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Abstract

In this paper we consider the conjectured Erdés-Ko-Rado property for 2-pointwise
and 2-setwise intersecting permutations.

Two permutations 0,7 € Sym(n) are t-setwise intersecting if there exists a ¢-
subset S of {1,2,...,n} such that S = S7. Further, two permutations o,7 €
Sym(n) are t-pointwise intersecting if there exists a t-subset S of {1,2,...,n} such
that s = s7 for each s € S. A family of permutations 7 C Sym(n) is called ¢-
setwise (resp. t-pointwise) intersecting, if any two permutations in F are t-setwise
(resp. t-pointwise) intersecting. We say that Sym(n) has the t-setwise intersecting
property if for any family F of t-setwise intersecting permutations, |F| < t!(n —t)!.
Similarly, Sym(n) has the ¢t-pointwise intersecting property if for any family F of
t-pointwise intersecting permutations, |F| < (n — t)!.

Ellis ([“Setwise intersecting families of permutations”. J. Combin. Theory Ser.
A, 119(4):825-849, 2012]), proved that if n is sufficiently large relative to ¢, then
Sym(n) has the t-setwise intersecting property. Ellis also conjectured that this
result holds for all n > ¢. Ellis, Friedgut and Pilpel [“Intersecting families of per-
mutations.” J. Amer. Math. Soc.  24(3):649-682, 2011] also proved that for
n sufficiently large relative to ¢, Sym(n) has the ¢-pointwise intersecting property.
It is also conjectured that Sym(n) has the ¢-pointwise intersecting property for
n > 2t + 1. In this work, we prove these two conjectures for Sym(n) when ¢ = 2.

Mathematics Subject Classifications: 05C35, 05C69, 20B05
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1 Introduction

The study of intersecting properties of finite sets is a central theme in extremal combi-
natorics. A collection or family of subsets F of {1,2,...,n} is called intersecting if for
any A, B € F, AN B # @. In 1961, Erdés, Ko and Rado proved an important result
on intersecting families of k-subsets of {1,2,...,n}. This result is stated in the following
theorem. We denote the collection of all k-subsets of {1,2,...,n} by ([Z]).

Theorem 1 (Erdés, Ko, Rado [9]). For any positive integer n and k such that n > 2k,

if F is an intersecting family of (7] . then |F| < ("7Y). Moreover, if n > 2k, then
k k-1

\F| = (32)) if and only if F = F; = {A € ([Z]) | i€ A}, for some i € {1,2,...,n}.

There are several proofs and extensions of Theorem 1 in the literature [4,5,7-9,11,12,
16]. In particular, Deza and Frankl [11] extended Theorem 1 for permutations. A family of
permutations F C Sym(n) is called t-pointwise intersecting if for any o, 7 € F, there exists
distinct 41,49, ...,4; € {1,2,...,n} such that if =], for all £ € {1,2,...,t}. It is proven
in [11] that if F is a family of 1-pointwise intersecting permutations of the symmetric
group Sym(n), then |F| < (n — 1)!. In 2003, Cameron and Ku [2], independently Larose
and Malvenuto [17], proved that the only intersecting families of permutations meeting the
bound are cosets of a stabilizer of a point of Sym(n). In 2009, Godsil and Meagher [13]
gave an algebraic proof of this result; the work in this paper uses a similar algebraic
approach.

We can also consider intersecting families of permutations from a specific permutation
group, rather than all of Sym(n). For an arbitrary ¢, we say that a permutation group
G has the t-pointwise intersecting property if any family F of ¢t-pointwise intersecting
permutations, is no larger than the maximum size of a pointwise stabilizer of a t-set. Deza
and Frankl’s result [11] proves that Sym(n) has the 1-pointwise intersecting property.

A natural extension of this type of result is to consider the setwise action of the
permutation group. The family of permutations F is called t-setwise intersecting if for
any o,7 € F, there exists S € ([?}) such that S = S7. The stabilizer of a t-set is an
example of a t-setwise intersecting family of permutations. We say that a permutation
group G has the t-setwise intersecting property if any family F of t-setwise intersecting
permutations, is no larger than the maximum size of a setwise stabilizer of a t-set.

Note that 1-pointwise intersecting and 1-setwise intersecting are equivalent, so we
simply call this property intersecting.

In particular, Sym(n) has the t-setwise (resp. t-pointwise) intersecting property if for
any family F of t-setwise (resp. t-pointwise) intersecting permutations, |F| < t!(n — ¢)!
(resp. |F| < (n—1t)!).

It was also conjectured in [11] that for n sufficiently large with respect to t, a t-
pointwise intersecting family F of Sym(n) is such that |F| < (n — ¢)!. This conjecture
was proved by Ellis et al. [8] using spectral methods and the representation theory of the
symmetric group.

Theorem 2 (Ellis, Friedgut, Pilpel [8]). For n sufficiently large with respect to t, if
a family of permutations F of Sym(n) is t-pointwise intersecting, then |F| < (n —t).
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Moreover, |F| = (n—t)! if and only if F is a coset of the pointwise stabilizer of t elements
from {1,2,...,n}.
There is a similar result for ¢-setwise intersection. It was proved in 2011 by Ellis [7].

Theorem 3 (Ellis, [7]). For n sufficiently large with respect to t, if a family of permuta-
tions F of Sym(n) is t-setwise intersecting, then |F| < t!(n—t)!. Moreover, |F| = t!(n—t)!
if and only if F is a coset of a stabilizer of a t-subset of {1,2,...,n}.

The proof of Theorem 3 uses similar arguments to the proof of the Deza-Frankl con-
jecture in [8]. In both proofs, the result holds for n sufficiently large relative to ¢ and
exact bounds for n are not given. It is conjectured that for ¢t-pointwise intersection the
correct lower bound on n is 2t + 1, while for ¢-setwise intersection it is conjectured in [7]
that the result holds for all n > ¢.

In this paper we will prove that the conjectured exact lower bound on n hold in both
cases for t = 2. We also give a characterization of the sets that meet the bound. Before
we can describe this characterization, we need to define some terms.

The regular module of Sym(n) is the complex vector space with basis Sym(n)—the
elements of this module can be thought of as vectors of length | Sym(n)|. For example,
the characteristic vector for a subset S C Sym(n) is the length-| Sym(n)| vector with the
g-entry equal to 1 if g € S and 0 otherwise is, a vector in this module. This module can
be identified with the vector space C[Sym(n)] which has the structure of a left C[Sym(n)]-
module by left multiplication. So C[Sym(n)] can also be identified with a subalgebra of
the | Sym(n)| x | Sym(n)|-matrices.

It is well-known that each irreducible character of Sym(n) corresponds to a partition
A F n (denoted by x*) For each such irreducible character, let E\ be the | Sym(n)| x
| Sym(n)|-matrix with the (g, h)-entry equal to x*(hg™!). We call the image E (consid-
ered as a linear operator on C[Sym(n)]) the A-module and denote it by V.

In [13] it is shown that the characteristic vector of any maximum intersecting set in
Sym(n) is a vector in Vi) @ Vj,—11. In general, if G is any finite 2-transitive group,
then the permutation module is the sum of two irreducible representations; the trivial
representation and one denoted by ¢. In [18] it is shown for any 2-transitive group G that
the characteristic vector of any maximum intersecting set of permutations in G lies in the
sum of the trivial and the ¢-module. This is called the EKR-module property.

In this paper, we will determine the modules in which the characteristic vectors of the
maximum 2-setwise and 2-pointwise intersecting sets in Sym(n) lie. We will use spectral
methods and the representation theory of the symmetric group in our proof for Theorem 4
and Theorem 5.

We state our theorems on the 2-setwise and 2-pairwise actions as follows.

Theorem 4. Let n > 2. If F is a family of 2-setwise intersecting permutations, then
|F| < 2(n — 2)!. Moreover, for n > 6, if S is a mazimum 2-setwise intersecting family,
then its characteristic vector xs is in Vi) @ Vin—1,1] ® Vin-22)-

Theorem 5. Let n > 2. If F is a 2-pointwise intersecting family of permutations, then
|F| < (n—2)!. In addition, for n > 4 if S is a mazimum 2-pointwise intersecting family
of Sym(n), then xs in Vip © Vin—1,1 © Vin-2,2) © Vin—2,1,1)-
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We organize this paper as follows. In Section 2 and Section 3, we recall some basics
on the symmetric group Sym(n) and combinatorial objects called weighted adjacency
matrices. Section 4 is devoted to the proof of Theorem 4. In Section 5, we give the proof
for Theorem 5.

2 Background

2.1 Derangement graphs

One of the techniques to prove EKR-type theorems for groups is to use the derangement
graph. The set of derangements of a permutation group G < Sym(n) is the set of all
permutations of G without fixed points. We denote by Der(G) the set of all derangements
of the permutation group GG. The derangement graph I' is the undirected graph with
vertex set GG, where two permutations g, h € G are adjacent if and only if hg~! € Der(G).
For the case where G is symmetric group we denote I'yyp,(n) by T'y.

If F is an intersecting family of G, then in ', the elements of F form an independent
set or coclique. We say that a transitive group has the EKR property if the size of a
maximum coclique of I'g is equal to %‘ This is equivalent to the group having the
1-pointwise (or, equivalently, 1-setwise) intersecting property.

Given a graph X, we denote by «(X) and w(X) respectively the maximum size of a
coclique and maximum size of a clique of X. The following result is well-known and a
proof can be found in [15, Section 2.1].

Lemma 6 (Clique-coclique bound). Let X be a vertez-transitive graph on n vertices.
Then

a(X)w(X) <n.

Corollary 7. The symmetric group Sym(n) has the EKR property.

Proof. First we observe that w(I',) is at most the dimension, which is n in this case.
Moreover, the rows of a Latin square of order n correspond to a set of permutations that
forms a clique of size n in I',,. Using Lemma 6, we have

a(l,) < %' =(n—1)

Hence, Sym(n) has the EKR property. ]

This approach does not work in general for 2-setwise or 2-pointwise intersection. To
see this, consider Sym(n) with 2-pointwise intersection; a clique in the corresponding
derangement graph would be a sharply 2-transitive subset of Sym(n). Since such a set
does not exist for all n, the clique-coclique bound will not always hold with equality.
Rather, we will use a generalization of the ratio bound, as was used in [7,8,14]. The ratio
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bound is also known as the Delsarte bound or Hoffman bound, we refer the reader to [15]
for a proof. The generalization that we will actually use is a special case of Delsarte’s
linear programming method originally proved in [3].

For a graph X on n vertices, an n x n real symmetric matrix A = (a; ;) with constant
row sum is a weighted adjacency matriz (or a pseudo-adjacency matriz) for X if a;; =0
whenever i ¢¢x j (note that a;; could be 0 for adjacent vertices i and j). We use 1 to
denote the all ones vector and J for the all ones matrix (the dimensions will be clear from
context).

Theorem 8 (Weighted Ratio Bound). Let X be a connected graph and let A be a weighted
adjacency matrixz for X with constant row and column sum d. If the least eigenvalue of
A is T, then

VX
1—

~—

a(X) <

RIsY

Further, if equality holds for some coclique S with characteristic vector vg, then

s
V(X)]
1s an eigenvector with eigenvalue T.
Proof. Set v = |V(X)|, s = |S|, and denote A(X) by A. Let {1,ws,...,w,} be an

orthonormal basis of real eigenvectors for A with Aw; = \w;.

Define
d—T

v

M=A-1I- J.

Then M 1 =0, and for w;

since w; is orthogonal to the all ones vector. Thus, all the eigenvalues of M are non-
negative, and M is positive semidefinite. Hence, for any vector x

d—1T1

0< 2" Mz =2"Az — 7272 — o' Jr. (1)

v
Let x be the characteristic vector of a coclique of size s. Then 27 Ax = 0 and ( 1) simplifies
to

d—T
2.

0K —7s8—

Hence

and the inequality follows. If equality holds, then 27 Mx = 0; since M is positive semidef-
inite, this implies that Mz = 0. Therefore

d—T s

s
A—71hr = =—(d-71)1=(A—-71)-1. 2
(A-1hr=——Jz=—(d=71)1=(A-71]) (2)

Setting z = vg — 2 1 implies the second claim. O
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2.2 Eigenvalues of normal Cayley graphs

Let G be a group and let C' be an inverse-closed subset of G \ {1}. A Cayley graph
Cay(G, C) is graph whose vertex set is G, and two group elements g and h are adjacent
if hg=! € C. A Cayley graph is called normal if the set C is closed under conjugation.
That is, for any g € G, we have gCg~! = C. The derangement graph for a group
is a Cayley graph, in particular, I'¢ = Cay(G, Der(G)). Since Der(G) is closed under
conjugation, the derangement graph is a normal Cayley graph. In this subsection, we
review some properties of Cayley graphs and give a formula for the eigenvalues of normal
Cayley graphs.

The eigenvalues of a normal Cayley graph Cay(G, C) can be obtained from the irre-
ducible characters of the group G. We present this result in the following lemma which
is usually attributed to Babai [1], or Diaconis and Shahshahani [6]; a proof may be found
in [15, Section 11.12].

Lemma 9. Let Irr(G) be the set of all irreducible characters on a group G. If X =
Cay(G,C) is a normal Cayley graph, then eigenvalues of the adjacency matriz of X are
given by
1
— > x(9),
x(id) 2=

where x € Irr(G). The multiplicity of € is Zmi where m, is the dimension of x, and
the sum is taken over all irreducible representations x with &, = §.

We will use a weighted adjacency matrix that is formed by taking a linear combination
of matrices from the conjugacy class association scheme on Sym(n). Then, we show how
to calculate the eigenvalues of such a matrix.

For p a partition of n, let C, represent the conjugacy classes of Sym(n) with shape p,
and define the n! x n! matrix

1 ifhgteC
Aylg, h] = .
P 9, h] { 0 otherwise.

X:

The set of matrices A = {A4,},, form an association scheme called the conjugacy class
scheme on Sym(n)— in particular A, is the matrix in this association scheme correspond-
ing to the conjugacy class of permutations with shape p (see [15, Section 3.3| for details
about this association scheme). Note that the conjugacy class scheme for Sym(n) is a
symmetric association scheme since the conjugacy classes of Sym(n) are all inverse-closed.
For a conjugacy class C,, the matrix A, is the adjacency matrix of Cay(Sym(n),C,), and

by Lemma 9 the eigenvalues of A, are given by )'(i‘(’i')x(gp) where g, € C, and x is an
irreducible representation of Sym(n).

We will consider weighted adjacency matrices of the derangement graphs of Sym(n)
with the 2-setwise and the 2-pointwise actions. The adjacency matrices we consider have a
constant weight on each conjugacy class; hence we only consider matrices in the conjugacy
class association scheme for Sym(n). The next result gives a formula for the eigenvalues
of such a weighted adjacency matrix.
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Lemma 10. Let {C,|p - n} be the conjugacy classes of Sym(n), let A, be the matriz
of the conjugacy classes scheme of Sym(n) that corresponds to C,. Let A = Zpkn wpA,,
where (w,)p-n € R. Then the eigenvalues of A are

&= w ;ﬁ)X(gp)’

pkn

where g, € C, and x is an irreducible representation of Sym(n).

If the conjugacy class C, is a conjugacy class of derangements under the action of
Sym(n), then it is called a derangement class. For the setwise action on 2-sets, a derange-
ment class is any class C), in which p has no parts summing to 2. For the pointwise action,
a derangement class is any class with a corresponding partition that contains at most one
part of size 1.

3 Representations of Sym(n)

In this section we state the results on the representation theory of the symmetric group
that we need. We do not prove these results, but we refer the reader to Sagan [19] or
another such book.

The dimension of a representation is given by the value of the character on the identity
element of the group. For the symmetric group, the dimension of an irreducible represen-
tation can be computed via the well-known Hook Length Formula [19, Section 3.10].

If A n, then a pair (4, 7) is a node of the Young diagram of X if the path rightward j
cells from the top leftmost cell and then downward i cells ends on a cell of A. By (i, 7) € A,
we mean (i, 7) is a node of A. For a node (i,j) € A define

Hij={(w,j) e M1 <upU{(i,v) € A < v}

and h@j = |H1J|

Theorem 11 (Hook Length Formula [10]). Let A = n. The dimension of the character
X (this is the character corresponding to \) is

n!
H(i,j)e)\ hi,j

where the product is taken over all nodes in the Young diagram of X.

We will need to consider the low-dimensional representations of Sym(n) separately
from the ones with higher dimension. The next result is a statement giving the irreducible
representations with low dimension. We will not give a proof of this since a similar result
is proved in [15, Lemma 12.7.3].

xMid) =

Lemma 12. Let n > 13. If " is an irreducible representation of Sym(n) of dimension

less than 2(";1), then X is one of the following : [n], [1"], [n — 1,1], [2,1"7%], [n — 2,2],

22,1774, [n —2,1%] or [3,1"73].
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Remark 13. Note that the irreducible characters given in Lemma 12 have dimension less
than (g) (see [15, Lemma 12.7.3]). In fact, it is not hard to verify that they are the only
ones of dimension less than (g), for n > 11.

Next we state the well-known recursive formula for calculating the value of a character
of Sym(n) on a conjugacy class. Let X? be the value of the character x* on an element of
the conjugacy class C),. A composition is an unordered partition. We will use brackets for
the partitions corresponding to irreducible representations, and parentheses for partitions

corresponding to the conjugacy classes of Sym(n).

Lemma 14 (Murnaghan-Nakayama Rule [19]). If A\ = n and p is a composition of n, with
p= (plu P2y - - - 7pk>7 then

A 1) ANE
Xp = Z (=1) Xp\pr?
§ERH,, (N)

where RH,, (X) is the set of all rim hooks with py cells of X, and C{(§) is the number of
rows the rim hook spans minus one.

We will build weighted adjacency matrices for the derangement graphs for Sym(n)
with the setwise and the pointwise action. We will then calculate the eigenvalues of these
matrices and prove that the ratio bound holds with equality. To calculate the eigenvalues,
we will need to determine the value of the irreducible representations on specific conjugacy
classes. In our weighting, we weight many of the conjugacy classes to be 0, so we only need
to consider the values of the irreducible representations that have a non-zero weight. The
next result gives the values of the irreducible representation on these specific conjugacy
classes.

Lemma 15. The irreducible characters of Sym(n) that do not vanish on the conjugacy
classes Cny, Cin-1,1), Cn-33), Cin-431), Cin—22) and C,_321) are given in Table 3.

We end this section with considering two representations of the symmetric group. The
Young’s subgroup Sym(n — 2) x Sym(2) = Sym([n — 2,2]) is the setwise stabilizer of a
2-set. Thus, the setwise action of Sym(n) on sets of size 2 has permutation character

ind™™ ™ (Igym(2,2) = x4+ x4 x 22

Similarly, the Young’s subgroup Sym(n — 2) x Sym(1) x Sym(1) = Sym([n — 2,1,1]) is
the pointwise stabilizer of a 2-set. Thus, the pointwise action of Sym(n) on sets of size 2
has permutation character

indsym(n)(1Sym([n72,1,1])) _ X[n] + 2X[n—1,1] + X[n—Q,Q] + X[n—Z,l,l}.

Both of these decompositions follow from calculating the Kostka numbers.

In the weighted adjacency matrix that we construct, the non-trivial characters in the
decomposition of each of the permutation character will be exactly the irreducible char-
acters that achieve the minimum eigenvalue. This fact will show that the characteristic
vectors of any maximum coclique will lie in a specific Sym(n)-module.
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4 Proof of Theorem 4

In this section we will give the weighted adjacency matrix for the derangement graph of
Sym(n) with the 2-setwise action; this matrix has the form

A=wAp) +weAm_1,1) T w3Am—33) T WiAm_a31) (3)

for some positive numbers wy ws, w3 and w, which are to be determined. We are choosing
only four of the derangement classes in the association scheme (namely the conjugacy
classes with cycle types (n), (n — 1,1), (n — 3,3) and (n — 4,3,1)) to have a non-zero
weighting. The sizes of the conjugacy classes with cycle types (n), (n —1,1), (n —3,3)
and (n — 4, 3,1) are, respectively,

a=m-1, B=nn-2), 7:2(731)(71—4)!, 5:8(2)(77,—5)!

We choose our weighting so that the following three conditions hold:
(a) the trivial representation gives the eigenvalue () — 1;

(b) the nontrivial irreducible characters that are in the decomposition of the permutation
character (namely x"~*! and x["=22)) have eigenvalue —1; and

(c) all other representations give eigenvalues strictly between —1 and (g) — 1.

It is straightforward to calculate the eigenvalues of the adjacency matrices for the
four conjugacy classes we have chosen corresponding to the irreducible characters in the
decomposition of the permutation character. These values are in the following table.

Ay | Am-1) | An-33) | Am-431)
Representation
X a B Y 0
N = T =
[n—2,2] — 28 %
X 0 n(n—3) 0 n(n—23)

Table 1: Eigenvalues of Ap,), An—1,1), Am-33) and A4 3.1 afforded by M,y and
[717272]
X )

By Lemma 10, to find weightings that satisfy conditions (a) and (b) above we need to
solve the following three linear equations.

n
wia + woff + w3y + wed = ( )—1

2
—wi —wyy = —(n — 1) (4)
_WQ/B — (A)4(5 = —M
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This linear system has infinitely many solutions with two free variables. The general
solution to (4) has the form

anls,) = — (=9 + (0= 1)

1 n(n —3)
wo(s,t) = B (—5t + T)
ws(s,t) = s
wy(s,t) =t.

Thus, expressed in these two free variables, any eigenvalue of A is of the form

nn—3
(((n —1) = 98) X(n) + (% - 575) X(n-1,1) + V5X(n-3:3) + 5’5X<n47371>)

(5)

for x € Irr(Sym(n)). In other words, eigenvalues of A are functions of the parameters s
and t. For the remaining part of the proof, we shall write the eigenvalues for an irreducible
character x in function of the parameters s and ¢ (that is, &, (s,t)). We will choose values
of s and t so that all the eigenvalues of A satisfy all three conditions (a), (b), and (c).

To do this, we will define a polytope P and show for any values of (s,t) in P, the
weightings w;(s,t), for i € {1,2,3,4}, give a matrix A that satisfies the three conditions
above. We then apply Theorem 8 to this A, which shows that Theorem 4 holds.

Define P to be the polytope that is the intersection of the following half-spaces of R?

= x(id)

(

-1
27x—25y+(n2 )—(n—1)+2<0
vz —20y+ (") —tm—1)>0

P Ty P "
O<vyz<n-—1,
-3
O<5y<M.
\ 2

The polytope P is non-empty since the first two equations are those of parallel lines and
they intersect the rectangle formed by the last two equations. Note that the final two
equations imply the following result.

Lemma 16. For any (s,t) € P, the weightings wy(s,t), wa(s,t), ws(s,t) and wy(s,t) are
positive.
Next we will determine the eigenvalues of A so that Theorem 8 can be applied.

Lemma 17. Let n > 11. For any (s,t) € P, the eigenvalues of the matrix
A= wi(s,t)Am) +wa(s, t)Ag—1,1) + ws(s, 1) An—szz) + wa(s, 1) Am—s31)

are in [—1, (3) — 1]. Moreover, the eigenvalues for "= and x["=22 are the only ones
equal to —1 and the eigenvalue for xI™ is the only one equal to (Z) —1.
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Proof. Let x € Trr(Sym(n)) be such that y(id) > (;‘) Using the triangle inequality and
Lemma 16 on (5)

& < % (<<n — 1) = 18) b +

2

nin—3
( 9 ) >|X(n—1,1)| + 75|X(n—3,3)’ + 5t’X(n—4,3,1)|>

g%(((n—l)—vs)—k(w—&) —1—73—1—625)
:é((n—l)—}-w)
-5 (()-)

are

éx[n—Q»IQ] = n — 2
2(—1)1 2vs
5 [3,1m—3] + (_1>n n—1
* n—2 ( 2 )
e . 4ot
f [22,1m—4] = (_1) ! (_ ) n(n — 3)
273
n )" -1
€ 2an—2) = + (=" 1

One can immediately see that, with the exception of £, ), these eigenvalues are all
strictly less than (;‘) — 1.

So we need to show that the eigenvalues €X[3,1n—3], €X[22’1n—4]’ gxlz,m_Q] and & ) are
strictly greater than —1 whenever (s,t) € P.

When n is even, the eigenvalues are larger than —1 if

1. 2ys =26t + (") — (n— 1) >0,
2. ys<n—1,

3. 0<t
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When n is odd, the eigenvalues are larger than —1 if
1 2ys =20t + (")) —(n—1) +2 <0,

2.0<s< "(Z—;l) (comes from [3,17"73]),

n(n—3)

Combining the cases when n is even and odd, we obtain exactly the equations of P.
Since P is not empty, all the eigenvalues are greater than —1 for any (s,t) € P. This
completes the proof. O

Proof of Theorem 4 . For 2 < n < 10, we use Sagemath [20] to prove the result.
For n > 11, we use Theorem 8, we have

The second part of the proof of Theorem 4 follows immediately from the equality
in the ratio bound (see Theorem 8); thus, if S is a maximum 2-setwise intersecting set,
then vg — ((g))_l 1 is a —1l-eigenvector for A. Since for n > 6, the only irreducible

[n—1,1 n—2,2]
)

representations that give the least eigenvalue —1 are y I'and y! we have the

following corollary.

Corollary 18. Forn > 6, any characteristic vector of a mazimum 2-setwise intersecting
set of permutations in Sym(n) is in the module Vi) @ Vip—1,1] ® Vin—22]-

We note that in Sym(4) the Klein four group is a 2-setwise intersecting subgroup, and
in Sym(5), the subgroup Alt(4) is a 2-setwise intersecting subgroup. Neither characteristic
vectors of these subgroups lie in Vi) @ Vj—1,1) @ Vjn—2,9). So the Corollary does not hold
for n =4,5.

5 Proof of Theorem 5

In this section we prove Theorem 5 by constructing a weighted adjacency matrix for
the derangement graph of Sym(n) with the 2-pointwise action. This weighted adjacency
matrix will be a linear combination of the adjacency matrices in the conjugacy class
scheme for Sym(n) corresponding to the conjugacy classes with cycle types (n), (n—1, 1),
(n—2,2), (n—3,3), (n—3,2,1) and (n —4,3,1). In particular, we set

A=wAp) +weAm-1,1) T wW3Am—22) + WiAn—33) + WsAmn-321) + wWeAm-431)- (6)

Similar to the proof of Theorem 4, we will find w; for ¢ = 1,...,6 so that the following
three conditions hold:

(i) the trivial representation gives the eigenvalue 2(;) —1;
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(ii) the nontrivial irreducible characters that are in the decomposition of the 2-pointwise
permutation character (namely x"~11 =22 and y[=211)) have eigenvalue —1;
and

(iii) all other irreducible characters give eigenvalues strictly between 2(72‘) — 1 and —1.

Define

a=(n—1), B =mn(n—2), v = (Z)(n—S)!,

5—2(2)(71—4)!, u—3(g)(n—4)!, y—8(z>(n—5)!.

These numbers are respectively the sizes of the conjugacy classes with cycle type (n),
(n—1,1), (n—2,2), (n—3,3), (n—3,2,1) and (n —4,3,1). The following table gives
the eigenvalues of the matrices Ay, Am—1,1), An-22)s An-33); Am-s21) and Ap_431) in
the conjugacy class association scheme corresponding to these irreducible characters.

Awy | Ap-11) | Aw—22) | An-33) Am-321) | An-131)
Representation
X[ﬂ] a I6; y ) 7 v
VOB S 0 -1 =4 0 0
X2 0 | oty | wotw 0 0 ~ )
=211 ﬁ 0 0 ﬁ — FIET) 0

[n—1,1]

Table 2: Eigenvalues afforded by y™, x , X722 and X2 on Ay, A1,

A(n—2,2)7 A(n—3,3)7 A(n—3,2,1) and A(n—4,3,1)-

Using Lemma 10, it is straightforward to calculate the eigenvalues of A afforded by
M, bl =22 and =201 55 functions of w; where ¢ = 1,...,6. Thus, in order
to satisfy conditions (i) and (ii) above, the w; must satisfy the following system of linear
equations.

aw; + Pws + Yws + dwy + pws + vwg =n(n —1) — 1

—aw; — Yws — dwg = —(n — 1)
—Pws + Yws — Vwg = _n(nT—?)) (7)
n—1
awq + dwy — piws = —< 5 )

The system (7) has infinitely many solutions with three free variables. The following
is a general solution to (7).
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~
~ ~ ~ ~ ~ ~
I

=
VA
~

for r,s,t € R.

The eigenvalue of A corresponding to x, denoted by &, (r,s,t), as a function of r, s,
and t is the following.

& (rys,t) = Xéd) (((Z) —1—fBr—4s— Vt> X(n) + BrX(n=1,1) 9)

n—1
+ (1 - ( 5 ) + Br+ l/t) X(n—2,2) T 05X (n—3,3)

n n—1
o) Tl o ) 1= Br =) Xeeson T VX @-an | -

In particular, we have

&im = (—=1)" (457» 4wt 4205 +3 —2 (Z) —9 (” ; 1))
fX[2,1n72] == <n__1): ((Z) + (n ; 1) —2— QﬁT — 253 — 2I/t)

e n Avt
Epzan—y = (=1)"1 + (=1 n(n—3)

n n 205
sy = (1) + (=1)" 73
(")
We will distinguish the cases n even and n odd. For each case we will pick values for
r, s and t so that the matrix A satisfies the conditions in Theorem 8.

(10)

5.1 Subcase 1: n even

For this case we set s = 0; this removes the conjugacy class with cycle type (n —3,3) from
the weighted adjacency matrix. With s = 0 and n even, we can calculate the eigenvalues
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n+1

) ) as follows.

for the eight irreducible characters of dimension less than 2(

£ = 2(2) -1

fx[n—m] = é-x[n—Z,Q] = fx[n,mz] =—1
£X[371'n73] - 1

4vt
p2an—y = —1 + —— (11
Sxemant n(n —3) )

1 n n—1
§X[2,1n—2] = —] <(2) + < 9 > —2—20r — 2Vt>
n n—1
fxun] = 4ﬂr—|—2yt+3— 2(2> — 2( 9 )
Let P’ be the polytope obtained by the following equations of half-spaces of R?
( 2Bz + " = asyg
T+ vy — —
77\ 2
n
Br+vy+1-— (2) <0

0<y.

Pl

\

This polytope is defined so that the eigenvalues & p2.1n-4 (r,0,1), 5X[2,1n72](r,0,t) and
§um(1,0,1), (r,t) € P’ are all strictly greater than —1. We let the reader verify that P’
is a triangle (without the boundary) with coordinates

G ) se2) (GIE)-)0) G "))

In particular, P’ is non-empty.
Next, we prove that for any (r,t) € P’, the weightings w; are all non-negative.

Lemma 19. The weighting w;(r,0,t) is non-negative for anyi =1,...,6 and (r,t) € P’

Proof. Let (r,t) € P'. From the equations of P’, we have

—ﬁx—uy>1—(g>, Bm+uy>2<g>+2<n;1>—2—ﬁx.

Using these relations and the fact that fx € [(”;1) -1, (g) — 1], one can derive that the
weightings are indeed positive. O]

Next, we prove that the eigenvalues of the weighted adjacency matrix are also in the
correct range whenever (r,t) € P'.
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Lemma 20. Let n > 13 and even. If (r,t) € P’, then the eigenvalues of the weighted
adjacency matriz A defined in (6) are in the interval [—1,2(;) — 1].  In addition, the
only 1rreducible character giving the eigenvalue 2(;) —11s X[”],Q' and the only irreducible
characters giving eigenvalue —1 are x4, =22 gng =217,

Proof. First we show that the statement holds for all irreducible characters x of Sym(n)
with y(id) > 2(";1). On each of the conjugacy classes that we consider, the value of any
irreducible character is bounded by 1. For any (r,t) € P’ we have the following bound.

60001 < gy () =197 =#1) bl + 87 vl

2

1
+ (1 — (n 5 ) + Br + Vt) ’X(n72,2)|
—1
() (3 e

a1
G

2

Thus, the eigenvalue of A for y is bounded in absolute value by 1 and the statement
holds for all irreducible characters except for those corresponding to the partitions [n],[1"],
n—1,1], [2,1"73, [n — 2,2], [22,1"7Y], [n — 2,1%] or [3,1"73].

It is straightforward to see that the non-trivial characters all give eigenvalue less than
2(0) — 1.

(2)Finally, (11) and the definition of P’ show that the statement holds for all other
irreducible characters. O]

5.2 Subcase 2: n odd

If n is odd, we first note that in the expression of the eigenvalue for [3,1"73] in (10),
the value of s must be negative for the inequality §X[3’1n73] > —1 to hold. We will only
use five conjugacy classes, so we drop conjugacy classes with cycle type (n —4,3,1) by
making ¢ = 0. As in the previous case, we will consider the irreducible characters with
dimension less than 2(";1) and greater than 2(”;1) separately. The eigenvalues belonging
to representations with dimension less than 2("'{1) are

n
gx[n] - 2(2) - 1

111 = Eyin—221 = & fn2a2) = —1

20s
fx[s,ln—i‘] =-1- (n——l)

2
éx[22,1n—4] - 1

-1 -1
€ zan—2) = p— <(Z) + (n 5 ) —2—-20r — 258)
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£ = — (45r+255+3—2(g) —2(";1»

Let P” be the polytope of R? defined as follows.

( n n—1
2/6x+5y+1—(2>—( 5 )<O

1
5x+5y+1—<"2 )>0

y < 0.

P//

\

Just as in the case when n is even, this polytope is defined so that the eigenvalues & o2 1n-4),
€X[271n72] and &, um are all strictly greater than —1. The polytope P” is a triangle (without
the boundary) with coordinates

GGI7) G2 1)) GG+ (72)-1)0)

In the next lemma, we state that all weightings, except wy, are positive for any (r, s) €
P"”. We give the statement of this without a proof since it is straightforward.

Lemma 21. Fori € {1,2,3,5,6} and for (r,s) € P”, we have w;(r,s,0) = 0.

As in the even case, the eigenvalues of the weighted adjacency matrix are in the
required range whenever (r,s) € P”.
Lemma 22. Let n > 13 and odd. For (r,s) € P”, the eigenvalues of the weighted
adjacency matriz A defined in (6) are in [—1,2(}) — 1]. Moreover, the eigenvalue 2(3) —

1 is afforded only by x™ and the only irreducible characters giving eigenvalue —1 are
X[n—m]7 X[n—2,12] and X[n—Q,Z].

Proof. Lemma 12 gives the eight irreducible representations of Sym(n) with dimension
less than 2(";1). The polytope P” is defined so that this result holds for these eight
irreducible characters.

Next assume y is an irreducible character of Sym(n) with x(id) > 2("3"). On each
of the conjugacy classes that we consider, the value of any irreducible representation is
bounded by 1. Noting that (r,s) € P” implies ds € (—n,0), we have the following bound.

1
(7, 5,0)] < m ((Z) —1—0r— 55) |X(n)’
+ BT |X(n—1,1)‘ + (1 - (n; 1) + 5T> ‘X(n—2,2)’

+ [0s] ‘X(n—3,3)| + ((Z) + (n ; 1) -1- 57") ‘X(n—3,2,1)‘ .
1 -1
< 2(n42r1) ((Z) _1_BT+H> + Br + (1— (712 ) +BT>
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e () (51 1=
a0 () )

n2+n-—1
n?2+n
< 1.

Thus, the eigenvalue corresponding to any irreducible character with dimension greater
than or equal to 2("'2“) is strictly between —1 and 1, so the result holds. O

The proof of Theorem 5 follows from Lemma 20 and Lemma 22 using the ratio bound
on I',, with the weighted adjacency matrix A.

Proof of Theorem 5. If 5 < n < 12, we use Sagemath [20] to confirm that the result
holds. For n > 13, we prove the result by using Theorem 8. Therefore, if n is even, then
a(Tsymm)) < a(Xy) = (n —2)!, and similarly, if n is odd, then a(Isymm)) < a(X2) =
(n—2)L O

We finish this section by proving a conjecture of Godsil and Meagher [13, Conjec-
ture 7.3].

Corollary 23. Let n > 5. If v is the characteristic vector of a maximum 2-pointwise
intersecting family of Sym(n), then v € Vi) @ Vin—11] ® Vin—2,2) ® Vin—2,12).-

6 Further work

In this paper we construct weighted adjacency matrices for the derangement graphs of
Sym(n) for two different actions (2-pointwise and 2-setwise). This work proves that the
conjectured lower bounds on n for each action are indeed the correct bound when t = 2. It
is interesting that this work also shows that there are infinitely many weighted adjacency
matrices that would work in the ratio bound. We leave the reader with two open problems.

Problem 24. In Theorem 4 we proved that any characteristic vector of a maximum 2-
setwise intersecting family is in the Vi) @ Vj,,—1,1] ® Vjp—2,2) module. Similarly, Theorem 5,
shows that the characteristic vector of any maximum 2-pointwise intersecting family lies in
the Vi @ Vin—1,11 @ Vin—2,2 @ Vjn—2,1,1) module. This gives information about the maximum
intersecting families for both type of intersections, but we would like to know the exact
characterization of the maximum intersecting sets.

In Sym(4), the Klein four group is a 2-setwise intersecting subgroup that is not the
stabilizer of a 2-set. Similarly, in Sym(5), the subgroup Alt(4) is a 2-setwise intersecting
subgroup that is not the stabilizer of a 2-set, as are all of its cosets. Other than these
examples, we conjecture that the maximum 2-setwise intersecting subset of Sym(n) is
either the setwise stabilizer of a set of size 2, or a coset of a setwise stabilizer of a set of
size 2.
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Problem 25. Prove that the ¢-setwise intersecting property of Sym(n) holds for any
3 <t < nandforn > 2t+ 1, prove that Sym(n) has the ¢-pointwise intersecting

property.
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A Character values

Cin-33) | Ctn-431) | Cm) | Cin-1,1) | Cn—22) | Cln-3.21)
Representation Range of k
XM - 1 1 1 1 1 1
X1 - —1 0 —1 0 —1 0
X221 - 0 —1 0 —1 1 0
x[=217] - 1 0 1 0 ~1
A3 - 1 0 0 -1 0
X —3:21] - —1 0 0 0 0 1
=311 - 0 -1 —1 0 0 0
y =421 - 1 0 0 0 -1 -1
xn=4:2.1%] - 0 0 -1 0 0
(525 _ 0 -1 0 0 1 0
y[n—=6.2"] - ~1 -1 0 0 0 1
YR 0k <n—8 | (—1)FF! 0 0 0 0 (—1)k+1
k=551 T o<k <n—10 0 (—1)k+1 0 0 0 0
yE8321T [ o< < n—8 | (—1)k3 0 0 0 0 0
X[n7k76,23’1k] 0<k<n-—8 (_1)k+3 0 0 0 0 (_1)k+4
e N I Y P 0 (—1)k+1 0 0 0 0
X R=82 T 0 <k <n— 10 0 (—1)k+4 0 0 0 0
xIn—R1%] 4<k<n-5 0 0 (—1)k 0 0 0
Y E=221T T 3k <n—6 0 0 0 (—1)k+1 0 0
X - (D" (=) [ 0 0 0 | (=p"T
X431 - 0 (-5 0 0 (-1 0
X421 - 0 (-t 0 (-1 0 0
N - (-1 0 0 0 | (=p"° ] (="
X - 0 (- | () 0 0 0
XB2 - (=p"—? 0 0 (=~ 0 (=D"°
X2 - (= 2| =)° 0 (G G 0
XA - (=2 0 (="~ 0 0 (-p*
X2 - 0 (=~ 0 (= ? | (=~ 0
2177 - (=1 ! 0 (-1 0 (-3 0
X - o2 ot eyt e ] (=D

Table 3: Values of irreducible characters on conjugacy classes C(;,—33), Cn—431), Ctn),
C(n—l,l); C(n—2,2) and C(n—3,2,1)-
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