq so that 2λi = αi + βi. Since m > 5,
there exists a triple T ′1 ∈ Cλ1,λ1(H) which is row- and column-disjoint from {T0, T2} and
whose symbol is a1 + b1. Since m > 2|{T0, T2}|, there exists a (β1 − α1, H)-chain P1 with
respect to µ which is row-, column-, and symbol-disjoint from {T0, T2}, T ′1 ∈ P1, and
T1 ∈ σ(P1). Let X = {T0}∪P1. First observe that since m > 3, there exists T ′2 ∈ Cλ2,λ2(H)
which is row- and column-disjoint from X and whose symbol is a2 + b2. Furthermore,
observe that

max{|Xr
i | : i ∈ Zq}+max{|Xc

i | : i ∈ Zq}+2·max{|Xs
i | : i ∈ Zq} = |Xr

0 |+|Xc
0|+2|Xs

0 | = 8.

Since m > 9, there exists a (β2−α2, H)-chain P2 with respect to µ which is row-, column-,
and symbol-disjoint from X, T ′2 ∈ P2, and T2 ∈ σ(P2). Observe that ({T0}∪P1∪P2)∩C(H)
has a completion τ in C(H) by the inductive hypothesis. Furthermore, for each nonzero
i ∈ Zq, (P1 ∪ P2) ∩ Ci,i(H) is a partial transversal of Ci,i(H) with length 2 with a
completion τi in Ci,i(H) by the proof of Theorem 6 with k = 2. Therefore γ has a
completion ((τ ∪ τ1 ∪ · · · ∪ τq−1)\(P1 ∪ P2)) ∪ (σ(P1) ∪ σ(P2)) in C(G).

4 Concluding Remarks

In this paper, we considered partial transversals in Cayley tables of Abelian groups of odd
order, and we achieved our result through an iterative approach which may appear to only
leverage that the group is solvable. However, in constructing chains, we rely on the group
being Abelian. So at this time, we believe a novel method may be required to extend the
result to all odd-order groups by leveraging the Feit-Thompson Theorem.

Also, while Cayley tables of cyclic groups have transversals if and only if the order is odd,
the same cannot be said for arbitrary Abelian groups of finite order. Let G be a finite
Abelian group. A necessary condition for C(G) to contain a transversal is that the sum of
all elements of G is 0, which is true for odd order cyclic groups, whereas such a sum is
|G|/2 for even-order cyclic groups. However, the necessary condition is sufficient for the
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existence of transversals in C(G), regardless of the parity of |G|, through an application of
a result discovered by Marshall Hall Jr. [5]. Observe that if |G| is even, then the sum of
all elements of G is 0 if and only if Z2 × Z2 is a subgroup of G. This raises the following
general question.

Question 21. Let G be an Abelian group for which all elements of G sum to zero. Given a
positive integer k, is there a threshold dk such that if |G| > dk, then all partial transversals
of length k in C(G) are completable?

Another result used in this work was the classification of non-completable partial transver-
sals of length 3. Given they have such a nice structure, this could imply a similar structure
for non-completable partial transversals in C(G) with length k as |G| approaches 3k − 1
from below. While this looks interesting, this seems to be a much harder classification
problem.

Finally, we want to thank the anonymous referees of our paper who helped with clarifying
exposition and pushed us to make our results stronger.
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