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Abstract

The Bollobás set pairs inequality is a fundamental result in extremal set theory
with many applications. In this paper, for n > k > t > 2, we consider a collection of
k families Ai : 1 6 i 6 k where Ai = {Ai,j ⊂ [n] : j ∈ [n]} so that A1,i1∩· · ·∩Ak,ik 6=
∅ if and only if there are at least t distinct indices i1, i2, . . . , ik. Via a natural
connection to a hypergraph covering problem, we give bounds on the maximum size
βk,t(n) of the families with ground set [n].

Mathematics Subject Classifications: 05D05, 05D40, 05C65

1 Introduction

A central topic of study in extremal set theory is the maximum size of a family of subsets
of an n-element set subject to restrictions on their intersections. Classical theorems in the
area are discussed in Bollobás [2]. In this paper, we generalize one such theorem, known
as the Bollobás set pairs inequality or two families theorem [3]:

Theorem 1. (Bollobás) Let A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} be families
of finite sets, such that Ai ∩Bj 6= ∅ if and only if i, j ∈ [m] are distinct. Then

m∑
i=1

(
|Ai ∪Bi|
|Ai|

)−1
6 1. (1)

For convenience, we refer to a pair of familiesA and B satisfying the conditions of Theorem
1 as a Bollobás set pair. The inequality above is tight, as we may take the pairs (Ai, Bi)
to be distinct partitions of a set of size a+ b with |Ai| = a and |Bi| = b for 1 6 i 6

(
a+b
a

)
.
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The latter inequality was proved for a = 2 by Erdős, Hajnal and Moon [5], and in general
has a number of different proofs [11, 12, 14, 17, 18]. A geometric version was proved by
Lovász [17, 18], who showed that if A1, A2, . . . , Am and B1, B2, . . . , Bm are respectively
a-dimensional and b-dimensional subspaces of a linear space and dim(Ai ∩Bj) = 0 if and
only if i, j ∈ [m] are distinct, then m 6

(
a+b
a

)
.

1.1 Main Theorem

Theorem 1 has been generalized in a number of different directions in the literature [6,
9, 13, 16, 21, 24]. In this paper, we give a generalization of Theorem 1 from the case
of two families to k > 3 families of sets with conditions on the k-wise intersections.
For 2 6 t 6 k, a Bollobás (k, t)-tuple is a sequence (A1,A2, . . . ,Ak) of set families
Aj = {Aj,i : 1 6 i 6 m} where

⋂k
j=1Aj,ij 6= ∅ if and only if at least t of the indices

i1, i2, . . . , ik are distinct. We refer to m as the size of the Bollobás (k, t)-tuple. Let [m](t)
denote the set of sequences of t distinct elements of [m] and fix a surjection φ : [k]→ [t].
For σ ∈ [m](t−1), set σ(t) = σ(1) and define A1,σ(φ) =

⋂
j:φ(j)=1Aj,σ(1) and, for 2 6 j 6 t,

we define

Aj,σ(φ) =
⋂

h:φ(h)=j

Ah,σ(j)\
j−1⋃
h=1

Ah,σ(φ).

Using this notation, we generalize (1) as follows:

Theorem 2. Let k > t > 2 and m > t, let φ : [k] → [t] be a surjection, and let
(A1,A2, . . . ,Ak) be a Bollobás (k, t)-tuple of size m. Then

∑
σ∈[m](t−1)

(
|A1,σ(φ) ∪ A2,σ(φ) ∪ · · · ∪ At,σ(φ)|
|A1,σ(φ)| |A2,σ(φ)| · · · |At,σ(φ)|

)−1
6 1. (2)

We show in Section 2.1 that this inequality is tight for all k > t = 2, but do not have an
example to show that this inequality is tight for any t > 2.

For n > k > t > 2, let βk,t(n) denote the maximum m such that there exists a Bollobás
(k, t)-tuple of size m consisting of subsets of [n]. Then (1) gives β2,2(n) 6

(
n
bn/2c

)
which

is tight for all n > 2. Letting H(q) = −q log2 q − (1− q) log2(1− q) denote the standard
binary entropy function, we prove the following theorem:

Theorem 3. For k > 3 and large enough n,

1

k
6

log2 βk,2(n)

n
6 H

(
1

k

)
6

log2(ke)

k
. (3)

For k > t > 3 and large enough n,

log2 e(
k
t−1

)
(t+ 1)tt−1

6
log2 βk,t(n)

n
6

2(
k
t−1

)
(t− 1)t−3

. (4)
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This determines log2 βk,2(n) up to a factor of order log2 k and log2 βk,t(n) up to a fac-
tor of order t3. We leave it as an open problem to determine the asymptotic value of
(log2 βk,t(n))/n as n→∞ for any k > 3 and t > 2. A natural source for lower bounds on
βk,t(n) comes from the probabilistic method – see the random constructions in Section 3.1
which establish the lower bounds in Theorem 3. To prove Theorem 3, we use a natural
connection to hypergraph covering problems.

1.2 Covering hypergraphs

Theorem 1 has a wide variety of applications, from saturation problems [3, 19] to covering
problems for graphs [11, 20], complexity of 0-1 matrices [23], geometric problems [1],
counting cross-intersecting families [7], crosscuts and transversals of hypergraphs [24, 25,
26], hypergraph entropy [15, 22], and perfect hashing [8, 10]. In this section, we give
an application of our main results to hypergraph covering problems. For a k-uniform
hypergraph H, let f(H) denote the minimum number of complete k-partite k-uniform
hypergraphs whose union is H. In the case of graph covering, a simple connection to
the Bollobás set pairs inequality (1) may be described as follows. Let Kn,n \M denote
the complement of a perfect matching M = {xiyi : 1 6 i 6 n} in the complete bipartite
graph Kn,n with parts X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. If H1, H2, . . . , Hm

are complete bipartite graphs in a minimum covering of Kn,n \M , then let Ai = {j :
xi ∈ V (Hj)} and Bi = {j : yi ∈ V (Hj)}. Setting A = {Ai}i∈[m] and B = {Bi}i∈[m], it is
straightforward to check that (A,B) is a Bollobás set pair, and Theorem 1 applies to give

f(Kn,n\M) = min{m :

(
m

dm/2e

)
> n}. (5)

In a similar way, Theorem 2 applies to covering complete k-partite k-uniform hypergraphs.
Let Kn,n,...,n denote the complete k-partite k-uniform hypergraph with parts Xi = {xij :
j ∈ [n]} for i ∈ [k]. Let Hk,t(n) denote the subhypergraph consisting of hyperedges
{x1,i1 , x2,i2 , . . . , xk,ik} such that at least t of the indices i1, i2, . . . , ik are distinct, and set
fk,t(n) = f(Hk,t(n)). Then there is a one-to-one correspondence between Bollobás (k, t)-
tuples of subsets of [m] and coverings of Hk,t(n) with m complete k-partite k-graphs. We
let βk,t(m) be the maximum size of a Bollobás (k, t)-tuple of subsets of [m], so that

fk,t(n) = min{m : βk,t(m) > n}. (6)

This correspondence together with Theorem 2 will be exploited to prove

fk,2(n) > min{m :

(
m

dm/ke

)
> n} (7)

which is partly an analog of (5). More generally, we prove the following theorem:

Theorem 4. For k > 3 and large enough n,

k

log2(ke)
6

1

H( 1
k
)
6
fk,2(n)

log2 n
6 k. (8)
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For k > t > 3 and large enough n,(
k

t− 1

)
(t− 1)t−3

2
6
fk,t(n)

log2 n
6

(t+ 1)tt−1

log2 e

(
k

t− 1

)
. (9)

The bounds on βk,t(n) in Theorem (3) follow immediately from this theorem and (6).
Equation (9) gives the order of magnitude for each t > 3 as k → ∞, but for t = 2,
Equation (8) has a gap of order log2 k. From (7), we obtain βk,2(n) 6

(
n
bn/kc

)
. It is

perhaps unsurprising that the asymptotic value of fk,t(n)/ log2 n as n→∞ is not known
for any k > 2, since a limiting value of f(Kk

n)/ log2 n is not known for any k > 2 – see
Körner and Marston [15] and Guruswami and Riazanov [10].

1.3 Organization and notation

Given a subset A ⊂ [n], let Ac := [n] \ A be the complement of A in [n]. For positive
integers k 6 n, let (n)(k) = (n)(n − 1) · · · (n − k + 1) denote the falling factorial. This
paper is organized as follows. In Section 2, we prove Theorem 2. In Section 2.1, we
construct a Bollobás (k, 2)-tuple which achieves equality in Theorem 2 and in Section 2.2,
we construct a Bollobás (k, 2)-tuple which gives the lower bound in Equation (3). The
upper bound on fk,t(n) in Theorem 4 comes from a probabilistic construction in Section
3.1, and the proof of the lower bound on fk,t(n) is given in Section 3.3; we prove (7) in
Section 3.2.

2 Proof of Theorem 2

Given a Bollobás set (k, t)-tuple (A1, . . . ,Ak) with Aj = {Aj,i : 1 6 i 6 m} and a
surjection φ : [k] → [t], consider A`(φ) : 1 6 ` 6 t where A`(φ) = {A`,i(φ) : 1 6 i 6 m}
and

A`,i(φ) =
⋂

h:φ(h)=`

Ah,i.

It follows that (A1(φ), . . . ,At(φ)) is a Bollobás set (t, t)-tuple and hence it suffices to
prove Theorem 2 in the case where t = k. In this setting, surjections φ : [k]→ [k] simply
permute the k families and as such we suppress the notation of φ for the remainder of this
section. One of the proofs of Theorem 1, given a Bollobás set pair, defines a collection
of chains Ci for i ∈ [m] and shows that these chains are necessarily disjoint. Similarly,
given a Bollobás set (k, k)-tuple, we will define a collection of chains Cσ for every ordered
collection σ of (k − 1) distinct indices of [m] and show these chains are pairwise disjoint.

Let (A1, . . . ,Ak) with Aj = {Aj,i : 1 6 i 6 m} be a Bollobás set (k, k)-tuple, and set

X =
m⋃
i=1

(A1,i ∪ A2,i ∪ · · · ∪ Ak,i)
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with |X| = n. For σ ∈ [m](k−1), define a subset Cσ of permutations π : X → [n] by

Cσ :=

{
π : X → [n] : max

x∈A1,σ

π(x) < min
y∈A2,σ

π(y) 6 max
y∈A2,σ

π(y) < · · · < min
z∈Ak,σ

π(z)

}
.

Letting Uσ := A1,σ ∪ · · · ∪ Ak,σ, elementary counting methods give

|Cσ| =
(

n

|Uσ|

)
|A1,σ|! · · · |Ak,σ|!(n− |Uσ|)! = n! ·

(
|Uσ|

|A1,σ| · · · |Ak,σ|

)−1
. (10)

We will now prove a lemma which states that {Cσ}σ∈[m](k−1)
forms a disjoint collection of

a permutations. The general proof only works for k > 4, so we first consider k = 3.

Lemma 5. If σ1, σ2 ∈ [m](2) are distinct, then Cσ1 ∩ Cσ2 = ∅.

Proof. Seeking a contradiction, suppose there exists π ∈ Cσ1 ∩ Cσ2 . After relabeling, it
suffices to consider the following five cases.

(1) σ1 = {1, 3} and σ2 = {2, 4} (2) σ1 = {1, 3} and σ2 = {2, 3}
(3) σ1 = {1, 2} and σ2 = {1, 3} (4) σ1 = {1, 2} and σ2 = {2, 3}
(5) σ1 = {1, 2} and σ2 = {3, 1}.

In case (1), without loss of generality, max{π(x) : x ∈ A1,1} 6 max{π(x) : x ∈ A1,2} and
thus π ∈ Cσ2 yields

max
x∈A1,1

π(x) 6 max
x∈A1,2

π(x) < min
y∈A2,4\A1,2

π(y).

Then as A1,1∩A2,4∩A3,2 6= ∅, there exists w ∈ A1,1∩A2,4∩A3,2. It follows that w /∈ A1,2

since if w ∈ A1,2, then w ∈ A1,2 ∩ A2,4 ∩ A3,2 6= ∅; a contradiction. But this yields a
contradiction as

π(w) 6 max
x∈A1,1

π(x) 6 max
x∈A1,2

π(x) < min
y∈A2,4\A1,2

π(y) 6 π(w).

In case (2), without loss of generality, max{π(x) : x ∈ A1,1} 6 max{π(x) : x ∈ A1,2} and
we recover a similar contradiction as case (1) by noting that there exists w ∈ A1,1∩A2,3∩
A3,2 with w /∈ A1,2.

In case (3) we may assume max{π(x) : x ∈ A2,2 \A1,1} 6 max{π(x) : x ∈ A2,3 \A1,1} and
π ∈ C1,3 yields max{π(x) : x ∈ A2,3 \ A1,1} < min{π(x) : x ∈ A3,1 \ (A1,1 ∪ A2,3)}. Thus

max{π(x) : x ∈ A2,2 \ A1,1} < min{π(x) : x ∈ A3,1 \ (A1,1 ∪ A2,3)}

and there exists w ∈ A1,3 ∩ A2,2 ∩ A3,1 with w /∈ A1,1 and w /∈ A2,3. It follows that
π(w) < π(w), a contradiction.

In case (4), if max{π(x) : x ∈ A1,1} 6 max{π(x) : x ∈ A1,2}, then using w ∈ A1,1 ∩A2,3 ∩
A3,2 and noting w /∈ A1,2, we get a contradiction. Thus, we may assume otherwise and
π ∈ C1,2 gives

max
x∈A1,2

π(x) < max
x∈A1,1

π(x) < min
z∈A3,1\(A1,1∪A2,2)

π(z).
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This is a contradiction as there exists w ∈ A1,2 ∩ A2,3 ∩ A3,1 with w /∈ A1,1 and w /∈ A2,2.

In case (5), if max{π(x) : x ∈ A1,1} 6 max{π(x) : x ∈ A1,3}, then we may proceed as
in the latter part of case (4) using w ∈ A1,1 ∩ A2,2 ∩ A3,3 and w /∈ A2,1 and w /∈ A1,3

to get a contradiction. Otherwise, proceeding as in case (1) and noting there exists
w ∈ A1,3 ∩ A2,2 ∩ A3,1, but w /∈ A1,1 yields a contradiction.

A similar argument yields the analog of Lemma 5 to the case where k > 4.

Lemma 6. Let k > 4. If σ1, σ2 ∈ [m](k−1) are distinct, then Cσ1 ∩ Cσ2 = ∅.

Proof. Since σ1, σ2 ∈ [m](k−1) are distinct, there exists minimal h ∈ [k − 1] so that
σ1(h) 6= σ2(h). Seeking a contradiction, suppose there exists a π ∈ Cσ1 ∩ Cσ2 . Without
loss of generality,

max{π(x) : x ∈ Ah,σ1} 6 max{π(x) : x ∈ Ah,σ2} < min{π(z) : z ∈ Ak,σ2}.
Now, consider a bijection τ : [k− 1] \ {h} → [k− 1] \ {1} which has no fixed points. As in
Lemma 5, we want to show that there exists a w ∈ Ah,σ1∩Ak,σ2 and consider two separate
cases.

First, suppose that σ1(h) /∈ σ2([k−1]). As |{σ1(h), σ2(1), . . . , σ2(k−1)}| = k, there exists

w ∈ Ah,σ1(h) ∩ Ak,σ2(1) ∩
⋂

l∈[k−1]\{h}

Al,σ2(τ(l)). (11)

Next, suppose that σ1(h) = σ2(x) for some x. We now claim that x 6= 1. If h = 1,
then this is trivial. If h > 1, then σ1(1) = σ2(1), so σ1(h) 6= σ2(1) since σ1(h) 6= σ1(1).
For τ as above, there exists y ∈ [k − 1] \ {h} so that τ(y) = x. Taking γ distinct from
{σ2(1), . . . , σ2(k− 1)} \ {σ2(x)}, |{σ1(h), γ, σ2(1), . . . , σ2(k− 1)} \ {σ2(x)}| = k and hence
there exists

w ∈ Ah,σ1(h) ∩ Ak,σ2(1) ∩ Ay,γ ∩
⋂

l∈[k−1]\{y,h}

Al,σ2(τ(l)). (12)

By construction, w ∈ Ah,σ1(h) ∩ Ak,σ2(1). Suppose there exists a t ∈ [k − 1] \ {h} so
that w ∈ At,σ2(t). As τ has no fixed points, replacing the set in the k-wise intersection
corresponding to At with At,σ2(t) in either (11) or (12), w is an element of this new k-wise
intersection with (k − 1) distinct indices; a contradiction. If w ∈ Ah,σ2(h), then we may
similarly replace Ah,σ1(h) with Ah,σ2(h) in the k-wise intersection in either (11) or (12) to
get a contradiction. Thus, w /∈ A1,σ2(1) ∪ · · · ∪Ak−1,σ2(k−1) and hence w ∈ Ah,σ1 ∩Ak,σ2 so
that π(w) < π(w); a contradiction.

Using Equation (10), Lemma 5, and Lemma 6, we are now able to prove Theorem 2 in
the case where t = k. There are n! total permutations, and Lemma 5 and Lemma 6 yield
that each of which appears in at most one of the sets Cσ for σ ∈ [m](k−1). Hence, using
|Cσ| in Equation (10),∑

σ∈[m](k−1)

|Cσ| =
∑

σ∈[m](k−1)

n! ·
(
|A1,σ ∪ · · · ∪ Ak,σ|
|A1,σ| · · · |Ak,σ|

)−1
6 n!

and thus the result follows by dividing through by n!.
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2.1 Sharpness of Theorem 2

We give a simple construction establishing the sharpness of Theorem 2 for k > t = 2. Let
n > 4k and using addition modulo n, define A1,i = {i}c, Aj,i = {i− (j − 1), i+ (j − 1)}c
for j ∈ [2, k − 1], and Ak,i = {i− k + 2, i− k + 3, . . . , i+ k − 2}. Letting Aj = {Aj,i}i∈[n]
for all j ∈ [k], we will show (A1, . . . ,Ak) is a Bollobás (k, 2)-tuple. Since |A1,i| = n − 1
and |A2,i∩· · ·∩Ak,i| = 1, Theorem 2 with t = 2 and surjection φ : [k]→ [2] with φ(1) = 1
and φ(i) = 2 for i 6= 1 gives

1 >
n∑
i=1

(
|A1,i|+ |A2,i ∩ · · · ∩ Ak,i|

|A1,i|

)−1
=

n∑
i=1

1

n
= 1.

By construction, for all i ∈ [n], A1,i ∩ A2,i ∩ · · · ∩ Ak,i = ∅. It thus suffices to show these
are the only empty k-wise intersections. To this end, for i = (i1, . . . , ik−1), define

A(i) := A1,i1 ∩ · · · ∩ Ak−1,ik−1
.

Lemma 7. Let i = (i1, . . . , ik−1). If A(i)c = Ak,ik , then i1 = · · · = ik.

Proof. We proceed by induction on k where the result is trivial when k = 2. In the case
where k > 2, ik−1 − k + 2 = ik + x for some x such that −(k− 2) 6 x 6 (k− 2) and thus
ik−1 + (k − 2) = ik−1 − (k − 2) + (2k − 4) = ik + x+ (2k − 4).

Next, there is a y such that −(k− 2) 6 y 6 (k− 2) with ik−1 + (k− 2) = ik + y, and since
n > 4k, x+2k−4 = y with equality over Z and moreover ik−1 +(k−2) = ik+(k−2) over
Z and hence ik = ik−1. Removing these elements from each set, the result then follows by
induction.

If A1,i1 ∩ · · · ∩ Ak,ik = ∅, then as A(i) = A1,i1 ∩ A2,i2 ∩ · · ·Ak−1,ik−1
,

∅ = A1,i1 ∩ A2,i2 ∩ · · · ∩ Ak−1,ik−1
∩ Ak,ik = A(i) ∩ Ak,ik .

The result follows by noting |A(i)| > n− (2k − 3), |Ak,ik | = 2k − 3, and using Lemma 7.

2.2 An Explicit Construction

Let k > 3. An explicit construction of a Bollobás (k, 2)-tuple (A1,A2, . . . ,Ak) where
|Ai| = 2n and each Ai consists of subsets of X for |X| = kn may be described as follows.
Let Ij := {xj,1, xj,2, . . . , xj,k} and consider X = I1 t · · · t In. Now, for each f : [n] → [2]
and j ∈ [k], define

Aj,f := {x1,f(1)+j−1, . . . , xn,f(n)+j−1}c

where we work modulo k within the subscripts of Ij. It is straightforward to check that
(A1,A2, . . . ,Ak) is a Bollobás (k, 2)-tuple. This establishes the lower bound on βk,2(n) in
Equation (3) and hence the upper bound on fk,2(n) in Equation (8).
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3 Proof of Theorem 4

3.1 Upper bound on fk,t(n)

We wish to find a covering of Hk,t(n) with complete k-partite k-graphs and assume the
parts of Hk,t(n) are X1, X2, . . . , Xk. For each subset T of [k] of size t, consider the
uniformly random coloring χT : [n] → T . Given such a χT , let Yi ⊂ Xi be the vertices
of color i for i ∈ T ; that is Yi := {xij : χ(j) = i} and Yi = Xi for i /∈ T . Denote by
H(T, χ) the (random) complete k-partite hypergraph with parts Y1, Y2, . . . , Yk, and note
that H(T, χ) ⊂ Hk,t(n). We place each H(T, χ) a total of N times independently and
randomly where

N =
⌊ (t+ 1)tt log2 n

(k − t+ 1) log2 e

⌋
and produce

(
k
t

)
N random subgraphs H(T, χ). For a set partition π of [k], let |π| denote

the number of parts in the partition and index the parts by [|π|]. Given a set partition
π = (P1, P2, . . . , Ps), let

f(π, t) =
∑

T∈[s](t)

∏
i∈T

|Pi|.

If U is the number of edges of Hk,t(n) not in any of these subgraphs, then

E(U) 6
∑
|π|>t

n|π|(1− t−t)Nf(π,t) =
∑
t6s6k

ns
∑
|π|=s

(1− t−t)Nf(π,t). (13)

For sufficiently large n, we claim that E(U) < 1, which implies there exists a covering
of Hk,t(n) with at most

(
k
t

)
N complete k-partite k-graphs, as required. The following

technical lemma states that f is a decreasing function in the set partition lattice, and
that f(π, t) increases when we merge all but one element of a smaller part of π with a
larger part of π:

Lemma 8. Let k > s > t > 2, and let π = (P1, P2, . . . , Ps) be a partition of [k].

(i) If π′ is a refinement of π with |π′| = s+ 1, then f(π, t) 6 f(π′, t).
(ii) If |P1| > |P2| > 2 and a ∈ P2, and π′ is the partition (P ′1, P

′
2, . . . , P

′
s) of [k]

with P ′1 = P1 ∪ P2 \ {a} and P ′2 = {a} and with P ′i = Pi for 3 6 i 6 s, then
f(π′, t) 6 f(π, t).

The proof of Lemma 8 part (i) is in Appendix A and the proof of (ii) is similar to the proof
of (i). By Lemma 8, a set partition of [k] into s parts which minimizes f(π, t) consists of
one part of size k − s+ 1 and s− 1 singleton parts and hence

min{f(π, t) : |π| = s} = (k − s+ 1)

(
s− 1

t− 1

)
+

(
s− 1

t

)
. (14)

In what follows, we denote a set partition of [k] into s parts which minimizes f(π, t) by
πs.
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For n large enough, and all s where t 6 s 6 k, we will show∑
|π|=t(1− t−t)Nf(π,t)∑
|π|=s(1− t−t)Nf(π,t)

> ns−t.

Replacing the numerator with its largest term and each term in denominator with its
largest term,∑

|π|=t(1− t−t)Nf(π,t)∑
|π|=s(1− t−t)Nf(π,t)

>
(1− t−t)Nf(πt,t)

S(k, s)(1− t−t)Nf(πs,t)
=

1

S(k, s)
(1− t−t)N(f(πt,t)−f(πs,t))

where S(k, s) is the Stirling number of the second kind. Taking n > S(k, s), we will show
in Appendix B that

1

S(k, s)
(1− t−t)N(f(πt,t)−f(πs,t)) > ns−t. (15)

Therefore, the index s = t maximizes the right hand side of Equation (13), and hence

E[U ] 6 (k − t+ 1)(nt)
∑
|π|=t

(1− t−t)Nf(π,t) < (k − t+ 1)ntS(k, t)(1− t−t)N(k−t+1) < 1

for our choice of N provided n > kS(k, t). Thus,

fk,t(n) 6

(
k

t

)
(t+ 1)tt log2 n

(k − t+ 1) log2 e
=

(t+ 1)tt−1

log2 e

(
k

t− 1

)
log2 n.

3.2 Lower bound on fk,2(n)

In this section, we show

fk,2(n) > min{m :

(
m

dm/ke

)
> n}. (16)

Let {H1, H2, . . . , Hm} be a covering of Hk,2(n) with m = fk,2(n) complete k-partite k-
graphs. We recall Hk,2(n) = Kn,n,...,n\M , where M is a perfect matching of Kn,n,...,n. For
i ∈ [k] and j ∈ [n], define Ai,j = {Hr : xij ∈ V (Hr)} and Ai = {Ai,j : 1 6 j 6 n}. As in
(6), (A1,A2, . . . ,Ak) is a Bollobás (k, 2)-tuple of size n. For convenience, for each i ∈ [k],
let φi : [k] → [2] be so that φ−1i (1) = {i}. Taking the sum of inequality from Theorem 2
with t = 2 over all i ∈ [k],

k∑
i=1

n∑
j=1

(
|A1,j(φi) ∪ A2,j(φi)|

|A1,j(φi)|

)−1
6 k. (17)

We use this inequality to give a lower bound on fk,2(n) = m. First we observe

m∑
r=1

|V (Hr)| =
n∑
j=1

k∑
i=1

|Ai,j| =
n∑
j=1

k∑
i=1

|A1,j(φi)|. (18)
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Let ∂H denote the set of (k−1)-tuples of vertices contained in some edge of a hypergraph
H. Then

m∑
r=1

|∂Hr ∩ ∂M | =
n∑
j=1

k∑
i=1

|A2,j(φi)|. (19)

Putting the above identities together,

m∑
r=1

|V (Hr)|+
m∑
r=1

|∂Hr ∩ ∂M | =
n∑
j=1

k∑
i=1

(|A1,j(φi)|+ |A2,j(φi)|). (20)

We note |∂Hr ∩ ∂M | 6 |V (Hr)|/(k − 1), and therefore

m∑
r=1

|∂Hr ∩ ∂M | 6
1

k − 1

m∑
r=1

|V (Hr)|. (21)

It follows that

n∑
j=1

k∑
i=1

(|A1,j(φi)|+ |A2,j(φi)|) 6
k

k − 1

m∑
r=1

|V (Hr)|. (22)

Subject to the linear inequalities (18) and (22), the left side of (17) is minimized when
kn|A1,j(φi)| =

∑m
r=1 |V (Hr)| and kn(|A1,j(φi)| + |A2,j(φi)|) = (k − 1)|A1,j(φi)|. Since

|V (Hr)| 6 (k − 1)n for all r ∈ [m], (17) implies
(

m
dm/ke

)
> n, which gives (16).

3.3 Lower bound on fk,k(n)

Let H = {H1, H2, . . . , Hm} be a minimal covering of Hk,k(n) with complete k-partite k-
graphs, so m = f(Hk,k(n)). Given a k-partite k-graph H, consider its 2-shadow ∂2(H) =
{R ⊂ V (H) : |R| = k − 2, R ⊂ e for some e ∈ H}. Let ∂2(H) =

⋃m
i=1 ∂2(Hi).

Given R ∈ ∂2(H) and Hi ∈ H, let Hi(R) := {e ∈
(
V (Hi)

2

)
: e ∪ R ∈ Hi} be the possibly

empty link graph of the edge R in the hypergraph Hi and let V (Hi(R)) be the set of
vertices in the link graph. Observe that double counting yields

∑
R∈∂2(H)

( m∑
i=1

|V (Hi(R))|
)

=
m∑
i=1

( ∑
R∈∂2(Hi)

|V (Hi(R))|
)
. (23)

An optimization argument yields |∂2(Hi)| is maximized when the parts of Hi are of equal
or nearly equal maximal size. Since |V (Hi(R))| 6 2(n − k + 2), the right hand side of
Equation (23) is bounded above by

m∑
i=1

( ∑
R∈∂2(Hi)

|V (Hi(R))|
)

6 m ·
(
k

2

)
·
(n
k

)k−2
· 2(n− k + 2). (24)
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For a lower bound on the left hand side of Equation (23), fix R ∈ ∂2(H) and without loss
of generality suppose that R = {x1,1, . . . , xk−2,k−2}. Let Y = [k − 1, n]. Let KY,Y be the
complete bipartite graph with two distinct copies of Y and M = {(xk−1,i, xk,i : i ∈ Y }
be a perfect matching in KY,Y . Then, {H1(R), . . . , Hm(R)} forms a biclique cover of
KY,Y \M. Applying the convexity result of Tarjan [23, Lemma 5],

m∑
i=1

|V (Hi(R))| > (n− k + 2) log2(n− k + 2).

Noting that |∂2(H)| =
(
k
2

)
(n)(k−2), the left hand side of Equation (23) is bounded below

by ∑
R∈∂2(H)

( m∑
i=1

|V (Hi(R))|
)

>

(
k

2

)
(n)(k−2)(n− k + 2) log2(n− k + 2). (25)

Comparing the bounds from Equation (24) and Equation (25),

m >
(n)(k−2) log2(n− k + 2)

2
(
n
k

)k−2 >
kk−2

2
log2 n

provided that n is large enough.

For t > 3 and t < k, the lower bound on fk,t(n) in Theorem 4 is obtained from the lower
bounds on ft−1,t−1(n− 1) as follows: Let H = {H1, H2, . . . , Hm} be a minimal covering of

Hk,t(n) with complete k-partite k-graphs, so m = f(Hk,t(n)). Given T ∈
(

[k]
k−t+1

)
, define

HT ⊂ Hk,t(n) by

HT := {{x1,i1 , . . . , xk,ik} ∈ Hk,t(n) : ij = 1 ∀ j ∈ T}.

It follows that at least ft−1,t−1(n− 1) of the complete k-partite k-graphs in H are needed

to cover HT . Moreover, for distinct T, T ′ ∈
(

[k]
k−t+1

)
, the corresponding complete k-partite

k-graphs from H are necessarily pairwise disjoint and hence

fk,t(n) >

(
k

k − t+ 1

)
ft−1,t−1(n− 1) >

(
k

t− 1

)
(t− 1)t−3

2
log2 n

provided that n is large enough.

4 Concluding remarks

• Our main theorem, Theorem 2 is tight for t = 2 and k > 2, as shown in Section 2.1.
It would be interesting to generalize this example to 2 < t 6 k to determine whether
Theorem 2 is tight in general. The first open case is t = k = 3.

• A particular case of the Bollobás set pairs inequality occurs when every set in A has
size a and every set in B has size b, and one obtains the tight bound |A| 6

(
a+b
b

)
. The
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generalization to Bollobás (k, t)-tuples for k > 3 is equally interesting but wide open, as
are potential generalizations to vector spaces – see Lovász [17, 18].

• Orlin [20] proved that the clique cover number cc(Kn\M) of a complete graph Kn minus
a perfect matching M is precisely min{m : 2

(
m−1
bm/2c

)
> n}. Theorem 4 yields lower bounds

on the clique cover number of the complement of a perfect matching M in the complete
k-uniform hypergraph Kk

n:

Corollary 9. Let Kk
n \M be the complement of a perfect matching in Kk

n. Then

cc(Kk
n \M) >

log2
n
k

H( 1
k
)
>

k log2
n
k

log2(ke)
.

• It would be interesting to prove an analog of Equation (16) for t > 3. That is,

fk,t(n) > min{m :

(
m

α1, . . . , αt

)
> n(t−1)}

for some optimal α1, . . . , αt. The difficulty here lies in determining effective bounds on
|Ai,σ(φ)|.
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A Proof of Lemma 8(i)

Let k > s > t > 2, and let π = (P1, P2, . . . , Ps) be a partition of [k]. In this section, we
will show that if π′ is a refinement of π with |π′| = s+ 1, then f(π, t) 6 f(π′, t).

Proof. Let π = P1|P2| · · · |Ps and without loss of generality, π′ = Px|Py|P2| · · · |Ps. Setting
T (1) = {T ∈ [s](t) : 1 /∈ T} and T ′(x, y) = {T ∈ {x, y, 2, . . . , s}(t) : x, y /∈ T}, it follows
that ∑

T∈T (1)

∏
i∈T

|Pi| =
∑

T∈T ′(x,y)

∏
i∈T

|Pi|.

Now, letting T (1) = {T ∈ [s](t) : 1 ∈ T} and T ′(x, y) = {T ∈ {x, y, 2, . . . , s}(t) : x ∈
T, y /∈ T} and T ′(x, y) = {T ∈ {x, y, 2, . . . , s}(t) : x /∈ T, y ∈ T}, we see that∑

T∈T (1)

∏
i∈T

|Pi| =
∑

T∈T ′(x,y)

∏
i∈T

|Pi|+
∑

T∈T ′(x,y)

∏
i∈T

|Pi|

since |P1| = |Px|+ |Py|. Thus letting T ′(x, y) = {T ∈ {x, y, 2, . . . , s}(t) : x ∈ T, y ∈ T},

f(π′, t)− f(π, t) =
∑

T∈T ′(x,y)

∏
i∈T

|P ′i |

and in particular f(π, t) 6 f(π′, t).

B Proof of Equation (15)

Let S(k, s) be the Stirling number of the second kind and f(π) be as in Section 3. In this
section we will show

1

S(k, s)
(1− t−t)N(f(πt,t)−f(πs,t)) > ns−t.

Proof. First, we recall that

N =
⌊ (t+ 1)tt log2 n

(k − t+ 1) log2 e

⌋
and f(πs, t) = (k − s+ 1)

(
s− 1

t− 1

)
+

(
s− 1

t

)
.

As a result, when t 6 s < k, a calculation yields that

f(πs+1, t)− f(πs, t) = (k − s)
(
s− 1

t− 2

)
. (26)

Letting n > S(k, t), after taking log2(·) on both sides of (15), it suffices to prove that

N · f(πs, t)− f(πt, t)

tt

(
− tt log2(1− t−t)

)
> (s− t+ 1) log2(n). (27)

Using the fact that (1− t−t)tt 6 e−1 and our choice of N , it suffices to show that

f(πs, t)− f(πt, t) >
(s− t+ 1)(k − t+ 1)

t+ 1
. (28)

The inequality in (28) holds for all k > s > t > 3 by using (26).
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