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Abstract

One of the simplest methods of generating a random graph with a given degree
sequence is provided by the Monte Carlo Markov Chain method using switches. The
switch Markov chain converges to the uniform distribution, but generally the rate
of convergence is not known. After a number of results concerning various degree
sequences, rapid mixing was established for so-called P -stable degree sequences
(including that of directed graphs), which covers every previously known rapidly
mixing region of degree sequences.

In this paper we give a non-trivial family of degree sequences that are not P -stable
and the switch Markov chain is still rapidly mixing on them. This family has an
intimate connection to Tyshkevich-decompositions and strong stability as well.
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1 Introduction

An important problem in network science is to sample graphs with a given degree sequence
(almost) uniformly. In this paper we study a Markov Chain Monte Carlo (MCMC)
approach to this problem. The MCMC method can be successfully applied in many special
cases. A vague description of this approach is that we start from an arbitrary graph with
a given degree sequence and sequentially apply small random modifications that preserve
the degree sequence of the graph. This can be viewed as a random walk on the space of
realizations (graphs) of the given degree sequence. It is well-known that after sufficiently
many steps the distribution over the state space is close to the uniform distribution. The
goal is to prove that the necessary number of steps to take (formally, the mixing time of
the Markov chain) is at most a polynomial of the length of the degree sequence.

In this paper we study the so-called switch Markov chain (also known as the swap
Markov chain). For clarity, we refer to the degree sequence of a simple graph as an
unconstrained degree sequence. For consistency, a graph with an unconstrained degree
sequence is called an unconstrained graph, accordingly.

Throughout the paper, we work with finite graphs on labelled vertex sets. We will
denote graphs with upper case letters (e.g. G), degree sequences (which are non-negative
integer vectors) with bold-italic lower case letters (e.g. d). Classes of graphs and classes of
degree sequences are both denoted by upper case calligraphic letters (e.g. H). We say that
a graph G is a realization of a degree sequence d, if the degree sequence of G is d. For a
degree sequence d, we denote the set of all realizations of d by G(d). The `1-norm of a
vector x is denoted by ‖x‖1.

For two graphs G1, G2 on the same labelled vertex set, we define their symmetric
difference G14G2 with V (G14G2) = V (G1) = V (G2) and E(G14G2) = E(G1)4E(G2).

Definition 1.1 (switch). For a bipartite or an unconstrained degree sequence d, we say
that two realizations G1, G2 ∈ G(d) are connected by a switch, if

|E(G14G2)| = 4.

For directed graphs, beyond the classical switch operation, we also allow reversing an
oriented 3-cycle (this is known as triple switch [5]).

A switch can be seen in Figure 1; for the precise definition of the switch Markov chain,
see Definition 3.1. Clearly, if G1 and G2 are two graphs connected by a switch, then
F = E(G1)4E(G2) is a cycle of length four (a C4), and E(G2) = E(G1)∆F . Hence, the
term switch is also used to refer to the operation of taking the symmetric difference with a
given C4. It should be noted, though, that only a minority of C4’s define a (valid) switch.
The majority of C4’s do not preserve the degree sequence (if the C4 does not alternate
between edges of G1 and G2), or they introduce an edge which violates the constraints of
the model (say, an edge inside one of the color classes in the bipartite case).

The question whether the mixing time of the switch Markov chain is short enough is
interesting from both a practical and a theoretical point of view (although short enough
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Figure 1: A switch (dashed lines emphasize missing edges)

depends greatly on the context). The switch Markov chain is already used in applications,
hence rigorous upper bounds on its mixing time are much needed, even for special cases.

The switch Markov chain uses transitions which correspond to minimal perturbations.
There are many other instances where the Markov chain of the smallest perturbations
have polynomial mixing time, see [21]. However, it is unknown whether the mixing time of
the switch Markov chain is uniformly bounded by a polynomial for every (unconstrained)
degree sequence. Hence from a theoretical point of view, even an upper bound of O(n10)
on the mixing time of the switch Markov chain would be considered a great success, even
though in practice it is only slightly better than no upper bound at all.

The present paper is written from a theoretical point of view and should be considered
as a step towards answering the following question.

Question 1.2 (Kannan, Tetali, and Vempala [17]). Is the switch Markov chain rapidly
mixing on the realizations of all graphic degree sequences?

Jerrum and Sinclair introduced the notion of P -stability in their seminal paper [16],
and they proved that the Jerrum-Sinclair chain is rapidly mixing on such degree sequences.
Jerrum, Sinclair, and McKay [15] recognized there exists a non-P -stable degree sequence
which has a unique realization (trivially rapidly mixing): take

(2n− 1, 2n− 2, . . . , n+ 1, n, n, n− 1, . . . , 2, 1) ∈ N2n. (1)

In its unique realization, the first n vertices form a clique, while the remaining vertices
form an independent set.

Definition 1.3 (P -stability). Let D be an infinite set of unconstrained/bipartite/directed
degree sequences. We say that D is P -stable, if there exists a polynomial p over the real
numbers such that for any n ∈ N and any degree sequence d ∈ D on n vertices we have∣∣∣∣∣∣G(d) ∪

 ⋃
x,y∈[n], x6=y

G(d− 1x − 1y)

∣∣∣∣∣∣ 6 p(n) · |G(d)|,

where 1x is the xth unit vector.

For bipartite graphs, we get an equivalent definition if we replace the inequality with
|G(d) ∪ (

⋃
x,y∈[n], x6=y G(d + 1x + 1y))| 6 p′(n) · |G(d)| (where p′ only depends on D) or
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with |G(d)∪ (
⋃

x,y∈[n], x6=y G(d+ 1x− 1y))| 6 p′′(n) · |G(d)| (again, p′′ only depends on D):
the sets whose sizes are estimated in the inequalites can be mapped to one another by
adding/removing one or two edges; since two edges can only be chosen in n4 ways, we only
overcounted by at most a polynomial factor, which means that the cardinalities on the left
hand sides are at most a polynomial factor apart.

There is a long line of results where the rapid mixing of the switch Markov chain is
proven for certain degree sequences, see [2, 19, 13, 6, 7, 12]. Some of these results were
unified, first by Amanatidis and Kleer [1], who established rapid mixing for so-called
strongly stable classes of degree sequences of unconstrained and bipartite graphs (definition
given in Section 7).

The most general result at the time of writing is proved by Erdős, Greenhill, Mezei,
Miklós, Soltész, and Soukup:

Theorem 1.4 ([4]). The switch Markov chain is rapidly mixing on sets of unconstrained,
bipartite, and directed degree sequences that are P -stable (see Definition 8.3).

For the sake of being less redundant, the phrase “D is rapidly mixing” shall carry the
same meaning as “switch Markov chain is rapidly mixing on D”.

Our goal in this paper is to start extending the set of rapidly mixing bipartite degree
sequences beyond P -stability. The degree sequence (1) can naturally be turned into a
bipartite one by assigning the role of the two color classes to the clique and the independent
set, and then removing the edges of the clique.

Definition 1.5. Let us define a bipartite degree sequence:

h0(n) :=

(
1 2 3 · · · n− 2 n− 1 n
n n− 1 n− 2 · · · 3 2 1

)
H0 :=

{
h0(n)

∣∣ n ∈ N
}

Let An = {a1, . . . , an} and Bn = {b1, . . . , bn}, often denoted simply A and B. We label
the vertices of h0(n) such that A is the first and B is the second color class, with
degh0(n)(ai) = n+ 1− i and degh0(n)(bi) = i for i ∈ [1, n]. The unique realization H0(n),
also known as the half-graph, is displayed on Figure 2.

a1 a2 ai an−1 an

bnbn−1bib2b1

Figure 2: The unique realization H0(n) of h0(n) is isomorphic to the half-graph. Dashed
line segments represent non-edges.

In this paper, we conduct a detailed study of h0(n) and its neighborhood. Before
presenting our main results, let us get familiar with two interesting properties of h0(n).
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1.1 Simple examples for rapidly mixing non-stable bipartite classes

Let 1x be the vector which takes 1 on x and zero everywhere else. In Corollary 6.2 we
solve a linear recursion, which shows that

|G (h0(n)− 1a1 − 1bn)| = Θ

((
1 +
√

5

2

)n)
, (2)

therefore H0 is not P -stable.
Although h0(n) seems very pathological as an example for a non-stable degree sequence,

it is a source of more interesting examples. It is well-known that the random walk on the
vertices of a hypercube {0, 1}n is rapidly mixing. As pointed out to us by an anonymous
reviewer, this process can be modelled with the switch Markov chain. Take H0(n) and
replace aibi by a pair of independent edges simultaneously for all i: the degree sequence of
the obtained graph is

g(n) :=

(
1 1 3 3 · · · 2n− 1 2n− 1

2n− 1 2n− 1 2n− 3 2n− 3 · · · 1 1

)
.

To each vertex of the n-dimensional hypercube, we can assign a realization of g(n) as
follows: replace aibi with two parallel or two crossing edges depending on whether the ith

coordinate of the vertex of the hypercube is 0 or 1. The transition of the hypercube in
the ith coordinate corresponds to the switch on the two edges replacing aibi. Because the
random-walk on a hypercube is rapidly mixing, the switch Markov chain is rapidly mixing
on {g(n) | n ∈ N}. Moreover, by solving yet another a linear recursion, one can verify
that {g(n) | n ∈ N} is not P -stable.

In Section 2.2, we will draw the curtain on the explanation behind the behavior of
h0(n) and g(n). In the meantime, we present the main results of the paper.

1.2 Results

If d is the degree sequence of the bipartite graph G[A,B], then d = (dA;dB) is split across
the bipartition as well, and it is called a splitted bipartite degree sequence [8]. The disjoint
vertex classes A and B are not interchangeable, their order is fixed in the splitted bipartite
graph G[A,B]. We say that G[A,B] is the empty bipartite graph if both A = B = ∅.

Definition 1.6. For a set D of bipartite degree sequences and any k ∈ N, let

B2k(D) =
⋃
d∈D

{
e : Dom(d)→ N

∣∣∣ ‖d− e‖1 6 2k, ‖eA‖1 = ‖eB‖1
}

S2k(D) =
⋃
d∈D

{
e : Dom(d)→ N

∣∣∣ ‖d− e‖1 = 2k, ‖eA‖1 = ‖eB‖1
}

be the (closed) ball and sphere of radius 2k around D. The requirement that ‖eA‖1 = ‖eB‖1,
i.e., that the sum of the degrees on the two sides be equal is necessary for graphicality.
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We will show in Section 5 that neighborhoods of H0 = {h0(n) | n ∈ N} are rapidly
mixing:

Theorem 1.7. For any fixed k, the switch Markov chain is rapidly mixing on the bipartite
degree sequences in B2k(H0).

Next, we show that even though balls of constant size around H0 are rapidly mixing,
S2k(H0) contains a degree sequence which is not P -stable.

Definition 1.8. For all k, n ∈ N where k < n let

hk(n) := h0(n)− k · 1a1 − k · 1bn

Hk :=
{
hk(n) | k 6 n ∈ N+

}
be a bipartite degree sequence and a class of bipartite degree sequences, respectively.

Theorem 1.9. The class of degree sequences Hk is not P -stable for any k ∈ N.

1.3 Outline

The rest of the paper is organized as follows.

• As promised at the end of Section 1.1, we introduce the Tyshkevich-decomposition
of bipartite graphs in Section 2.

• In Section 3 we introduce the switch Markov chains, some related definitions, and
Sinclair’s result on mixing time.

• Section 4 describes the structure of realizations of degree sequences from B2k(h0),
which is then used by Sections 5 and 6 to prove Theorems 1.7 and 1.9, respectively.

• In Section 7 we provide further motivation for studying h0(n) and alternating cycles
covers. We show that every graph which is not stable in a certain sense contains a
copy of H0(`). The goal of this section is to inspire further research of the switch
Markov chain (on bipartite graphs).

• Section 8 describes how h0(n) relates to previous research. Possible generalizations
of Theorem 1.7 are conjectured.

2 Properties of Tyshkevich-decompositions

2.1 Tyshkevich-decomposition of bipartite graphs

Let G be a unconstrained graph. It is a split graph if there is a partition V (G) = A ]B
(A 6= ∅ or B 6= ∅) such that A is a clique and B is an independent set in G. Split
graphs were first studied by Földes and Hammer [10], who determined that being split
is a property of the degree sequence d of G. Note, that the partition is not necessarily
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unique, but the size of A is determined up to a +1 additive constant, see [14]. A split
graph endowed with an ordered bipartition is called a splitted graph, denoted by (G,A,B).
In addition to [10], Tyshkevich1 and Chernyak [23] also determined that the property of
being a split graph is a property of the degree sequence, thus every realization of a split
degree sequence is a split graph.

Tyshkevich and co-authors have extensively studied a composition operator denoted by
“◦” on (split) graphs; these results are nicely collected in [22]. The composition (G,A,B)◦H
takes the disjoint union of a split graph and an unconstrained graph, and joins every
vertex in A to every vertex of H. It is easy to see that the composition of two split graphs
is also a split graph. A fundamental result on this operator is that any unconstrained
graph can be uniquely decomposed into the non-commutative composition of split graphs
and possibly an indecomposable unconstrained graph as the last factor.

Let us slightly change the conventional notation G[A,B] to also signal that the color
classes A and B are ordered (2-colored); to emphasize this, we may refer to such graphs
as splitted bipartite graphs. Observe, that a function Ψ removing the edges of the clique
on A from (G,A,B) produces a splitted bipartite graph G[A,B]. Erdős, Miklós, and
Toroczkai [9] adapted the results about split graphs and the composition operator ◦ to
splitted bipartite graphs via the bijection given by Ψ.

Definition 2.1. Given two splitted bipartite graphs G[A,B] and H[C,D] with disjoint
vertex sets, we define their (Tyshkevich-) composition G[A,B] ◦H[C,D] as the bipartite
graph

G[A,B] ◦H[C,D] := G[A,B] ∪H[C,D] + {ad | a ∈ A, d ∈ D}.

The ◦ operator is clearly associative, but not commutative. We say that a bipartite
graph is indecomposable if it cannot be written as a composition of two non-empty bipartite
graphs.

Lemma 2.2 ([9], adapted from Theorem 2(i) in [22]). Let G[A,B] be a bipartite graph
with degree sequence d = (dA, dB), where both dA and dB are in non-increasing order. Then
G[A,B] is decomposable if and only if there exists p, q ∈ N such that 0 < p+ q < |A|+ |B|,
0 6 p 6 |A|, 0 6 q 6 |B|, and

p∑
i=1

dAi = p(|B| − q) +

|B|∑
|B|−q+1

dBi . (3)

Theorem 2.3 ([9], adapted from Corollaries 6 and 9 in [22]).

(i) Any splitted bipartite degree sequence d can be uniquely decomposed in the form

d = α1 ◦ · · · ◦ αk,

where αi is an indecomposable splitted bipartite degree sequence for i = 1, . . . , k.

1During the writing of this paper, we were greatly saddened to learn that Professor Tyshkevich passed
away in November, 2019.
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(ii) Any realization G of d can be represented in the form

G = G[A1, B1] ◦ · · · ◦G[Ak, Bk],

where G[Ai, Bi] is a realization of αi.

(iii) Any valid bipartite switch of G is a valid bipartite switch of G[Ai, Bi] for some i.

It follows from the previous theorem that indecomposability is determined by the
degree sequence. Lemma 2.2 gives an explicit characterization of such splitted bipartite
degree sequences.

Definition 2.4. Let D◦ be the finite closure of D under the composition operator ◦.

The following theorem is a due to Erdős, Miklós, and Toroczkai.

Theorem 2.5 (Theorem 3.6 in [9]). If D is rapidly mixing, then so is D◦.

Theorem 2.5 is a simple consequence of [8, Theorem 5.1]. By Theorem 2.5, for a class
of degree sequences D to be rapidly mixing it is sufficient that indecomp(D) is rapidly
mixing, where

indecomp(D) := {α | α is an indecomposable component of some d ∈ D}. (4)

Because the number of realizations is independent of the internal order of the bipartition,
we revert to using “bipartite degree sequence” instead of the cumbersome “splitted bipartite
degree sequence”. From now on, bipartite graphs and their degree sequences are assumed
to be splitted.

2.2 Non-stability of Tyshkevich-compositions

As promised, we now revisit the two examples in Section 1.1. The complete graph on two
vertices K2 is naturally a split graph. Observe, that

h0(n) =

n︷ ︸︸ ︷
(1; 1) ◦ . . . ◦ (1; 1) .

Recall from Definition 1.5, that the unique realization of h0(n) is

H0(n) =

n︷ ︸︸ ︷
K2 ◦ . . . ◦K2 .

Note, that (1; 1) = (0;∅) ◦ (∅; 0), so the indecomposable decomposition of h0(n) has
2n components. Theorem 2.3 implies that H0(n) is the only realization of h0(n). This
innocent looking example leads to the following result:

Lemma 2.6. For any class D of bipartite degree sequences, D◦ is not P -stable (except if
αA = ∅ for all α ∈ D or βB = ∅ for all β ∈ D).
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Proof. Take α, β ∈ D such that αA 6= ∅ and βB 6= ∅. Let

d(r) =

r︷ ︸︸ ︷
(α ◦ β) ◦ . . . ◦ (α ◦ β) .

From Theorem 2.3 it follows that

|G(d(r))| = |G(α)|r · |G(β)|r.

Let G = (G1◦G2)◦. . .◦(G2r−1◦G2r) be an arbitrary realization of d(r) where G2i−1 ∈ G(α)
and G2i ∈ G(β). Recall that h0(r)− 1a1 − 1br has exponentially many realizations, see
Equation (2).

Let ai be the first vertex of the first class of G2i−1 and let bi be the first vertex of the
second class of G2i (for i ∈ [1, r]). By the definition of the Tyshkevich-composition, these
choices are the same for any two realizations of d(r).

Observe, that G[{a1, . . . , ar}, {b1, . . . , br}] is an induced copy of H0(r). By replacing
this subgraph with a realization of h0(r)−1a1−1br , an exponential number of realizations
of d(r)− 1a1 − 1br are obtained; however, because the substitution does not change the
components G2i−1 and G2i for any i, G is recoverable from such realizations. In other
words, every realization of some d′ ∈ S2(d(r)) is obtained from at most one realization of
d(r), so D cannot be P -stable.

The degree sequence g(n) was obtained by replacing aibi with two independent edges
(denoted as 2K2). Therefore Lemma 2.6 applies to {g(n) | n ∈ N}:

g(n) =

n︷ ︸︸ ︷
(1, 1; 1, 1) ◦ . . . ◦ (1, 1; 1, 1)

Naturally,

n︷ ︸︸ ︷
2K2 ◦ . . . ◦ 2K2 is a realization of g(n) and all 2n realizations of g(n) are

isomorphic to it (Theorem 2.3).

Theorem 1.9 is not, however, a simple consequence of Lemma 2.6:

Lemma 2.7. The bipartite degree sequence hk(n) is indecomposable for 0 < k < n.

Proof. Via Lemma 2.2. Suppose hk(n) is decomposable. Substituting into (3), we get(
n + 1

2

)
− k −

(
n− p + 1

2

)
+ max{k − p, 0} = p(n− q) +

(
q + 1

2

)
−max{k − n + q, 0},

if and only if

max{k − p, 0}+ max{k − n+ q, 0} − k =

(
q − p+ 1

2

)
.

A short case analysis shows that the right hand side is larger than the left hand side.
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3 The switch Markov chain

For the precise definition of Markov chains and an introduction to their theory, the reader
is referred to Durrett [3]. To define the unconstrained and bipartite switch Markov chains,
it is sufficient to define their transition matrices.

Definition 3.1 (unconstrained/bipartite switch Markov chain). Let d be an unconstrained
or bipartite degree sequence on n vertices. The state space of the switch Markov chain
M(d) is G(d). The transition probability between two different states of the chain is
nonzero if and only if the corresponding realizations are connected by a switch, and in

this case this probability is 1
6

(
n
4

)−1
. The probability that the chain stays at a given state

is one minus the probability of leaving the given state.
An algorithmic description of the chain is as follows: choose 4 vertices uniformly and

randomly, there are
(
n
4

)
possibilities. There are 3 ways to embed a C4 into a K4, choose

one embedding randomly. With probability 1
2
, try to switch on the chosen C4.

It is well-known that any two realizations of an unconstrained or bipartite degree
sequence can be transformed into one-another through a series of switches. The space
of realizations of a directed degree sequence is connected if triple switches are allowed
(besides the usual directed switches).

The switch Markov chains defined are irreducible (connected), symmetric, reversible,
and lazy. Their unique stationary distribution is the uniform distribution π ≡ |G(d)|−1.

Definition 3.2. The mixing time of a Markov chain M = (Ω, P ) on state space Ω and
transition matrix P with stationary distribution π is

τM(ε) = min
{
t0 : ∀x ∀t > t0 ‖P t(x, ·)− π‖1 6 ε

}
,

where P t(x, y) is the probability that when M is started from x, then the chain is in y
after t steps.

Definition 3.3. The switch Markov chain is said to be rapidly mixing on an infinite set
of degree sequences D if there exists a fixed polynomial poly(n, log ε−1) which bounds the
mixing time of the switch Markov chain on G(d) for any d ∈ D (where n is the length of
d).

Sinclair’s seminal paper describes a combinatorial method to bound the mixing time.

Definition 3.4 (Markov graph). Let G(M(d)) be the graph whose vertices are realizations
of d and two vertices are connected by an edge if the switch Markov chain on G(d) has a
positive transition probability between the two realizations.

Let Γ be a set of paths in M(d). We say that Γ is a canonical path system if for any
two realizations G,H ∈ G(d) there is a unique γG,H ∈ Γ which joins G to H in the Markov
graph. The load of Γ is defined as

ρ(Γ) = max
P (e)6=0

|{γ ∈ Γ : e ∈ E(γ)}|
|G(d)| · P (e)

, (5)

the electronic journal of combinatorics 28(3) (2021), #P3.7 10



where P (e) is the transition probability assigned to the edge e of the Markov graph (this is
well-defined because the studied Markov chains are symmetric). The next lemma follows
from Proposition 1 and Corollary 4 of Sinclair [20].

Lemma 3.5. If Γ is a canonical path system for M(d) then

τM(d)(ε) 6 ρ(Γ) · `(Γ) ·
(
log(|G(d)|) + log(ε−1)

)
,

where `(Γ) is the length of the longest path in Γ.

Obviously, log(|G(d)|) 6 n2, henceforth we focus on bounding ρ(Γ) and `(Γ) by a
polynomial of n.

4 Flow representation

In this section we work with directed graphs, so let us fix the related notation first. Let
F be a directed graph. A directed edge uv ∈ ~E(F ) points from u to v. The in- and
out-degrees of a vertex v ∈ V (F ) are denoted by %F (v) and δF (v). For a subset of vertices

S ⊆ V (F ), let %F (S) be the number of edges uv ∈ ~E(F ) such that u ∈ V \ S and v ∈ S.

Similarly, δF (S) is the number of edges uv ∈ ~E(F ) such that u ∈ S and v ∈ V \ S.

Theorem 4.1 (directed edge version of Menger’s theorem [18]). Let F be a directed graph
(parallel and oppositely directed edges are allowed) with two distinct special vertices s and
t. There exists k edge-disjoint directed paths from s to t if and only if for every S ⊂ V (F )
such that s ∈ S and t /∈ S we have

δF (S) > k. (6)

Definition 4.2 (Integer 0-1 flows in directed graphs). Suppose F is a directed graph. An
integer 0-1 flow is a subgraph H ⊆ F . If k =

∑
v∈V (F )(δH(v)− %H(v))+, then H is called

a k-flow. A vertex s for which (δH(s) − %H(s))+ > 0 is a source, a vertex t for which
(δH(t)− %H(t))− > 0 is a sink. A vertex v conserves the flow if δH(t) = %H(t).

Lemma 4.3. The union of k edge-disjoint paths of F is a k-flow. If the underlying graph
F is acyclic, then a k-flow can always be decomposed into k edge-disjoint paths.

Proof. The first statement is trivial. To decompose a k-flow H, we will use recursion. If
k > 1, then choose an arbitrary vertex u for which δH(u) > %H(u). Let S be the set of
vertices which can be reached from u. Then we have δF (S) = 0, thus∑

v∈S

δH(v) 6
∑
v∈S

%H(v).

Since the out-degree of u is larger than its in-degree, there exists a vertex v for which
δH(v) < %H(v). Let P be the shortest path from u to v, and remove the edges of P from
H, which decreases the size of the flow by 1. If H is a 0-flow in F , but E(H) 6= ∅, then H
is Eulerian, so it contains a directed cycle, which is a contradiction. Therefore the outlined
procedure finds a set of edge-disjoint paths which completely cover the flow.
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Theorem 4.4. Given a directed acyclic graph F , there exists a subgraph H ⊆ F with
prescribed in- and out-degree sequences %H and δH if and only if for every S ⊆ V (F )

δF (S) >
∑
v∈S

(δH(v)− %H(v)). (7)

Proof. Follows from Menger’s theorem (Theorem 4.1) and Lemma 4.3. Let

f(v) := δH(v)− %H(v) (8)

for every v ∈ V (F ). Add two auxiliary vertices s and t to F , and for every v ∈ V (F ) add
f(v)+ copies of sv and f(v)− copies of vt to the edge set; let F ′ denote the obtained graph.
The desired H exists if and only if there are

∑
v∈V (F ) f(v)+ edge-disjoint paths from s to

t in F ′. For any S ⊆ V (F ) ∪ {s} such that s ∈ S, we must have:

δF ′(S) >
∑

v∈V (F )

f(v)+

δF (S − s) +
∑

v∈V (F )\S

f(v)+ +
∑

v∈S−s

f(v)− >
∑

v∈S−s

f(v)+ +
∑

v∈V (F )\S

f(v)+

δF (S − s) >
∑

v∈S−s

f(v)

The last inequality implies (7).

It will be more convenient to work with k-flows then an arbitrary decomposition of the
flow into k edge-disjoint paths. Let us introduce a flow representation of realizations of
bipartite degree sequences defined on An and Bn as their first and second color classes,
respectively. Let us define the directed acyclic graph Fn, which is closely related to H0(n).

Definition 4.5. Let F := Fn = (An, Bn, ~E) be a directed bipartite graph such that

• aibj ∈ ~E(F ) if and only if i 6 j,

• bjai ∈ ~E(F ) if and only if j < i.

The subgraph formed by the edges of Fn leaving An is an orientation of H0(n).

In general, for any subgraph H ⊆ F = Fn and any subset of vertices S ⊆ V (F ), a simple
double counting argument shows that∑

v∈S

(δH(v)− %H(v)) = δH(S)− %H(S). (9)

Definition 4.6. A flow realization of a splitted bipartite degree sequence d = (dAn ;dBn)
is a flow H in Fn which satisfies

δH(ai)− %H(ai) = degH0(n)(ai)− degd(ai),
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δH(bi)− %H(bi) = degd(bi)− degH0(n)(bi),

for every ai ∈ An and every bi ∈ Bn, respectively. Recall from Definition 1.5, that
Ai = {a1, . . . , ai} and Bi = {b1, . . . , bi}. Let Ai := An \ Ai and Bi := Bn \ Bi. Also, let
Ui := Ai ∪Bi and U i := Ai ∪Bi.

Observe, that %F (Ui) = 0 and δF (U i) = 0. By (9), for any subgraph H ⊆ F and
0 6 i 6 n, we have ∑

v∈Ui

(δH(v)− %H(v)) = δH(Ui),∑
v∈U i

(δH(v)− %H(v)) = −%H(U i).
(10)

Definition 4.7. For a splitted bipartite graph G[An, Bn], let us define its flow represen-

tation ~∇(G): take the symmetric difference ∇(G) = G[An, Bn]4H0(n), then orient the
edges of ∇(G) such that each edge matches its orientation in Fn.

Lemma 4.8. The graph ~∇(G) is a flow realization of the degree sequence d of the splitted
bipartite graph G[An, Bn]. Conversely, any flow realization of a splitted bipartite degree
sequence d is the flow representation of some realization G[An, Bn] of d.

Proof. Observe the structure of H0(n) on Figure 2. We have

dH0(n)(ai)− degG(ai) = deg∇(G)(ai, {bi, . . . , bn})− deg∇(G)(ai, {b1, . . . , bi−1})
= δ~∇(G)(ai)− %~∇(G)(ai),

degG(bi)− dH0(n)(bi) = deg∇(G)(bi, {ai+1, . . . , an})− deg∇(G)(bi, {a1, . . . , ai})
= δ~∇(G)(bi)− %~∇(G)(bi).

In the other direction, remove the orientation from the flow realization and take its
symmetric difference with H0(n) to obtain an appropriate G[An, Bn].

Corollary 4.9. For any splitted bipartite degree sequence d ∈ S2k(H0) on n+ n vertices,

the function G 7→ ~∇(G) is a bijection between G(d) and flow realizations of d in Fn.

For example: every flow representation of a realization of

h0(8)− 1a1 + 2 · 1b2 + 1a7 − 2 · 1b8

is a 3-flow with sources at a1 and b2, and sinks as at a7 and b8; see Figure 3.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

Figure 3: The flow representation of a realization of a degree sequence from B6(h0(8)).
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5 Proof of Theorem 1.7: rapid mixing on B2k(H0)

5.1 Overview of the proof

Without loss of generality d ∈ S2k(H0). Let X, Y ∈ G(d) be two distinct realizations. We
will define a switch sequence

γX,Y : X = Z0, Z1, . . . , Zt = Y.

We will also define a set of corresponding encodings

L0(X, Y ), L1(X, Y ), . . . , Lt(X, Y ).

The canonical path system Γ := {γX,Y | X, Y ∈ G(d)} on G(M(d)) will satisfy the
following two properties:

• Reconstructible: there is an algorithm that for each i, takes Zi and Li(X, Y ) as
an input and outputs the realizations X and Y .

• Encodable in G(d): the total number of encodings on each vertex of G(M(d)) is
at most a polyk(n) factor larger than |G(d)|.

This proof technique was introduced by Jerrum and Sinclair [15] in the context of sampling
matchings. Later, Kannan, Tetali, and Vempala [17] applied their technique to the switch
chain.

The “Reconstructible” property ensures that the number of canonical paths traversing
a vertex (and thus an edge) of the Markov graph M(d) is at most the size of the set of
all possible encodings. Subsequently, by substituting into Equation (5), the “Encodable
in G(d)” property implies that ρ(Γ) = O(polyk(n)). According to Lemma 3.5, the last
bound means that the bipartite switch Markov chain is rapidly mixing.

Now we give a description of how the X = Z0, Z1, . . . , Zt+1 = Y canonical path is
constructed. The main idea is to morph X into Y “from left to right”: a region of width
proportional to k called the buffer is moved peristaltically through An ∪Bn, consuming
X on its right and producing Y on its left; see Figure 4. In other words, the buffer is a
sliding window which alternately extends and contracts.

The encoding Li(X, Y ) will contain a realization whose structure is similar to Zi, but
the roles of X and Y are reversed; see Figure 4. Furthermore, Li(X, Y ) will contain the
position of the buffer and some additional information about the vertices in the buffer.
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The structure of a typical intermediate realization Zi

Buffer End of XBeginning of Y

b1 b2 · · · bi bnbn−1· · ·bi+z+1

a1 a2 · · · ai anan−1· · ·ai+z+1

Constant width

The realization in the corresponding encoding Li(X, Y )

Buffer End of YBeginning of X

b1 b2 · · · bi bnbn−1· · ·bi+z+1

a1 a2 · · · ai anan−1· · ·ai+z+1

Constant width

Figure 4: A (flow) realization along γX,Y and the main part of the associated encoding.
The width of the buffer is z. Edges (that are oriented left-to-right) are not shown to avoid
clutter.

The following lemma shows the existence of a suitable buffer which can be used to
interface two different realizations as displayed on Figure 4.

Lemma 5.1. Let i, k, z ∈ N. Suppose that z > 1 if k = 1, and z > 2k +
√

2k + 1 if k > 2.
If 0 6 i 6 n− z, then there is a realization TX,Y [i+ 1, i+ z] ∈ G(d) with buffer width z
and the following properties:

• Ui induces identical subgraphs in TX,Y [i+ 1, i+ z] and Y , and

• U i+z induces identical subgraphs in TX,Y [i+ 1, i+ z] and X.

Proof. We will work with flow representation in this proof. Since X and Y are the
realizations of the same degree sequence, the source-sink distribution in their corresponding
flow representation is identical. It is sufficient to design a flow W which joins the flow
~∇(X) leaving Ui and redirects it to the vertices in U i+z with the same distribution as
~∇(Y ) flows into them from Ui+z. The reason this is not trivial is because there are possibly
sources and/or sinks in Ui+z \ Ui which W needs to account for.

The case k = 1 can be manually checked at this point, since a 1-flow is a directed path.
In Figure 5 we show 4 different cases when the flow prescribed by d (Definition 4.6) has

a source in Ui and a sink in U i+1. If this is not the case, then ~∇(Y ) or ~∇(X) is a good
choice for TX,Y [i+ 1, i+ z].
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Ui U i+1

(a) The path ~∇(X)[Ui] ends with bi and
~∇(Y )[U i+1] starts with bi+2.

Ui U i+1

(b) The path ~∇(X)[Ui] ends with ai and
~∇(Y )[U i+1] starts with bi+2.

Ui U i+1

(c) The path ~∇(X)[Ui] ends with bi and
~∇(Y )[U i+1] starts with ai+2.

Ui U i+1

(d) The path ~∇(X)[Ui] ends with ai and
~∇(Y )[U i+1] starts with ai+2.

Figure 5: Constructing the flow representation of TX,Y [i + 1, i + z] for k = z = 1. We
differentiate between four cases based on which vertex class contains the last and first
vertices of the paths ~∇(Y )[Ui] and ~∇(X)[U i+1], respectively. Blue arrows →: ~∇(Y )[Ui];

red arrows →: ~∇(X)[U i+1]; green arrows →: edges crossing the buffer or incident on a
vertex of the buffer.

To achieve the outlined goal for any k, we define an auxiliary network F ′ and prescribe
the flow corresponding to the buffer on it. Let eD(W,Z) be the number of edges of D that
are directed from W to Z.

AY := {aj ∈ Ai | e~∇(Y )(aj, Bi) > 0}
BY := {bj ∈ Bi | e~∇(Y )(bj, Ai) > 0}
AX := {aj ∈ Ai+z | e~∇(X)(Bi+z, aj) > 0}
BX := {bj ∈ Bi+z | e~∇(X)(Ai+z, bj) > 0}
A′ := AY ∪ (Ai+z \ Ai) ∪ AX

B′ := BY ∪ (Bi+z \Bi) ∪BX

(11)

The underlying network F ′ is a subgraph of F :

F ′ := F [A′, B′]− E(F [AY ∪ AX , BY ∪BX ]), (12)

i.e., the flow cannot use edges between AX , BX , AY , BY . Note, that to prove the lemma
for k = z = 1, one has to use edges of F [AY , BX ] and F [AX , BY ] in Figure 5(b). For k = 1
and z > 2, the edges of F ′ suffice to create a cross-over between the two flows. For the
proof of the lemma for k > 2, we avoid using the edges of F [AY , BX ] and F [AX , BY ] to
keep the analysis simple.
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The flow in the buffer will be a subgraph W ⊂ F ′. Let us define f : A′ ∪B′ → Z:

f(aj) :=


e~∇(Y )(aj, Bi), if aj ∈ AY

degH0(n)(aj)− degd(aj), if aj ∈ Ai+z \ Ai

−e~∇(X)(Bi+z, aj), if aj ∈ AX

(13)

f(bj) :=


e~∇(Y )(bj, Ai), if bj ∈ BY

degd(bj)− degH0(n)(bj), if bj ∈ Bi+z \Bi

−e~∇(X)(Ai+z, bj), if bj ∈ BX

(14)

Let us prescribe the following equations on the difference between the in- and out-degrees
of W :

δW (aj)− %W (aj) = f(aj) ∀aj ∈ A′,
δW (bj)− %W (aj) = f(bj) ∀bj ∈ B′.

(15)

If such a W exists, then ~∇(Y )[Ai, Bi] +W + ~∇(X)[Ai+z, Bi+z] is a flow representation of
d, which, according to Corollary 4.9, corresponds to a graph whose degree sequence is d.

By Theorem 4.4, it is sufficient to show that for every S ⊆ A′ ∪B′ we have

δF ′(S) >
∑
v∈S

f(v) (16)

to conclude that a W satisfying (15) exists. From now on, we focus on proving (16).

Recall (10). The right-hand side of (16) is at most k:∑
v∈S

f(v) 6
∑

v∈A′∪B′

f(v)+ 6
∑

v∈Ui+z\Ui

f(v)+ +
∑

aj∈AY

e~∇(Y )(aj, Bi) +
∑

bj∈BY

e~∇(Y )(bj, Ai) =

=
∑

v∈Ui+z\Ui

f(v)+ + δ~∇(Y )(Ui) =
∑

v∈Ui+z\Ui

f(v)+ +
∑
v∈Ui

f(v) 6 k.

It is sufficient to prove (16) for subsets S for which δF ′(S)−
∑

v∈S f(v) is minimal. We
claim that for every S that satisfies the minimality condition, the following four statements
hold:

• If |S ∩ (Ai+z \ Ai)| > k, then BX ⊂ S.

• If |S ∩ (Bi+z \Bi)| > k, then AX ⊂ S.

• If |S ∩ (Ai+z \ Ai)| < z − k, then BY ∩ S = ∅.

• If |S ∩ (Bi+z \Bi)| < z − k, then AY ∩ S = ∅.

We only prove the first statement because the rest can be shown by symmetry. Suppose
|S ∩ (Ai+z \ Ai)| > k and bj ∈ BX , but bj /∈ S. Moving bj into S changes the difference
between the two sides of (16) by

−|S ∩ (Ai+z \ Ai)| − f(bj) < −k + e~∇(X)(Ai+z, bj) 6 −k + δ~∇(X)(Ui+z) 6 0,
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because ~∇(X) is an acyclic k-flow. Therefore we must have BX ⊂ S.

Finally, we have four cases. In each case we show that (16) holds.

• Case 1: |S ∩ (Ai+z \ Ai)| 6 k and |S ∩ (Bi+z \Bi)| > z − k. We have

δF ′(S) > eF ′ (S ∩ (Bi+z \Bi), (Ai+z \ Ai) \ S) >
z−2k−1∑
r=1

r >

(
z − 2k

2

)
> k, (17)

where the last inequality follows from z > 2k +
√

2k + 1. Thus S satisfies (16).

AY ∪BY AX ∪BXUi+z \ Ui

S

Figure 6: For the pictured selection of S, eF ′ (S ∩ (Bi+z \Bi), (Ai+z \ Ai) \ S) is minimal
if S falls into Case 1, k = 2, and z = 7. Only those edges are shown that leave S and enter
Ui+z \ Ui.

• Case 2: |S ∩ (Ai+z \ Ai)| > z − k and |S ∩ (Bi+z \ Bi)| 6 k: although this case is
not completely symmetric to Case 1, a similar proof shows that δF ′(S) > k (it is
sufficient that z > 2k +

√
2k).

• Case 3: |S ∩ (Ai+z \Ai)| > k and |S ∩ (Bi+z \Bi)| > k. By our previous statements,
we have AX ∪BX ⊆ S. Consequently, the edges of F leaving S are either in F ′ or in
F [AY , BY ]. Therefore, using Equation (10), we have

δF ′(S) > δ~∇(Y )∩F ′(S) = δ~∇(Y )(S ∪ U i+z)− δ~∇(Y )∩F [AY ,BY ](S) =

=
∑

v∈S∪U i+z

(
δ~∇(Y )(v)− %~∇(Y )(v)

)
− δ~∇(Y )∩F [AY ,BY ](S) =

=
∑

v∈S∩(Ui+z\Ui)

f(v)− %~∇(Y )(U i+z) +
(
δ~∇(Y )(S ∩ Ui)− δ~∇(Y )∩F [AY ,BY ](S)

)
=

=
∑

v∈S∩(Ui+z\Ui)

f(v)− %~∇(X)(U i+z) +
∑

v∈S∩Ui

e~∇(Y )(v, U i) =

=
∑

v∈S∩(Ui+z\Ui)

f(v)−
∑

v∈AX∪BX

e~∇(X)(Ui+z, v) +
∑

v∈S∩Ui

f(v) =

=
∑

v∈S∩(Ui+z\Ui)

f(v) +
∑

v∈AX∪BX

f(v) +
∑

v∈S∩Ui

f(v) =
∑
v∈S

f(v),

which is what we wanted to show.
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• Case 4: |S ∩ (Ai+z \ Ai)| < z − k and |S ∩ (Bi+z \ Bi)| < z − k: by our previous
statements, we have S ∩ (AX ∪BX) = ∅. Since δF ′(S) = %F ′(A′ ∪B′ \ S), the proof

is practically the same as that of Case 3, we can use ~∇(X) to demonstrate that (16)
is satisfied by S.

5.2 Constructing the canonical path γX,Y .

We will explicitly construct 2(n− 3k − 3) + 1 realizations along the switch sequence γX,Y .
Let X and Y be the two different realizations which we intend to connect. The switch
sequence includes TX,Y [i+ 1, i+ 3k + 1], TX,Y [i+ 1, i+ 3k + 2], TX,Y [i+ 2, i+ 3k + 2] for
each i = 1, . . . , n− 3k − 3 in increasing order. These realizations that we call milestones
exist because of Lemma 5.1 (z = 3k + 1, 3k + 2 is sufficiently large). A roadmap is shown
on Figure 7.

X

TX,Y [2, 3k + 2]

TX,Y [2, 3k + 3]

TX,Y [3, 3k + 3]

TX,Y [3, 3k + 4]

· · ·

TX,Y [n− 3k − 2, n− 1]

TX,Y [n− 3k − 1, n− 1]

Y

Figure 7: Roadmap of the switch sequence between X and Y . Each dashed arrow 99K
represents a switch sequence of length O(k2). The existence of a short switch sequence
between milestones of the sequence is guaranteed by Lemma 5.2.

Lemma 5.2. There is a switch sequence of length 1
2
(5k + 2)2 that connects TX,Y [i+ 1, i+

3k + 1] to TX,Y [i+ 1, i+ 3k + 2] and TX,Y [i+ 1, i+ 3k + 2] to TX,Y [i+ 2, i+ 3k + 2].

Proof. The subgraphs of ~∇(TX,Y [i+ 1, i+ 3k+ 1]) and ~∇(TX,Y [i+ 1, i+ 3k+ 2]) induced by
Ui∪U i+3k+2 are identical. By (10), the number of edges leaving Ui and the number of edges
entering U i+3k+2 are both at most k in a flow realization of d. The set of source vertices of
the at most k edges leaving Ui and the set of target vertices of the at most k edges entering
U i+3k+2 are subsequently determined by the degree sequence d (see Definition 4.6), and
are, therefore, identical too. The symmetric difference between TX,Y [i+ 1, i+ 3k + 1] and
TX,Y [i+ 1, i+ 3k + 2] is restricted to edges induced by Ui+3k+2 \ Ui and the at most k + k
source and target vertices of edges crossing this region. According to [5, Theorem 3.6],
there is a switch sequence of length at most

|E(TX,Y [i+ 1, i+ 3k + 1])4E(TX,Y [i+ 1, i+ 3k + 2])|
2

6
1

2
(5k + 2)2

between TX,Y [i+ 1, i+ 3k + 1] and TX,Y [i+ 1, i+ 3k + 2]. This argument also holds for
the switch distance between TX,Y [i+ 1, i+ 3k + 2] and TX,Y [i+ 2, i+ 3k + 2].
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Note that in Lemma 5.1, we may take TX,Y [1, 3k+2] := X and TX,Y [n−3k−1, n] := Y .
By applying Lemma 5.2, the arrows in Figure 7 can be substituted with switch sequences
of length 1

2
(5k + 2)2. Concatenating these short switch sequences and pruning the circuits

from the resulting trail (so that any realization is visited at most once by the canonical
path) produces the switch sequence γX,Y connecting X to Y in the Markov graph. The
length of γX,Y is at most

|γX,Y | 6
1

2
(5k + 2)2 · n. (18)

5.3 Assigning the encodings.

Each realization visited by γX,Y receives an encoding that will be an ordered 4-tuple
consisting of another realization, two graphs of order O(k), and an integer in {1, . . . , n}.

The neighborhood of a set of vertices U ⊆ V (G) in a directed graph G is denoted by

NG(U) :=
{
v ∈ V (G) : ∃u ∈ U such that uv ∈ ~E(G) or vu ∈ ~E(G)

}
.

For the two graphs of order O(k) in the encoding we need the following definition.

Definition 5.3 (left-compressed neighborhood of the buffer). Let H be a flow realization
of d, let z > 1 and 0 6 i 6 n− z. Let

R :=
{
j ∈ N : 1 6 j 6 i, eH(aj, U i) 6= 0 or eH(bj, U i) 6= 0

}
∪

∪{ j ∈ N : i+ 1 6 j 6 i+ z}∪
∪{ j ∈ N : i+ z + 1 6 j 6 i, eH(Ui+z, aj) 6= 0 or eH(Ui+z, bj) 6= 0} .

(19)

In words, the elements of R are subscripts of aj or bj that appear as a source or target
of and edge leaving Ui or entering U i+z. Let the elements of R in increasing order be
(jt)

r
t=1 for some j1 < · · · < jr. Let σ be a graph homomorphism which maps ajt 7→ at and

bjt 7→ bt for all 1 6 t 6 r (edges are mapped vertex-wise). The left compressed copy of the
closed neighborhood of the buffer [i+ 1, i+ z] in H is

cmpr[i+1,i+z](H) := σ

(
H

[⋃
j∈R

{aj, bj}

])
.

To any realization on the canonical path γX,Y we will assign an encoding

Li(X, Y ) :=
(
TY,X [i+1, i+3k+2]; cmpr[i+1,i+3k+2]

(
~∇(X)

)
; cmpr[i+1,i+3k+2]

(
~∇(Y )

)
; i
)

for some 0 6 i 6 n − 3k − 2. Formally, each Li(X, Y ) is an element of the Cartesian-
product of the set of realizations, a pair of left-compressed neighborhoods, and the set of
non-negative integers. We will refer to the four elements as the object in the first, second,
third, and fourth coordinates of the encoding.
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a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

H

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

cmpr[4,8](H)

Figure 8: The flow H shown in the upper half of the figure is shown left-compressed
in the bottom half of the picture. The dashed 99K edges of H are not included in its
left-compressed image.

An encoding is assigned to each realization along the switch sequence γX,Y as follows:

• The encoding L0(X, Y ) (where TY,X [1, 3k+ 2] := Y ) is used from the beginning X of
the switch sequence until it arrives at TX,Y [2, 3k + 2] (not including this realization).

• For 1 6 i 6 n− 3k − 3, the encoding Li(X, Y ) is used on the switch sequence from
TX,Y [i+ 1, i+ 3k + 1] to TX,Y [i+ 1, i+ 3k + 2], and also from TX,Y [i+ 1, i+ 3k + 2]
to TX,Y [i+ 2, i+ 3k + 2] (not included).

• The encoding Ln−3k−2(X, Y ) (where TY,X [n− 3k − 1, n] := X is chosen) is used on
the switch sequence from TX,Y [n− 3k − 1, n− 1] to Y .

Since the number of vertices of cmpr[i+1,i+3k+2](H) is at most 5k + 2, the total number
of possible encodings is at most

|{Li(X, Y ) : X, Y ∈ G(d), 0 6 i 6 n− 3k − 2}| 6 |G(d)| · 22·(5k+2)2 · n. (20)

5.4 Estimating the load ρ(Γ)

Lemma 5.4 (Reconstructability). Given d, there is an algorithm that takes Zi ∈ γX,Y

and Li(X, Y ) as an input and outputs the realizations X and Y (for any i).

Proof. The first coordinate of Li(X, Y ) is a realization, of the form TY,X [i+ 1, i+ 3k + 2]
for an unknown X, Y . The index i is known, because it is the last component of Li(X, Y ).

By symmetry, it is sufficient to show how to recover X. By construction, ~∇(X) and
TY,X [i+ 1, i+ 3k + 2] induce identical graphs on Ui. Similarly, the induced subgraphs of
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Zi and X on the vertices U i+3k+2 are identical. Hence the only unknown part of X is its
induced subgraph on

⋃
j∈R{aj, bj}, where

R = { j ∈ N : {aj, bj} ∩NH(Ui+3k+2 \ Ui) 6= ∅ or i+ 1 6 j 6 i+ 3k + 2}

as defined in (19). The subgraph in the second component of Li(X, Y ) is the left-

compressed copy of ~∇(X)[
⋃

j∈R{aj, bj}], so if we can “uncompress” it, we have the missing

piece. Since edges of ~∇(X) do not enter Ui from U i, their sources can be determined

from the discrepancy between the degrees of ~∇(X)[Ui] and the differences prescribed in
Definition 4.6:

R′A : = { j ∈ N : 1 6 j 6 i, δ~∇(X)[Ui]
(aj)− %~∇(X)[Ui]

(aj) < degH0(n)(aj)− degd(aj)}
R′B : = { j ∈ N : 1 6 j 6 i, δ~∇(X)[Ui]

(bj)− %~∇(X)[Ui]
(bj) < degd(bj)− degH0(n)(bj)}

Similarly, the targets of the edges of ~∇(X) entering U3k+2 are

R′′A : = { j ∈ N : 1 6 j 6 i, δ~∇(X)[Ui]
(aj)− %~∇(X)[Ui]

(aj) > degH0(n)(aj)− degd(aj)}
R′′B : = { j ∈ N : 1 6 j 6 i, δ~∇(X)[Ui]

(bj)− %~∇(X)[Ui]
(bj) > degd(bj)− degH0(n)(bj)}

Observe, that R = R′A ∪ R′B ∪ {j ∈ N : 1 6 j 6 i} ∪ R′′A ∪ R′′B. Since left-compression
preserves the order of the indices of aj ∈ A and bj ∈ B, we are able to invert σ (see

Definition 5.3), and thus fully recover ~∇(X).

Proof of Theorem 1.7. By Lemma 5.4, for any given Z ∈ G(d) the number of pairs of
realizations X, Y ∈ G(d) such that Z ∈ γX,Y is bounded by the right hand side of (20).
Substituting into (5),

ρ(Γ) 6 22·(5k+2)2 · n · max
P (e)6=0

1

P (e)
6 22·(5k+2)2 · n · 6

(
n

4

)
6 2(5k+2)2 · n5.

Let us apply Lemma 3.5. By (18), `(Γ) 6 1
2
(5k + 2)2 ·n, thus τ(ε) 6 O(n6 · (n2 + log ε−1)),

verifying that the switch Markov chain is rapidly mixing on S2k(H0) and B2k(H0).

6 Proof of Theorem 1.9: non-stability of Hk

In this section we show that it is relatively straightforward to get the asymptotic growth
rate of the number of realizations of hk(n) when k is a constant and n tends to infinity.
We first illustrate this for k = 1. Recall Corollary 4.9 and that h1(n) = h0(n)− 1a1 − 1bn .

Lemma 6.1. The number of all directed paths (integer 1-flows) from a1 to bn in Fn is[
1
1

]T [
2 1
1 1

]n−1 [
0
1

]
.
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Proof. Let S1(`) be the number of paths in Fn that start at a1 and end in B`. Similarly,
let S2(`) be the number of paths in Fn that start at a1 and end in one of the vertices in
A`. We have

S1(`+ 1) = 2S1(`) + S2(`),
S2(`+ 1) = S1(`) + S2(`).

(21)

Observe that a1 → bn paths in Fn are in bijection with paths starting at a1 and ending in
An: the corresponding paths are obtained by deleting the last edge incident to bn. Since
S1(1) = S2(1) = 1, from (21) we get that S2(n) is the quantity in the statement of the
Lemma and the proof is complete.

Corollary 6.2. As stated in (2), the number of realizations of h1(n) is Θ
((

3+
√
5

2

)n)
.

Proof. Neither [1, 1] nor [0, 1]T is perpendicular to the eigenvector that belongs to the

largest eigenvalue 3+
√
5

2
of the matrix [

2 1
1 1

]
.

The proof of Lemma 6.1 can be interpreted as follows. We count a1 → bn paths by
looking at their induced subgraphs on the vertices in U` (the number of these is precisely
S1(`) + S2(`)). The main observation is that the number of ways an a1 → U` path can be
extended to an a1 → U`+1 path only depends on whether the path’s endpoint lies in A` or
in B`.

Again, according to Corollary 4.9, realizations of hk(n) are in a 1-to-1 correspondence
with integer k-flows from a1 to bn. We shall mimic the argument of Lemma 6.1 with k-flows.
The recursion will consider the beginning of a k-flow on U` and its “termination-type”.

Definition 6.3 (set of types). Let Pk be the set of positive integer partitions of k (the
set of multisets of positive integers whose sum of elements is exactly k) and P0 := {∅}.
For all positive integers k, we define the set of types :

Tk := {(R,Q) | ∃ 0 6 m 6 k : R ∈ Pm, Q ∈ Pk−m}.

Definition 6.4 (type of a flow). Let X be k-flow in Fn[U`] from a single source a1, and
the sinks are arbitrarily distributed in U`. We say that the type of X is T = (R,Q) ∈ Tk if
there is an injective function f : R→ A` such that for every ai ∈ f(R) we have

%X(ai)− δX(ai) = f−1(ai),

and for all ai ∈ A` \ f(R) we have %X(ai) = δX(ai). Similarly, there is an injective function
g : Q→ B` such that for every bi ∈ g(Q)

%X(bi)− δX(bi) = g−1(bi),

and for all bi ∈ B` \ g(Q) we have %X(bi) = δX(bi).
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Informally, the type of X describes the multiplicities of the incidences of the endpoints
of the k-flow on U`.

In the proof of Lemma 6.1, the functions S1(`), S2(`) were actually the number of 1-
flows on U` of type (∅, {1}) and ({1},∅), respectively. The next definition is the analogue
of the matrix in the proof of Corollary 6.2 for large k.

Definition 6.5 (type matrix). For all k, let us fix an ordering of the types: Tk =
(T1, . . . , T|Tk|). Let ` and n be so large, that there exists a k-flow which has type Ti on U`.
We define pi,j to be the number possible ways a k-flow on U` from the single source a1
can be extended to a k-flow of type Tj on U`+1. We define the type-matrix Pk to be the
|Tk| × |Tk| matrix whose element in the i-th row and j-th column is pi,j.

It is not hard to see that pi,j is well-defined, in other words, pi,j does not depend on
either `, n, or the k-flow.

In the proof of Corollary 6.2, the type matrix

P1 =

[
2 1
1 1

]
corresponds to the ordering T1 =

(
(∅, {1}) , ({1},∅)

)
. Now we are ready to prove the

analogue of Lemma 6.1 for k-flows where k > 1.

Lemma 6.6. For every k > 1, the number of k-flows on Fn from the single source a1 to
the single sink bn is

vTPn−1
k w

where:

• v is the vector of length |Tk| which contains 1 at the coordinates which correspond to
the types ({k − 1}, {1}), ({k},∅) ∈ Tk, and zero everywhere else,

• Pk is the type-matrix,

• w is the vector of length |Tk| that contains 1 at the coordinate that corresponds to
the type

(

k︷ ︸︸ ︷
{1, 1, . . . , 1},∅) ∈ Tk

and zero everywhere else.

Proof. With the appropriate substitutions, the proof is identical to the proof of Lemma 6.1.
The type of a k-flow on U1 emanating from a1 is either ({1}, {k − 1}) or (∅, {k}). By
the definition of Pk, the vector vTPn−1 contains the number of graphs on the vertices Un

with a given type. Of these, the k-flows from a1 → bn correspond to graphs with type
(∅, {1, 1, . . . , 1}) (deleting bn and the incident edges results in a k-flow of this type). Hence
the statement of the lemma follows.

The following simple property of the type matrix will be used.
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Definition 6.7. A matrix P is primitive, if ∃m for which every entry of Pm is positive.

Lemma 6.8. The type matrix Pk is primitive for any k.

Proof. For every type t ∈ Tk it is easy to design a k-flow X such that the type of X[U`]
(for some `) is t and the type of X[U`+k] is ({1, 1, . . . , 1},∅). Hence in Pk

k the row and
column that correspond to the type ({1, 1, . . . , 1},∅) are strictly positive. Since Pk is
non-negative, it also follows that P2k

k is positive.

Now we are ready to prove the key lemma to refute the P -stability of the class of
degree sequences Hk.

Lemma 6.9. For every k, the largest eigenvalue of the type-matrix Pk is smaller than the
largest eigenvalue of the type matrix Pk+1.

Proof. By Lemma 6.8, both Pk and Pk+1 are primitive. By the Perron-Frobenius theory,
they both have a real positive eigenvalue rk and rk+1, respectively, that is larger in absolute
value than all of their other eigenvalues. Moreover, both limits

lim
n→∞

Pn
k

rnk
and lim

n→∞

Pn
k+1

rnk+1

exist and are one dimensional projections. Let the set of types S ⊂ Tk+1 be defined as
follows:

S := {(R,Q) ∈ Tk+1 : 1 ∈ R}.

Let M (n) be the principal minor of Pn
k+1 that is obtained by taking those rows and columns

which correspond to types in S. Without loss of generality, we may assume that if the i-th
row of M (1) corresponds to a type (R,Q), then the i-th row of Pk corresponds to the type
(R \ {1}, Q). Moreover, we may assume that the ordering of Tk and Tk+1 is compatible in
the following sense: if T = {R,Q} and T ′ = (R′, Q′) are types in S and T < T ′ according
to the ordering on Tk+1, then (R \ {1}, Q) < (R′ \ {1}, Q′) according to the ordering on Tk.

First, we prove the following two properties of M (1).

1. The matrix M (1) is element-wise larger than or equal to Pk.

2. The matrix M (1) is not equal to Pk.

Since |S| = |Tk|, the matrix M (1) is a |Tk| × |Tk| matrix. We start with proving
the second statement. The entry of Pk in the intersection of the row and column that
correspond to the type ({1, . . . , 1},∅) ∈ Tk and (∅, {k}) ∈ Tk, respectively, is clearly 1.
On the other hand, the value of M (1) in this row and column corresponds to the number
of transitions from ({1, . . . , 1},∅) ∈ Tk+1 to ({1}, {k}) which is k+ 1 (the number of ways
one can choose one of the k + 1 paths which will not be extended). Therefore M (1) 6= Pk.

For the first statement, for any two types (R,Q), (R′, Q′) ∈ Tk, if a type (R,Q) subgraph
of a k-flow on the vertices U` can be extended to an another type (R′, Q′) subgraph on
the vertices U`+1 in p ways, then clearly a type (R ∪ {1}, Q) subgraph of a k + 1-flow on
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the vertices U` can be extended to a type (R′ ∪ {1}, Q′) subgraph on the vertices U`+1 in
at least p ways. Therefore the first property is also proven.

Suppose to the contrary that rk+1 6 rk. Since the limit

lim
n→∞

Pn
k+1

rnk+1

exists and is finite, both the limits

lim
n→∞

Pn
k+1

rnk
and lim

n→∞

M (n)

rnk

exist and are finite. Since M (1) is a principal minor of Pk+1, and every element of Pk+1 is

non-negative, for all k the matrix M (k) is element-wise larger than or equal to (M (1))
k
.

Hence the sequence {
(M (1))

n

rnk

}∞
n=1

is bounded. By the two properties of M (1) and the fact that Pk is primitive, it follows that
there is an integer m such that (M (1))

m
is element-wise strictly larger than Pm

k . Thus
there is a positive ε such that (M (1))

m
is element-wise strictly larger than (1 + ε)Pm

k .
Therefore the sequence{

((1 + ε)Pm
k )n

rmn
k

}∞
n=1

=

{
(1 + ε)n

Pmn
k

rmn
k

}∞
n=1

is bounded, but this clearly contradicts the fact that the limit

lim
n→∞

Pn
k+1

rnk+1

is a one dimensional projection.

Proof of Theorem 1.9. Observe, that ‖hk+1(n) − hk(n)‖1 = 2. However, according to
Lemma 6.9

|G(hk+1(n))|
|G(hk(n))|

= Θ

((
rk+1

rk

)n)
,

which grows exponentially as n→∞, so Hk is not P -stable.

7 Strong stability and H0(`)

The degree sequence h0(`) has other interesting properties. One is connected to the strong
stability notion defined by Amanatidis and Kleer [1]. In their definition, they measure how
stable a degree sequence is by measuring the maximum distance of a perturbed realization
from the closest realization.
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Definition 7.1 (adapted from [1]). A degree sequence d is distance-` strongly stable if for
any realization G′ of a degree sequence d′ for which ‖d′− d‖1 6 2 there exists a realization
G such that |E(G4G′)| 6 `. A set of degree sequences is called strongly stable if there
exists an ` such that every degree sequence in the set is distance-` strongly stable.

The distance function |E(G4G′)| used in Definition 7.1 differs from the function used
in [1] up-to a factor of 2. Indeed, in one step, the Jerrum-Sinclair chain changes the size
of the symmetric difference by at most 2. In the other direction, suppose G minimizes
|E(G4G′)|. Take a vertex v where d(v) = d′(v): E(G) and E(G′) evenly contribute to
the edges incident to v in G4G′. For the two vertices where d and d′ differ, there is an
extra edge from G or G′. For this reason, if G4G′ is not a path, then it contains a cycle
C whose edges alternate between G and G′, hence C is alternating (between edges and
non-edges) in G as well. However,

|E((G4C)4G′)| = |E(G4G′)| − |E(C)|,

which contradicts the minimality of G. If G4G′ is path, the Jerrum-Sinclair chain needs
at most d1

2
|E(G4G′)|e steps to transform G′ into G.

The way we define strong stability immediately shows that strongly stable sets of
degree sequences are also P -stable with p(n) = n`+1.

Definition 7.2. We say that a bipartite graph G[A,B] is covered by alternating cycles if
for any x ∈ A and y ∈ B there exists a cycle C which traverses (covers) xy and alternates
between the vertex sets A and B, and also alternates between edges and non-edges of
G[A,B]. Note the symmetry of the definition: a priori, we allow xy ∈ E(G[A,B]) and
xy /∈ E(G[A,B]) as well.

Lemma 7.3. The following statements are equivalent for a bipartite degree sequence d.

(1) d is indecomposable;

(2) every G ∈ G(d) is covered by alternating cycles;

(3) every d′ ∈ S2(d) is graphic.

Proof. (1) ⇒ (2): Suppose xy ∈ E(G) is not contained in an alternating cycle in G.
Without loss of generality, we may suppose that x ∈ A. Let A1 ⊂ A and B1 ⊂ B be the set
of vertices that are reachable from x on an alternating path starting on a non-edge. Define
A2 = A \ A1 and B2 = B \ B1. We must have y ∈ B2, otherwise there is an alternating
cycle on xy. Observe, that G = G[A1, B1] ◦G[A2, B2], a contradiction. If xy /∈ E(G), the
argument applies to the complements.

(2) ⇒ (3): Let G ∈ G(d) and d′ ∈ S2(d) be arbitrary. Suppose first, that d′ =
d+ 1x + 1y where x ∈ A and y ∈ B. If xy /∈ E(G), then G+ xy is a realization of d′. If
xy ∈ E(G), take the alternating cycle C on xy in G, and observe that G4C + xy ∈ G(d′).

If d′ = d − 1x − 1y where x ∈ A and y ∈ B, take the complement to arrive in the
previous case.
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Finally, we have d′ = d−1x+1y where x, y ∈ A or x, y ∈ B. Without loss of generality,
suppose that x, y ∈ A. Let G ∈ G(d) be arbitrary. If there is an alternating path P
starting on a edge from x to y in G, then G4P ∈ G(d′). If there is no such alternating
path, take a z ∈ B such that xz ∈ E(G). Then yz ∈ E(G), too. As before, there exists
an alternating cycle C on yz in G, because d is indecomposable. Since C is an alternating
cycle, xz /∈ E(G), thus G4C − xz + yz ∈ G(d′).

(3) ⇒ (1): Suppose d is decomposable; let G ∈ G(d) and say G = G1 ◦ G2. Take
x ∈ V (G1) ∩ A and y ∈ V (G2) ∩ B from distinct color classes, thus xy ∈ E(G). If
∃G′ ∈ G(d+1x +1y), then take G4G′: there x and y have one extra edge in G′ compared
to G, therefore there is an alternating path joining x to y in G starting on an non-edge,
i.e., there is an alternating cycle on xy in G. This means that there is a realization of d in
which xy is not an edge, which is a contradiction. Therefore d+ 1x + 1y is not graphic.
The proof is similar if x ∈ V (G1) ∩B and y ∈ V (G2) ∩ A (take the complement).

By Theorem 2.5, to prove rapid mixing of the switch Markov chain on a set of
degree sequences D, it is sufficient to prove rapid mixing on indecomp(D), defined in (4).
Lemma 7.3 implies that every element of S2(indecomp(D)) is graphic. As the next theorem
shows, either every perturbation of an indecomposable degree is strongly distance-(2`)
stable, or there is a realization of the indecomposable degree sequence which contains an
induced copy of H0(d`/3e).

Theorem 7.4. Suppose that in G ∈ G(d), the minimum length of an alternating cycle cov-
ering xy is 2`+2. Then there is an induced copy of H0(d`/3e) in G. If d is indecomposable,
then a graphic element of S2(d) is not distance-(2`) strongly stable.

Proof. Notice that all of the conclusions are invariant on complementing G. If necessary,
by taking the complement of G, we may suppose that xy /∈ E(G).

Let C be an alternating cycle of length 2`+ 2 on xy. Let a1 := x and b`+1 := y. Let ai
and bi be the vertices at distance 2i− 2 and 2i− 1 from x on C − xy, respectively.

Notice, that aibj ∈ E(G) if i+ 1 > j, and aibj /∈ E(G) if j 6 i− 2, otherwise C is not
the shortest alternating cycle on xy. Let

A′ := {a3i−2 : i = 1, . . . , d`/3e},
B′ := {a3i−1 : i = 1, . . . , d`/3e}.

We have

G[A′, B′] = (a1,∅) ◦ (∅, b2) ◦ (a4,∅) ◦ (∅, b5) ◦ · · · ◦ (∅, b3d`/3e−1) ' H0(d`/3e).

Take d′ := d + 1x + 1y. For any realization G′ ∈ G(d′) we have |E(G4G′)| > 2`,
otherwise there is an alternating path of length at most 2` − 1 in G which forms an
alternating cycle of length 2` with xy. Thus d′ is not distance-(2`) strongly stable.
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8 Concluding remarks

8.1 Relationship to prior results

Although the sets of degree sequences B2k(H0) (for some k) are certainly not diverse
compared to the class of P -stable degree sequences, they are more numerous than, say,
the regular degree sequences, for which rapid mixing of the switch Markov chain were
first proven in [2, 19, 13]. Because B2k(H0) is not P -stable, the Jerrum-Sinclair chain [16]
cannot produce a sample in polynomial expected time. Although in principle, the proof of
rapid mixing on P -stable degree sequences [4] may be applicable to B2k(H0), we do not
expect that it can be easily tweaked to accommodate it, for the following reasoning:

Let T be the set of (X, Y ) pairs of realizations of h1(n) such that the paths ~∇(X) and
~∇(Y ) are edge disjoint. It is simple to show that |T | > exp(cn) · |G(h1(n))|, because for

almost every realization X we have |E(~∇(X))| ≈ 2n√
5
. For a pair (X, Y ) ∈ T , the edges

E(X)4E(Y ) form a cycle which traverses both a1 and bn. From this structure it follows
that the multicommodity flow Γ described in [4] between a pair of realizations (X, Y ) ∈ T
is a single switch sequence that passes through H0(n)− a1bn ∈ G(h1(n)). Consequently,
the load ρ(Γ) > |T |/|G(h1(n))| > exp(cn) is exponential in n.

8.2 Unconstrained graphs

As mentioned in Section 2.1, Ψ−1 embeds splitted bipartite graphs into the space of uncon-
strained graphs. The map Ψ−1 preserves switches, since the symmetric difference of the edge
sets of two realizations does not change by adding a clique to both graphs. Consequently,
Ψ−1 induces an isomorphism between the Markov-graphs M(d) and M(d)(Ψ−1(d)).

Furthermore, through Ψ−1, a set of canonical paths Γ on G(M(d)) are mapped to a
set of canonical paths Ψ−1(Γ) on G(M(Ψ−1(d))) satisfying

ρ(Ψ−1(Γ)) 6 ρ(Γ).

In summary, Theorem 1.7 can be mapped unconstrained graphs: the switch Markov
chain is rapidly mixing on Ψ−1(B2k(H0)). Note, however, that

Ψ−1(B2k(H0)) ⊂ B2k(Ψ−1(H0)),

because the right hand side contains graphs that are not split.

8.3 Possible generalizations

The proof of Theorem 1.7 presented in Section 5 provides a polynomial bound on τ(ε)
even for k = Θ(

√
log n), therefore:

Theorem 8.1. The switch Markov chain is rapidly mixing on
∞⋃
n=1

B√c logn(h0(n))

for any constant c > 0.
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We have not proved nor refuted P -stability of
⋃∞

n=1 S2k(h0(n)) when k = Θ(
√

log n).
We hope that the proof of Theorem 1.7 can be generalized to even broader degree

sequence classes. By Theorem 4.4, an equivalent definition of hk(n) is that for any
realization G ∈ G(hk(n)), we have δ~∇(G)(a1) = k, and for any 1 6 i 6 n− 1:

δ~∇(G)(Ai ∪Bi) = δ~∇(G)(Ai ∪Bi ∪ {ai+1}) = k.

Relax these constraints to requiring only that 6 k edges leave a1, Ai∪Bi, and Ai∪Bi \{bi}
each for every i ∈ [1, n]: the set of graphs satisfying these is the set of realizations of a set
of degree sequences we will call H6k. Naturally, B2k(H0) ⊆ H6k, because a k-flow needs
at most k edges in any cut.

Conjecture 8.2. For any fixed k, the switch Markov chain is rapidly mixing on H6k.

We also put forward a conjecture inspired by the work Gao and Greenhill [11].

Definition 8.3 (Gao and Greenhill [11]). Let D be a set of graphic degree sequences and
k ∈ 2N. We say that D is k-stable, if there exists a polynomial p ∈ R [x] such that for
any n ∈ N and any degree sequence d ∈ D on n vertices, any degree sequence d′ with
‖d′ − d‖1 6 k satisfies |G(d′)| 6 p(n) · |G(d)|. The term P -stable is an alias for 2-stable,
which is the least restrictive non-trivial class defined here.

Gao and Greenhill [11] presented elegant conditions which when satisfied ensure 8-
stability of a class of degree sequences (8-stable degree sequence are by definition P -stable).
In particular, they show that for γ > 2, power-law distributed degree sequences are 8-stable,
hence rapidly mixing. They also give a proof that 8-stable sets of degree sequence are
rapidly mixing.

Conjecture 8.4. Suppose D is (2k + 2)-stable for some k ∈ N. Then the switch Markov
chain is rapidly mixing on B2k(D◦).
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