
Linear compactness and combinatorial bialgebras

Eric Marberg
Department of Mathematics

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

emarberg@ust.hk

Submitted: Mar 23, 2020; Accepted: Jun 18, 2021; Published: Jul 2, 2021

© The author. Released under the CC BY-ND license (International 4.0).

Abstract

We present an expository overview of the monoidal structures in the category
of linearly compact vector spaces. Bimonoids in this category are the natural du-
als of infinite-dimensional bialgebras. We classify the relations on words whose
equivalence classes generate linearly compact bialgebras under shifted shuffling and
deconcatenation. We also extend some of the theory of combinatorial Hopf alge-
bras to bialgebras that are not connected or of finite graded dimension. Finally, we
discuss several examples of quasi-symmetric functions, not necessarily of bounded
degree, that may be constructed via terminal properties of combinatorial bialgebras.
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1 Introduction

The graded dual WP of the Hopf algebra of word quasi-symmetric functions has a
basis given by the set of packed words, i.e., finite sequences w = w1w2 · · ·wn with
{w1, w2, . . . , wn} = {1, 2, . . . ,m} for some m > 0. The product for this Hopf algebra
is a shifted shuffling operation, while the coproduct is a variant of deconcatenation; for
the precise definitions, skip to Section 2.3.

A fruitful method of constructing Hopf algebras of interest in combinatorics is to
choose an equivalence relation ∼ on packed words and then form the subspace K

(∼)
P ⊂WP

spanned by the sums over each ∼-equivalence class κE :=
∑

w∈E w. A long list of well-
known Hopf algebras can be realized as a subalgebra of WP in this way: for example,
the noncommutative symmetric functions NSym [12], the Poirier-Reutenauer algebra PR
[41], the K-theoretic Poirier-Reutenauer algebra KPR [37], the small multi-Malvenuto-
Reutenauer Hopf algebra mMR [24], the Loday-Ronco algebra [4, 26], and the Baxter
Hopf algebra [14]. Similar Hopf algebra constructions involving equivalences on (signed)
words and permutations have been explored in [10, 39, 40, 43], among other places.

The subspace K
(∼)
P ⊂ WP is not necessarily a sub-bialgebra, and one of the aims of

this paper is to describe precisely when this occurs. The Hopf algebra WP is a quotient
of a larger bialgebra W with a basis given by arbitrary words. We will also consider the
problem of classifying the word relations that span sub-bialgebras K(∼) ⊂W in a similar
manner.

For homogeneous relations, versions of these problems have been studied in a few
places previously, e.g., [14, 19, 35, 42]. Less has been written about the cases when ∼
is allowed to relate words of different lengths. For inhomogeneous relations of this kind,
various complications arise when one tries to interpret K

(∼)
P as an algebra or a coalgebra.

To start, such relations may have equivalence classes with infinitely many elements, in
which case K

(∼)
P contains infinite linear combinations of packed words so is not technically

a subspace of WP. One can still try to evaluate the product and coproduct of WP on
elements of K

(∼)
P when this happens. However, products may result in infinite linear

combinations of the basis elements κE, and even if these infinite sums are adjoined to
K

(∼)
P , coproducts may have too many terms to belong to K

(∼)
P ⊗K

(∼)
P .

Nevertheless, some interesting “Hopf algebras” that can be identified with K
(∼)
P when

∼ is inhomogeneous have appeared in the literature [16, 24, 36, 37]. A secondary, expos-
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itory goal of this paper is to describe explicitly the monoidal category containing such
objects, which in general is not the usual category of bialgebras over a field. This point is
often glossed over in the relevant combinatorial literature, though authors tend to indicate
correctly that its resolution is topological in nature.

In detail, to make sense of “sub-bialgebras” of WP “spanned” by inhomogeneous word
relations, one should first consider the larger vector space ŴP consisting of arbitrary
(rather than just finite) linear combinations of packed words. This object is naturally
viewed as a linearly compact topological space. The full subcategory of such spaces, within
the category of all topological vector spaces, has a symmetric monoidal structure which
leads to notions of linearly compact algebras, coalgebras, and bialgebras, of which ŴP is
an example. In this language, our original classification problem becomes the question:
for which word relations ∼ is the subspace K̂

(∼)
P , whose elements are the arbitrary linear

combinations of the sums κE, a linearly compact sub-bialgebra of ŴP?
After some preliminaries in Section 2, we review the main properties of linearly com-

pact vector spaces in Section 3. This background material is semi-classical but perhaps
not so widely known in combinatorics. Section 4 goes on to discuss some novel general-
izations of the monoidal structures on W and WP. In Section 5, we answer the question
in the previous paragraph. Our general results about word relations recover a number
of specific constructions of (linearly compact) Hopf algebras and bialgebras; we discuss
some relevant examples in Section 6.

One application of all this formalism is to extend Aguiar, Bergeron, and Sottile’s
theory of combinatorial Hopf algebras from [1]. Ignoring some technical details which will
be clarified in Section 7, a combinatorial Hopf algebra over a field k is a Hopf algebra H
with an algebra morphism ζ : H → k called the character. A morphism (H, ζ)→ (H ′, ζ ′)
of combinatorial Hopf algebras is a Hopf algebra morphism φ : H → H ′ with ζ = ζ ′ ◦ φ.
The Hopf algebra of quasi-symmetric functions QSym with the homomorphism ζQSym :
QSym→ k setting x1 = 1 and x2 = x3 = · · · = 0 is a fundamental example.

It is shown in [1] that if (H, ζ) is a combinatorial Hopf algebra in which H is (1)
graded, (2) connected, and (3) of finite graded dimension, then there is a unique mor-
phism (H, ζ) → (QSym, ζQSym). This morphism supplies a uniform construction of many
independent definitions of quasi-symmetric generating functions attached to Hopf alge-
bras. In Section 7, we prove two extensions of this result. The first (see Theorem 57)
removes assumptions (2) and (3), essentially just by reframing the character of H as an
algebra morphism ζ : H → k[t]. The second (see Theorem 61) lifts all of the assumptions
(1), (2), and (3), at the cost of introducing some topological conditions and replacing
QSym by an appropriate completion.

These results are not unexpected; the authors mention in [1, Remark 4.2] that as-
sumption (3) may be dropped, and note work in preparation where this will be proved.
The relevant paper cited in [1, Remark 4.2] does not seem to have ever appeared in the
literature, however. We hope that our exposition fills this gap.

In Section 8 we illustrate some more applications. We discuss several examples of
families of symmetric and quasi-symmetric functions, not necessarily of bounded degree,
that can be realized as the images of canonical morphisms from what we call (linearly
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compact) combinatorial bialgebras. For appropriate word relations, the space K̂
(∼)
P is an

object of this type and is therefore equipped with a canonical morphism to a certain
linearly compact “completion” of QSym. Our last results give a partial classification
of the relations ∼ for which the image of this morphism consists entirely of symmetric
functions.

2 Preliminaries

Let Z ⊃ N ⊃ P denote the respective sets of all integers, all nonnegative integers, and all
positive integers. For m,n ∈ N, define [m,n] = {i ∈ Z : m 6 i 6 n} and [n] = [1, n].

2.1 Monoidal structures

Our reference for the background material in this section is [2, Chapter 1]. Suppose C is
a braided monoidal category with tensor product •, unit object I, and braiding β.

Definition 1. A monoid in C is a triple (A,∇, ι) where A ∈ C is an object and ∇ :
A • A → A and ι : I → A are morphisms (referred to as the product and unit) making
these diagrams commute:

I •A ι•id
> A •A <

id•ι
A • I

A

∇

∨
<

∼=
∼=

>

A •A •A ∇•id
> A •A

A •A

id•∇

∨ ∇
> A

∇

∨
(2.1)

Definition 2. A comonoid in C is a triple (A,∆, ε) where A ∈ C is an object and
∆ : A → A • A and ε : A → I are morphisms (referred to as the coproduct and counit)
making the diagrams (2.1), with ∇ and ι replaced by ∆ and ε and with the directions of
all arrows reversed, commute.

A monoid is commutative if ∇ ◦ β = ∇. A comonoid is cocommutative if β ◦∆ = ∆.

Definition 3. A bimonoid in C is a tuple (A,∇, ι,∆, ε) where (A,∇, ι) is a monoid,
(A,∆, ε) is a comonoid, the composition ε ◦ ι is the identity morphism I → I, and these
diagrams commute:

A •A ∇
> A

∆
> A •A

A •A •A •A

∆•∆

∨
id•β•id

> A •A •A •A

∇•∇

∧
I

ι
> A

I • I

∼=

∨
ι•ι
> A •A

∆

∨

A •A ε•ε
> I • I

A

∇

∨
ε

> I

∼=

∨

(2.2)

A morphism of (bi, co) monoids is a morphism in C that commutes with the relevant
(co)unit and (co)product morphisms. If A is a monoid then A • A is a monoid with
product (∇•∇)◦ (id•β • id) and unit (ι• ι)◦ (I

∼−→ I •I). If A is a comonoid then A•A is
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naturally a comonoid in a similar way. The diagrams (2.2) express that the coproduct and
counit of a bimonoid are monoid morphisms, and that the product and unit are comonoid
morphisms.

We are exclusively interested in these definitions applied to a few related categories.
Let k be a field and write Veck for the usual category of k-vector spaces with linear maps as
morphisms. This category is symmetric monoidal relative to the standard tensor product
⊗ = ⊗k and braiding map x ⊗ y 7→ y ⊗ x, with unit object k. Monoids, comonoids,
and bimonoids in this category are the familiar notions of k-algebras, k-coalgebras, and
k-bialgebras. In this context, the unit ι : k → A is completely determined by ι(1) ∈ A,
which we refer to as the unit element.

Assume that C is k-linear so that the morphisms between any two fixed objects in C
form a k-vector space. Let (H,∇, ι,∆, ε) be a bimonoid in C . The convolution product
of two morphisms f, g : H → H is then f ∗ g = ∇ ◦ (f • g) ◦∆ : H → H. The operation
∗ is associative and makes the vector space of morphisms H → H into a k-algebra with
unit element ι ◦ ε, referred to as the convolution algebra of H. The bimonoid H is a Hopf
monoid if the identity morphism id : H → H has a left and right inverse S : H → H in
the convolution algebra. The morphism S is called the antipode of H; if it exists, then S

is the unique morphism H → H such that ∇◦ (id • S) ◦∆ = ∇◦ (S • id) ◦∆ = ι ◦ ε. Hopf
monoids in Veck are Hopf algebras.

2.2 Graded vector spaces

If I is a set and Vi for i ∈ I is a k-vector space, then
⊕

i∈I Vi is the vector space of sums∑
i∈I vi where vi ∈ Vi for i ∈ I and vi = 0 for all but finitely many indices i ∈ I. We

interpret the direct product
∏

i∈I Vi as the vector space of arbitrary formal sums
∑

i∈I vi
with vi ∈ Vi. There is an obvious inclusion

⊕
i∈I Vi ⊂

∏
i∈I Vi which is equality if I is

finite.
A vector space V is graded if it has a direct sum decomposition V =

⊕
n∈N Vn. A linear

map φ : U → V between graded vector spaces is graded if it has the form φ =
⊕

n∈N φn
where each φn : Un → Vn is linear. If U =

∏
n∈N Un and V =

∏
n∈N Vn are direct products

of vector spaces, then we also use the term graded to refer to the linear maps φ : U → V
of the form φ =

∏
n∈N φn where each φn : Un → Vn is linear.

An algebra (V,∇, ι) is graded if V is graded, ∇(Vi ⊗ Vj) ⊂ Vi+j for all i, j ∈ N, and
ι(k) ⊂ V0. Similarly, a coalgebra (V,∆, ε) is graded if V is graded, ∆(Vn) ⊂

⊕
i+j=n Vi⊗Vj

for all n ∈ N, and ε(Vn) = 0 for n ∈ P. A bialgebra is graded if it is graded as both an
algebra and a coalgebra. These notions correspond to (co, bi) monoids in the category
GrVeck whose objects are graded k-vector spaces V =

⊕
n∈N Vn and whose morphisms are

graded linear maps, in which the tensor product of objects U and V is the graded vector
space U ⊗ V =

⊕
n∈N(U ⊗ V )n with (U ⊗ V )n =

⊕
i+j=n Ui ⊗ Vj. The unit object in

GrVeck is the field k, graded such that all elements have degree zero.
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2.3 Word bialgebras

We review the definition of a particular graded bialgebra which will serve as a running
example in later sections. Throughout, we use the term word to mean a finite sequence
of positive integers. If w = w1w2 · · ·wn is a word with n letters and I = {i1 < i2 < · · · <
ik} ⊂ [n] is a subset of indices, then we set w|I = wi1wi2 · · ·wik . The shuffle product of
two words u and v of length m and n is the formal linear combination of words

u� v =
∑

I⊂[m+n]
|I|=m

�I(u, v)

where �I(u, v) is the unique (m+n)-letter word w with w|I = u and w|Ic = v. Multiplic-
ities may result in this expression; for example, 12�21 = 2 ·1221+1212+2121+2 ·2112.

If w = w1w2 · · ·wm is a word with m > 0 letters, then we set

max(w) = max{w1, w2, . . . , wm}.

For the empty word ∅, we define max(∅) = 0. Let Wn for n ∈ N be the set of pairs [w, n]
with max(w) 6 n and define W =

⋃
n∈N Wn. Let Wn = kWn be the k-vector space with

Wn as a basis and define W =
⊕

n∈N Wn.
Denote the word formed by adding n ∈ N to each letter of w = w1w2 · · ·wm by

w ↑ n = (w1 + n)(w2 + n) · · · (wm + n).

Given words w1, w2, . . . , wl with max(wi) 6 n and a1, a2, . . . , al ∈ k, let [
∑

i aiw
i, n] =∑

i ai[w
i, n] ∈Wn. Now define ∇� : W⊗W→W to be the linear map with

∇�([v,m]⊗ [w, n]) = [v� (w ↑ m), n+m] ∈Wm+n (2.3)

for [v,m] ∈Wm and [w, n] ∈Wn. Since v and w ↑ m are words with disjoint sets of letters,
there are no multiplicities in the right expression; for example, ∇�([12, 3] � [2, 2]) =
[125, 5] + [152, 5] + [512, 5]. Next let ε� : W → k and ∆� : W →W ⊗W be the linear
maps with

ε�([w, n]) =

{
1 if w = ∅
0 otherwise

and ∆�([w, n]) =
m∑
i=0

[w1 · · ·wi, n]⊗ [wi+1 · · ·wm, n]

(2.4)
for [w, n] ∈ Wn with w = w1w2 · · ·wm. Finally write ι� for the linear map k → W
with ι�(1) = [∅, 0]. We consider W to be a graded vector space in which [w, n] ∈ Wn is
homogeneous with degree `(w), the length of the word w. The following is [32, Theorem
3.5]:

Theorem 4. (W,∇�, ι�,∆�, ε�) is a graded bialgebra, but not a Hopf algebra.
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Let w = w1w2 · · ·wn be a word. Suppose the set S = {w1, w2, . . . , wn} has m distinct
elements. If φ is the unique order-preserving bijection S → [m], then the flattened word
corresponding to w is fl(w) = φ(w1)φ(w2) · · ·φ(wn).

A packed word (also called a surjective word [18], Fubini word [38], or initial word
[37]) is a word w with w = fl(w). Define IP to be the subspace of W spanned by all
differences [v,m]− [w, n] where [v,m], [w, n] ∈W have fl(v) = fl(w). The following is [32,
Proposition 3.7]:

Proposition 5. The subspace IP is a homogeneous bi-ideal of (W,∇�, ι�,∆�, ε�). The
quotient bialgebra WP = W/IP is a graded Hopf algebra.

The Hopf algebra WP is the graded dual of the algebra of word quasi-symmetric
functions WQSym [33, 35]. Let WP be the set of all packed words. If [w, n] ∈ W and
w is a word with m distinct letters then v = fl(w) is the unique packed word such that
[w, n] + IP = [v,m] + IP. Identify v ∈WP with the coset [v,m] + IP so that we can view
WP as a basis for WP. The unit element of WP is then the empty packed word ∅, and the
counit is the linear map ε� : WP → k with ε�(∅) = 1 and ε�(w) = 0 for all ∅ 6= w ∈WP.
For u, v, w ∈WP with m = max(u) and n = `(w),

∇�(u⊗ v) = u� (v ↑ m) and ∆�(w) =
n∑
i=0

fl(w1 · · ·wi)⊗ fl(wi+1 · · ·wn). (2.5)

The subspace of WP spanned by the words in WP that have no repeated letters is a
Hopf subalgebra. This is the well-known Malvenuto-Poirier-Reutenauer Hopf algebra
of permutations [3, 29], sometimes also called the Hopf algebra of free quasi-symmetric
functions FQSym [35].

3 Linearly compact spaces

Let U and V be k-vector spaces. Define U∗ to be the dual space of U , that is, the vector
space of all k-linear maps λ : U → k. Given a linear map φ : U → V , define φ∗ to be
the linear map V ∗ → U∗ with φ∗(λ) = λ ◦ φ. This makes ∗ into a contravariant functor
Veck → Veck.

We would like to be able to consider “sub-bialgebras” of W generated by certain
infinite linear combinations of basis elements in W. Such linear combinations are not
well-defined in W but are naturally interpreted as elements of W∗. Therefore, we need a
way of transferring the monoidal structures on the vector space W to its dual.

The full dual of an infinite-dimensional k-algebra is not naturally a k-coalgebra; see [9,
§3.5]. On the other hand, neither the standard form of graded duality nor the more general
notion of restricted duality (see [9, §3.5]) suffices for our application, since W does not
have finite graded dimension and since the restricted dual will not permit infinite linear
combinations.

The solution to these obstructions is to give the dual space a topology and consider
monoidal structures in the category of topological vector spaces rather than Veck. The
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topology in question is known as the linearly compact topology, whose properties we quickly
review. Much of the background material in this section appears in [11, Chapter 1], so
we omit some proofs.

A bilinear form 〈·, ·〉 : U × V → k is nondegenerate if v 7→ 〈·, v〉 is a bijection V →
U∗. For example, the tautological form 〈u, λ〉 := λ(u) is a nondegenerate bilinear form
U ×U∗ → k. The bilinear form 〈a, b〉 := ab is likewise a nondegenerate pairing k×k→ k.

Lemma 6. Suppose 〈·, ·〉 : U × V → k is a nondegenerate bilinear form. If there is a
direct sum decomposition U =

⊕
i∈I Ui then V =

∏
i∈I Vi where Vi = {v ∈ V : 〈u, v〉 =

0 if u ∈ Uj for i 6= j}.

Proof. Identify
∑

i∈I vi ∈
∏

i∈I Vi with the unique v ∈ V satisfying 〈u, v〉 = 〈u, vi〉 for
i ∈ I and u ∈ Ui to get an inclusion

∏
i∈I Vi ↪→ V . For v ∈ V , the linear map U → k

with u 7→ 〈u, v〉 for u ∈ Ui and u 7→ 0 for u ∈
⊕

i 6=j Uj has the form u 7→ 〈u, vi〉 for some
vi ∈ Vi, and v =

∑
i∈I vi.

Suppose 〈·, ·〉 : U × V → k is a nondegenerate bilinear form and {ui : i ∈ I} is a
basis for U . For each i ∈ I, there exists a unique vi ∈ V with 〈uj, vi〉 = δij for all
j ∈ I. As U =

⊕
i∈I kui, Lemma 6 implies that V =

∏
i∈I kvi. Thus each v ∈ V can be

uniquely expressed as the (potentially infinite) sum v =
∑

i∈I〈ui, v〉vi. Following [11], we
call {vi : i ∈ I} a pseudobasis for V ; this is sometimes also referred to as a continuous
basis (e.g., in [36, §3]).

View each subspace kvi as a discrete topological space and give V =
∏

i∈I kvi the
corresponding product topology; this is the linearly compact topology on V , also sometimes
called the pseudocompact topology. This topology depends on the form 〈·, ·〉 but not on the
choice of basis for U . Any finite intersection of sets of the form

{∑
i∈I civi ∈ V : cj ∈ C

}
for fixed choices of C ⊂ k and j ∈ I is open in the linearly compact topology, and every
open subset of V can be expressed as a union of these intersections. In other words, a
basis for the linearly compact topology consists of the sets{∑

i∈I

civi ∈ V : ci ∈ k for all i ∈ I and ci1 ∈ C1, ci2 ∈ C2, . . . , cip ∈ Cp

}
(3.1)

for any finite list of indices i1, i2, . . . , ip ∈ I and any nonempty subsets C1, C2, . . . , Cp ⊂ k.
If V is finite-dimensional, then the linearly compact topology is discrete.

Definition 7. A linearly compact k-vector space is a k-vector space V equipped with the
linearly compact topology induced by a nondegenerate bilinear form U ×V → k for some
k-vector space U . Let V̂eck denote the full subcategory of the category of topological
k-vector spaces whose objects are linearly compact vector spaces.

As noted in [11], a topological vector space V belongs to V̂eck if and only if its topology
is Hausdorff and linear (i.e., the open affine subspaces form a basis) and any family of
closed affine subspaces with the finite intersection property has nonempty intersection.
The category V̂eck is closed under arbitrary direct products and finite direct sums, and
contains the category of finite-dimensional vector spaces as a full subcategory.
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A morphism between linearly compact vector spaces is a linear map that is continuous
in the linearly compact topology. We can be more explicit about which linear maps are
continuous. Suppose V,W ∈ V̂eck have pseudobases {vi : i ∈ I} and {wj : j ∈ J}.
Let ψ : V → W be a linear map and define ψij ∈ k to be the coefficient such that
ψ(vi) =

∑
j∈J ψijwj for all i ∈ I.

Lemma 8. The map ψ : V → W is continuous in the linearly compact topology if and
only if {i ∈ I : ψij 6= 0} is finite for each j ∈ J and ψ

(∑
i∈I civi

)
=
∑

j∈J
(∑

i∈I ciψij
)
wj

for any ci ∈ k.

In other words, ψ is continuous when
∑

i∈I ciψ(vi) is always defined and equal to
ψ
(∑

i∈I civi
)
. It is an instructive exercise to work through the proof of this basic lemma.

Proof. If the given properties hold then the inverse image of
{∑

i∈J ciwi ∈ W : cj ∈ C
}

under ψ is a union of finite intersections of analogous sets in V and is therefore open. It
follows in this case that the inverse image of any open subset of W under ψ is open, so ψ
is continuous.

Conversely, assume ψ is continuous. Let j ∈ J . We first check that {i ∈ I : ψij 6= 0}
is finite. Consider the open subset S = {

∑
k∈J ckwk ∈ W : cj = 0}. The inverse image

ψ−1(S) is open since ψ is continuous and nonempty since 0 ∈ S. Therefore ψ−1(S)
contains an open subset of the form (3.1). Let i1, i2, . . . , ip ∈ I be the finite list of indices
corresponding to this subset. Then for any g ∈ ψ−1(S) and i ∈ I \ {i1, i2, . . . , ip} we have
g+vi ∈ ψ−1(S), so ψ(g) ∈ S and ψ(g+vi) ∈ S, whence by linearity ψ(vi) =

∑
k∈J ψikwk ∈

S. But this says precisely that if i ∈ I \ {i1, i2, . . . , ip} then ψij = 0, so {i ∈ I : ψij 6= 0}
is a subset of the finite set {i1, i2, . . . , ip}.

The map φ : V → W defined by φ
(∑

i∈I civi
)

=
∑

j∈J
(∑

i∈I ciψij
)
wj is thus well-

defined and linear, and also continuous by the first paragraph of the proof. Since ψ − φ
is then linear and continuous, to deduce that ψ = φ, it suffices to show that the only
continuous linear map V → W with vi 7→ 0 for all i ∈ I is zero. This holds as the (open)
inverse image of the open set W −{0} under such a map does not contain any finite linear
combination of pseudobasis elements {vi : i ∈ I}, and therefore does not contain any set
of the form (3.1), so must be empty.

Suppose we have nondegenerate bilinear forms 〈·, ·〉i : Ui × Vi → k for i ∈ {1, 2}. If
φ : U2 → U1 is linear, then there exists a unique linear map φ⊥ : V1 → V2 such that
〈φ(u2), v1〉1 = 〈u2, φ

⊥(v1)〉2 for all u2 ∈ U2 and v1 ∈ V1. If Vi = U∗i and 〈·, ·〉i is the
tautological form, then φ∗ = φ⊥.

Corollary 9. In the preceding setup, a linear map ψ : V1 → V2 is continuous in the
linearly compact topology if and only if ψ = φ⊥ for some linear map φ : U2 → U1.

The set of continuous linear maps V → W between linearly compact vector spaces is
therefore a k-vector space. Let V ∨ be the vector space of continuous linear maps V → k
for V ∈ V̂eck. This vector space is sometimes called the continuous dual of V (for example,
in [24, §7.4]).
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Corollary 10. Suppose 〈·, ·〉 : U×V → k is a nondegenerate bilinear form. If {ui : i ∈ I}
is a basis for U , then the functions 〈ui, ·〉 : V → k for i ∈ I are a basis for V ∨.

If ψ : V → W is a continuous linear map then ψ∗ : W ∗ → V ∗ restricts to a map
W∨ → V ∨, which we denote ψ∨. The operation ∨ is then a contravariant functor V̂eck →
Veck. The preceding corollary implies that U ∈ Veck is naturally isomorphic to (U∗)∨ as

a vector space and that V ∈ V̂eck is naturally isomorphic to (V ∨)∗ as a topological vector

space. Thus, if V ∈ V̂eck then the tautological pairing V ∨× V → k is nondegenerate and
the linearly compact topology induced by this form recovers the topology on V . We can
summarize these observations as follows:

Proposition 11. The functors ∗ : Veck → V̂eck and ∨ : V̂eck → Veck are dualities of
categories.

Define the completion of a k-vector space U with respect to a given basis {ui : i ∈ I}
to be the vector space Û =

∏
i∈I kui with the product topology, where each subspace kui

is discrete. In other words, Û is the linearly compact k-vector space with {ui : i ∈ I}
as a pseudobasis. Of course, if U is finite-dimensional then U = Û . The bilinear form
〈·, ·〉 : U ×U → k with 〈ui, uj〉 = δij extends to a nondegenerate bilinear form U × Û → k.

The space Û is distinguished from U∗ in having a fixed inclusion U ⊂ Û . Relative to this
inclusion, U is a dense subset of Û , which explains why Û is referred to as a completion.

The category V̂eck has the following monoidal structure. For objects V,W, V ′,W ′ ∈
V̂eck and morphisms φ : V → V ′ and ψ : W → W ′, define

V ⊗̂W = (V ∨ ⊗W∨)∗ and φ ⊗̂ ψ = (φ∨ ⊗ ψ∨)∗.

The object V ⊗̂W is a linearly compact vector space and the linear map φ⊗̂ψ is continuous
in the linearly compact topology. There is a canonical inclusion V ⊗W ↪→ V ⊗̂W given
by the linear map identifying v ⊗ w for v ∈ V and w ∈ W with the linear function that
has λ ⊗ µ 7→ λ(v)µ(w) for λ ∈ V ∨ and µ ∈ W∨. Relative to this inclusion, V ⊗W is a
dense subset of the linearly compact space V ⊗̂W , and for this reason one calls ⊗̂ the
completed tensor product. If V and W have pseudobases {vi : i ∈ I} and {wj : j ∈ J},
then the image of the set {vi ⊗ wj : (i, j) ∈ I × J} ⊂ V ⊗W in V ⊗̂W is a pseudobasis.
We usually identify V ⊗W with its image in V ⊗̂W without comment.

Let β be the isomorphism V ⊗W ∼−→ W ⊗ V induced by x ⊗ y 7→ y ⊗ x. This map
uniquely extends to an isomorphism β̂ : V ⊗̂W → W ⊗̂ V for all V,W ∈ V̂eck. Recall
that k is a linearly compact vector space with the discrete topology.

Proposition 12. The category V̂eck is symmetric monoidal relative to the completed
tensor product ⊗̂, braiding map β̂, and unit object k.

Proof. Checking this proposition is a routine exercise from the axioms [2, Chapter 1].
One may simply transfer all arguments in the proof that Veck is symmetric monoidal to
V̂eck by duality.

the electronic journal of combinatorics 28(3) (2021), #P3.9 10



Since V̂eck is symmetric monoidal, we have corresponding notions of (co, bi, Hopf)
monoids in this category. We refer to monoids, comonoids, bimonoids, and Hopf monoids
in V̂eck respectively as linearly compact algebras, coalgebras, bialgebras, and Hopf algebras.
A structure of this type consists explicitly of a linearly compact vector space V ∈ V̂eck

along with continuous linear maps V ⊗̂V → V , k→ V , V → V ⊗̂V , and V → k satisfying
the conditions in Section 2.1.

Alternatively, one can define linearly compact (co, bi, Hopf) algebras in V̂eck entirely

in terms of (co, bi, Hopf) algebras by duality. Let U ∈ Veck and V ∈ V̂eck and let 〈·, ·〉 :
U × V → k be a nondegenerate bilinear form. Define 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉
for ui ∈ U and vi ∈ V and extend by continuity and linearity to define a nondegenerate
bilinear form (U ⊗ U)× (V ⊗̂ V ) → k that is continuous in the second coordinate. Also
let 〈a, b〉 = ab for a, b ∈ k.

Now suppose ∇ : U ⊗ U → U , ι : k → U , ∆ : U → U ⊗ U , and ε : U → k are linear
maps and ∇̂ : V ⊗̂ V → V , ι̂ : k → V , ∆̂ : V → V ⊗̂ V , and ε̂ : V → k are continuous
linear maps such that

〈∇(u1 ⊗ u2), v〉 = 〈u1 ⊗ u2, ∆̂(v)〉 and 〈ι(a), v〉 = 〈a, ε̂(v)〉

for all u1, u2 ∈ U , v ∈ V , and a ∈ k and

〈∆(u), v1 ⊗ v2〉 = 〈u, ∇̂(v1 ⊗ v2)〉 and 〈ε(u), b〉 = 〈u, ι̂(b)〉

for all u ∈ U , v1, v2 ∈ V , and b ∈ k. Either map in each of the pairs (∇, ∆̂), (ι, ε̂), (∆, ∇̂)
and (ε, ι̂) then uniquely determines the other.

In this setup, (U,∇, ι) is an algebra if and only if (V, ∆̂, ε̂) is a linearly compact
coalgebra; (U,∆, ε) is a coalgebra if and only if (V, ∇̂, ι̂) is a linearly compact algebra;
and (U,∇, ι,∆, ε) is a bialgebra (respectively, Hopf algebra) if and only if (V, ∇̂, ι̂, ∆̂, ε̂) is
a linearly compact bialgebra (respectively, Hopf algebra). In these cases, we say that the
monoidal structure on V is the (algebraic) dual of the structure on U via the form 〈·, ·〉.

This perspective indicates how to give a linearly compact (co, bi, Hopf) algebra struc-
ture to the completed tensor product or direct sum of two linearly compact (co, bi, Hopf)
algebras. For example, suppose U1 and U2 are algebras and Vi is the linearly compact
coalgebra dual to Ui. Then U1 ⊗U2 and U1 ⊕U2 are both naturally algebras, and we can
identify V1 ⊗̂ V2 with the dual of U1 ⊗ U2 and V1 ⊕ V2 with the dual of U1 ⊕ U2 in order
to interpret both objects as linearly compact coalgebras. A similar statement holds if we
assume each Ui is a coalgebra, bialgebra, or Hopf algebra so that each Vi is a linearly
compact algebra, bialgebra, or Hopf algebra, respectively.

Example 13. Let k[x] =
⊕

n∈N kxn and k[[x]] =
∏

n∈N kxn denote the k-algebras of
polynomials and formal power series in x. The bilinear form k[x] × k[[x]] → k with
〈xm,

∑
n∈N cnx

n〉 = cm is nondegenerate, and restricts to a nondegenerate form k[x] ×
k[x]→ k.

The space k[x] is a graded Hopf algebra whose coproduct, counit, and antipode are
the algebra morphisms with ∆(x) = 1⊗ x + x⊗ 1, ε(x) = 0, and S(x) = −x. The space
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k[[x]] is a linearly compact Hopf algebra whose coproduct, counit, and antipode are the
linearly compact algebra morphisms with the same formulas.

The Hopf algebra k[x] is its own graded dual via the form 〈·, ·〉, but k[[x]] is its algebraic
dual. The completed tensor product k[[x]] ⊗̂ k[[x]] is isomorphic to the vector space of
formal power series k[[x, y]] in two commuting variables.

Example 14. Any graded (co, bi, Hopf) algebra of finite graded dimension (that is, whose
homogeneous components are each finite-dimensional) extends to a linearly compact (co,
bi, Hopf) algebra. In detail, suppose V =

⊕
n∈N Vn is a graded k-vector space where each

Vn is finite-dimensional. Let V̂ =
∏

n∈N Vn and give this space the product topology in

which each subspace Vn is discrete. Then V̂ is a linearly compact vector space and any
graded linear map V ⊗ V → V or k→ V or V → V ⊗ V or V → k extends uniquely to a
continuous linear map V̂ ⊗̂ V̂ → V̂ or k→ V̂ or V̂ → V̂ ⊗̂ V̂ or V̂ → k, respectively. If V
has the structure of a graded (bi, co, Hopf) algebra, then these extensions make V̂ into a
linearly compact (bi, co, Hopf) algebra; the relevant structure on V̂ is isomorphic to the
algebraic dual of the graded dual of V .

Remark 15. Linearly compact (bi, co, Hopf) algebras have appeared in a few places pre-
viously in the literature, usually without being so named. For example, the “bialgebras”
Γ̂ and Λ̂ in [6, §9] are linearly compact bialgebras. Likewise, the “Hopf algebras” mSym,
mQSym, and mMR introduced in [24] and further studied in [36] are all linearly compact
Hopf algebras.

Recall that W is the set of pairs [w, n] where n ∈ N and w is a word with letters in
{1, 2, . . . , n}, and W = kW. Define Ŵ to be the completion of W with respect to the
basis W. For σ ∈ Ŵ and [w, n] ∈W, let σ(w, n) ∈ k denote the coefficient such that σ =∑

[w,n]∈W σ(w, n)[w, n]. The associated nondegenerate bilinear form 〈·, ·〉 : W × Ŵ → k
is then

〈σ, τ〉 =
∑

[w,n]∈W

σ(w, n)τ(w, n) for σ ∈W and τ ∈ Ŵ. (3.2)

Define ∇� : Ŵ ⊗̂ Ŵ→ Ŵ to be the continuous linear map with

∇�([v,m]⊗ [w, n]) =

{
[vw,m] if m = n

0 otherwise
(3.3)

for [v,m], [w, n] ∈W. Define ∆� : Ŵ→ Ŵ ⊗̂ Ŵ to be the continuous linear map with

∆�([w, n]) =
n∑

m=0

[w ∩ {1, 2, . . . ,m},m]⊗ [(w ↓ m) ∩ {1, 2, . . . , n−m}, n−m] (3.4)

where if p = `(w) then w ↓ m = (w1−m)(w2−m) . . . (wp−m) and where w∩S denotes the

subword of w formed by omitting all letters not in S. Define ε� : Ŵ→ k and ι� : k→ Ŵ
to be the continous linear maps with

ε�([w, n]) =

{
1 if n = 0

0 otherwise
and ι�(1) =

∑
n∈N

[∅, n]. (3.5)
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Theorem 16. (Ŵ,∇�, ι�,∆�, ε�) is a linearly compact bialgebra.

Proof. It is a straightforward exercise to check that (Ŵ,∇�, ι�,∆�, ε�) is the algebraic
dual of the bialgebra (W,∇�, ι�,∆�, ε�) via the bilinear form (3.2).

Define ŴP to be the completion of the vector space of packed words WP with respect
to the basis WP. The natural pairing WP×ŴP → k gives ŴP the structure of a linearly
compact Hopf algebra dual to (WP,∇�, ι�,∆�, ε�), which one can realize as a sub-
bialgebra of (Ŵ,∇�, ι�,∆�, ε�). This object is not of much relevance to our discussion,
however.

On the other hand, since WP has finite graded dimension when graded by word length,
the maps∇�, ι�, ∆� and ε� from (2.5) have continuous linear extensions to maps between
ŴP, ŴP ⊗̂ ŴP, and k as appropriate, and the following holds in view of Example 14:

Proposition 17. (ŴP,∇�, ι�,∆�, ε�) is a linearly compact Hopf algebra.

Let Ŵn be the completion of Wn with respect to Wn. Each subspace Wn for n ∈ N
is a sub-coalgebra of (W,∆�, ε�) of finite graded dimension, so ∆� and ε� extend to
continuous linear maps Ŵn → Ŵn ⊗̂Ŵn and Ŵn → k, and the following similarly holds:

Proposition 18. For each n ∈ N, (Ŵn,∆�, ε�) is a linearly compact coalgebra.

Since W does not have finite graded dimension, the bialgebra structure

(W,∇�, ι�,∆�, ε�)

does not extend to Ŵ. In particular, the counit ε� cannot be evaluated at
∑

n∈N[∅, n] ∈
Ŵ. Nevertheless, there is a sense in which ∇� and ∆� can be interpreted as compatible
morphisms Ŵ ⊗̂Ŵ→ Ŵ and Ŵ→ Ŵ ⊗̂Ŵ. This is the main theme of the next section.

4 Species coalgebroids

Let Mon(C ), Comon(C ), and Bimon(C ) be the categories of monoids, comonoids, and
bimonoids in a symmetric monoidal category C . Let FB denote the category of finite
sets with bijections as morphisms. A C -species is a functor FB → C . Such functors
form a category, denoted C -Sp, with natural transformations as morphisms. For more
background on species, see [2, Chapter 8].

When F is a C -species and S is a finite set and σ : S → T is a bijection, we write
F [S] for the corresponding object in C and F [σ] for the corresponding morphism F [S]→
F [T ], which is necessarily an isomorphism. When η : F → G is a natural transformation
and S is a finite set, we write ηS for the corresponding morphism F [S] → G [S]. We
refer to F [S] and ηS as the S-component of F and η. If S is clear from context and
x ∈ F [S], then we may write η(x) instead of ηS(x) for the corresponding element of G [S].
A subspecies of a C -species G is a C -species F with F [S] ⊂ G [S] for all finite sets S
and F [σ] = G [σ]|F [S] for all bijections σ : S → T . We write F ⊂ G to indicate that F
is a subspecies of G .
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With these conventions, a linearly compact coalgebra species is a functor V : FB →
Comon(V̂eck). Suppose U , U ′, V , and V ′ are linearly compact coalgebra species and
α : U → U ′ and β : V → V ′ are natural transformations. Define U · V : FB →
Comon(V̂eck) and α · β : U · V → U ′ · V ′ by

(U · V )[I] =
⊕
StT=I

U [S] ⊗̂ V [T ] and (α · β)I =
⊕
StT=I

αS ⊗̂ βT (4.1)

for each finite set I, where the sums are over all 2|I| ways of writing I as a union of two
disjoint sets. Define (U · V )[σ] : (U · V )[I] → (U · V )[J ] similarly when σ : I → J is
a bijection. The category of linearly compact coalgebra species is symmetric monoidal
with respect to this operation, called the Cauchy product in [2], with unit object given

by the species 1 : N → Comon(V̂eck) that has 1[∅] = k and 1[S] = 0 for all nonempty
finite sets S. When ∇ : V · V → V is a natural transformation and I = S t T , we
write ∇ST : V [S] ⊗̂ V [T ]→ V [I] for the composition of ∇I : (V · V )[I]→ V [I] with the
inclusion V [S] ⊗̂ V [T ]→ (V · V )[I].

Definition 19. A species coalgebroid is a monoid in the category of linearly compact
coalgebra species. Explicitly, suppose V : FB → Comon(V̂eck) is a functor. Write ∆I

and εI for the coproduct and counit of V [I] and let ∆ = (∆I) and ε = (εI) denote the
corresponding families of linear maps. Suppose ∇ : V ·V → V and ι : 1→ V are natural
transformations. Then (V ,∇, ι,∆, ε) is a species coalgebroid if and only if the following
conditions hold:

(a) For all pairwise disjoint finite sets S, T , and U , the following diagrams commute:

V [S] ⊗̂ V [T ] ⊗̂ V [U ]
∇ST ⊗̂id

> V [S t T ] ⊗̂ V [U ]

V [S] ⊗̂ V [T t U ]

id⊗̂∇TU

∨
∇S,TtU

> V [S t T t U ]

∇StT,U

∨

k ⊗̂ V [S]
ι∅⊗̂id

> V [∅] ⊗̂ V [S]

V [S]

∇∅S

∨

∼=

>

V [S] ⊗̂ V [∅] <
id⊗̂ι∅

V [S] ⊗̂ k

V [S]

∇S∅

∨
<

∼=

(b) For all disjoint finite sets S and T , the following diagrams commute:

k
id

> k

V [∅]

ε∅

>
ι∅

>

k
ι∅

> V [∅]

k ⊗̂ k

∼=
∨

ι∅⊗̂ι∅
> V [∅] ⊗̂ V [∅]

∆∅

∨

V [S] ⊗̂ V [T ]
εS⊗̂εT

> k ⊗̂ k

V [S t T ]

∇ST

∨
εStT

> k

∼=

∨
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(c) For all disjoint finite sets S and T , the following diagram commutes:

V [S] ⊗̂ V [T ]
∇ST

> V [S t T ]
∆StT

> V [S t T ] ⊗̂ V [S t T ]

V [S] ⊗̂ V [S] ⊗̂ V [T ] ⊗̂ V [T ]

∆S⊗̂∆T

∨
id⊗̂β̂⊗̂id

> V [S] ⊗̂ V [T ] ⊗̂ V [S] ⊗̂ V [T ]

∇ST ⊗̂∇ST

∧

We refer to∇ : V ·V → V and ι : 1→ V as the product and unit of V , and to the families
of maps ∆ = (∆I) and ε = (εI) as the coproduct and counit of V . Species coalgebroids
form a category, which we denote by Mon(ComonFB), whose morphisms are the natural

transformations between Comon(V̂eck)-species that commute with the product and unit
morphisms.

If (V ,∇, ι,∆, ε) ∈ Mon(ComonFB) is a species coalgebroid, then a subspecies H ⊂ V
is a sub-coalgebroid when ∆S(H [S]) ⊂ H [S] ⊗̂ H [S] for each finite set S and the
morphisms ∇ and ι restrict to natural transformations H ·H →H and 1→H . When
these conditions hold, we have (H ,∇, ι,∆, ε) ∈ Mon(ComonFB).

Remark 20. If needed, one can introduce a sequence of definitions dual to those above.
The natural dual of a linearly compact coalgebra species is an algebra species, i.e., a
functor FB → Mon(Veck). Such functors form a symmetric monoidal category with unit
object 1, relative to the Cauchy product defined just as in (4.1) but with the completed
tensor product ⊗̂ replaced by ⊗. The natural dual of a species coalgebroid is then a
comonoid in the category of algebra species.

Species coalgebroids generalize linearly compact bialgebras since the latter are monoids
in the category of linearly compact coalgebras. We highlight three functors to or from
Mon(ComonFB):

(i) There is a natural “forgetful” functor

F : Mon(ComonFB)→ Bimon(V̂eck) (4.2)

with F(B) = (V [∅],∇∅,∅, ι∅,∆∅, ε∅) for each B = (V ,∇, ι,∆, ε) ∈ Mon(ComonFB)
and with F(η) = η∅ for each morphism η : B → B′ in Mon(ComonFB).

(ii) For V ∈ Veck, let E(V ) : FB→ Veck be the species with E(V )[S] = V and E(V )[σ] =
idV for all finite sets S and bijections σ : S → T . For any linear map φ : V → V ′,
let E(φ) : E(V )→ E(V ′) be the natural transformation with E(φ)S = φ for all finite
sets S. This gives a functor

E : Veck → Veck-Sp. (4.3)

If B = (V, µ, i, δ, e) is a linearly compact bialgebra, then define

E(B) := (E(V ),∇, ι,∆, ε)

to be the species coalgebroid in which ∇ST = µ, ιI = i, ∆I = δ, and εI = e for
all disjoint finite sets S, T , and I. This makes E into a functor Bimon(V̂eck) →
Mon(ComonFB).
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(iii) Suppose B = (V ,∇, ι,∆, ε) ∈ Mon(ComonFB) is finite-dimensional in that dimk V [S]
is finite for all finite sets S. For each n ∈ N, the symmetric group Sn acts as a
group of coalgebra automorphisms on V [n] := V [{1, 2, . . . , n}] via x 7→ V [σ](x)
for x ∈ V [n] and σ ∈ Sn. The subspace In ⊂ V [n] spanned by all differences
x− V [σ](x) for x ∈ V [n] and σ ∈ Sn is a coideal and we denote the corresponding
quotient coalgebra by V [n]Sn = V [n]/In. Reuse ∆n and εn to denote the coproduct
and counit of V [n]Sn . Consider the compositition

(V · V )[n] =
⊕

StT=[n]

V [S]⊗ V [T ]→
⊕
i+j=n

V [i]⊗ V [j]→
⊕
i+j=n

V [i]Si ⊗ V [j]Sj

where the second arrow is the natural quotient map and the first arrow is the
direct sum

⊕
StT=[n] V [σS]⊗V [σT ] with σS denoting the order-preserving bijection

S → [|S|] and σT defined likewise. As explained in [2, §15.1.1] (see in particular the
proof of [2, Proposition 15.2]), this map descends to an isomorphism

(V · V )[n]Sn
∼−→
⊕
i+j=n

V [i]Si ⊗ V [j]Sj .

The [n]-component of ∇ descends to a linear map

∇n : (V · V )[n]Sn → V [n]Sn .

The space V =
⊕

n∈N V [n]Sn is a k-bialgebra with product

V ⊗ V =
⊕
n∈N

⊕
i+j=n

V [i]Si ⊗ V [j]Sj
∼−→
⊕
n∈N

(V · V )[n]Sn

⊕
n∈N∇n−−−−−→ V,

and coproduct

V
⊕
n∈N ∆n−−−−−→

⊕
n∈N

(V [n]Sn ⊗ V [n]Sn) ↪→ V ⊗ V,

along with unit
⊕

n∈N ι[n] = ι∅ and counit
⊕

n∈N εn. Let K(B) denote this bialgebra.
When η : B → B′ is a morphism between finite-dimensional coalgebroids, the direct
sum

⊕
n∈N η[n] descends to a map K(B) → K(B′), denoted K(η). This makes K

into a functor
K : Mon(ComonFBfin-dim)→ Bimon(Veck) (4.4)

where Mon(ComonFBfin-dim) is the full subcategory of finite-dimensional species coalge-

broids. The functor K is similar to the bosonic Fock functor defined in [2, Chapter
15].

We conclude this section by constructing what will be our fundamental example of
Definition 19. Fix a set S of size n. For each bijection λ : [n] → S, let Wλ be the set of
pairs [w, λ] where w is a word with max(w) 6 n. Define Ŵλ to be the linearly compact
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k-vector space with Wλ as a pseudobasis. Write L[S] for the set of bijections [n]→ S and
let

W [S] =
⊕
λ∈L[S]

Ŵλ ∈ V̂eck.

For each bijection σ : S → T , define W [σ] to be the continuous linear map W [S]→ W [T ]
with

W [σ]([w, λ]) = [w, σ ◦ λ] for [w, λ] ∈Wλ. (4.5)

These definitions make W into a functor FB→ V̂eck.
Identify [w, n] ∈ Wn with the element [w, λ] ∈ Wλ where λ is the identity map

[n]→ [n] and in this way view Ŵn as a subspace of W [n] := W [{1, 2, . . . , n}]. We extend
∆� : Ŵn → Ŵn ⊗̂ Ŵn and ε� : Ŵn → k from (2.4) to continuous linear maps

∆� : W [S]→ W [S] ⊗̂W [S] and ε� : W [S]→ k

by requiring that for each subspace Ŵλ ⊂ W [S] we have

∆�|Ŵλ
= (W [λ] ⊗̂W [λ]) ◦∆� ◦W [λ−1]|Ŵλ

and ε�|Ŵλ
= ε� ◦W [λ−1]|Ŵλ

. (4.6)

This means that if [w, λ] ∈Wλ where w = w1w2 · · ·wm has m letters, then

∆�([w, λ]) =
m∑
i=0

[w1 · · ·wi, λ]⊗ [wi+1 · · ·wm, λ] and ε�([w, λ]) =

{
1 if m = 0

0 if m > 0.

By Proposition 18, W defines a linearly compact coalgebra species FB→ Comon(V̂eck).
Given disjoint finite sets S and T with n = |S| and m = |T | and bijections (λ, µ) ∈

L[S] × L[T ], let λ ⊕ µ denote the bijection [n + m] → S t T with i 7→ λ(i) for i ∈ [n]
and n + j 7→ µ(j) for j ∈ [m]. Write ∇� : W · W → W for the natural transformation
whose I-component (W ·W )[I]→ W [I] is the direct sum, over all disjoint decompositions
I = S t T and (λ, µ) ∈ L[S]× L[T ], of the maps

W [λ⊕ µ] ◦ ∇� ◦
(
W [λ−1] ⊗̂W [µ−1]

)
: Ŵλ ⊗̂ Ŵµ → Ŵλ⊕µ (4.7)

with∇� : Ŵn⊗̂Ŵm → Ŵn+m as in (2.3). This means that if [v, λ] ∈Wλ and [w, µ] ∈Wµ

then
∇�([v, λ], [w, µ]) = [v� (w ↑ m), λ⊕ µ]

where m is the size of the domain of λ. Finally, let ι� : 1→ W be the natural transforma-
tion whose nontrivial component is the linear map 1[∅] = k→ W [∅] with 1 7→ [∅, id∅].

Remark 21. We can describe the maps (4.6) and (4.7) more concretely. Let S be a finite
set of size n. An S-word is a finite sequence a = a1a2 · · · al with ai ∈ S. Given a
bijection λ : [n]→ S, define (a, λ) = [w, λ] ∈Wλ where w = w1w2 · · ·wl is the word with
λ(w) := λ(w1)λ(w2) · · ·λ(wl) = a. Equation (4.5) is then W [σ]((a, λ)) = (σ(a), σ ◦λ) and
the formulas in (4.6) become

∆�((a, λ)) =
l∑

i=0

(a1 · · · ai, λ)⊗ (ai+1 . . . al, λ) and ε�((a, λ)) =

{
1 if a = ∅
0 otherwise.
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If b is a T -word where S ∩ T = ∅ and µ : [m] → T is a bijection, so that (b, µ) ∈ Wµ,
then (4.7) is the continuous linear map with ∇�((a, λ)⊗ (b, µ)) = (a� b, λ⊕µ) where we
define (c1w

1 + · · · + ckw
k, λ) = c1(w1, λ) + · · · + ck(w

k, λ). In this way, the product can
be defined using the ordinary shuffle operation instead of the shifted shuffle in (2.3).

With slight abuse of notation, we reuse the symbols ∆� and ε� to denote the families

of maps W [S]
∆�−−→ W [S] ⊗̂W [S] and W [S]

ε�−→ k for all finite sets S. The following then
holds:

Theorem 22. (W ,∇�, ι�,∆�, ε�) is a species coalgebroid.

Proof. Modify the diagrams in Definition 19 by replacing V [∅], V [S], V [T ], and V [U ]
by Ŵ0, Ŵ|S|, Ŵ|T |, and Ŵ|U |. It suffices to show that these modified diagrams each
commute. Since all arrows in the diagrams are continuous linear maps, this follows by
Theorem 4.

5 Word relations

Here, we characterize the relations on words that generate sub-objects of the bialgebra
W, the linearly compact Hopf algebra ŴP, or the species coalgebroid W . Our starting
point is the following:

Definition 23. A word relation is an equivalence relation ∼ on words with the property
that v ∼ w only if v and w share the same set of letters, not necessarily with the same
multiplicities.

5.1 Algebraic relations

Recall that w ↑ m and w ↓ m are formed from w by adding and subtracting m to each
letter.

Definition 24. A word relation ∼ is algebraic if for all words v and w, the following
holds:

(a) If v′, w′ are words with v ∼ v′ and w ∼ w′, then vw ∼ v′w′.

(b) If v ∼ w and I = {m+1,m+2, . . . , n} for m,n ∈ N, then (v∩I) ↓ m ∼ (w∩I) ↓ m.

Condition (a) states that ∼ is a congruence on the free monoid on P, and is equivalent
to requiring that vxw ∼ vyw whenever v, w, x, y are words with x ∼ y. A typical example
of an algebraic word relation is K-Knuth equivalence [8, Definition 5.3], the strongest
congruence with bac ∼ bca, acb ∼ cab, aba ∼ bab, and a ∼ aa for all integers a < b < c.
For this relation, Definition 24(b) can be checked directly; see also Proposition 38.

Fix a word relation ∼ and suppose v and w are words. We note two basic facts:

Lemma 25. If ∼ is algebraic and v ∼ w, then v ∩ [n] ∼ w ∩ [n] for all n ∈ N.
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Proof. Take m = 0 in condition (b) in Definition 24.

Lemma 26. If ∼ is algebraic and v ↑ m ∼ w ↑ m for some m ∈ N, then v ∼ w.

Proof. If ṽ := v ↑ m ∼ w ↑ m =: w̃, then v = (ṽ ∩ I) ↓ m ∼ (w̃ ∩ I) ↓ m = w for
I = m+ P.

Given a set E of words with letters in [n] and a bijection λ : [n]→ S, define

κλE =
∑
w∈E

[w, λ] ∈ Ŵλ ⊂ W [S]. (5.1)

For each finite set S of size n ∈ N, let K(∼)
S be the set of elements of the form κλE where

E is a ∼-equivalence class of words with letters in [n] and λ is a bijection [n] → S.

Let K (∼)[S] be the linearly compact k-vector space with K(∼)
S as a pseudobasis. The

linearly compact topology on this space is the same as the subspace topology induced by
W [S]. Continuous maps to or from W [S] therefore remain continuous when restricted to
K (∼)[S]. It follows that

K (∼) : FB→ V̂eck (5.2)

defines a subspecies of W .

Theorem 27. Suppose ∼ is a word relation. Then the species K (∼) : FB → V̂eck is a
sub-coalgebroid of (W ,∇�, ι�,∆�, ε�) if and only if ∼ is algebraic.

Proof. The definition of a word relation implies that the empty word ∅ belongs to
its own ∼-equivalence class, so the element [∅, id∅] ∈ W [∅] also belongs to K (∼)[∅].
This observation shows that ι� always restricts to a natural transformation 1 → K (∼).
By the comments after Definition 19, K (∼) is a sub-coalgebroid of W if and only if
∆�(K (∼)[S]) ⊂ K (∼)[S] ⊗̂K (∼)[S] for each finite set S and ∇� restricts to a natural
transformation K (∼) ·K (∼) → K (∼).

Condition (a) in Definition 24 holds if and only if ∆�(κλE) ∈ K (∼)[S] ⊗̂K (∼)[S] for

each bijection λ : [n] → S and basis element κλE ∈ K(∼)
S . Condition (b) in Definition 24

holds if and only if for all words v, w with v ∼ w and all integers n ∈ N, we have both
v ∩ [n] ∼ w ∩ [n] and (v ∩ I) ↓ n ∼ (w ∩ I) ↓ n for I = n + P. By taking E and F to
be the ∼-equivalence classes of v ∩ [n] and (v ∩ I) ↓ n, one checks that this property is
necessary and sufficient to have ∇�(κλE ⊗ κ

µ
F ) ∈ K (∼)[S t T ] for all disjoint finite sets S

and T and basis elements κλE ∈ K(∼)
S and κµF ∈ K(∼)

T . This suffices to show that K (∼) is
a sub-coalgebroid if and only if ∼ is algebraic.

Continue to let ∼ be a word relation. For n ∈ N, write κnE in place of κλE when λ is

the identity map [n]→ [n], and let K(∼)
n = K(∼)

[n] ∩ Ŵn be the set of elements κnE where E

ranges over all ∼-equivalence classes of words with letters in [n]. Define

K(∼)
n = kK(∼)

n and K(∼) =
⊕
n∈N

K(∼)
n . (5.3)
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The vector space K(∼) is a subspace of Ŵ but is considered to be a discrete topological
space. We say that∼ is of finite-type if for each n ∈ N, the space K

(∼)
n is finite-dimensional,

or equivalently if the set of words with letters in [n] decomposes as a union of finitely many
∼-equivalence classes.

Corollary 28. If ∼ is algebraic and of finite-type then

(K(∼),∇�, ι�,∆�, ε�) ∈ Bimon(Veck).

Proof. If ∼ is algebraic and of finite-type, then the species coalgebroid

(K (∼),∇�, ι�,∆�, ε�)

is finite-dimensional and its image under the functor (4.4) is isomorphic to

(K(∼),∇�, ι�,∆�, ε�).

The relation ∼ is homogeneous if v ∼ w implies that v and w have the same length.
When this holds, each equivalence class in Wn is finite so K(∼) ⊂W, and each κnE ∈ K(∼)

n

is homogeneous.

Theorem 29. Suppose ∼ is a homogeneous word relation. The vector space K(∼) is a
graded sub-bialgebra of (W,∇�, ι�,∆�, ε�) ∈ Bimon(Veck) if and only if ∼ is algebraic.

Proof. The argument is the same as in the proof of Theorem 27, mutatis mutandis.

A word of minimal length in its ∼-equivalence class is reduced. A pair [w, n] ∈Wn is

reduced with respect to ∼ if w is reduced. Let W(∼)
R be the set of reduced elements in

W =
⊔
n∈N Wn. Define K(∼)

R to be the set of elements of the form κnE ∈W where n ∈ N
and E is the (finite) subset of reduced elements in a single ∼-equivalence class of words
with letters in [n]. Finally, let

W
(∼)
R = kW(∼)

R and K
(∼)
R = kK(∼)

R . (5.4)

If ∼ is homogeneous then W
(∼)
R = W and K

(∼)
R = K(∼).

Proposition 30. Suppose ∼ is an algebraic word relation. Then K
(∼)
R and W

(∼)
R are

sub-bialgebras of (W,∇�, ι�,∆�, ε�).

Proof. Conditions (a) and (b) in Definition 24 respectively imply that (1) if v and w
are words such that vw is reduced then v and w are reduced, and (2) if v and w are
reduced words with max(v) 6 m then every term in the sum v� (w ↑ m) is reduced. One

concludes that W
(∼)
R is a sub-bialgebra of W.

Condition (a) in Definition 24 implies that if E is the set of reduced elements in a single
∼-equivalence class of words with letters in [n] then ∆�(κnE) is a finite sum of tensors of
the form κnF ⊗ κnG where F and G are also the sets of reduced elements in ∼-equivalence

classes of words with letters in [n]. Thus K
(∼)
R is a sub-coalgebra of W

(∼)
R . It follows

similarly from condition (b) in Definition 24 that K
(∼)
R is subalgebra of W

(∼)
R . Thus K

(∼)
R

is a sub-bialgebra of W
(∼)
R .
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5.2 P-algebraic relations

To adapt Theorem 27 to packed words, a somewhat technical variation of Definition 24
is needed. If u, v ∈ WP are two packed words, then we say that w ∈ WP is a (u, v)-
destandardization if there are (not necessarily packed) words ũ, ṽ such that w = ũṽ and
u = fl(ũ) and v = fl(ṽ). For example, 1234, 1324, and 1423 are (12, 12)-destandardizations,
as is 1212.

Definition 31. A word relation ∼ is P-algebraic if for all v, w ∈WP, the following holds:

(a) Let v′, w′ ∈WP with v ∼ v′ and w ∼ w′. In any ∼-equivalence class, the numbers of
(v, w)- and (v′, w′)-destandardizations are equal if char k = 0 or congruent modulo
p = char k > 0.

(b) If v ∼ w and I = {m+1,m+2, . . . , n} for m,n ∈ N, then (v∩I) ↓ m ∼ (w∩I) ↓ m.

Note that property (a) depends on the field k.

The set of packed words WP is a union of equivalence classes under any word relation.
Let K(∼)

P be the set of sums κE :=
∑

w∈E w ∈ ŴP where E is a ∼-equivalence class in

WP. Define K
(∼)
P = kK(∼)

P and let K̂
(∼)
P ⊂ ŴP be the completion of K

(∼)
P with respect to

K(∼)
P .

Theorem 32. Suppose ∼ is a word relation. Then K̂
(∼)
P is a linearly compact Hopf

subalgebra of (ŴP,∇�, ι�,∆�, ε�) if and only if ∼ is P-algebraic. If ∼ is homogeneous,

then K
(∼)
P is a graded Hopf subalgebra of (WP,∇�, ι�,∆�, ε�) if and only if ∼ is P-

algebraic.

The part of the theorem asserting that K
(∼)
P is a Hopf algebra when ∼ is homogeneous

and P-algebraic is formally similar to [19, Theorem 31] and [35, Theorem 2.1], though
neither of these results is a special case of our statement, or vice versa.

Proof. We first prove the weaker version of the theorem where both instances of “Hopf
subalgebra” are replaced by “sub-bialgebra.” Suppose v and w are packed words and E ⊂
WP is a ∼-equivalence class. The coefficient of v ⊗ w in ∆�(κE) is the number of (v, w)-

destandardizations in E, modulo p if p = char k > 0. We have ∆�(κE) ∈ K̂
(∼)
P ⊗̂ K̂

(∼)
P if

and only if this coefficient is the same as the corresponding coefficient of v′ ⊗ w′ for any
packed words v′, w′ with v ∼ v′ and w ∼ w′. It follows that K̂

(∼)
P is a linearly compact

sub-coalgebra of ŴP if and only if condition (a) in Definition 31 holds.

One has ∇�(κE ⊗ κF ) ∈ K̂
(∼)
P for all basis elements κE, κF ∈ K(∼)

P if and only if
condition (b) in Definition 31 holds by the same reasoning as in the proof of Theorem 27.

We conclude that K̂
(∼)
P is a linearly compact sub-bialgebra of ŴP if and only if ∼ is P-

algebraic. If∼ is homogeneous then, in view of Example 14, K
(∼)
P is a graded sub-bialgebra

of WP if and only if K̂
(∼)
P is a linearly compact sub-bialgebra of ŴP.
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To upgrade these conclusions to what is stated in the theorem, we first observe that if
∼ is homogeneous and P-algebraic then K

(∼)
P is a bialgebra that is graded and connected,

and all such bialgebras are Hopf algebras [15, Proposition 1.4.16].

Next assume ∼ is P-algebraic but not necessarily homogeneous. Then K̂
(∼)
P is the dual

of a bialgebra H(∼) with a basis consisting of all ∼-equivalence classes of packed words.
Given a packed word w, let w denote its ∼-equivalence class. The product in H(∼) of
the equivalence classes of two packed words v and w is ∇(v ⊗ w) =

∑
u u where the sum

is over the finite set of packed words u that are (v, w)-destandardizations. Similarly, the
coproduct in H(∼) of the ∼-equivalence class of a packed word w with n = max(w) is

∆(w) =
∑n

m=0w ∩ {1, 2, . . . ,m} ⊗ (w ↓ m) ∩ {1, 2, . . . , n−m}. Let H
(∼)
n ⊂ H(∼) be the

subspace spanned by all ∼-equivalence classes containing a packed word of length 6 n,
so that if w is a packed word of length n then w ∈ H

(∼)
n . Then we have a filtratation

H
(∼)
0 ⊂ H

(∼)
1 ⊂ H

(∼)
2 ⊂ · · · ⊂

⋃
n∈N

H(∼)
n = H(∼)

and the bialgebra H(∼) is both filtered in the sense that

∇
(
H(∼)
p ⊗H(∼)

q

)
⊂ H

(∼)
p+q and ∆

(
H(∼)
n

)
⊂
∑
p+q=n

H(∼)
p ⊗H(∼)

q

as well as connected in the sense that dim H
(∼)
0 = 1.

Any connected filtered bialgebra has an antipode given by Takeuchi’s formula (see
[15, Proposition 1.4.24 and Remark 1.4.25] or [30, Corollary II.3.2]). Hence, if ∼ is P-

algebraic, then K̂
(∼)
P is a linearly compact Hopf algebra since it is the dual of a Hopf

algebra. More precisely, to see that K̂
(∼)
P is not just a linearly compact Hopf algebra but

a linearly compact Hopf subalgebra of (ŴP,∇�, ι�,∆�, ε�), observe that the latter is just

K̂
(=)
P and is therefore the dual of H(=), where = is the usual equality relation interpreted

as the (P-algebraic) word relation whose equivalence classes all have size one. But H(∼)

is evidently a quotient of H(=), so under duality K̂
(∼)
P becomes a linearly compact Hopf

subalgebra of K̂
(=)
P = (ŴP,∇�, ι�,∆�, ε�).

Corollary 33. If ∼ is P-algebraic and of finite-type then

(K
(∼)
P ,∇�, ι�,∆�, ε�) ∈ Bimon(Veck).

This bialgebra is not necessarily graded so may fail to be a Hopf algebra; see Exam-
ple 46.

Proof. Assume ∼ is P-algebraic and of finite-type. All products and coproducts of basis
elements in K(∼)

P are finite sums of (tensors of) other basis elements, so belong to K
(∼)
P or

K
(∼)
P ⊗K

(∼)
P . The unit element ∅ ∈ K̂

(∼)
P is also in K

(∼)
P , so (K

(∼)
P ,∇�, ι�,∆�, ε�) is a

bialgebra.

An algebraic word relation is not necessarily P-algebraic, or vice versa. The following
is a natural sufficient condition for this to occur.
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Lemma 34. Let ∼ be an algebraic word relation. Assume that whenever v and w are
words with the same set of letters and fl(v) ∼ fl(w), it holds that v ∼ w. Then ∼ is
P-algebraic.

Proof. Suppose v, w, v′, w′ ∈WP and v ∼ v′ and w ∼ w′. For any word ṽ with fl(ṽ) = v,
there exists a unique word ṽ′ that has the same set of letters as ṽ and satisfies fl(ṽ′) = v′,
and for this word we have ṽ ∼ ṽ′. Given a word w̃ with fl(w̃) = w, define w̃′ analo-
gously. The map ṽw̃ 7→ ṽ′w̃′ is then a bijection between the sets of (v, w)- and (v′, w′)-
destandardizations in any ∼-equivalence class, so ∼ is P-algebraic.

5.3 Uniformly algebraic relations

Problematically, we do not know of any efficient method to check whether an arbitrary
word relation satisfies condition (a) in Definition 31, or to generate relations that have
this property. It is therefore useful in practice to consider the following less general type
of relation:

Definition 35. A word relation ∼ is uniformly algebraic if for all words v, w, the following
holds:

(a) If v′, w′ are words with v ∼ v′ and w ∼ w′, then vw ∼ v′w′.

(b) If v ∼ w and I ⊂ P is an interval (i.e., a set of consecutive integers), then v ∩ I ∼
w ∩ I.

(c) If v ∼ w then φ(v) ∼ φ(w) for any order-preserving injection φ : [min(v),max(v)]→
P.

Condition (b) is the property referred to in [14, §3.1.2], [19, §4.3], and [42, Definition
4] as compatibility with restriction to alphabet intervals. Condition (c) is a weaker form
of the property referred to in [14, 19] as compatibility with (de)standardization.

Lemma 36. An algebraic word relation ∼ is uniformly algebraic if and only if φ(v) ∼ φ(w)
whenever v, w are words with v ∼ w and φ : [max(v)]→ P is an order-preserving injection.

Proof. The given property is a special case of condition (c) in Definition 35, so is certainly
necessary. Let ∼ be an algebraic word relation with this property. If v ∼ w and I =
{m+1,m+2, . . . , n} then (v∩ I) ↓ m ∼ (w∩ I) ↓ m, and applying the map φ : i 7→ i+m
to both sides gives v ∩ I ∼ w ∩ I. Condition (c) in Definition 35 holds in view of
Lemma 26.

Corollary 37. A uniformly algebraic word relation is both algebraic and P-algebraic.

Proof. Suppose ∼ is uniformly algebraic. Conditions (b) and (c) in Definition 35 together
imply condition (b) in Definition 24. Moreover, it follows that if v and w are words with
the same set of letters and fl(v) ∼ fl(w), then v ∼ w. By Lemma 34, ∼ is therefore
algebraic and P-algebraic.
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Finally, we note a simple way of generating (uniformly) algebraic word relations.

Proposition 38. Let G be a set of unordered pairs of words. Assume that v and w have
the same set of letters if {v, w} ∈ G, and if I is an interval then v ∩ I = w ∩ I or
{(v∩I) ↓ m, (w∩I) ↓ m} ∈ G for some 0 6 m < min(I). The reflexive, transitive closure
of the relation ∼ with

a(v ↓ m)b ∼ a(w ↓ m)b

for all words a and b, pairs {v, w} ∈ G, and integers 0 6 m < min(v) = min(w) is then
an algebraic word relation. If it holds that {φ(v), φ(w)} ∈ G whenever {v, w} ∈ G and
φ : P→ P is an order-preserving injective map, then ∼ is uniformly algebraic.

We refer to ∼ as the strongest algebraic word relation with v ∼ w for {v, w} ∈ G.

Proof. Condition (a) in Definition 24 holds if and only if one has avb ∼ awb whenever
a, b, v, w are words with v ∼ w, which is evidently the case here. To check condition (b)
in Definition 24, let I = {m+ 1,m+ 2, . . . , n} be an interval in P, fix a pair {v, w} ∈ G,
and let 0 6 k < min(v) = min(w). It suffices to show that ṽ := ((v ↓ k) ∩ I) ↓ m ∼ ((w ↓
k) ∩ I) ↓ m =: w̃. Since ṽ = (v ∩ J) ↓ (m+ k) and w̃ = (w ∩ J) ↓ (m+ k) for J = k + I,
and since we know that either v∩J = w∩J or {(v∩J) ↓ l, (w∩J) ↓ l} ∈ G for an integer
0 6 l 6 m+ k, the desired conclusion follows.

Now assume that {φ(v), φ(w)} ∈ G whenever {v, w} ∈ G and φ : P → P is an order-
preserving injective map. To show that ∼ is uniformly algebraic, it suffices by Lemma 36
to check that φ(x) ∼ φ(y) whenever x and y are words with x ∼ y and φ : P → P
is an order-preserving injection. It is enough to show this when x = a(v ↓ m)b and
y = a(w ↓ m)b for some {v, w} ∈ G, where 0 6 m < min(v) = min(w) and where a and b
are arbitrary words. Observe that φ(v ↓ m) = ψ(v) ↓ m and φ(w ↓ m) = ψ(w) ↓ m where
ψ : P→ P is the map with

ψ(i) =

{
i if i 6 m

φ(i−m) +m if i > m

for i ∈ P. This map is an order-preserving injection, so we have {ψ(v), ψ(w)} ∈ G by
hypothesis, and it also holds that 0 6 m < min(ψ(v)) = min(ψ(w)). Thus

φ(x) = φ(a)(ψ(v) ↓ m)φ(b) ∼ φ(a)(ψ(w) ↓ m)φ(b) = φ(y)

holds by the definition of ∼, as desired.

The following example is instructive when comparing the definitions in this section.
Let (W,S) be a Coxeter system with length function ` : W → N. There exists a unique
associative product ◦ : W ×W → W with the property that s ◦ s = s for s ∈ S and
v ◦ w = vw if v, w ∈ W have `(vw) = `(v) + `(w). One way to derive this claim is to set
as = 1 and bs = 0 in [22, Theorem 7.1] and then notice that {Tw : w ∈ W} is a monoid
under multiplication; alternatively, see the discussion in [44, §3.10]. The resulting monoid
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(W, ◦) is often called the 0-Hecke monoid or Richardson-Springer monoid. Suppose S =

{s1, s2, s3, . . . } is countably infinite, and let
◦∼ be the equivalence relation on words with

i1i2 · · · im
◦∼ j1j2 · · · jn if and only if si1 ◦ si2 ◦ · · · ◦ sim = sj1 ◦ sj2 ◦ · · · ◦ sjn .

Let m(i, j) ∈ P t {∞} denote the order of sisj ∈ W . Then m can be any map P× P →
P t {∞} with m(i, j) = m(j, i) for all i, j and m(i, j) = 1 if and only if i = j. The

description of the monoid (W, ◦) by generators and relations in [44, §3.10] shows that
◦∼ is

the strongest equivalence relation that has vxw
◦∼vyw whenever x

◦∼y and that has a
◦∼aa

and ababa · · · ◦∼ babab · · · (both sides with m(a, b) terms) for all a, b ∈ P. In particular,
◦∼

is a word relation.

Lemma 39. Let a, b, n ∈ P and set v = ababa · · · and w = babab · · · where both words
have length n. Then v

◦∼ w if and only if m(a, b) 6 n.

Proof. It is clear that v and w are not equivalent under
◦∼ when m(a, b) > n and that v

◦∼w
when m(a, b) = n. If m(a, b) < n then by induction v = aw′

◦∼av′ ◦∼v′ ◦∼w′ ◦∼bw′ ◦∼bv′ = w
for the words v′ = ababa · · · (n− 1 letters) and w′ = babab · · · (n− 1 letters).

Proposition 40. The relation
◦∼ is algebraic if and only if m(i, j) 6 m(i+1, j+1) for all

i, j ∈ P, and uniformly algebraic if and only if m(i, j) 6 m(a, b) whenever 0 < |a − b| 6
|i− j|.

This means that if
◦∼ is uniformly algebraic then m(i, j) = m(i + 1, j + 1) for all

i, j ∈ P.

Proof. Combining Lemmas 26, 36, and 39 shows that the given conditions are necessary.
Condition (a) in Definition 24 holds for

◦∼ by construction.
Assume m(i, j) 6 m(i+1, j+1) for all i, j ∈ P and let I = [k+1, n] for some k, n ∈ N.

To check condition (b) in Definition 24, it suffices to show that if v = ababa · · · and
w = babab · · · for some a, b ∈ P, where both words have m(a, b) letters, then (v ∩ I) ↓
k
◦∼ (w ∩ I) ↓ k. This is clear when I ∩ {a, b} 6= {a, b} and holds when {a, b} ⊂ I by

Lemma 39. Thus
◦∼ is algebraic. It follows by Lemmas 36 and 39 that the condition for

◦∼ to be uniformly algebraic is also sufficient.

A generator si belongs to the center Z(W ) of W if and only if m(i, j) = 2 for all
j ∈ P \ {i}. The group W is abelian if and only if W = Z(W ), which occurs when
m(i, j) = 2 for all i < j.

Proposition 41. If W is abelian, then
◦∼ is uniformly algebraic and of finite-type. If W

is non-abelian and p ∈ P is minimal such that sp /∈ Z(W ), then
◦∼ is algebraic and of

finite-type if and only if for some q ∈ P it holds that m(i, i + q) = 3 and m(i, j) = 2 for

all p 6 i < j 6= i + q. If these conditions hold, then the word relation
◦∼ is uniformly

algebraic when p = q = 1 but not P-algebraic over any field when p > 1 or q > 1.
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We discuss the bialgebras K(
◦∼) and K

(
◦∼)

P when
◦∼ has these properties in the next

section.

Proof. The proof depends on the classification of finite Coxeter groups. The
◦∼-equivalence

classes in Wn are in bijection with the elements of the parabolic subgroup 〈s1, s2, . . . , sn〉 ⊂
W , so

◦∼ is of finite-type if and only if each of these subgroups is finite. In the listed cases,
each subgroup of this form is a finite direct product of finite symmetric groups, and is
therefore finite.

If W is abelian then both conditions in Proposition 40 obviously hold, so
◦∼ is uniformly

algebraic. Assume W is non-abelian and we have m(i, i + q) = 3 and m(i, j) = 2 for all
p 6 i < j 6= i + q, where p ∈ P is minimal with sp /∈ Z(W ). The first condition in

Proposition 40 is clear, and the second condition holds if and only if p = q = 1. Hence
◦∼

is uniformly algebraic when W is non-abelian if and only if p = q = 1. Assume instead
that p > 1 or q > 1. In this case we have 12

◦∼ 21, but the
◦∼-equivalence class of the

2-letter word p(p + q) consists of all words of the form pp · · · p(p + q)(p + q) · · · (p + q)
and so contains exactly one (12,∅)-destandardization and no (21,∅)-destandardizations.

Thus condition (a) in Definition 31 fails so
◦∼ is not P-algebraic.

Continue to assume W is non-abelian and p ∈ P is minimal with sp /∈ Z(W ). Suppose
◦∼ is algebraic and of finite-type, so that m(i, j) 6 m(i + 1, j + 1) for all i, j ∈ P. We
cannot have m(i, j) > 3 for any i < j since then 3 < m(j, 2j − i) and 〈si, sj, s2j−i〉 would
be infinite. Since sp /∈ Z(W ) but {s1, s2, . . . , sp−1} ⊂ Z(W ), there exists a minimal q ∈ P
such that m(p, p+ q) = 3. Then m(i, i+ q) = 3 for all i > p. We cannot have m(i, j) = 3
for any p 6 i < j 6= i + q as then we would also have m(i + q, j + q) = 3 so the Coxeter
graph of (W,S) would contain a cycle and some 〈s1, s2, . . . , sn〉 would be infinite. Hence
m(i, i+ q) = 3 and m(i, j) = 2 for all p 6 i < j 6= i+ q.

6 Examples

This section presents some further examples of word relations and related bialgebras.

Example 42. Define the commutation relation on words to be the relation with v ∼ w if
w is formed by rearranging the letters of v. Both K(∼) ⊂W and K

(∼)
P ⊂WP are graded

sub-bialgebras since ∼ is homogeneous and uniformly algebraic. Recording multiplicities
of the letters in each equivalence class identifies K(∼)

n with Nn. Given α ∈ Nn, let [[α]] =∑
w[w, n] ∈ K(∼)

n where the sum is over all words w with max(w) 6 n and with exactly αi
letters equal to i. The product and coproduct of K(∼) then have the formulas ∇�([[α]]⊗
[[β]]) = [[αβ]] where αβ means concatenation and ∆�([[α]]) =

∑
α=α′+α′′ [[α

′]] ⊗ [[α′′]]
where the sum is over α′, α′′ ∈ Nn.

Let Hn ∈ K(∼)
P denote the n-letter packed word 111 · · · 1, so that H0 = ∅ is the unit

element in K
(∼)
P . Each Hn is homogeneous of degree n, and the algebra structure on K

(∼)
P

is just the polynomial algebra k〈H1, H2, . . . 〉 where H1, H2, . . . are interpreted as non-

commuting indeterminates. The coproduct of K
(∼)
P satisfies ∆�(Hn) =

∑n
i=0 Hi ⊗Hn−i.
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This graded Hopf algebra is commonly known as the algebra of noncommutative symmetric
functions NSym [12] or Leibniz-Hopf algebra.

Example 43. Define K-equivalence to be the strongest algebraic word relation with
a ∼ aa for all a ∈ P. This is the case of the relation

◦∼ described in the previous section
when (W,S) is a universal Coxeter, i.e., when m(i, j) =∞ for all i < j. K-equivalence is
therefore uniformly algebraic but neither homogeneous nor of finite-type. One has v ∼ w
if and only if v and w coincide after all adjacent repeated letters are combined.

Each equivalence class under ∼ contains a unique reduced word with no equal adjacent
letters, which we call a partial (small) multi-permutation. A (small) multi-permutation is
a partial multi-permutation that is also a packed word. This notion of a multi-permutation
is what is intended in [24, Definition 4.1], which omits our condition about being a packed
word (and so inadvertently gives the definition of a partial multi-permutation).

For a partial multi-permutation w with max(w) 6 n, define [[w, n]] =
∑

u∼w[u, n] ∈
K(∼)
n . Given an arbitrary list w1, w2, . . . of distinct partial multi-permutations with letters

in [n] and coefficients c1, c2, · · · ∈ k, we abbreviate our notation by setting

[[c1w
1 + c2w

2 + . . . , n]] = c1[[w1, n]] + c2[[w2, n]] + · · · ∈ K (∼)[n]

and
[[w1 ⊗ w2, n]] = [[w1, n]]⊗ [[w2, n]] ∈ K (∼)[n]⊗K (∼)[n].

If v and w are partial multi-permutations with letters in [m] and [n], respectively, then

∇�([[v,m]]⊗ [[w, n]]) = [[v ? (w ↑ m),m+ n]] ∈ K (∼)[m+ n]

where ? is the multishuffle product described by [24, Proposition 3.1], while

∆�([[w, n]]) = [[Nw, n]] ∈ K (∼)[n]⊗K (∼)[n]

where N is the cuut coproduct defined in [24, §3]. From (4.6) and (4.7), these formulas
completely determine the (co)product of the species coalgebroid (K (∼),∇�, ι�,∆�, ε�).

The linearly compact Hopf algebra (K̂
(∼)
P ,∇�, ι�,∆�, ε�) is what Lam and Pylyavskyy

call the small multi-Malvenuto-Reutenauer bialgebra mMR [24, §4]. Theorem 32 for the
special case of K-equivalence recovers [24, Theorem 4.2], which asserts somewhat impre-
cisely that “mMR is a bialgebra” (despite the fact that its coproduct only makes sense as
a map mMR→ mMR ⊗̂mMR). The linearly compact Hopf algebra mMR is the algebraic
dual of what Lam and Pylyavskyy call the big multi-Malvenuto-Reutenauer Hopf algebra
MMR [24, §7]. The assertion that MMR has an antipode [24, Proposition 7.8] follows
from Theorem 32 via this duality.

Example 44. Define the K-commutation relation to be the transitive closure ∼ of K-
equivalence and the commutation relation. This is the weakest word relation, in the sense
that any word relation is a subrelation of ∼. As the relation ∼ is the special case of
◦∼ when W is abelian, it is uniformly algebraic, inhomogeneous, and of finite-type by
Proposition 41.
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The∼-equivalence classes in Wn are in bijection with subsets I ⊂ [n]. All packed words

w with max(w) = n belong to the same ∼-equivalence class. If we let κn ∈ K(∼)
P denote the

sum of these words, then κn = ∇(n−1)
� (x⊗x⊗· · ·⊗x) for x = κ1 = 1+11+111+ . . . . Thus

K
(∼)
P coincides as an algebra with k[x], but its coproduct has ∆�(x) = x⊗1+x⊗x+1⊗x.

This is the q = 1 version of the univariate infiltration bialgebra discussed, for example, in
[21, §2.3.3.4].

Example 45. Define Knuth equivalence to be the strongest algebraic word relation with

bac ∼ bca, acb ∼ cab, aba ∼ baa, and bab ∼ bba

for all a < b < c. This relation is of ubiquitous significance in combinatorics. Its equiva-
lence classes are the sets of words with the same insertion tableau under the RSK corre-
spondence.

Suppose λ = (λ1 > λ2 > . . . > λm > 0) is an integer partition and w = w1w2 · · ·wm is
the factorization of a word w into maximal weakly increasing subwords. Slightly abusing
standard terminology, say that w is a semistandard tableau of shape λ if `(wi) = λm+1−i
for i ∈ [m] and wij > wi+1

j whenever both sides are defined. For example, ∅, 645123,
2211, and 655133 are semistandard tableaux of the respective shapes ∅, (3, 2, 1), (2, 2),
and (3, 2, 1).

Each Knuth equivalence class contains a unique semistandard tableau T . When
max(T ) 6 n, write [[T, n]] =

∑
w∼T [w, n] ∈ K(∼)

n . Since T ∩ [n] is a semistandard tableau
whenever T is, it follows that the product and coproduct of K(∼) have the formulas

∇�([[U,m]]⊗ [[V, n]]) =
∑
T

[[T,m+n]] and ∆�([[T, n]]) =
∑
T∼UV

[[U, n]]⊗ [[V, n]] (6.1)

where the first sum is over semistandard tableaux T with T∩[m] = U and T∩[m+1,∞) ∼
V ↑ m, and the second sum is over pairs of semistandard tableaux U and V with T ∼ UV .

Similar formulas for the (co)product of the Hopf algebra K
(∼)
P are noted in [25, 37].

The subalgebra of K
(∼)
P spanned by Knuth equivalence classes of permutations is the

Poirier-Reutenauer Hopf algebra PR [41]. Theorem 32 for Knuth equivalence recovers
[41, Theorem 3.1].

Example 46. Recall that K-Knuth equivalence is the strongest algebraic word relation
with

bac ∼ bca, acb ∼ cab, aba ∼ bab, and a ∼ aa (6.2)

for all integers a < b < c. Proposition 38 implies that this relation is uniformly algebraic.
Though less well-studied than its homogeneous analogue, K-Knuth equivalence appears
to be an equally fundamental case of interest. Its relationship with Hecke insertion [7] is
parallel to that of Knuth equivalence with the RSK correspondence.

Again with minor abuse of standard terminology, define an increasing tableau to be a
semistandard tableau with no equal adjacent letters, i.e., in which every weakly increasing
consecutive subword is strictly increasing. For example, the words ∅ or 645123 or 5612
or 545234 are all increasing tableaux under our definition.
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There are finitely many increasing tableaux with all letters in a given finite set [37,
Lemma 3.2] and every K-Knuth equivalence class contains at least one increasing tableau
[13, Lemma 58]. Thus, K-Knuth equivalence is of finite-type and a somewhat improved

way of indexing the elements of K(∼)
n is to define [[T, n]] =

∑
w∼T [w, n] for each increasing

tableau T with max(T ) 6 n. The usefulness of this construction is limited, since it is
not known how to easily detect when two increasing tableaux are K-Knuth equivalent.
There is an algorithm to compute all K-Knuth classes of words with a given set of letters,
however [13].

It is an open problem to find an irredundant indexing set for K-Knuth equivalence
classes, with respect to which one can describe explicitly the product and coproduct of
the bialgebras K(∼) and K

(∼)
P . Patrias and Pylyavskyy [37] refer to the latter as the K-

theoretic Poirier-Reutenauer bialgebra KPR. They note that KPR is not a Hopf algebra
[37, §4] and give some (necessarily inexplicit) formulas for its product and coproduct; see
[37, Theorems 4.3, 4.5, 4.10, and 4.12]. Theorem 32 for K-Knuth equivalence recovers
[37, Theorem 4.15].

As noted in [8, Remark 5.10] and [13, §4], the set of reduced words in a K-Knuth
equivalence class may fail to be spanned by the homogeneous relations bac ∼ bca, acb ∼
cab, and aba ∼ bab for a < b < c. The graded sub-bialgebra K

(∼)
R ⊂ K(∼) is thus in some

sense not any easier to study.
We mention one other property of this relation. Define weak K-Knuth equivalence to

be the word relation ≈ with v ≈ w if v ∼ w or if v = v1v2v3 · · · vn and w = v2v1v3 · · · vn.
Let wr be the word obtained by reversing w. If v ≈ w then vrv ∼ wrw since baab ∼ bab ∼
aba ∼ abba. Buch and Samuel state the converse as [8, Conjecture 7.10], which appears
to be still unresolved:

Conjecture 47 (Buch and Samuel [8]). Two words v and w are weakly K-Knuth equiv-
alent if and only if vrv and wrw are K-Knuth equivalent.

Example 48. One avoids many pathologies of K-Knuth equivalence by considering the
stronger relation of Hecke equivalence, which is the strongest algebraic word relation ∼
with

ac ∼ ca, aba ∼ bab, and a ∼ aa

for all positive integers a < b < c, so that 13 ∼ 31 but 12 6∼ 21 [8, Definition 6.4].

As explained in Proposition 41, this is the only case of the relation
◦∼ that is uniformly

algebraic and of finite-type for which the ambient Coxeter group is non-abelian. Each set
K(∼)
n is in bijection with the symmetric group Sn+1, which we view as the set of words of

length n+ 1 containing each i ∈ [n+ 1] as a letter exactly once.

Given π ∈ Sn+1, let [[π]] =
∑

w[w, n] ∈ K(∼)
n denote the sum over Hecke words for

π, i.e., words w = w1w2 · · ·wm with π = sw1 ◦ sw2 ◦ · · · ◦ swm where ◦ is the product
defined in Section 5.3 and sa = (a, a + 1) ∈ Sn+1. The coproduct of K(∼) satisfies
∆�([[π]]) =

∑
π=π′◦π′′ [[π

′]] ⊗ [[π′′]] where the sum is over π′, π′′ ∈ Sn+1. It is an open
problem to describe the product ∇�([[π′]]⊗ [[π′′]]).
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We have a better understanding of the graded bialgebra of reduced classes K
(∼)
R when

∼ is Hecke equivalence. This bialgebra is the main topic of our complementary paper
[32], which derives a recursive formula for the product of any two basis elements in K(∼)

R .
For another point of comparison with K-Knuth equivalence, define weak Hecke equiv-

alence to be the word relation ≈ with v ≈ w if v ∼ w or if v = v1v2v3 · · · vn and
w = v2v1v3 · · · vn. The analogue of Conjecture 47 for Hecke equivalence is known to be
true:

Proposition 49 ([17, Theorem 6.4]). Two words v and w are weakly Hecke equivalent if
and only if vrv and wrw are Hecke equivalent.

Example 50. Fix integers p, q ∈ P and define ≈ to be the strongest algebraic word
relation with

(i) a(a+ q)a ≈ (a+ q)a(a+ q) for all integers a > p,

(ii) ab ≈ ba for all positive integers a < b with a < p or b 6= a+ q, and

(iii) a ≈ aa for all positive integers a.

When p = q = 1 this relation coincides with Hecke equivalence from Example 48. If
min{p, q} > 1 then ≈ corresponds to the cases of

◦∼ in Proposition 41 that are algebraic
and of finite-type but not P-algebraic. In the latter situation K(≈) is a bialgebra, but
K

(≈)
P is not a sub-bialgebra of WP. If p = 1 and we write ∼ for Hecke equivalence, then

the subspace
(q)K(≈) :=

⊕
r∈N

K(≈)
qr ⊂ K(≈)

is a sub-bialgebra satisfying (q)K(≈) ∼= K(∼) ⊗K(∼) ⊗ · · · ⊗K(∼) (q factors).

Example 51. Let ∼ be the transitive, reflexive closure of the relation that satisfies

puvuq ∼ puvq for all words p, q, u, and v.

We refer to this relation as left-regular band (LRB) equivalence. It is straightforward
to check that LRB equivalence is a uniformly algebraic word relation of finite-type. The
reduced words for this relation are the words with all distinct letters, often called injective
words or partial permutations. Distinct reduced words for LRB equivalence are never
equivalent. The quotient of the free monoid by ∼ is the free left-regular band discussed,
for example, in [5, §1.3]. The packed injective words are precisely the permutations of [n]

for all n ∈ N, which index a basis for K
(∼)
P . By considering this basis, it is easy to see

that the algebra structures on K
(∼)
P and the Malvenuto-Poirier-Reutenauer Hopf algebra

FQSym mentioned at the end of Section 2.3 are isomorphic. The coproduct for K
(∼)
P is

more complicated than for FQSym, however, and is no longer graded.
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Many other algebraic word relations appear in the literature; for example, the hy-
poplactic relation (see [23, Definition 4.16] or [34, Definition 4.2]), sylvester equivalence
(see [20, Definition 8]), hyposylvester equivalence and metasylvester equivalence (see [35,
§3]), Baxter equivalence (see [14, Definition 3.1]), and the täıga relation (see [42, Eq.
(8)]) are all uniformly algebraic, homogeneous word relations. For sylvester and Baxter

equivalence, the associated Hopf algebra K
(∼)
P recovers the Loday-Ronco algebra of planar

binary trees [4, 26] and the Baxter Hopf algebra of twin binary trees [14], respectively.
We mention one other miscellaneous example which will be of significance in Section 8.

Example 52. Define exotic Knuth equivalence to be the strongest algebraic word relation
with

bac ∼ bca, acb ∼ cab, bba ∼ bab ∼ abb, and xyzy ∼ yzyx

for all positive integers a < b < c and x 6 y < z. Proposition 38 implies that ∼ is
homogeneous and uniformly algebraic. This relation does not seem to have been studied
previously. A sensible invariant to consider is the sequence (dn)n=0,1,2,... giving the graded

dimension of K
(∼)
P , i.e., in which dn counts the ∼-equivalence classes of packed words of

length n. This sequence starts as

(dn)n=0,1,2,... = (1, 1, 3, 9, 31, 110, 412, 1597, 6465, 27021 . . . )

but does not match any existing entry in [45].

7 Combinatorial bialgebras

A composition α of n ∈ N, written α � n, is a sequence of positive integers α =
(α1, α2, . . . , αl) with α1 + α2 + · · ·+ αl = n. The nonzero numbers αi are the parts of the
composition. The unique composition of n = 0 is the empty word ∅. Let k[[x1, x2, . . . ]] be
the algebra of formal power series with coefficients in k in a countable set of commuting
variables. The monomial quasi-symmetric function Mα indexed by a composition α � n
with l parts is

Mα =
∑

i1<i2<···<il

xα1
i1
xα2
i2
· · ·xαlil ∈ k[[x1, x2, . . . ]].

When α is the empty composition, set M∅ = 1.
For each n ∈ N, the set {Mα : α � n} is a basis for a subspace QSymn ⊂ k[[x1, x2, . . . ]].

The vector space of quasi-symmetric functions

QSym =
⊕
n∈N

QSymn

is a subalgebra of k[[x1, x2, . . . ]]. This algebra is a graded Hopf algebra whose coproduct
is the linear map with

∆(Mα) =
∑
α=βγ

Mβ ⊗Mγ
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and whose counit is the linear map with ε(M∅) = 1 and ε(Mα) = 0 for α 6= ∅ [1, §3].
Each α � n can be rearranged to form a partition of n, denoted sort(α). The monomial

symmetric function indexed by a partition λ is mλ =
∑

sort(α)=λMα. Write λ ` n when λ

is a partition of n and let Symn = k-span{mλ : λ ` n}. The subspace

Sym =
⊕
n∈N

Symn ⊂ QSym

is the familiar graded Hopf subalgebra of symmetric functions.
Let NSym = k〈H1, H2, . . . 〉 be the graded Hopf algebra of noncommutative symmetric

functions described in Example 42, that is, the k-algebra of polynomials in non-commuting
indeterminates H1, H2, H3, . . . , where Hn has degree n and the coproduct has

∆(Hn) =
n∑
i=0

Hi ⊗Hn−i.

Given α � n with l parts, let Hα = Hα1Hα2 · · ·Hαl and define H∅ = H0 = 1. NSym is the
graded dual of QSym via the bilinear form NSym× QSym→ k in which {Hα} and {Mα}
are dual bases [1, §3].

If ζ : V → k[t] is a map and a ∈ k, then let ζ|t=a : V → k be the map v 7→ ζ(v)(a).

Definition 53. Suppose (V,∆, ε) ∈ Comon(GrVeck) is a graded coalgebra. If ζ : V → k[t]
is a graded linear map with ζ|t=0 = ε, then (V,∆, ε, ζ) is a combinatorial coalgebra.

Definition 54. Suppose (V,∇, ι,∆, ε) ∈ Bimon(GrVeck) is a graded bialgebra. If ζ : V →
k[t] is a graded algebra morphism with ζ|t=0 = ε, then (V,∇, ι,∆, ε, ζ) is a combinatorial
bialgebra.

A combinatorial Hopf algebra is a combinatorial bialgebra (V,∇, ι,∆, ε, ζ) in which
(V,∇, ι,∆, ε) is a Hopf algebra. These definitions are minor generalizations of the notions
of combinatorial coalgebras and Hopf algebras in [1], where it is required that V have
finite graded dimension and dimV0 = 1.

When the structure maps are clear from context, we refer to just the pair (V, ζ) as a
combinatorial coalgebra or bialgebra. A morphism φ : (V, ζ) → (V ′, ζ ′) of combinatorial
coalgebras or bialgebras is a graded coalgebra or bialgebra morphism φ : V → V ′ satisfying
ζ ′ = ζ ◦ φ. The map ζ is the character of a combinatorial coalgebra or bialgebra (V, ζ).

Remark 55. Specifying a graded linear map (respectively, algebra morphism) V → k[t]
is equivalent to defining a (multiplicative) linear map V → k. We define the character
ζ to be a map V → k[t] since this extends more naturally to the linearly compact case.
This convention differs from [1, 32], where the character of a combinatorial coalgebra is
defined to be a linear map V → k.

Example 56. There is a graded algebra morphism ζQSym : QSym → k[t] that has
ζQSym(M∅) = 1, ζQSym(M(n)) = tn for each n > 1, and ζQSym(Mα) = 0 for all other
compositions α. One way to see that the graded linear map ζQSym is an algebra morphism
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is to observe that it is the restriction of the algebra morphism k[[x1, x2, . . . ]]→ k[[t]] that
sets x1 = t and xn = 0 for all n > 1. The pair (QSym, ζQSym) is a combinatorial Hopf
algebra.

Suppose (V,∆, ε, ζ) is a combinatorial coalgebra. Define ∆(1) = ∆ and for m > 2 set

∆(m−1) =
(
∆(m−2) ⊗ id

)
◦∆ : V → V ⊗m.

Let ζ∅ := ζ|t=0 = ε. Given α � n > 0, let ζα : V → k be the map whose value at v ∈ V is
the coefficient of tα1 ⊗ tα2 ⊗ · · · ⊗ tαm in the image of v under the map

V
∆(m−1)

−−−−→ V ⊗m
ζ⊗m−−→ k[t]⊗m.

Define ψ : V → QSym by

ψ(v) =
∑
α

ζα(v)Mα for v ∈ V (7.1)

where the sum is over all compositions. This a priori infinite sum belongs to QSym since
if v ∈ Vn is homogeneous of degree n ∈ N then ψ(v) =

∑
α�n ζα(v)Mα. Thus, ψ is a graded

linear map. The pair (QSym, ζQSym) is the terminal object in the category of combinatorial
(co/bi)algebras:

Theorem 57 (Aguiar, Bergeron, Sottile [1]). Let (V, ζ) be a combinatorial coalgebra. The
map (7.1) is the unique morphism of combinatorial coalgebras ψ : (V, ζ)→ (QSym, ζQSym).
If (V, ζ) is a combinatorial bialgebra, then ψ is a morphism of graded bialgebras.

Proof. This result is only slightly more general than [1, Theorem 4.1] and has essentially

the same proof. We sketch the argument. Let N̂Sym denote the completion of NSym with
respect to the basis {Hα}. Since NSym is a graded algebra, N̂Sym is a linearly compact
algebra. Write 〈·, ·〉 for both the tautological form V × V ∗ → k and the bilinear form

QSym×N̂Sym→ k, continuous in the second coordinate, relative to which the pseudobasis
{Hα} ⊂ N̂Sym is dual to the basis {Mα} ⊂ QSym. Both forms are nondegenerate. We
view the dual space V ∗ as the linearly compact algebra with unit element ε dual to the
coalgebra V via the tautological form. The linearly compact algebra structure on N̂Sym
is the one dual to the coalgebra structure on QSym.

Let [tn]f denote the coefficient of tn in f ∈ k[t] and define ζn ∈ V ∗ by ζn(v) = [tn]ζ(v),
so that ζ0 = ε. Observe that [tn]ζQSym(q) = 〈q,Hn〉 for all n ∈ N and q ∈ QSym. It follows
that there exists a unique coalgebra morphism ψ : V → QSym with ζ = ζQSym ◦ ψ if and

only if there exists a unique linearly compact algebra morphism φ : N̂Sym → V ∗ with
φ(Hn) = ζn for all n ∈ N, and when this occurs, the two maps satisfy 〈ψ(v), w〉 = 〈v, φ(w)〉
for all v ∈ V and w ∈ N̂Sym.

Write V ∗gr for the graded algebra that is the graded dual of the graded coalgebra V .
Since the unit of V ∗gr is ε = ζ0, there is a unique algebra morphism NSym → V ∗gr that
sends Hn 7→ ζn for each n ∈ N. As Vm ⊂ ker ζn for all m 6= n, this morphism is graded,
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so it extends to a unique linearly compact algebra morphism φ : N̂Sym → V ∗. The
resulting morphism φ : N̂Sym → V ∗ is evidently the unique one satisfying φ(Hn) = ζn
for all n ∈ N, and one has φ(Hα) = ζα with ζα as in (7.1). Hence, there exists a unique
coalgebra morphism ψ : V → QSym satisfying ζ = ζQSym ◦ ψ, and for this map one has
〈ψ(v), Hα〉 = 〈v, φ(Hα)〉 = 〈v, ζα〉 = ζα(v) for all v ∈ V and compositions α; in other
words, ψ is the graded linear map (7.1).1

Assume (V, ζ) is a combinatorial bialgebra. Use the symbol ∇ to also denote the
products of k[t] and QSym. Define ξ = ∇ ◦ (ζ ⊗ ζ). Then (V ⊗ V, ξ) is a combinatorial
coalgebra and it is easy to check that ∇ ◦ (ψ ⊗ ψ) and ψ ◦ ∇ are both morphisms (V ⊗
V, ξ) → (QSym, ζQSym). The uniqueness proved in the previous paragraph implies that
∇ ◦ (ψ ⊗ ψ) = ψ ◦ ∇. Since ζ is an algebra morphism, we also have ψ(1) = 1 ∈ QSym, so
ψ is a bialgebra morphism.

The results discussed so far have linearly compact analogues. Let k[[t]] denote the
algebra of formal power series in t, viewed as a linearly compact space as in Example 13.
If V ∈ V̂eck has pseudobasis {vi : i ∈ I}, then a linear map φ : V → k[[t]] is continuous
if and only if for each n ∈ N, the set of indices i ∈ I with [tn]φ(vi) 6= 0 is finite, and
φ
(∑

i∈I civi
)

=
∑

i∈I ciφ(vi) for any ci ∈ k.

Definition 58. Suppose (V,∆, ε) ∈ Comon(V̂eck). If ζ : V → k[[t]] is a continuous linear
map with ζ|t=0 = ε, then (V,∆, ε, ζ) is a linearly compact combinatorial coalgebra.

Unlike Definition 53, this definition does not require any grading on V .

Definition 59. Suppose (V,∇, ι,∆, ε) ∈ Bimon(V̂eck). If ζ : V → k[[t]] is a morphism
of linearly compact algebras with ζ|t=0 = ε, then (V,∇, ι,∆, ε, ζ) is a linearly compact
combinatorial bialgebra.

We often refer to just the pair (V, ζ) as a linearly compact combinatorial coalgebra
or bialgebra. The map ζ is the character of (V, ζ). A morphism φ : (V, ζ) → (V ′, ζ ′) of
linearly compact combinatorial (co/bi)algebras is a continuous (co/bi)algebra morphism
satisfying ζ ′ = ζ ◦ φ.

Example 60. Define Q̂Sym =
∏

n∈N QSymn ∈ V̂eck and Ŝym =
∏

n∈N Symn ∈ V̂eck to
be the completions of QSym and Sym with respect to the bases {Mα} and {mλ}. The

(co)product and (co)unit maps of QSym extend to make Q̂Sym into a linearly compact

bialgebra and Ŝym ⊂ Q̂Sym into a linearly compact sub-bialgebra. The map ζQSym extends

to a linearly compact algebra morphism Q̂Sym → k[[t]] and (Q̂Sym, ζQSym) is a linearly
compact combinatorial bialgebra.

Suppose (V,∆, ε, ζ) is a linearly compact combinatorial coalgebra. Define ∆(1) = ∆
and set

∆(m−1) =
(
∆(m−2) ⊗̂ id

)
◦∆ : V → V ⊗̂m

1Alternatively, one can consider the graded dual of the algebra morphism NSym→ V ∗gr sending Hn 7→
ζn to obtain a map (V ∗gr)

∗
gr → QSym. The composition V → (V ∗gr)

∗
gr → QSym is then a coalgebra morphism

by [15, Exercise 1.6.1(f)], and one can check that it has the same properties as ψ.
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for m > 2. Let ζ∅ := ζ|t=0 = ε. Given α � n > 0, let ζα : V → k be the map whose value
at v ∈ V is the coefficient of tα1 ⊗ tα2 ⊗ · · · ⊗ tαm in the image of v under

V
∆(m−1)

−−−−→ V ⊗̂m
ζ⊗̂m−−→ k[[t]]⊗̂m.

Define ψ : V → Q̂Sym to be the map

ψ(v) =
∑
α

ζα(v)Mα for v ∈ V (7.2)

where the sum is over all compositions α. This is the same formula as (7.1), except now
the sum may have infinitely many nonzero terms.

Theorem 61. Let (V, ζ) be a linearly compact combinatorial coalgebra. The map (7.2) is
the unique morphism of linearly compact combinatorial coalgebras

ψ : (V, ζ)→ (Q̂Sym, ζQSym).

If (V, ζ) is a linearly compact combinatorial bialgebra, then ψ is a morphism of linearly
compact bialgebras.

Proof. The proof is similar to that of Theorem 57. Write 〈·, ·〉 for both the tautological

form V ∨ × V → k and the bilinear form NSym × Q̂Sym → k, continuous in the second
coordinate, relative to which the pseudobasis {Mα} ⊂ Q̂Sym is dual to the basis {Hα} ⊂
NSym. Both forms are nondegenerate. We view the vector space V ∨ of continuous linear
maps V → k as the algebra with unit element ε dual to the linearly compact coalgebra V
via the tautological form. The algebra structure on NSym is the one dual to the linearly
compact coalgebra structure on Q̂Sym.

Define ζn ∈ V ∨ by ζn(v) = [tn]ζ(v), so that ζ0 = ε. Let φ be the unique algebra
morphism NSym → V ∨ with φ(Hn) = ζn for all n ∈ N. Since the product in V ∨ of a
sequence of continuous linear maps f1, f2, . . . , fm : V → k is the map

∇(m−1)
k (f1 ⊗̂ f2 ⊗̂ · · · ⊗̂ fm) ◦∆(m−1) : V → k,

it follows that if α = (α1, α2, . . . , αl) is a composition then φ(Hα) = φ(Hα1Hα2 · · ·Hαl) =

ζα with ζα as in (7.2). The unique map ψ : V → Q̂Sym satisfying 〈u, ψ(v)〉 = 〈φ(u), v〉
for all u ∈ NSym and v ∈ V is therefore a linearly compact coalgebra morphism with
the formula (7.2). Since ζ = ζQSym ◦ ψ if and only if 〈ζn, v〉 = 〈Hn, ψ(v)〉 for all n ∈ N
and v ∈ V , it follows that ψ is the unique morphism of linearly compact combinatorial
coalgebras (V, ζ)→ (Q̂Sym, ζQSym).

Assume (V, ζ) is a linearly compact combinatorial bialgebra. Use the symbol ∇ for

the products of k[[t]] and Q̂Sym. Define ξ = ∇ ◦ (ζ ⊗̂ ζ). Then (V ⊗̂ V, ξ) is a linearly
compact combinatorial coalgebra and the maps ∇ ◦ (ψ ⊗̂ ψ) and ψ ◦ ∇ are morphisms

(V ⊗̂ V, ξ) → (Q̂Sym, ζQSym), so they must be equal. By definition ψ(1) = 1 ∈ Q̂Sym, so
ψ is a linearly compact bialgebra morphism.
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The preceding result removes the requirement of a grading in Theorem 57, at the cost
of working with linearly compact spaces. If one needs to work with honest (bi, co)algebras,
then it is still possible to remove the requirement of a grading in Theorem 57, but then
one must impose a technical finiteness condition to ensure that the sum (7.1) belongs to
QSym.

Theorems 57 and 61 also have a version for species. Recall the definition of E from
(4.3).

Definition 62. Suppose (V ,∇, ι,∆, ε) ∈ Mon(ComonFB) and Z : V → E(k[[t]]) is a

natural transformation of functors FB → V̂eck. Assume, for all disjoint finite sets S and
T , that the following conditions hold:

(a) The tuple (V [S],∆S, εS,ZS) is a linearly compact combinatorial coalgebra.

(b) One has Z∅ ◦ ι∅(1) = 1 ∈ k[[t]].

(c) If u ∈ V [S] and v ∈ V [T ] then ZStT ◦ ∇ST (u⊗ v) = ZS(u)ZT (v).

Then (V ,∇, ι,∆, ε,Z) is a combinatorial coalgebroid.

This definition is similar to the notion of a combinatorial Hopf monoid given in [31,
§5.4]. As usual, when the other data is clear from context, we refer to just (V ,Z) as a
combinatorial coalgebroid. The natural transformation Z : V → E(k[[t]]) is the character
of (V ,Z). A morphism of combinatorial coalgebroids (V ,Z)→ (V ′,Z′) is a morphism of
species coalgebroids φ : V → V ′ such that Z = Z′ ◦ φ.

If (V, ζ) is a linearly compact combinatorial bialgebra, then (E(V ), E(ζ)) is a combi-

natorial coalgebroid. Let EQ̂Sym = E(Q̂Sym) and ZQSym = E(ζQSym). Suppose (V ,Z) is a

combinatorial coalgebroid. Define Ψ : V → EQ̂Sym to be the natural transformation such
that, for each set S, the map ΨS is the unique morphism (V [S],ZS) → (Q̂Sym, ζQSym).
This is well-defined since if σ : S → T is a bijection then ζQSym ◦ΨT ◦V [σ] = ZT ◦V [σ] =

ZS, so the maps ΨT ◦ V [σ] and EQ̂Sym[σ] ◦ ΨS must be equal as both are morphisms

(V [S],ZS)→ (Q̂Sym, ζQSym).

Corollary 63. Let (V ,Z) be a combinatorial coalgebroid. Then Ψ is the unique morphism

of combinatorial coalgebroids (V ,Z)→ (EQ̂Sym,ZQSym).

Proof. By Theorem 61, Ψ is the unique morphism V → EQ̂Sym in the category
Comon(V̂eck)-Sp satisfying Z = ZQSym ◦ Ψ. It remains to show that Ψ is a morphism

of species coalgebroids. For this, it suffices to check that Ψ∅ ◦ ι∅(1) = 1 ∈ Q̂Sym and
ΨStT ◦ ∇ST = ∇ST ◦ (ΨS ⊗̂ΨT ) for all disjoint finite sets S and T . The first property is
evident from (7.2) since Z∅ ◦ ι∅(1) = 1 ∈ k[[t]] and ∆∅ ◦ ι∅(1) = ι∅(1)⊗ ι∅(1). The second
property follows from Theorem 61 since if V = V [S] ⊗̂ V [T ] and ξ = ∇k[[t]] ◦ (ZS ⊗̂ ZT )
then (V, ξ) is a linearly compact combinatorial coalgebra, and both ΨStT ◦ ∇ST and

∇ST ◦ (ΨS ⊗̂ΨT ) are morphisms (V, ξ)→ (Q̂Sym, ζQSym).

the electronic journal of combinatorics 28(3) (2021), #P3.9 36



Suppose (V,∇, ι,∆, ε) is a graded k-bialgebra. Let X(V ) denote the set of graded
linear maps ζ : V → k[t] for which (V, ζ) is a combinatorial bialgebra. This set is a
monoid with unit element ε and product ζζ ′ := ∇k[t] ◦ (ζ ⊗ ζ ′) ◦ ∆ where ∇k[t] is the
product of k[t]. We refer to X(V ) as the character monoid of V . If V is a Hopf algebra
with antipode S, then ζ−1 := ζ ◦ S is the left and right inverse of ζ ∈ X(V ), and X(V ) is
a group with some notable properties [1].

If (V,∇, ι,∆, ε) is a linearly compact k-bialgebra then we let X(V ) denote the set of
continuous linear maps ζ : V → k[[t]] for which (V, ζ) is a linearly compact combinatorial
bialgebra. This set is again a monoid with unit element ε and product ζζ ′ := ∇k[[t]] ◦ (ζ ⊗
ζ ′) ◦∆. In turn, if (V ,∇, ι,∆, ε) ∈ Mon(ComonFB) is a species coalgebroid then we define
X(V ) to be the set of natural transformations Z : V → E(k[[t]]) for which (V ,Z) is a
combinatorial coalgebroid. This set is yet another monoid with unit element ε, in which
the product of Z,Z′ ∈ X(V ) is the morphism ZZ′ : V → E(k[[t]]) with (ZZ′)S := ZSZ′S for
each finite set S.

8 Characters and morphisms

In this section, we assume k has characteristic zero and view W as the bialgebra from
Theorem 4. Our goal here is to illustrate a variety of cases where well-known symmetric
and quasi-symmetric functions may be constructed via the morphisms in Theorems 57
and 61 and Corollary 63.

8.1 Fundamental quasi-symmetric functions

We start by examining four natural elements of X(W). Let ζ6 : W → k[t] be the linear
map

ζ6([w, n]) =

{
t`(w) if w is weakly increasing

0 otherwise
for [w, n] ∈W. (8.1)

Define ζ>, ζ<, ζ> to be the linear maps W → k[t] given by the same formula but with
“weakly increasing” replaced by “weakly decreasing,” “strictly increasing,” and “strictly
decreasing.”

Proposition 64. For each • ∈ {6,>, <,>}, we have ζ• ∈ X(W).

Proof. This is equivalent to [32, Proposition 5.4] and easily checked directly.

For each • ∈ {6,>, <,>}, we let ψ• denote the unique morphism

(W, ζ•)→ (QSym, ζQSym).

Given α = (α1, α2, . . . , αl) � n, let

I(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αl−1}.
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The map α 7→ I(α) is a bijection from compositions of n to subsets of [n−1]. Write α 6 β
if α, β � n and I(α) ⊆ I(β). The fundamental quasi-symmetric function associated to
α � n is

Lα =
∑
α6β

Mβ =
∑

i16i26...6in
ij<ij+1 if j∈I(α)

xi1xi2 · · ·xin ∈ QSymn.

The set {Lα : α � n} is a second basis of QSymn. Given α = (α1, α2, . . . , αl) � n, let β � n
be such that I(β) = [n− 1] \ I(α) and define the reversal, complement, and transpose of
α to be

αr = (αl, . . . , α2, α1), αc = β, and αt = (αr)c = (αc)r.

For a word w = w1w2 · · ·wn, define wr = wn · · ·w2w1 and

Des(w) = {i ∈ [n− 1] : wi > wi+1}.

Proposition 65 ([32, Proposition 5.5]). If [w, n] ∈ W, α � `(w), and Des(w) = I(α),
then ψ6([w, n]) = Lα, ψ>([w, n]) = Lαc , ψ>([wr, n]) = Lαr , and ψ<([wr, n]) = Lαt .

Suppose (V, ζV ) is a combinatorial bialgebra. If ι : U → V is an injective graded
bialgebra morphism then ζU := ζV ◦ ι ∈ X(U) and ι is a morphism (U, ζU) → (V, ζV ).
Similarly, if π : V → W is a surjective graded bialgebra morphism with ker π ⊂ ker ζV
then there exists a unique character ζW ∈ X(W ) with ζV = ζW ◦ π, and π is a morphism
(V, ζV )→ (W, ζW ). In the first case the unique morphism (U, ζU)→ (QSym, ζQSym) factors
through (V, ζV ) and in the second case (V, ζV )→ (QSym, ζQSym) factors through (W, ζW ).

Fix a symbol • ∈ {6,>, <,>}. The bi-ideal IP ⊂W is contained in ker ζ•, so ζ• and ψ•
factor through the quotient map π : W→WP. Let ζ̃• : WP → k[t] and ψ̃• : WP → QSym
be the unique maps with ζ• = ζ̃• ◦ π and ψ• = ψ̃• ◦ π. Then ζ̃• ∈ X(WP) and ψ̃•
is the unique morphism (WP, ζ̃•) → (QSym, ζQSym). If ∼ is a homogeneous P-algebraic

word relation, so that K
(∼)
P ⊂ WP is a graded Hopf sub-algebra, then ζ̃• restricts to

an element of X(K
(∼)
P ) and ψ̃• restricts to the unique morphism of combinatorial Hopf

algebras (K
(∼)
P , ζ̃•)→ (QSym, ζQSym).

Example 66. Suppose∼ is the commutation relation from Example 42. Recall that NSym
can be realized as the Hopf algebra K

(∼)
P by identifying Hn with the n-letter word 11 · · · 1 ∈

K(∼)
P . The character ζ̃6 ∈ X(K

(∼)
P ) corresponds to the algebra morphism NSym → k[t]

with Hn 7→ tn, and ψ̃6(Hn) = L(n) =
∑

α�nMα =
∑

λ`nmλ = hn is the nth homogeneous

symmetric function. Thus ψ̃6 gives the natural projection NSym → Sym with Hn 7→ hn
for n ∈ N.

If ∼ is an algebraic word relation so that K
(∼)
R ⊂W is a graded sub-bialgebra, then ζ•

restricts to an element of X(K
(∼)
R ) and ψ• restricts to the unique morphism (K

(∼)
R , ζ•)→

(QSym, ζQSym).

Example 67. Suppose ∼ is the Knuth equivalence relation from Example 45. If λ ` n,
then the Schur function sλ ∈ Sym has the formula sλ =

∑
α�n dλαLα where dλα is the
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number of standard tableaux of shape λ with descent set I(α) [27, Eq. (3.18)]. Let T be
a semistandard tableau of shape λ with max(T ) 6 n, and set [[T, n]] =

∑
w∼T [w, n] ∈

K(∼). The RSK correspondence gives a descent-preserving bijection between the Knuth
equivalence class of T and all standard tableaux of shape λ, so ψ6([[T, n]]) = sλ. In turn,
since the linear map QSym→ QSym with Lα 7→ Lαc restricts on Sym to the map sending
sλ 7→ sλT where λT is the transpose of λ [27, §3.6], it follows from Proposition 65 that
ψ>([[T, n]]) = sλT . Applying the bialgebra morphism ψ6 to the formulas (6.1) for the
(co)product of K(∼) gives two versions of the Littlewood-Richardson rule; see [37, §2].

8.2 Multi-fundamental quasi-symmetric functions

Fix • ∈ {6,>, <,>}. Since WP has finite graded dimension, the character ζ̃• : WP →
k[t] extends to a continuous linear map ŴP → k[[t]], which we denote with the same
symbol, and it holds that ζ̃• ∈ X(ŴP). The morphism ψ̃• : (WP, ζ̃•) → (QSym, ζQSym)

likewise extends to a continuous linear map ŴP → Q̂Sym, which we also denote with the
same symbol. This extension is the unique morphism of linearly compact combinatorial
bialgebras (ŴP, ζ̃•)→ (Q̂Sym, ζQSym).

Given finite, nonempty subsets S, T ⊂ P, write S � T if max(S) 6 min(T ) and S ≺ T
if max(S) < min(T ), and define xS =

∏
i∈S xi. In [24, §5.3], Lam and Pylyavskyy define

the multi-fundamental quasi-symmetric function of a composition α � n to be the power
series

L̃α =
∑

S1�S2�···�Sn
Sj≺Sj+1 if j∈I(α)

xS1xS2 · · · xSn ∈ Q̂Sym (8.2)

where the sum is over finite, nonempty sets S1, S2, . . . , Sn of positive integers.
If f ∈ k[[x1, x2, . . . ]], then we use the shorthand f( x

1−x) to denote the power series
obtained from f by substituting xi 7→ xi

1−xi = xi + x2
i + x3

i + . . . for each i ∈ P. It is easy

to check that if f ∈ QSym then f( x
1−x) ∈ Q̂Sym. Recall that a multi-permutation is a

packed word with no adjacent repeated letters. The functions L̃α arise naturally as the
images of the pseudobasis of the Hopf algebra mMR = K̂

(∼)
P when ∼ is K-equivalence,

under the morphisms (mMR, ζ̃•)→ (Q̂Sym, ζQSym).

Proposition 68. Let ∼ be the K-equivalence relation from Example 43. Suppose w is a
multi-permutation and define [[w]] =

∑
v∼w v ∈ K(∼)

P . If α � `(w) has Des(w) = I(α),

then ψ̃<([[w]]) = L̃α, ψ̃6([[w]]) = L̃α( x
1−x), ψ̃>([[wr]]) = L̃αr , and ψ̃>([[wr]]) = L̃αr( x

1−x).

The first identity is equivalent to [24, Theorem 5.11].

Proof. Assume w = w1w2 · · ·wn has n letters and let m1,m2, . . . ,mn ∈ P. The first
identity holds since, by Proposition 65, ψ̃< applied to the word

(w1w1 · · ·w1)(w2w2 · · ·w2) · · · (wnwn · · ·wn) ∼ w

with each wi repeated mi times gives the sum in (8.2) restricted to subsets with |Si| = mi.
It follows in a similar way that ψ̃6([[w]]) has the same formula (8.2) except with the sum
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over finite, nonempty multisets S1, S2, . . . , Sn, which is just L̃α( x
1−x). The other identities

are proved analogously.

We shift our attention to the species coalgebroid (W ,∇�, ι�,∆�, ε�). For each • ∈
{6,>, <,>}, let Z• : W → E(k[[t]]) be the natural transformation whose S-component
for each finite set S is the continuous linear map W [S] → k[[t]] with [w, λ] 7→ ζ•([w, n])
for [w, λ] ∈Wλ ⊂ W [S]. Since there are only finitely many words of a given length with
all letters at most n, the following holds:

Corollary 69. For each symbol • ∈ {6,>, <,>}, it holds that Z• ∈ X(W ).

For each • ∈ {6,>, <,>}, define Ψ• : W → EQ̂Sym to be the natural transformation

whose S-component is the continuous linear map W [S]→ Q̂Sym with [w, λ] 7→ ψ•([w, n])
for each finite set S of size n and each pair [w, λ] ∈ WS. The following is apparent from
Corollary 63:

Corollary 70. For each • ∈ {6,>, <,>}, it holds that Ψ• is the unique morphism of

combinatorial coalgebroids (W ,Z•)→ (EQ̂Sym,ZQSym).

If ∼ is an algebraic word relation so that K (∼) ⊂ W is sub-coalgebroid, then the
natural transformation Z• restricts to an element of X(K (∼)) and Ψ• restricts to the

unique morphism of combinatorial coalgebroids (K (∼),Z•)→ (EQ̂Sym,ZQSym).

Example 71. Suppose ∼ is the Hecke equivalence relation from Example 48. Given
π ∈ Sn+1, define [[π]] =

∑
w[w, n] ∈ K(∼)

n where the sum is over all Hecke words w for π,
and let

K̃π = Ψ>([[π]]), Jπ = Ψ6([[π]]), and Gπ = (−1)`(π)K̃π(−x1,−x2, . . . ). (8.3)

The functions Gπ are the stable Grothendieck polynomials [6, 7]. Following [24, 37], we
call Jπ and K̃π the weak stable Grothendieck polynomials and signless stable Grothendieck
polynomials. Write ω for the continuous linear involution of Q̂Sym with Lα 7→ Lαt .
Proposition 65 implies that Jπ = ω(K̃π). By [6, Theorem 6.12], Jπ and K̃π are Schur

positive elements of Ŝym and Gπ ∈ Ŝym.

One says that π ∈ Sn is Grassmannian if π1 < · · · < πp > πp+1 < · · · < πn for some
p ∈ [n]. In this case let λ(π) be the partition sorting (π1 − 1, π2 − 2, . . . , πp − p). If π is
Grassmannian then the functions (8.3) depend only on λ(π). Given a partition λ, define
K̃λ = K̃π, Jλ = Jπ, and Gλ = Gπ, where π ∈

⊔
n∈N Sn is any Grassmannian permutation

with λ = λ(π). By [7, Theorem 1], each Jπ is a finite N-linear combination of Jλ’s, and
each K̃π is a finite N-linear combination of K̃λ’s.

Example 72. Let ∼ be K-Knuth equivalence so that KPR = K
(∼)
P is the K-theoretic

Poirier-Reutenauer bialgebra of [37]. Then ψ̃6 is a morphism of linearly compact Hopf

algebras K̂
(∼)
P → Ŝym by [37, Theorem 6.23]. If w is a packed word and [[w]] =

∑
v∼w v ∈

K(∼)
P , then one has

ψ̃6([[w]]) = Jλ1 + Jλ2 + · · ·+ Jλm and ψ̃>([[w]]) = K̃λ1 + K̃λ2 + · · ·+ K̃λm

where λ1, λ2, . . . , λm are the (not necessarily distinct) shapes of the finite number of
increasing tableaux in the K-Knuth equivalence class of w [37, Theorem 6.24].
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8.3 Peak quasi-symmetric functions

Recall the monoidal structure on X(W): if ζ, ζ ′ ∈ X(W) then we define

ζζ ′ = ∇k[t] ◦ (ζ ⊗ ζ ′) ◦∆� ∈ X(W).

For any symbols •, ◦ ∈ {6,>, <,>}, we can therefore define ζ•|◦ = ζ•ζ◦ ∈ X(W) and let
ψ•|◦ be the unique morphism (W, ζ•|◦)→ (QSym, ζQSym). For example, if [w, n] ∈W then

ζ>|6([w, n]) =


1 if w = ∅,
2tm if w1 > · · · > wi 6 wi+1 6 . . . 6 wm where 1 6 i 6 m = `(w)

0 otherwise.

(8.4)
Similar formulas hold for the other possibilities of ζ•|◦.

One calls α = (α1, α2, . . . , αl) � n a peak composition if αi > 2 for 1 6 i < l, i.e., if
1 /∈ I(α) and i ∈ I(α) ⇒ i ± 1 /∈ I(α). The number of peak compositions of n is the
nth Fibonacci number. The peak quasi-symmetric function [46, Proposition 2.2] of a peak
composition α � n is

Kα =
∑
β�n

I(α)⊂I(β)∪(I(β)+1)

2`(β)Mβ ∈ QSymn.

Such functions are a basis for a graded Hopf subalgebra of QSym, called Stembridge’s peak
subalgebra or the odd subalgebra [1, Proposition 6.5], which we denote by OQSym.

Let Peak(w) = {i ∈ [2, n − 1] : wi−1 6 wi > wi+1} and Val(w) = {i ∈ [2, n − 1] :
wi−1 > wi < wi+1} for a word w = w1w2 · · ·wn. For each α � n, let Λ(α) � n be the peak
composition such that

I(Λ(α)) = {i > 2 : i ∈ I(α), i− 1 /∈ I(α)}.

If w is a word and α � `(w) and Des(w) = I(α), then Peak(w) = I(Λ(α)). Finally, given
a peak composition α = (α1, α2, . . . , αl), define α[ = (αl + 1, αl−1, . . . , α2, α1 − 1).

Proposition 73 ([32, Proposition 5.7]). If [w, n] ∈ W and α, β � `(w) are compositions
such that Peak(w) = I(α) and Val(w) = I(β), then ψ>|6([w, n]) = Kα, ψ<|>([w, n]) = Kβ,
ψ>|<([wr, n]) = Kα[ , and ψ6|>([wr, n]) = Kβ[ .

For each •, ◦ ∈ {6,>, <,>}, write ζ̃•|◦ = ζ̃•ζ̃◦ : WP → k[t] and ψ̃•|◦ = ψ̃•ψ̃◦ : WP →
QSym for the maps such that ζ•|◦ = ζ̃•|◦ ◦ π and ψ•|◦ = ψ̃•|◦ ◦ π where π : W→WP is the
quotient map.

Example 74. Again suppose ∼ is the commutation relation from Example 42, so that
we can identify NSym ∼= K

(∼)
P by setting Hn = 11 · · · 1 ∈ K(∼)

P . The character ζ̃>|6
corresponds to the algebra morphism NSym→ k[t] with Hn 7→ 2tn for n > 0, and we have

ψ̃>|6(Hn) = K(n) =
∑
α�n

2`(α)Mα =
∑
λ`n

2`(λ)mλ = qn
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where qn ∈ Sym is the symmetric function such that
∑

n>0 qnt
n =

∏
i>1

1+xit
1−xit (see [46,

§A.1]). Thus, in this case ψ̃>|6 is the composition of the natural projection NSym→ Sym
with the algebra morphism denoted θ : Sym→ Sym in [46, Remark 3.2].

Define OSym = k[q1, q2, q3, . . . ]. By [46, Theorem 3.8], it holds that

OSym = Sym ∩ OQSym

is a graded Hopf subalgebra of Sym. This subalgebra has a distinguished basis {Qλ}
indexed by strict partitions λ, known as the Schur Q-functions ; see [46, §A.1] for the
definition.

Example 75. Suppose ∼ is Knuth equivalence and T is a semistandard tableau of shape
λ with max(T ) 6 n. The morphism ψ>|6 : (K(∼), ζ>|6) → (QSym, ζQSym) then has
ψ>|6([[T, n]]) = Sλ where Sλ ∈ OSym is the Schur S-function of shape λ [28, Chapter
III, §8, Ex. 7]. Each Sλ is an N-linear combination of Schur Q-functions, i.e., is Schur
Q-positive.

Example 76. If ∼ is Hecke equivalence, then applying ψ> and ψ>|6 to the elements of

the natural basis K(∼)
R of the bialgebra of reduced classes K

(∼)
R gives the Stanley symmetric

functions Fπ and FC
π of types A and C; see the discussion in [32].

8.4 Symmetric functions

Suppose ∼ is a uniformly algebraic word relation. It is natural to ask when the image of
K̂

(∼)
P under ψ̃• is contained in Ŝym, or equivalently when the image of K (∼) under Ψ• is a

subspecies of E(Ŝym). In turn, one can ask when ψ̃•(κ) is Schur positive for all elements

κ ∈ K(∼)
P .

Theorem 77. Let ∼ be a uniformly algebraic word relation. The following are equivalent:

(a) The image of K̂
(∼)
P under ψ̃6 is contained in Ŝym.

(b) The image of K̂
(∼)
P under ψ̃> is contained in Ŝym.

(c) The relation ∼ extends Knuth equivalence or K-Knuth equivalence.

Moreover, if these conditions hold and E is any ∼-equivalence class of packed words, then
the symmetric functions ψ̃6(κE) and ψ̃>(κE) are both Schur positive.

There is a left-handed version of this result, in which the symbols 6 and > are replaced
by > and <, and Knuth equivalence in part (c) is replaced by reverse Knuth equivalence:
the relation with v ∼ w if and only if vr and wr are Knuth equivalent. One can ask
similar questions about (P-)algebraic word relations, but such relations do not seem to
have a nice classification.
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Proof. The continuous linear map Q̂Sym → Q̂Sym with Lα 7→ Lαc restricts to the con-
tinuous linear involution of Ŝym with sλ 7→ sλT , so parts (a) and (b) are equivalent by
Proposition 65.

Suppose (a) holds and write f ≡ g when f, g ∈ Q̂Sym are such that f−g ∈ Ŝym. Con-
sider the six words w of length three involving the letters 1, 2, and 3. By Proposition 65,
we have ψ̃6(w) ≡ 0 unless w ∈ {132, 213, 231, 312}, and ψ̃6(132) ≡ ψ̃6(231) ≡M(2,1) and

ψ̃6(213) ≡ ψ̃6(312) ≡ M(1,2). To have ψ̃6 (
∑

v∼w v) ≡ 0 for each of these words, it must
hold that 132 ∼ 213 and 231 ∼ 312, or 132 ∼ 312 and 231 ∼ 213. The former case implies
the latter since if 132 ∼ 213, then 12 = 132 ∩ {1, 2} ∼ 213 ∩ {1, 2} = 21 whence ab ∼ ba
for all a, b ∈ P as ∼ is uniformly algebraic. We conclude, by uniformity, that acb ∼ cab
and bca ∼ bac for all positive integers a < b < c.

Similarly, if w is one of the eight words of length three involving the letters 1 and 2,
then ψ̃6(w) ≡ 0 unless w ∈ {121, 221, 211, 212}, and ψ̃6(121) ≡ ψ̃6(221) ≡ M(2,1) and

ψ̃6(211) ≡ ψ̃6(212) ≡ M(1,2). To have ψ̃6 (
∑

v∼w v) ≡ 0 for each of these words, it must
hold that 121 ∼ 211 and 212 ∼ 221, or 121 ∼ 212 and 221 ∼ 211. In the first case, the
relation ∼ extends Knuth equivalence. In the second case, we have a ∼ aa for all a ∈ P
since 1 = 212 ∩ {1} ∼ 121 ∩ {1} = 11, so ∼ extends K-Knuth equivalence. Thus (a) ⇒
(c).

Examples 67 and 72 show that if (c) holds then ψ̃6(κE) and ψ̃>(κE) are both Schur
positive for any ∼-equivalence class E. In particular, (c) ⇒ (a).

Corollary 78. Assume ∼ is homogeneous and uniformly algebraic. Then the image of
K(∼) under ψ6 (equivalently, ψ>) is a sub-bialgebra of Sym if and only if ∼ extends Knuth
equivalence.

Our last result is an attempt to formulate a version of Theorem 77 for the morphisms
ψ̃•|◦. Recall the definition of exotic Knuth equivalence from Example 52.

Proposition 79. Let ∼ be a uniformly algebraic word relation. The image of K̂
(∼)
P under

ψ̃>|6 is contained in Ŝym only if ∼ extends Knuth, K-Knuth, or exotic Knuth equivalence.

Proof. The argument is similar to the proof of Theorem 77, although the calculations are
harder to carry out by hand. Again write f ≡ g when f, g ∈ Q̂Sym are such that f − g ∈
Ŝym. Suppose ∼ is a uniformly algebraic word relation such that ψ̃>|6

(
K̂

(∼)
P

)
⊂ Ŝym. If

a(a+1) ∼ (a+1)a for some positive integer a, then it is easy to deduce from Definition 35
that ab ∼ ba for all a < b, in which case ∼ extends Knuth equivalence. Therefore assume
that a(a+ 1) 6∼ (a+ 1)a for all a.

Among the permutations w ∈ S4, the eight elements 1324, 1423, 1432, 2314, 2413,
2431, 3412, and 3421 have ψ̃>|6(w) ≡ 4M(1,3), the eight elements 1243, 1342, 2143, 2341,

3142, 3241, 4132, and 4231 have ψ̃>|6(w) ≡ 4M(3,1), and the remaining elements have

ψ̃>|6(w) ≡ 0. Since 12 6∼ 21 and 23 6∼ 32 and 34 6∼ 43, we must have 1423 ∼ 1243 and
3421 ∼ 3241. It follows for I = {2, 3, 4} that 423 = 1423 ∩ I ∼ 1243 ∩ I = 243 and
342 = 3421 ∩ I ∼ 3241 ∩ I = 324. By the uniformity of ∼, we conclude that cab ∼ acb
and bca ∼ bac for all a < b < c.
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To proceed, first suppose that a ∼ aa for a ∈ P. We then have 3231 ∼ 3213 and 3123 ∼
1323 and it holds that ψ̃>|6(2321) ≡ ψ̃>|6(3123 + 1323) ≡ 4M(1,3) and ψ̃>|6(1232) ≡
ψ̃>|6(3231 + 3213) ≡ 4M(3,1), while all other words of length 4 with letters in {1, 2, 3}
belong to ∼-equivalence classes E with ψ̃>|6(κE) ≡ 0. Since 12 6∼ 21, it must hold that
2321 ∼ 3231 ∼ 3213 and 1232 ∼ 3123 ∼ 1323. Intersecting these relations with the
interval I = {2, 3} shows that 232 ∼ 323, which implies that aba ∼ bab for all integers
a < b. Thus, if a ∼ aa then ∼ extends K-Knuth equivalence.

Instead suppose that a 6∼ aa for all a ∈ P. Then 3122 ∼ 1322 and ψ̃>|6(2321) ≡
ψ̃>|6(3122 + 1322) ≡ 4M(1,3) and ψ̃>|6(3221) ≡ ψ̃>|6(1232) ≡ 4M(3,1), while all other

permutations of 1223 belong to ∼-equivalence classes E with ψ̃>|6(κE) ≡ 0. One of two
cases must then occur:

• Suppose 2321 ∼ 1232 and 3221 ∼ 3122 ∼ 1322, so that abcb ∼ bcba and abb ∼
bba for all a < b < c. Then 2133 ∼ 2313 and 2321 ∼ 3213 and 3123 ∼ 1323,
and ψ̃>|6(2133 + 2313) ≡ ψ̃>|6(3123 + 1323) ≡ 4M(1,3) and ψ̃>|6(3231 + 3213) ≡
ψ̃>|6(1332) ≡ 4M(3,1), while all other permutations of 1233 belong to ∼-equivalence

classes E with ψ̃>|6(κE) ≡ 0. Since 12 6∼ 21, we must have 3231 ∼ 3213 ∼
2133 ∼ 2313 and 3123 ∼ 1323 ∼ 1332. Intersecting these equivalences with the
interval I = {2, 3} shows that 233 ∼ 323 ∼ 332, so abb ∼ bab ∼ bba for all a < b.
Finally, we must have abaa ∼ aaba for all a < b since ψ̃>|6(1211) ≡ 4M(1,3) and

ψ̃>|6(1121) ≡ 4M(3,1), while all other words of length 4 with letters in {1, 2} belong

to ∼-equivalence classes E with ψ̃>|6(κE) ≡ 0. Thus ∼ extends exotic Knuth
equivalence.

• Suppose 2321 ∼ 3221 and 1232 ∼ 3122 ∼ 1322, so that aba ∼ baa for all a < b.
Then 2133 ∼ 2313 and 3123 ∼ 1323 and 3231 ∼ 3213, and ψ̃>|6(2133 + 2313) ≡
ψ̃>|6(3123 + 1323) ≡ ψ̃>|6(3321) ≡ 4M(1,3) and ψ̃>|6(3231 + 3213) ≡ ψ̃>|6(2331) ≡
ψ̃>|6(1332) ≡ 4M(3,1), while all other permutations of 1233 belong to ∼-equivalence

classes E with ψ̃>|6(κE) ≡ 0. Since 12 6∼ 21, we must have 1332 ∼ 3123 ∼ 1323.
Intersecting these equivalences with the interval I = {2, 3} shows that 332 ∼ 323,
so bba ∼ bab for all a < b and ∼ extends Knuth equivalence.

We conclude that the relation ∼ must extend Knuth, K-Knuth, or exotic Knuth equiva-
lence.

By Proposition 73, the image ψ̃>|6

(
K̂

(∼)
P

)
is contained in the completion of OQSym

with respect to its basis of peak quasi-symmetric functions {Kα}. By [46, Theorem 3.8],

the intersection of this completion with Ŝym is the linearly compact space of formal power
series k[[q1, q2, q3, . . . ]], which is also the completion of OSym with respect to its basis of
Schur Q-functions.

It follows from Examples 75 and 72 that if ∼ extends Knuth equivalence or K-Knuth
equivalence then ψ̃>|6(κ) is Schur Q-positive for all elements κ ∈ K(∼)

P . If we could prove
the following, then we could upgrade the “only if” in Proposition 79 to “if and only if.”
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Conjecture 80. If ∼ is exotic Knuth equivalence, then ψ̃>|6(κ) ∈ Sym for κ ∈ K(∼)
P .

An even stronger property appears to be true:

Conjecture 81. If ∼ is exotic Knuth equivalence, then ψ̃>|6(κ) is Schur positive for

κ ∈ K(∼)
P .

Curiously, ψ̃>|6(κ) is not always Schur Q-positive when κ ∈ K(∼)
P and∼ is exotic Knuth

equivalence. We have checked the two conjectures when κ = κE where E is any exotic
Knuth equivalence class of words of length at most nine. Among the 27,021 classes E of
packed words w with `(w) = 9, only 35 are such that ψ̃>|6(κE) is not Schur Q-positive.
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