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Abstract

Let G be a ribbon graph. Matthew Baker and Yao Wang proved that the rotor-
routing torsor and the Bernardi torsor for G, which are two torsor structures on the
set of spanning trees for the Picard group of G, coincide when G is planar. We prove
the conjecture raised by them that the two torsors disagree when G is non-planar.

Mathematics Subject Classifications: 05C10, 05C25

1 Introduction

This paper is aimed at completing the proof of the following conjecture proposed by
Matthew Baker and Yao Wang in [2].

Conjecture 1. Let G be a connected ribbon graph without loops or multiple edges. The
Bernardi and rotor-routing torsors bv

1 and rv agree for all vertices v if and only if G is
planar.

The “if” part of the conjecture has been proved in [2] and we will show the “only if”
part is also true:

Theorem 2. Let G be a connected non-planar ribbon graph without loops or multiple
edges. The Bernardi and rotor-routing torsors bv and rv do not agree for some vertex v
of G.

1In [2], the Bernardi torsor is denoted by βv. However, the closely related Bernardi bijection from
spanning trees to break divisors is denoted by β or β(v,e). So we change the notation here to avoid
ambiguity.
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What does the conjecture mean? Let us give a brief introduction here. One can also
see the introduction in [2].

Let G be a connected graph on n vertices. The Picard group Pic0(G) of G (also
called the sandpile group, Jacobian group, or critical group) is a discrete analogue of the
Jacobian of a Riemann surface. The cardinality of Pic0(G) is the determinant of any
(n− 1)× (n− 1) principal sub-minor of the Laplacian matrix of G and hence equals the
cardinality of the set S(G) of spanning trees of G by Kirchhoff’s Matrix-Tree Theorem.

It is natural to look for bijections between the group Pic0(G) and the set S(G). How-
ever, since one of the objects is a group, people can ask for more than a bijection. Indeed,
one can define a torsor for a group P to be a set S together with a simply transitive
action of P on S. If the set S(G) has a torsor structure for the group Pic0(G), then their
cardinalities are equal.

We are interested in two kinds of torsors. Both of them are defined for a ribbon graph
together with a basepoint vertex v. One can think of the ribbon graph as a graph drawn
on a closed orientable surface and hence having a cyclic ordering of the edges around each
vertex.

Holroyd et al. [4] defined the rotor-routing torsor rv. Then Melody Chan, Thomas
Church, and Joshua A. Grochow [3] proved that the rotor-routing torsor is independent
of the basepoint if and only if G is a planar ribbon graph.

Matthew Baker and Yao Wang [2] observed that one could use the Bernardi bijection
in [6] to define the Bernardi torsor bv and proved that the Bernardi torsor is independent
of the basepoint if and only if G is a planar ribbon graph. Moreover, they proved that
in the planar case bv and rv agree. Then they raised Conjecture 1, which is the target of
this paper.

This paper can be viewed as a complement to [2]. We adopt notation, terminology,
and some useful lemmas from [2], which are reviewed briefly in Section 2. In Section 3, we
prove some technical lemmas, which categorize all the non-planar ribbon graphs into two
types, called type A and type B. In either case, the graph is decomposed into two parts
so that in Section 4 we can handle the computation of the rotor-routing and Bernardi
process and hence prove Theorem 2.

2 Background

In this section we introduce notation and review briefly the rotor-routing torsor, the
Bernardi torsor, and some useful lemmas from [2]. We refer to [2] for more details.

For any positive integer n, we denote by [n] the set {1, 2, · · · , n}.
Let G be a graph, by which we mean a finite connected graph, possibly with loops

and multiple edges. We use V (G) to denote the vertex set of G, and E(G) the edge set of
G. Recall that a divisor on G is a formal sum of vertices with integer coefficients, written
as

∑
v∈V (G) av(v), where av ∈ Z. The degree of this divisor is

∑
v∈V (G) av, and the set of

divisors of degree d is denoted by Divd(G). Given an oriented edge −→e = −→uv, we denote
by ∂−→e the divisor (v)− (u). The group of principal divisors on G, denoted by Prin(G),
is the subgroup of Div0(G) generated by {

∑
−→uv is incident to v ∂(−→uv) : v ∈ V (G)}. We say
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that two divisors D and D′ are linearly equivalent, written D ∼ D′, if D−D′ ∈ Prin(G).
We denote the linear equivalence class of a divisor D by [D]. The Picard group of G is
defined to be Pic0(G) = Div0(G)/Prin(G).

To define the two torsors, the graph G must be endowed with a ribbon structure, mean-
ing the edges around each vertex of G have a cyclic ordering. We call a graph with such a
structure a ribbon graph. In this paper, we draw a ribbon graph on a plane (possibly with
edges crossing) such that around each vertex the counterclockwise orientation indicates
the cyclic ordering of the edges. For example, in Figure 1, the cyclic ordering around the
vertex c is (ca, cd, cf) and the cyclic ordering around the vertex b is (bf, ba, bd). A non-
planar ribbon graph is a ribbon graph that cannot be drawn on a plane with no crossings
respecting the ribbon structure. In the example, by ignoring the ribbon structure one can
draw the graph on a plane with no crossings, but as a ribbon graph it is non-planar.

For the rotor-routing torsor, we need to recall the meaning of the notation T ′ =
((x) − (y))y(T ), where T, T ′ are spanning trees and x, y are vertices. The vertex y is
viewed as a fixed sink. The input is the spanning tree T . The output T ′ = ((x)− (y))y(T )
is determined by an algorithm called rotor-routing process. Initially we orient the edges
of T towards y and put a chip at x. Then in each step of the rotor-routing process, we
(i) turn the rotor around the chip, meaning rotating the unique oriented edge whose tail
locates the chip to the next one according to the ribbon structure, and (ii) move the chip
along the newly oriented edge to its head. In each step, the set of the oriented edges is
called a rotor configuration. It is proved in [4] that at the end of this process the chip
reaches the sink y and the rotor configuration forms a spanning tree, which is the output
T ′. This defines how an element (x)− (y) of Div0(G) acts on the set S(G) of the spanning
trees of G. Because Div0(G) is freely generated by the divisors {(x)−(y) : x ∈ V (G)\{y}},
one can define the action of Div0(G) on S(G) in a natural way. It is proved in [4] that
this action descends to a simply transitive action ry of Pic0(G) on S(G), which is called
the rotor-routing torsor.

In Figure 1, let T be the spanning tree {ca, cf, ab, bd}. If one puts the sink at d and
the chip at c, then in one step the chip will reach the sink d and hence get the spanning
tree T ′ = ((c) − (d))d(T ) = {cd, cf, ab, bd}. See also Figure 13 for a more complicated
example.

For the Bernardi torsor, we need to recall the meaning of the notation β(v,e)(T ),
where T is a spanning tree, v is a vertex, e is an edge incident to v, and β(v,e) is the
Bernardi bijection from S(G) to the set of break divisors B(G). The break divisors are
certain divisors of degree g and have the property (cf. [1, Theorem 4.21]) that each linear
equivalence class of Divg(G) contains exactly one break divisor, where g = #E(G) −
#V (G) + 1 is the nullity2 of G. The map β(v,e) is induced by the Bernardi process.
Informally the Bernardi process uses a tour on the surface where the ribbon graph G is
embedded. The tour begins with (v, e), goes along the edges in the spanning tree T , and
cuts through the edges not in T . Note that in the process each edge not in T is cut twice.
Each time we first cut an edge we put a chip at the corresponding endpoint. When the
process is over, we put totally g chips and hence get a divisor of degree g, denoted by

2In [2], g is called the combinatorial genus of G.
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β(v,e)(T ). It is proved implicitly in [6] that β(v,e) is a bijection. The paper [2] gives another
proof, uses β(v,e) to define the Bernardi torsor bv, and proves that bv does not depend on
the choice of e for any fixed vertex v. In brief, the action bv of Pic0(G) on S(G) is defined
by [D] · T = T ′ ⇔ β(v,e)(T ) +D ∼ β(v,e)(T

′), where D ∈ Div0(G).
In Figure 1, the red tour shows how the Bernardi process goes and we get β(d,dc)(T ) =

(d) + (b) and β(d,dc)(T
′) = (f) + (c). So for D = (c)− (d) + (f)− (b) one gets [D] ·T = T ′.

See also Figure 14 for a more complicated example.

a

b

c

d

f

T

a

b

d

f

T ′ = ((c)− (d))d(T )

a

b

c

d

f

β(d,dc)(T ) = (d) + (b)

a

b

d

f

β(d,dc)(T
′) = (f) + (c)

c

c

Figure 1: An example of the rotor-routing and Bernardi process. The graph G has five
vertices {a, b, c, d, f} and six edges. An edge is dashed if and only if it is not in the
spanning tree. In the top two pictures, the oriented edges indicate the rotor configuration
and the square indicates the chip. In the bottom two pictures, the red tour indicates the
Bernardi process.

Comparing the two torsors, we get the following lemma, which is obviously true and
used a few times in [2], although [2] does not state it as lemma.

Lemma 3. Fix a vertex y of the graph G and an edge e incident to y. The Bernardi and
rotor-routing torsors by and ry agree if and only if β(y,e)(T

′) − β(y,e)(T ) ∼ (x) − (y) for
any vertex x and any spanning tree T , where T ′ = ((x)− (y))y(T ).

The next formula is in the proof of Theorem 4.1 in [2].

Lemma 4. In the graph G, denote the cyclic ordering of the edges around a vertex v by
(e1, a1, . . . , ak, e2, b1, . . . , bl). Then β(v,e2)(T ) − β(v,e1)(T ) ∼ ∂−→e1 + ∂−→a1 + · · · + ∂−→ak, where
T is a spanning tree of G and all the oriented edges are oriented away from v.

The next lemma is Lemma 5.3 in [2], but we state it in a different way. The original
proof still works for our statement.
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Lemma 5. Let B be a partial orientation of G, meaning each edge in the graph is oriented
in either way or not oriented. If

∑
−→e ∈B ∂

−→e ∼ 0 and B contains no directed cycle, then
B is a disjoint union of directed cuts in G. In particular, if we further assume that B
contains at least one oriented edge, then B contains a directed cut.

To conclude this section, let us prove that the two torsors bd and rd disagree in the
above example(Figure 1), which serves as a prototype of Proposition 18. In order to show
the two torsors bd and rd disagree it suffices to prove that β(d,dc)(T

′)−β(d,dc)(T ) ∼ (c)−(d)

is false by Lemma 3. This is equivalent to (f)− (b) � 0. We take B = {
−→
bf} in Lemma 5

and hence
∑
−→e ∈B ∂

−→e = (f) − (b). Assume (f) − (b) ∼ 0, then the edge bf should be a
cut by the lemma, which leads to a contradiction.

3 Technical Lemmas: a decomposition of non-planar ribbon
graph

We will use Lemma 3 to prove the main theorem. In general it is very hard to compute
T ′ = ((x)− (y))y(T ) and β(y,e)(T

′)− β(y,e)(T ). Our strategy is to decompose a graph into
two parts so that the computation is easier.

Definition 6. Let G = (V,E) be a graph and G1 = (V1, E1), G2 = (V2, E2) be two
subgraphs. If E is the disjoint union of E1 and E2 and V1 ∩ V2 = {c}, then we call G the
wedge sum of G1 and G2 at c, denoted by G1 ∨c G2.

Note that if G is connected, then G1 and G2 are also connected.
To decompose a non-planar ribbon graph in the sense of Definition 6, we start by

introducing a classical result. See, e.g., [5](Lemma 30) for a proof.

Lemma 7. For any non-planar ribbon graph G, there exists a subgraph (with the inherited
ribbon structure) which is of either type I or type II (defined as follows).

Definition 8. (See Figure 2) (1) We say that a ribbon graph is of type I if it con-
sists of three paths whose vertex sequences are (c, a1, · · · , an, b), (c, d1, · · · , dm, b), and
(c, f1, · · · , fk, b), respectively, where all the vertices are distinct and n,m, k could be 0,
and the cyclic ordering of the edges around each vertex is indicated as in the figure. To
be precise, the cyclic ordering around c is (ca1, cd1, cf1) and the cyclic ordering around b
is (bfk, ban, bdm).

(2) We say that a ribbon graph is of type II if it consists of two cycles whose vertex
sequences are (c, a1, · · · , an, c) and (c, f1, · · · , fk, c), respectively, where all the vertices are
distinct and n, k could be 0, and the cyclic ordering of the edges around each vertex is
indicated as in the figure. To be precise, the cyclic ordering around c is (ca1, cfk, can, cf1).

Furthermore, we want to show any non-planar ribbon graph G is of either type A or
type B as defined below.

Definition 9. (See Figure 3)
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· · ·

b

c

· · ·

· · ·

Type I

an

a1 f1fk

dm

d1

c
· · ·

Type II

an

a1

f1

fk

· · ·

Figure 2: Type I and II

(1) Assume a ribbon graph G contains a subgraph H of type I. Denote the cyclic ordering
of the edges around c in G by (ca1, cx1, · · · , cxN , cd1, cy1, · · · , cyM), where N > 0, M > 0,
and f1 ∈ {y1, · · · , yM}. Let G1 be the subgraph of G induced by all the edges that
are connected to one of the edge cxi’s by a path where c can only be used at the two
endpoints. Let G2 be the subgraph of G induced by the edges not in G1. In the case that
Gi(i ∈ {1, 2}) does not contain any edge, set Gi to be the one single vertex graph c. We
call (H,G1, G2) the H-decomposition3 of G.

(2) We call a non-planar ribbon graph G of type A if it contains a subgraph H of type
I such that the subgraph G1 in the H-decomposition does not contain any vertex in
V (H)\{c}.

· · ·

b

c

· · ·

· · ·

Type I

an

a1 f1fk

dm

d1

Type A

· · ·

b

c

· · ·

· · ·

an

a1 f1fk

dm

d1

G1

Figure 3: Type I and A

Remark 10. Adopt the notation G,H,G1, G2 of Definition 9.

(1) All the edge cxi’s are in G1. When N = 0, G1 has no edge.

(2) If G is of type A, then G2 contains H.

(3) G = G1 ∨c G2.

Definition 11. (See Figure 4)

(1) Assume a ribbon graph G contains a subgraph H of type II. Denote the cyclic ordering
of the edges around c in G by (ca1, cx1, · · · , cxN , can, cy1, · · · , cyM), where N > 0, M > 0,

3Strictly speaking, in Definition 9 and Definition 11 the H-decomposition depends not only on G and
H but also on c and ca1, so there are more than one H-decomposition when G and H are given. However,
any H-decomposition will work for the remaining part of the paper.
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and fk ∈ {x1, · · · , xN}, f1 ∈ {y1, · · · , yM}. Let G1 be the subgraph of G induced by all
the edges that are connected to one of the edges cxi’s by a path where c can only be used
at the two endpoints. Let G2 be the subgraph of G induced by the edges not in G1. In
the case that G2 does not contain any edge, set G2 to be the one single vertex graph c.
We call (H,G1, G2) the H-decomposition of G.

(2) We call a non-planar ribbon graph G of type B if it contains a subgraph H of type II
such that the subgraph G1 in the H-decomposition does not contain any of the vertices
a1, · · · , an.

c
· · ·

Type II

an

a1

f1

fk

· · ·

c
· · ·

Type B

an

a1

G1

Figure 4: Type II and B

Remark 12. Adopt the notation G,H,G1, G2 of Definition 11.

(1) All the edge cxi’s are in G1, and the cycle {cf1, f1f2, · · · , fkc} is also in G1.

(2) If G is of type B, then G2 contains the cycle {ca1, a1a2, · · · , anc}.
(3) G = G1 ∨c G2.

Lemma 13. If a non-planar ribbon graph G contains a subgraph H of type I, then G is
of type A.

Proof. Let G1 be as in the first part of Definition 9. If G1 does not contain any vertex
in V (H)\{c}, then G is already of type A. Otherwise, by the construction of G1 there
exists a path with vertex sequence (z0, z1, z2, · · · , zl) where z0 = c, z1 ∈ {x1, · · · , xN},
z1, z2, z3, · · · , zl−1 6= c, and zl ∈ V (H)\{c}. Without loss of generality, we may assume
that zl is the unique vertex in V (H)\{c} on the path. The strategy is to find a “smaller”
subgraph H ′ of type I to substitute H. Here by “smaller” we mean the number N in the
cyclic ordering (ca1, cx1, · · · , cxN , cd1, cy1, · · · , cyM) is smaller. There are 5 cases based
on the different positions of zl and sometimes the cyclic ordering around zl. (See Figure 5)

Case 1: zl = dj, j ∈ [m].
In this case, the subgraph H ′ can be obtained by replacing the path (c, d1, · · · , zl) in

H with the path (z0, z1, z2, · · · , zl).
Case 2: zl = aj, j ∈ [n].

This case is similar to Case 1 because the graph H is “symmetric” about the path
(c, f1, · · · , fk, b).
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· · ·

b

c

· · ·

· · ·

Case 1

an

a1 f1fk

dm

d1

· · ·

b

c

· · ·

· · ·

Case 1

an

a1 f1fk

dm

d1

· · ·

b

c

· · ·

· · ·

Case 3

an

a1 f1

fk

dm

d1

· · ·

b

c

· · ·

· · ·

Case 4

an

a1 f1fk

dm

d1

z1
· · ·

zl−1

zl

z1

· · ·

zl−1

zl

z1
· · ·

zl−1

zl

z1
· · ·

zl−1

zl

Figure 5: Some cases in the proof of Lemma 13. The two different positions of zl−1zl give
two configurations in Case 1, but they result in the same way of constructing H ′.

Case 3: zl = fj, j ∈ [k], and the cyclic ordering of edges {fjzl−1, fjfj−1, fjfj+1} around fj
is (fjzl−1, fjfj−1, fjfj+1).

In this case, the subgraph H ′ can be obtained by replacing the path (c, d1, · · · , dm, b)
in H with the path (z0, z1, z2, · · · , zl).
Case 4: zl = fj, j ∈ [k], and the cyclic ordering of edges {fjzl−1, fjfj−1, fjfj+1} around fj
is (fjzl−1, fjfj+1, fjfj−1).

This case is similar to Case 3 because the graph H is “symmetric” about the path
(c, f1, · · · , fk, b).
Case 5: zl = b.

This case can be viewed as a special case of Case 1 or Case 2.
In all these cases, the new subgraph H ′ is of type I and N decreases strictly. Hence by

repeating this process, we can get a subgraph H satisfying the second part of Definition 9.

Lemma 14. If a non-planar ribbon graph G does not contain a subgraph H of type I,
then G is of type B.

Proof. By Lemma 7 the graph G must contain a subgraph H of type II. Let G1 be as in
the first part of Definition 11. If G1 does not contain any of the vertices a1, · · · , an, then
G is already of type B. Otherwise, by the construction of G1 there exists a path with
vertex sequence (z0, z1, z2, · · · , zl) where z0 = c, z1 ∈ {x1, · · · , xN}, z1, z2, z3, · · · , zl−1 6= c,
and zl ∈ {a1, · · · , an}. Without loss of generality, we may assume that zl is the unique
vertex in {a1, · · · , an} on the path. Similar to the proof of Lemma 13, the strategy is to
find a “smaller” subgraph H ′ of type II to substitute H.

The key fact here is that the path cannot contain any of the vertices f1, · · · , fk.
Otherwise, we can get a subgraph H̃ of type I, which leads to a contradiction. Indeed,
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let zj be the last vertex in the set {f1, · · · , fk} on the path and say zj = fj′ . Then we
consider the subpath L = (zj, zj+1, · · · , zl) (see Figure 6). If the cyclic ordering of edges
{zjzj+1, fj′fj′+1, fj′fj′−1} around zj(= fj′) is (zjzj+1, fj′fj′+1, fj′fj′−1), then we can obtain

H̃ of type I by replacing the path (c, an, · · · , zl) in H with the path L. If the cyclic
ordering of edges {zjzj+1, fj′fj′+1, fj′fj′−1} around zj(= fj′) is (zjzj+1, fj′fj′−1, fj′fj′+1),

then we can obtain H̃ of type I by replacing the path (c, a1, · · · , zl) in H with the path L.

c

· · ·

an

a1

f1
fk

· · ·

c

· · ·

an

a1

f1

fk

· · ·

zjzj+1

zl
zj

zj+1

zl

Figure 6: Figures used for the construction of H̃ in Lemma 14

The remaining part of the proof is similar to the proof of Lemma 13. Set fk =
xi, z1 = xj for some i, j ∈ [N ] (see Figure 7). Note that i 6= j because fk is not in the
path. If j > i, we can get H ′ by replacing the path (c, an, · · · , zl) in H by the path
(z0, z1, z2, · · · , zl); if j < i, we can get H ′ by replacing the path (c, a1, · · · , zl) in H by
the path (z0, z1, z2, · · · , zl). In both cases, H ′ is of type II and the number N in the
cyclic ordering (ca1, cx1, · · · , cxN , can, cy1, · · · , cyM) decreases strictly. So by repeating
this process, we can get a subgraph H making G of type B.

c

· · ·

an

a1

f1xi = fk

· · ·

c

· · ·

an

a1

f1

xi = fk

· · ·

xj

zl

xj

zl

Case: j > i Case: j < i

Figure 7: Figures used for the construction of H ′ in the proof of Lemma 14

Corollary 15. Any non-planar ribbon graph is of type A or of type B (or of both types).

Proof. This is a direct consequence of Lemma 13 and Lemma 14.

4 Proof of the main result

In this section we present the proof of Theorem 2. It consists of two parts: one is for type
A and the other is for type B.

We first state a basic lemma. Let G be a graph. Assume G = G1∨cG2, where G1 and
G2 are two subgraphs. Because Div0(G) is freely generated by {(v)−(c) : v ∈ V (G)\{c}},
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we have group isomorphisms

Div0(G) '
⊕

v∈V (G)\{c}

Z((v)− (c)) ' Div0(G1)⊕Div0(G2),

and the composition φ : Div0(G) −→ Div0(G1)⊕ Div0(G2) is D 7→ (D1, D2) such that D
can be uniquely written as D = D1 + D2, where Di ∈ Div0(Gi), i = 1, 2. Furthermore,
we have the following isomorphism.

Lemma 16. The map φ descents to an isomorphism φ : Pic0(G) −→ Pic0(G1)⊕Pic0(G2).

Proof. The proof is left to the reader.

Notation: Given a decomposition G = G1 ∨cG2, we denote by ∼i the linear equivalence
relation with respect to Gi, i = 1, 2. Similarly, we denote by βi

(vi,ei)
the Bernardi bijection

with respect to Gi, i = 1, 2.

Remark 17. Let G = G1 ∨cG2 and D = D1 +D2 be a divisor of G, where Di ∈ Div0(Gi),
i = 1, 2. By Lemma 16, in order to show D � 0, it suffices to prove that D1 �1 0 or
D2 �2 0.

We are now ready to prove Theorem 2 for ribbon graphs of type A.

Proposition 18. If a non-planar ribbon graph G is of type A, then the Bernardi and
rotor-routing torsors bv and rv do not agree for some vertex v of G.

Proof. Let G and (H,G1, G2) be as in Definition 9. Recall that the cyclic ordering of
the edges around c in G is denoted by (ca1, cx1, · · · , cxN , cd1, cy1, · · · , cyM). Because G
is of type A, G2 contains H and G1 contains all the edge cxi’s. We want to prove that
bd1 6= rd1 .

Let T be a spanning tree of G that contains every edge in H except cd1 and bfk (see
Figure 8). Let d1 be the sink and put the chip at c. Then by applying the rotor-routing
process, we get another spanning tree T ′ = ((c)− (d1))d1(T ). By Lemma 3, it suffices to
show

β(d1,d1c)(T
′)− β(d1,d1c)(T ) � (c)− (d1).

Let T = T1 ∨c T2, where Ti is obtained by restricting T to Gi (i = 1, 2). Similarly, let
T ′ = T ′1 ∨c T ′2, where T ′i is obtained by restricting T ′ to Gi (i = 1, 2).

· · ·

b

c

· · ·

· · ·

an

a1 f1fk

dm

d1

G1

Figure 8: The spanning tree T . An edge is dashed if and only if it is not in the tree. The
part of the tree not in H is drawn in an abstract way.
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· · ·

b

c

· · ·

· · ·

T2

an

a1 f1fk

dm

d1

· · ·

b

c

· · ·

· · ·

T ′

2

an

a1 f1fk

dm

d1

G1 G1

Figure 9: The rotor-routing process for T ′ = ((c)−(d1))d1(T ). The oriented edges indicate
the rotor configuration and the square indicates the chip. The rotor configuration inside
G1 is omitted.

We claim that T ′2 = T2 ∪{cd1}\{ca1} (see Figure 9). It is because in the rotor-routing
process after the chip goes into G1, the process does not affect G2 until the chip quits G1

along the edge cd1 and thereby reaches the sink d1.
Now consider β(d1,d1c)(T

′) and β(d1,d1c)(T ). We have

β(d1,d1c)(T
′)− β(d1,d1c)(T ) = β2

(d1,d1c)
(T ′2)− β2

(d1,d1c)
(T2) +D,

where the divisor D is the part of β(d1,d1c)(T
′)− β(d1,d1c)(T ) contributed by G1.

By Lemma 16 (and Remark 17), if β2
(d1,d1c)

(T ′2) − β2
(d1,d1c)

(T2) �2 (c) − (d1), then

β(d1,d1c)(T
′)− β(d1,d1c)(T ) � (c)− (d1) as desired.

By comparing the Bernardi tours of T2 and T ′2 (see Figure 10), we will write

β2
(d1,d1c)

(T ′2)− β2
(d1,d1c)

(T2) = (c)− (d1) +
∑
−→e ∈B

∂−→e , (1)

where B is a partial orientation of G2 which we now define. The following 6-step process
describes the tour of T2 and we regroup them into four parts.

1. The tour cuts the edge cd1 at d1. (Part I)

2. This step starts right after the end of the previous step and ends right before the
tour visits the edge a1c for the first time. (Part II)

3. The tour goes along the edge a1c and then cuts cd1 at c. (Part I)

4. This step starts right after the end the previous step and ends right before the tour
visits the edge a1c for the second time. (Part III)

5. The tour goes along ca1 without cutting any edge. (Part I)

6. This step finishes the remaining part of the tour. (Part IV)

Similarly, the following 6-step process describes the tour of T ′2 and we regroup them
into four parts.
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1. The tour goes along the edge d1c without cutting any edge. (Part I’)

2. This step starts right after the end the previous step and ends right before the tour
cuts the edge ca1 for the first time. (Part III)

3. The tour cuts the edge ca1 at c and then goes along cd1 without cutting any edge.
(Part I’)

4. This step starts right after the end of the previous step and ends right before the
tour cuts the edge ca1 for the second time. (Part II)

5. The tour cuts the edge ca1 at a1. (Part I’)

6. This step finishes the remaining part of the tour. (Part IV)

The key observation is that the two tours share Parts II, III, IV, but the order of visits
of Parts II and III is exchanged. Now we can calculate the left hand side of (1). One finds
that Parts II, III, IV contribute the divisor

∑
−→e ∈B ∂

−→e , where B is the partial orientation
of G2 consisting of the arcs going from Part II to Part III, and the difference between
Part I and Part I’ contributes the divisor (c)− (d1). So (1) holds.

· · ·

b

c

· · ·

· · ·

β2
(d1,d1c)

(T2)

an

a1 f1fk

dm

d1

· · ·

b

c

· · ·

· · ·

β2
(d1,d1c)

(T ′

2)

an

a1 f1fk

dm

d1

I

I

II
I

III

IV

II

III

IV

I’

I’

I’

Figure 10: The Bernardi tours of T2 and T ′2. Parts II, III, and IV are indicated in red,
blue, and green respectively.

It remains to show
∑
−→e ∈B ∂

−→e �2 0. Assume by contradiction that
∑
−→e ∈B ∂

−→e ∼2 0.
Then by Lemma 5, B is a disjoint union of directed cuts in G2. Note that B contains at

least one arc
−→
bfk, so B contains a directed cut and hence G2\{edges in B} is disconnected.

This contradicts the fact that T2 is a spanning tree of G2.

It remains to prove Theorem 2 for ribbon graphs of type B, which is Proposition 20.
We need the following lemma.

Lemma 19. Let G be a graph of type B and (H,G1, G2) be as in Definition 11. Recall that
the cyclic ordering of the edges around the vertex c in G is denoted by (ca1, cx1, · · · , cxN ,
can, cy1, · · · , cyM) and all the edges cxi’s are in G1. We further assume that G has no
loops or multiple edges, then 2

∑N
i=1 ∂(−→cxi) �1 0.

Proof. All the following arguments and calculations are made with respect to G1.
Note that 2

∑N
i=1 ∂(−→cxi) ∼1

∑
−→e ∈B ∂

−→e , where B is the partial orientation {−→cxi : i ∈
[N ]} ∪ {−→yjc : cyj ∈ E(G1), j ∈ [M ]}. Assume by contradiction that

∑
−→e ∈B ∂

−→e ∼1 0.
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Because G1 has no loops or multiple edges, B contains no directed cycle. By Lemma 5,
B is a disjoint union of directed cuts of G1.

In particular,
−→
cfk belongs to a directed cut

−→
C of G1, which is a subset of B. Because

the intersection of a cut and a cycle contains at least two edges, so there is another edge

in the cycle {cfk, fkfk−1, · · · , f2f1, f1c} distinct from cfk in the cut
−→
C ⊆ B. The only

candidate is f1c and hence
−→
f1c ∈

−→
C . However,

−→
f1c and

−→
cfk cannot be in one directed cut.

We reach a contradiction.

Now we are ready to prove the following proposition. The proof is technical, so we
give an example (Example 21) after the proof.

Proposition 20. If a non-planar ribbon graph G without loops or multiple edges is of
type B, then the Bernardi and rotor-routing torsors bv and rv do not agree for some vertex
v of G.

Proof. Let G and (H,G1, G2) be as in Definition 11. Recall that the cyclic ordering of
the edges around c in G is denoted by (ca1, cx1, · · · , cxN , can, cy1, · · · , cyM). Because G
is of type B, G2 contains the cycle {ca1, a1a2, · · · , anc} and G1 contains all the edge cxi’s.
We want to prove that ban 6= ran or bc 6= rc.

Let T be a spanning tree of G that contains {ca1, a1a2, · · · , an−1an} (see Figure 11).
Let an be the sink and put the chip at c. Then by applying the rotor-routing process, we
get another spanning tree T ′ = ((c)− (an))an(T ).

Let T = T1 ∨c T2, where Ti is obtained by restricting T to Gi (i = 1, 2). Similarly, let
T ′ = T ′1 ∨c T ′2, where T ′i is obtained by restricting T ′ to Gi (i = 1, 2).

For the same reason as in the proof of Proposition 18, we have T ′2 = T2∪{can}\{ca1}.

c
· · ·

T

an

a1

G1

c
· · ·

T
′

an

a1

G1

Figure 11: The rotor-routing process for T ′ = ((c)− (an))an(T ). An edge is dashed if and
only if it is not in the tree. The oriented edges indicate the rotor configuration and the
square indicates the chip. We only show the rotor configuration for the edges in the cycle
{ca1, a1a2, · · · , anc}.

By applying the Bernardi process (see Figure 12), we have

β(an,anc)(T
′)− β(an,anc)(T ) = β2

(an,anc)(T
′
2)− β2

(an,anc)(T2) + β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T1),

because the Bernardi process for G1 and the one for G2 are independent.
We focus on G1. We rewrite the above identity as

β(an,anc)(T
′)− β(an,anc)(T ) = (c)− (an) +D + β1

(c,cy1)
(T ′1)− β1

(c,cx1)
(T1),
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c

β(an,anc)(T )

an

a1

G1

c
· · ·

an

a1

G1

· · ·

β(an,anc)(T
′)

Figure 12: The Bernardi tours of T and T ′. The key information is that the tour of T
(T ′) enters G1 via the edge cx1 (cy1).

where D = β2
(an,anc)

(T ′2)− β2
(an,anc)

(T2)− (c) + (an) ∈ Div0(G2).

By Lemma 3 and Lemma 16, if β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T1) �1 0 in G1, then ban 6= ran .

Now we begin to compute β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T1). By Lemma 4,

β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T ′1) ∼1

N∑
i=1

∂(−→cxi),

so we have

β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T1) ∼1 β
1
(c,cx1)

(T ′1)− β1
(c,cx1)

(T1) +
N∑
i=1

∂(−→cxi). (2)

In order to calculate β1
(c,cx1)

(T ′1)−β1
(c,cx1)

(T1) in the above formula, we need to elaborate

how T1 becomes T ′1 in the rotor-routing process for T ′ = ((c) − (an))an(T ). Initially, the
chip is at the vertex c and the rotor configuration is T1 ∪ T2. Then the chip goes to the
vertex x1 and the rotor configuration T1 ∪ T2 becomes T1 ∪ {cx1} ∪ T2\{ca1}. The key
observation here is that, when the chip goes back to c, the tree T1 in the rotor configuration
becomes the tree ((x1)− (c))c(T1), where the rotor-routing action is applied with respect
to G1, and hence the rotor configuration becomes ((x1)−(c))c(T1)∪{cx1}∪T2\{ca1}. For
the next step, the chip goes to x2 and the rotor configuration becomes ((x1)− (c))c(T1)∪
{cx2} ∪ T2\{ca1}. In general, we denote T

(1)
1 := T1 and T

(i+1)
1 := ((xi) − (c))c(T

(i)
1 ) for

i ∈ [N ], and hence get Table 1. Note that T ′1 = T
(N+1)
1 .

For the final part of the proof, we discuss two cases.

Case 1: In G1, β
1
(c,cx1)

(T
(i+1)
1 )− β1

(c,cx1)
(T

(i)
1 ) ∼1 (xi)− (c) for all i ∈ [N ].

In this case,

β1
(c,cx1)

(T ′1)− β1
(c,cx1)

(T1) =
N∑
i=1

(β1
(c,cx1)

(T
(i+1)
1 )− β1

(c,cx1)
(T

(i)
1 )) ∼1

N∑
i=1

∂(−→cxi).

Together with (2), we get

β1
(c,cy1)

(T ′1)− β1
(c,cx1)

(T1) ∼1 2
N∑
i=1

∂(−→cxi). (3)

Then we apply Lemma 19 and conclude that ban 6= ran .
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Position of the Chip The Rotor Configuration Remark
c T1 ∪ T2
x1 T

(1)
1 ∪ {cx1} ∪ T2\{ca1} T

(1)
1 = T1

c T
(2)
1 ∪ {cx1} ∪ T2\{ca1} T

(2)
1 = ((x1)− (c))c(T

(1)
1 )

x2 T
(2)
1 ∪ {cx2} ∪ T2\{ca1}

· · · · · · T
(i+1)
1 = ((xi)− (c))c(T

(i)
1 )

xN T
(N)
1 ∪ {cxN} ∪ T2\{ca1}

c T
(N+1)
1 ∪ {cxN} ∪ T2\{ca1} T

(N+1)
1 = ((xN)− (c))c(T

(N)
1 )

an T ′1 ∪ T ′2 T ′1 = T
(N+1)
1

Table 1: The rotor-routing process for T ′ = ((c)− (an))an(T ). The rotor-routing actions
in the last column are applied with respect to G1.

Case 2: In G1, β
1
(c,cx1)

(T
(i+1)
1 )− β1

(c,cx1)
(T

(i)
1 ) �1 (xi)− (c) for some i ∈ [N ].

In this case, we will show that bc 6= rc. Consider the spanning tree T
(i)
i ∨c T2 of G, let

c be the sink, and put the chip at xi. (Here T2 can be replaced by any spanning tree of
G2.)

By applying the rotor-routing process, we have

((xi)− (c))c(T
(i)
1 ∨c T2) = T

(i+1)
1 ∨c T2.

Running the Bernardi process, we get

β(c,cx1)(T
(i+1)
1 ∨c T2) = β1

(c,cx1)
(T

(i+1)
1 ) + β2

(c,can)(T2),

β(c,cx1)(T
(i)
1 ∨c T2) = β1

(c,cx1)
(T

(i)
1 ) + β2

(c,can)(T2),

and hence

β(c,cx1)(T
(i+1)
1 ∨c T2)− β(c,cx1)(T

(i)
1 ∨c T2) = β1

(c,cx1)
(T

(i+1)
1 )− β1

(c,cx1)
(T

(i)
1 ) � (xi)− (c),

where the last step is due to the assumption of Case 2 and Lemma 16.
By Lemma 3, this implies that bc 6= rc.

Example 21. Here we give an example to demonstrate how the proof of Proposition 20
works. In Figure 13 and Figure 14, the graph G consists of 6 vertices and 6 edges and it
is of type B. Let the spanning tree T be {ca1, a1a2, cf1, cf2}. Then T1 = {cf1, cf2}, T2 =
{ca1, a1a2}. Focusing on G2, one can see that T ′2 is {ca2, a1, a2}, whatever the tree T1 is.

Focusing on G1, one can get T ′1 = T
(2)
1 = ((f2) − (c))c(T

(1)
1 ) = ((f2) − (c))c(T1), which

is exactly Step 1 to Step 4 by ignoring
−→
cf2. Because G1 is planar, the two torsors agree

at c and hence the example belongs to Case 1 in the final part of the proof. A direct
calculation shows that β(a1,a2c)(T

′) − β(a1,a2c)(T ) = ((c) − (a2)) + ((c) − (f2)). The first
summand (c)−(a2) is contributed by G2 and the second summand (c)−(f2) is contributed

the electronic journal of combinatorics 28(4) (2021), #P4.1 15



by G1. By (3), (c)− (f2) should be linearly equivalent to 2∂(
−→
cf2), which is true because

one check that 3[(c) − (f2)] = 0 in Pic0(G1). Because (c) − (f2) � 0, the two torsors
disagree at the vertex a2.

c

a2

a1

f1f2

c

a2

a1

f1f2

c

a2

a1

f1f2

c

a2

a1

f1f2

c

a2

a1

f1f2

c

a2

a1

f1f2

T Step 1 Step 2

Step 3 Step 4 T ′ = ((c)− (a2))a2(T )

Figure 13: The rotor-routing process for T ′ = ((c) − (a2))a2(T ) in Example 21. The
oriented edges indicate the rotor configuration and the square indicates the chip.

c

a2

a1

f1f2

c

a2

a1

f1f2

β(a1,a2c)(T ) = (a2) + (f2) β(a1,a2c)(T
′) = (c) + (c)

Figure 14: The Bernardi tours of T and T ′ in Example 21.

The main Theorem 2 is a direct consequence of Corollary 15, Proposition 18, and
Proposition 20.

Remark 22. In Theorem 2, one cannot remove the assumption that G has no loops or mul-
tiple edges. Indeed, loops are invisible to both the rotor-routing torsor and the Bernardi
torsor. However, one can make a planar ribbon graph non-planar by adding loops to it,
so we must assume G is loopless in the theorem. Let G be the graph of type II with
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k = n = 1 (See Figure 2). One can check that the two torsors agree at any vertex of
G, although G is non-planar. So we must also assume G has no multiple edges in the
theorem. In our proof, the first place where we need this assumption is Lemma 19.
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