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Abstract

We study Cameron–Liebler k-sets in the affine geometry, so sets of k-spaces in
AG(n, q). This generalizes research on Cameron–Liebler k-sets in the projective
geometry PG(n, q). Note that in algebraic combinatorics, Cameron–Liebler k-sets
of AG(n, q) correspond to certain equitable bipartitions of the association scheme
of k-spaces in AG(n, q), while in the analysis of Boolean functions, they correspond
to Boolean degree 1 functions of AG(n, q).

We define Cameron–Liebler k-sets in AG(n, q) in a similar way as Cameron–
Liebler k-sets in PG(n, q), such that its characteristic vector is a linear combination
of point-pencils. In particular, we investigate the relationship between Cameron–
Liebler k-sets in AG(n, q) and PG(n, q). As a by-product, we calculate the character
table of the association scheme of affine lines. Furthermore, we characterize the
smallest examples of Cameron–Liebler k-sets.

This paper focuses on AG(n, q) for n > 3, while the case for Cameron–Liebler
line classes in AG(3, q) was already treated separately.

Mathematics Subject Classifications: 05B20, 05B25

1 Introduction

The investigation of Cameron–Liebler line classes in the projective geometry PG(n, q)
goes back to Cameron and Liebler in 1982 [4]. Their motivation was the investigation
of the subgroup structure of PGL(n + 1, q). Particularly, a line orbit of a subgroup of
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PGL(n + 1, q) acting on PG(n, q) with the same number of point- and line-orbits is a
Cameron–Liebler line class.

The concept of Cameron–Liebler line classes was rediscovered several times, see the
introduction of [8] for a short overview. In particular, algebraic combinatorialists studied
equitable bipartitions as a natural generalization of perfect codes under various names
in several highly symmetric families of graphs such as hypercubes and Johnson graphs.
Similarly, they also correspond to Boolean degree 1 functions in the analysis of Boolean
functions.

In the special case of PG(3, q), a Cameron–Liebler line class can be defined as a family
of lines which intersects all spreads of PG(3, q) in exactly x lines for some constant x [4].
We call x the parameter of the Cameron–Liebler line class. In PG(3, q), there exists a
list of examples which we refer to as trivial : (1) the empty set with parameter x = 0, (2)
all lines through a fixed point with parameter x = 1, (3) all lines in a fixed plane with
parameter x = 1, (4) the union of (2) and (3), when disjoint, with parameter x = 2, and
(5)–(8) the complements of (1)–(4) with parameters x = q2 + 1, q2, q2, q2 − 1. Cameron
and Liebler conjectured that these are the only examples. This was disproven by Drudge
who found an example with parameter x = 5 in PG(3, 3) [10]. Nowadays there are several
infinite families of non-trivial examples known [1, 5, 12, 14]. In contrast to this, there are
no non-trivial examples known for n > 3. Hence, there is some difference in behaviour
between n = 3 and n > 3. This carries over to AG(n, q), where this paper handles the
case n > 3, while we treat the case n = 3 separately in [9].

Cameron–Liebler line classes were generalized to k-spaces of PG(n, q) in [2, 8]. These
are families of k-spaces which lie in the span of the point-(k-space) incidence matrix. We
call such families Cameron–Liebler k-sets of PG(n, q). Note that if L is a Cameron–Liebler
k-set of PG(n, q), then its parameter x is defined by |L| = x

[
n
k

]
q

where
[
n
k

]
q

denotes the

Gaussian binomial coefficient. Analogously, we call a family L of k-spaces which lies in the
span of the (affine) point-(k-space) incidence matrix a Cameron–Liebler k-set of AG(n, q).
Moreover, if |L| = x

[
n
k

]
q
, we say that x is the parameter of the Cameron–Liebler k-set L.

After some preliminaries, we start our paper with some general properties of Cameron–
Liebler k-sets in Section 3. In particular, we show the following.

Theorem 1. Let L be a Cameron–Liebler k-set with parameter x in PG(n, q) which does
not contain k-spaces in some hyperplane H. Then L is a Cameron–Liebler k-set with
parameter x of AG(n, q) ∼= PG(n, q) \H.

We also obtained a result on the converse of Theorem 1. In particular, we show the
following.

Theorem 2. If L is a Cameron–Liebler k-set of AG(n, q) with parameter x, then L is a
Cameron–Liebler k-set of PG(n, q) with parameter x in the projective closure PG(n, q) of
AG(n, q).

We prove this theorem in general, but for the case k = 1 we give an alternative proof
using the character table of the association scheme of affine lines. This association scheme
has been investigated before as it is a well-known 3-class association scheme, see [25] for a
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more detailed study. We could not find the character table of the affine lines scheme in the
literature, so we provide the latter in Section 4. While for PG(n, q) the character tables
of the association scheme of k-spaces is explicitly known due to Delsarte [7] and Eisfeld
[11], the determination of the character tables of the association scheme of k-spaces in
AG(n, q) is still open.

A 3-class association scheme has four common eigenspaces V0, V1, V2, V3, where V0 is
spanned by the all-ones vector. In our ordering, we provide explicit bases for V0 + V1 and
V0 + V3, and we give a spanning set for V0 + V2 + V3.

An immediate consequence of Theorem 2 is that the following results for Cameron–
Liebler k-sets of PG(n, q) are also valid for Cameron–Liebler k-sets of AG(n, q).

Theorem 3. [2, Theorem 4.9] There are no Cameron–Liebler k-sets in AG(n, q), with
n > 3k + 2 and q > 3, of parameter

2 6 x 6
1
8
√

2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.

The statement in [2, Theorem 4.9] is slightly different and its proof currently contains
an error. The authors of [2] have submitted an erratum. The version in this article is
based on the recent corrected version on arXiv.∗ For n > 5

2
k+ 3

2
, a similar bound is given

in [19, Theorem 7]. For n = 2k + 1, there is a better bound.

Theorem 4. [22, (Metsch, Theorem 1.4)] For k > 3, there are no non-trivial Cameron–
Liebler k-sets with parameter x in AG(2k + 1, q) for 2 6 x 6 q/5 and q > q0 for some
universal constant q0.

Note that [22, Theorem 1.4] requires that k < q log q − q − 1. This condition can be
removed, see [18, Theorem 1.8]. Complementary to the two previous results, Theorem 1
also implies that the situation is known for small q.

Theorem 5. [13, Theorem 1.4] Let n > 2k + 1 > 3. Then there are no non-trivial
Cameron–Liebler k-sets in AG(n, q) for q 6 5.

We conclude with Section 6, where we obtain a classification of the smallest Cameron–
Liebler k-sets of AG(n, q).

Theorem 6. All Cameron–Liebler k-sets of AG(n, q) with parameter x 6 2 are trivial.

Note that this cannot be deduced from the literature on PG(n, q). We are also able to
classify all Cameron–Liebler sets of hyperplanes in AG(n, q), this will be done in Section
7. We conclude with suggestions for future work in Section 8.

∗See arXiv:1805.09539v3 [math.CO]
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2 Preliminaries

Consider a prime p and let q = ph, with h > 1. Then consider PG(n, q), and AG(n, q),
for n > 2, as the n-dimensional projective, and affine, space over Fq respectively. Suppose
that we consider a hyperplane π∞ in PG(n, q), which from now on will be called the
hyperplane at infinity. Then we can consider all the points, lines, planes, and other
spaces that do not lie inside π∞. In this way we obtain the affine space AG(n, q).

The following notation will be used throughout this article.

Definition 7. For a, b ∈ N, we denote the Gaussian binomial coefficient by[
a

b

]
q

=
(qa − 1) · · · (qa−b+1 − 1)

(qb − 1) · · · (q − 1)
.

The Gaussian binomial coefficient
[
a
b

]
q

equals the number of (b−1)-spaces in PG(a−1, q).

Here we define that
[
a
b

]
q

= 0 if b > a.

In general we take k > 1 with n > k+ 1, unless otherwise stated. Note that if we also
ask that (k + 1) | (n+ 1), then it automatically follows that n > 2k + 1.

Definition 8. Consider PG(n, q), or AG(n, q) respectively.

1. A partial k-spread is a set of pairwise disjoint k-spaces.

2. A conjugated switching k-set is a pair of disjoint partial k-spreads that cover the
same set of points.

3. A k-spread is a partial k-spread that partitions the point set of PG(n, q), or AG(n, q)
respectively.

Remark 9. Since there is a lot of interaction between PG(n, q) and AG(n, q) we want to
clarify some formulations.

• Suppose that we have a set of k-spaces L in PG(n, q). Then the restriction of L to
AG(n, q) is the set of k-spaces of L that are not contained in π∞.

• We say that two k-spaces are projectively (or affinely) disjoint if they intersect in
the empty set in PG(n, q) (or AG(n, q) respectively).

We will give some examples of k-spreads in AG(n, q), which we will denote by respec-
tively type I, II and III for future purposes.

Lemma 10. Consider the affine space AG(n, q) and the corresponding projective space
PG(n, q). Then the following k-sets S are k-spreads in AG(n, q).

1. ( Type I) Every k-spread in PG(n, q) restricted to the affine space.
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2. ( Type II) Consider a (k − 1)-space K in π∞ and define the set S as the set of all
affine k-spaces through K.

3. ( Type III) Consider an (n−2)-space πn−2 in π∞, then there are exactly q other hy-
perplanes through πn−2 not equal to π∞. Call these hyperplanes πi, for i ∈ {1, . . . , q}.
If we select for every hyperplane πi a (k − 1)-space τi ⊆ πn−2 (not all equal), then
we can define the k-spread

S := {K | K a k-space in AG(n, q), τi ⊆ K ⊆ πi for some i ∈ {1, . . . , q}}.

Proof.

1. Consider a projective k-spread S, then it is clear that every two k-spaces of S
are affinely disjoint. Secondly, S restricted to AG(n, q) partitions the point set of
AG(n, q), since its extension reaches every (affine) point in PG(n, q).

2. Trivial.

3. It is clear that all these elements are disjoint. Thus we only need to prove that for
every affine point p there exists an element of S that contains it. Consider for this
point p the hyperplane 〈p, πn−2〉, then this is a hyperplane through πn−2. Without
loss of generality we may assume that it is πi. Such that 〈p, τi〉 is a k-space in S
which contains p. This proves that S is indeed a k-spread.

Remark 11. The size of a k-spread in AG(n, q) is equal to qn

qk
= qn−k, where qk is the

number of points in an affine k-space and qn is the total number of points in AG(n, q).
An analogous result can be obtained in PG(n, q), where the size of a k-spread is known

to be qn+1−1
qk+1−1

. Note that this number is only an integer if (k + 1) | (n + 1), so it follows

that this is a necessary condition for the existence of k-spreads in PG(n, q). It is proven
in [17, Corollary 4.17] that this is also a sufficient condition.

Definition 12. Let us denote the set of k-spaces in PG(n, q), and AG(n, q), by Πk, and
Φk, respectively. If we number the points and the k-spaces in these spaces, then we can
define the point-(k-space) incidence matrix Pn and An respectively. These matrices are
0, 1-valued matrices with a 1 on position (i, j) if and only if point i lies on k-space j.

We now give a special construction for the matrix Pn.

Construction 13 (Incidence matrix). Consider now the point-(k-space) incidence matrix
Pn of PG(n, q), where the rows correspond to the points and the columns correspond to
the elements of Πk. We order the rows and columns in such a way that the first rows and
columns correspond to the affine points and affine k-spaces respectively. Then Pn is of
the following form:

Pn =

[
An 0̄
B2 Pn−1

]
, (1)

where An is the incidence matrix of AG(n, q), where again the rows correspond to the
points and the columns correspond to the elements of Φk. The matrix 0̄ is the zero-matrix
and the part that remains unnamed, we call B2.
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We will use the notation of Construction 13 in the following results. These results
give some information about the characteristic vector of Cameron–Liebler k-sets. This
characteristic vector is a 0, 1 valued vector, which contains a 1 on position i if and only if
the ith k-space belongs to the Cameron–Liebler k-set.

Lemma 14. [9, Lemma 2.4] Consider a set L of k-spaces in AG(n, q) such that χL ∈
(ker(An))⊥ = Im(ATn ). Then it follows for every affine k-spread S that

|L ∩ S| = x,

for a fixed integer x.

Remark 15. We should also note that in general it holds that Im(P T
n ) = (ker(Pn))⊥ and

Im(ATn ) = (ker(An))⊥.

Theorem 16. [9, Theorem 2.3] Consider the projective space PG(n, q) and consider a
set of k-spaces L. If its characteristic vector χL ∈ (ker(Pn))⊥ and L also contains no
k-spaces at infinity, then χL restricted to the affine space belongs to (ker(An))⊥.

2.1 Cameron–Liebler k-sets in PG(n, q)

Our goal here is to state some important results that are known for Cameron–Liebler
k-sets in PG(n, q). We start with the definition of Cameron–Liebler k-sets in PG(n, q).

Definition 17. A Cameron–Liebler k-set L in PG(n, q) is a set of k-spaces such that for
its characteristic vector χL, it holds that χL ∈ Im(P T

n ). We say that L has parameter
x := |L|/

[
n
k

]
.

Remark 18. The fact that χL ∈ Im(P T
n ) states that χL is a linear combination of the

rows of P T
n . In some literature, for example [13], the characteristic vector χL is called a

Boolean degree 1 function in PG(n, q). Similarly we can consider χL ∈ Im(ATn ) for the
incidence matrix An in AG(n, q).

In this section we list some results on Cameron–Liebler k-spaces in PG(n, q). We refer
to [2] for more information.

Theorem 19. [2, Theorem 2.9] Let L be a non-empty set of k-spaces in PG(n, q), n >
2k + 1, with characteristic vector χ, and x so that |L| = x

[
n
k

]
q
. Then the following

properties are equivalent.

1. The set L is a Cameron–Liebler k-set.

2. For every k-space K, the number of elements of L disjoint from K is equal to
(x− χ(K))

[
n−k−1

k

]
q
qk

2+k.

3. For every pair of conjugated switching sets R and R′, |L ∩ R| = |L ∩ R′|.

If PG(n, q) has a k-spread, then the following property is equivalent to the previous ones.
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4 For every k-spread S, |L ∩ S| = x.

Example 20. [2, Example 3.2] The following k-sets are examples of Cameron–Liebler
k-sets in PG(n, q).

1. The set of all the k-spaces through a fixed point is an example of a Cameron–Liebler
k-set of parameter x = 1.

2. If we consider the set of k-spaces inside a fixed hyperplane, then this is a Cameron–

Liebler k-set of parameter x = q(n−k)−1
q(k+1)−1

. Note that x is only an integer if and only if

(k + 1) | (n+ 1).

In order to give some context on the study of Cameron–Liebler k-sets in PG(n, q), we
now give some classification results

Theorem 21. [13, Theorem 4.1] Let q ∈ {2, 3, 4, 5}. Then all Cameron–Liebler k-sets in
PG(n, q) are of the form of Example 20, if k, n− k > 2 and either (a) n > 5 or (b) n = 4
and q = 2.

Theorem 22. [2, Theorem 4.1] Let L be a Cameron–Liebler k-set with parameter x = 1
in PG(n, q), n > 2k + 1. Then L consists out of all the k-spaces through a fixed point or
n = 2k + 1 and L is the set of all the k-spaces in a hyperplane of PG(2k + 1, q).

Theorem 23. [2, Theorem 4.2] There are no Cameron–Liebler k-sets in PG(n, q) with
parameter x ∈]0, 1[ and if n > 3k + 2, then there are no Cameron–Liebler k-sets with
parameter x ∈]1, 2[.

3 Cameron–Liebler k-sets in AG(n, q)

Definition 24. A Cameron–Liebler k-set L in AG(n, q) is a set of k-spaces such that for
its characteristic vector χL, it holds that χL ∈ Im(ATn ). Here we say that L has parameter
x := |L|/

[
n
k

]
.

Due to Lemma 10, we know that for every value of n, the affine space AG(n, q)
contains k-spreads. By Lemma 14, we find that Cameron–Liebler k-sets have a constant
intersection number with k-spreads. This number will be equal to the parameter x of the
Cameron–Liebler k-set. This is proven in the next lemma.

Lemma 25. Suppose that L is a Cameron–Liebler k-set in AG(n, q), then it holds for
every k-spread S that

|L ∩ S| = x,

where x is the parameter of L.

the electronic journal of combinatorics 28(4) (2021), #P4.11 7



Proof. Due to Lemma 14, it follows that for every k-spread S it holds that |L ∩ S| = c,
for a certain fixed integer c. To prove that c = x, we double count the pairs (K,S), where
S is a k-spread of type II and K ∈ L ∩ S. So we obtain that

x

[
n

k

]
q

· 1 =

[
n

k

]
q

· c.

This proves the lemma.

Remark that this statement holds for every n and k, since in each case we have these
k-spreads. We now give some basic properties.

Lemma 26. Consider L and L′ to be Cameron–Liebler k-sets with parameter x and x′

both in AG(n, q) or both in PG(n, q) respectively, then the following properties hold.

1. If L is a Cameron–Liebler k-set in AG(n, q) or PG(n, q), then we have that 0 6
x 6 qn−k or 0 6 x 6 qn+1−1

qk+1−1
respectively.

2. If L ∩ L′ = ∅, then L ∪ L′ is a Cameron–Liebler k-set of parameter x+ x′.

3. If L′ ⊆ L, then L \ L′ is a Cameron–Liebler k-set of parameter x− x′.

4. If L is a Cameron–Liebler k-set in AG(n, q) or PG(n, q), then the complement of
L in AG(n, q) or PG(n, q) is a Cameron–Liebler k-set with parameter qn−k − x or
qn+1−1
qk+1−1

− x respectively.

Proof. This lemma follows due to Lemma 25 and [2, Lemma 3.1] for the projective case.

We now give some general results that will give connections between Cameron–Liebler
k-sets in PG(n, q) and AG(n, q). These results will be similar to the results obtained in
[9].

Here we prove Theorems 1 and 2 from the introduction.

Proof of Theorem 1. Suppose that L is a Cameron–Liebler k-set in PG(n, q) that misses
the set of k-spaces in π∞. So the characteristic vector of L in PG(n, q) lies inside Im(P T

n )=
(ker(Pn))⊥. Then, by Theorem 16, we obtain that for its characteristic vector χL in
AG(n, q) it holds that χL ∈ (ker(An))⊥ = Im(ATn ). Here An is the point-(k-space)
incidence matrix of the affine space from Construction 13. Due to the size of L, the
parameter remains the same. This proves the assertion.

Proof of Theorem 2. Consider the characteristic vector χL of the k-set L, then we know
that χL ∈ Im(ATn ). Here An is the point-(k-space) incidence matrix of AG(n, q). Due to
Construction 13, we know that (

χL
0̄

)
∈ Im(P T

n ),
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with 0̄ the vector of the correct dimension that only contains zeroes. Note that
(
χL
0̄

)
is in

fact the characteristic vector of L in PG(n, q). So L is by definition a Cameron–Liebler
k-set in PG(n, q). Due to the size of L, the parameter remains the same.

Theorem 27. Suppose that L is a Cameron–Liebler k-set of parameter x in PG(n, q).
Then L is a Cameron–Liebler k-set in AG(n, q) of the same parameter x if and only if L
is skew to the set of k-spaces in the hyperplane at infinity π∞ of the affine space.

Proof. Suppose that L is a Cameron–Liebler k-set in PG(n, q) that misses the set of
k-spaces in π∞. Then, by Theorem 1, we obtain that L is a Cameron–Liebler k-set in
AG(n, q) that has the same parameter x.

Let L be a Cameron–Liebler k-set in PG(n, q) whose restriction is a Cameron–Liebler
k-set in AG(n, q) of the same parameter x. Then we can define the restriction of L to
AG(n, q) by L′. Using Theorem 2, we know that L′ is a Cameron–Liebler k-set in PG(n, q).
So, by Lemma 26, it follows that L\L′ is a Cameron–Liebler k-set of parameter x = 0 in
PG(n, q). This Cameron–Liebler k-set would only contain k-spaces in the hyperplane at
infinity. So clearly L \ L′ = ∅. Thus L does not contain k-spaces at infinity.

Theorem 28. If there exists an affine Cameron–Liebler k-set with parameter x in AG(n,

q), then there exists a Cameron–Liebler k-set of parameter x + qn−k−1
qk+1−1

in the projective

closure PG(n, q).

Proof. Due to Theorem 2, we know that L is a Cameron–Liebler k-set in PG(n, q). Using
Lemma 26 and Example 20, we can extend every Cameron–Liebler k-set in AG(n, q) as
follows: L′ := L ∪ {K ∈ Πk | K ⊆ π∞}. This set is a Cameron–Liebler k-set in PG(n, q)

of parameter x+ qn−k−1
qk+1−1

.

Remark 29. If we now combine Theorems 27 and 28, we find another interesting observa-
tion. Recall that every Cameron–Liebler k-set of parameter x in AG(n, q) can be extended

by adding all k-spaces at infinity to a Cameron–Liebler k-set of parameter x + qn−k−1
qk+1−1

in

PG(n, q). But the other way also holds. Suppose we have a Cameron–Liebler k-set of

parameter x + qn−k−1
qk+1−1

in PG(n, q) that contains all the k-spaces at infinity. Then, by
Lemma 26, we can remove all the k-spaces at infinity and obtain a Cameron–Liebler k-set
of parameter x in AG(n, q).

3.1 Equivalent definitions

Our goal will be to prove the following theorem, which presents equivalent definitions for
Cameron–Liebler k-sets in AG(n, q).

Theorem 30. Consider the affine space AG(n, q), for n > 2k + 1, and let L be a set of

k-spaces such that |L| = x

[
n
k

]
q

for a positive integer x. Then the following properties are

equivalent.

1. L is a Cameron–Liebler k-set in AG(n, q).
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2. For every k-spread S, it holds that |L ∩ S| = x.

3. For every pair of conjugated switching k-sets R and R′, |L ∩ R| = |L ∩ R′|.

If k = 1 and we thus consider Cameron–Liebler line classes, then the following property
is equivalent to the previous ones.

4. For every line `, the number of elements of L affinely disjoint to ` is equal to(
q2

[
n− 2

1

]
q

+ 1

)
(x− χL(`)) (2)

and through every point at infinity there are exactly x lines of L.

To do this, we will need the following statement. Note that for every subspace τ of
AG(n, q), we will denote [τ ]k := {K | K ∈ Φk, K ⊆ τ}.

Theorem 31. Let L be a collection of k-spaces in AG(n, q) such that property (2) of
Theorem 30 holds. Suppose that τA is an arbitrary i-dimensional subspace in AG(n, q),
with i > max{k+ 1, 3}. Then property (2) also holds for L∩ [τA]k in the (affine) subspace
τA with respect to the k-spreads in τA.

Proof. Consider the projective closure PG(n, q) of AG(n, q) and let π∞ be the hyperplane
at infinity. Let τA be an i-dimensional space in AG(n, q) and let τ be its projective closure,
hence dim(τ ∩ π∞) > k.

Our goal is to prove that L restricted to τA satisfies property (2) with x. Pick a
(k− 1)-space I in τ ∩ π∞ and denote E as the set of affine k-spaces through I and not in
τA. Then it is clear that every k-space K ∈ E is affinely disjoint towards every k-space in
τA. It is also true that no two k-spaces in E share an affine point, and yet as a set they
cover all affine points not in τA. So if we would choose a k-spread S in τA, then we can
always extend this k-spread to a k-spread in AG(n, q) in the following way

S ′ := S ∪ E.

Note that for every k-spread S in τA, we can use the same E. So we have that

x = |L ∩ S ′| = |L ∩ S|+ |L ∩ E|.

Hence, we have for every k-spread S in τA that |(L ∩ [τA]k) ∩ S| = x− |L ∩ E|. But this
last term is a constant, due to the fact that E was fixed for every k-spread S. This proves
the theorem.

We now can prove the main theorem.

Proof of Theorem 30. We first prove the equivalence between the first 3 statements and
then we prove the equivalence with statement 4.
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• From (1) to (3): Suppose that L is a Cameron–Liebler k-set with characteristic
vector χL. Let R and R′ be a pair of conjugated switching sets with characteristic
vectors χR and χR′ respectively. Then it holds, due to the definition of a pair of
conjugated switching sets, that

χR − χR′ ∈ ker(An),

where An is the point-line incidence matrix of AG(n, q). Since χL ∈ Im(ATn ) =
(ker(An))⊥, we have that

χL · (χR − χR′) = 0.

This concludes the statement.

• From (3) to (2): Since for every pair of k-spreads S1 and S2, it holds that S1 \ S2

and S2 \ S1 are a pair of conjugated switching sets, we know that |L ∩ S1| = c =
|L ∩ S2|. So we only need to show that c = x. To obtain this we double count
the pairs (K,S), with K ∈ S ∩ L and S a k-spread of type II. Hence, due to the
fact that |L| = x

[
n
k

]
and the number of k-space of type II through a fixed k-spread

equals 1, we get that

x

[
n

k

]
· 1 =

[
n

k

]
· c.

Thus x = c, which completes the assertion.

• From (2) to (1): If n = 2k+ 1, then we know, due to Lemma 10 (1) and Theorem
19, that L is a Cameron–Liebler k-set of parameter x in PG(n, q). Hence due to
Theorem 1, the assertion follows.
Suppose now that n > 2k+ 1. Here we will use similar techniques as in the proof of
Theorem 2.9 in [2], (more specifically in the step (7) to (1)). Let τ be an arbitrary
(2k + 1)-dimensional subspace, then we can consider L ∩ [τ ]k in the affine space τ .
Due to Theorem 31, we obtain that L∩ [τ ]k satisfies Property (2) in τ . Hence, using
the previous observation, we obtain that L ∩ [τ ]k is a Cameron–Liebler k-set of a
certain parameter in τ . Note that this space τ was chosen arbitrarily. Thus it follows
for every (2k+1)-dimensional subspace of AG(n, q) that, for the characteristic vector
of L ∩ [τ ]k, it holds that

χL∩[τ ]k ∈ Im(ATτ ),

with Aτ the incidence matrix of τ . So we have that χL∩[τ ]k is a linear combination
of the rows of Aτ . Note that due to the fact that Aτ has full row rank, it holds that
this linear combination is unique. We only need to show that χL is uniquely defined
by the vectors χL∩[τ ]k , with τ varying over all (2k + 1)-spaces in AG(n, q).
We first want to show that for every two (2k+ 1)-spaces τ and τ ′ the coefficients of
the row corresponding to a point in τ ∩ τ ′ in the linear combination of χL∩[τ ]k and
χL∩[τ ′]k are equal.
Consider the subspace τ ∩ τ ′, and consider the corresponding columns of An. Then
using the fact that Aτ∩τ ′ also has full row rank, we conclude that the linear com-
bination of the rows that give χL∩[τ∩τ ′]k is unique. Note that this unique linear
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combination has the same coefficients for the rows corresponding with points in
τ ∩ τ ′ as χL∩[τ ]k and χL∩[τ ′]k has respectively. Here we also used the fact that an
entry of An corresponding with a point of τ \ τ ′ or τ ′ \ τ and a k-space in τ ∩ τ ′ is
zero. Thus we may conclude that the common rows in χL∩[τ ]k and χL∩[τ ′]k have the
same coefficient.

Using all of these (2k + 1)-spaces, we have that χL is uniquely defined and χL ∈
Im(ATn ). This proves the assertion.

• Equivalence between (4) and the rest, when k = 1: First if L is an affine
Cameron–Liebler line class with parameter x, then, by Theorem 2, we get that L is
a Cameron–Liebler line class in PG(n, q). Here we know that for every (affine) line
`, there are exactly

q2

[
n− 2

1

]
q

(x− χL(`))

lines of L projectively disjoint to `. So we only still need to consider the lines of L
through the point ` ∩ π∞. But since this is a point at infinity, which gives a line
spread of type II, we have a total of x lines of L through this point. Thus if we add
those x− χL(`) lines of L not equal to `, we get a total of(

q2

[
n− 2

1

]
q

+ 1

)
(x− χL(`))

lines of L disjoint to ` in AG(n, q).

Conversely, suppose that Property (2) holds, then we look at the corresponding
projective space PG(n, q). We can see that of the(

q2

[
n− 2

1

]
q

+ 1

)
(x− χL(`))

lines of L that are disjoint in AG(n, q) to an affine line `, there are

q2

[
n− 2

1

]
q

(x− χL(`))

elements of L projectively disjoint to `.

If we now pick a line ` in π∞, then there are

qn − 1

q − 1
− (q + 1) = q2

[
n− 2

1

]
q

points in π∞ not in `. Through every such point, there are exactly x lines of L that
are disjoint to `. If we combine these results we obtain that, by Theorem 19, it
follows that L is a Cameron–Liebler line class in PG(n, q) with parameter x. Using
Theorem 27, we see that L is also a Cameron–Liebler line class in AG(n, q) with
the same parameter x.
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Remark 32. There is also another way to prove the equivalence of (1) and (2) for k = 1.
For this, we will use association schemes. This will be done in Section 5.

Lemma 33. Suppose that R and R′ are a pair of conjugated switching k-sets in PG(n, q).
If we define RA (and R′A) as the set of affine k-spaces of R (and R′ respectively), then
RA and R′A are conjugated switching k-sets in AG(n, q).

Proof. Since R∩R′ = ∅, it is clear that

RA ∩R′A = ∅.

Since RA and R′A arose from R and R′, we know that no two k-spaces in the same set
intersect. Thus both are still partial k-spreads. So we only need to show that they still
cover the same set of points. If an affine point p is covered by RA, then this point (which
is also a projective point) is also covered by R and, hence, by R′. Since this point was
affine, the corresponding k-space of R′ is contained in R′A and, hence, the point is covered
by R′A.

This lemma also shows that there exist conjugated switching sets in AG(n, q), since
they exist in PG(n, q). This fact implies that Theorem 30 does not have a trivial assump-
tion.

4 The association scheme of affine lines

Our goal in this section is that we want to investigate the association scheme of lines in
AG(n, q). We start with repeating some definitions of association schemes. If the reader
is not familiar with association schemes, we refer to [3, 16].

Definition 34. [3, Section 2.1] Let X be a finite set. A d-class association scheme is a
pair (X,R), where R = {R0,R1, . . . ,Rd} is a set of binary symmetrical relations with
the following properties:

1. {R0,R1, . . . ,Rd} is a partition of X ×X.

2. R0 is the identity relation.

3. There exist constants plij such that for x, y ∈ X, with (x, y) ∈ Rl, there are exactly
plij elements z with (x, z) ∈ Ri and (z, y) ∈ Rj. These constants are called the
intersection numbers of the association scheme.

In such a d-class association scheme we can define adjacency matrices as follows.

Definition 35. Consider a d-class association scheme (X,R) whereR = {R0,R1, . . . ,Rd}
and X = {x1, . . . , xn}. Then we can define d+ 1 matrices B0, . . . , Bd of dimension n× n,
such that

(Bk)ij =

{
1, if (xi, xj) ∈ Rk

0, if (xi, xj) 6∈ Rk.

These matrices are called the adjacency matrices of the association scheme.
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An important property of these adjacency matrices is that they can be diagonalized
simultaneously, so we obtain maximal common (right) eigenspaces V0, . . . , Vd. It is also
known that these adjacency matrices span a (d+ 1)-dimensional commutative C-algebra
A. This algebra is called the Bose-Mesner algebra, which has a basis of idempotents
{Ei | 0 6 i 6 d}. One can prove that every matrix Ei is the orthogonal projection to
the eigenspace Vi. If we would consider the common eigenspaces, we can denote all the
eigenvalues in a matrix. This matrix is called the eigenvalue matrix.

Definition 36. Consider a d-class association scheme (X,R) whereR = {R0,R1, . . . ,Rd}
and X = {x1, . . . , xn}. Let B0, . . . , Bd be the adjacency matrices and {Ei | 0 6 i 6 d} be
the idempotent basis of the Bose-Mesner algebra. Then the eigenvalue matrix P = [Pij]
and the dual eigenvalue matrix Q = [Qij] are the matrices for which it holds that

Bj =
d∑
i=0

PijEi and Ej =
1

n

d∑
i=0

QijBi.

Here 0 6 i, j 6 d.

Since every Ei in the idempotent basis gives an orthogonal projection onto Vi, it
is indeed true that the values Pij are the eigenvalues. Another important fact is that
PQ = nId+1 = QP .

We now give a well-known example of such an association scheme.

Example 37. [16, Example 1.1.2] Consider the set of lines in PG(n, q), with n > 3.
Then this is a finite set, which we will call Π1. Consider now the following set of relations
R′ = {R′0,R′1,R′2}. Then for ` and `′ in Π1, we have that

• (`, `′) ∈ R′0 if ` = `′.

• (`, `′) ∈ R′1 if they meet in a point.

• (`, `′) ∈ R′2 when they do not meet at all.

It is well-known that ∆′ = (Π1,R′) gives an association scheme. This concept can be
generalized to k-spaces in PG(n, q).

We try to define a similar association scheme for lines in AG(n, q). Note that due to
the fact that there exists a concept of infinity in AG(n, q), this will lead to an increase of
relations. Here we see that relation R′1 will split into two separate relations.

Construction 38. Consider the set Φ1 of lines of AG(n, q), with n > 3. Then we can
define a 3-class association scheme ∆ = (Φ1,R), where we denote the following relations
R = {R0,R1,R2,R3} as follows. Pick `, `′ ∈ Φ1, then

• (`, `′) ∈ R0 if ` = `′.

• (`, `′) ∈ R1 if they meet in an affine point.
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• (`, `′) ∈ R2 if they meet in a point at infinity.

• (`, `′) ∈ R3 when they do not meet in the corresponding projective space.

In order to prove that this is an association scheme, we can refer to [20, Chapter 4], where
the intersection numbers were explicitly calculated. Another way to view this, is as a
semilattice and conclude, due to [7], that ∆ is indeed an association scheme.

Let us consider ∆. If we number the lines of AG(n, q) in a fixed order{
`i | i ∈

{
0, . . . ,

qn−1(qn − 1)

(q − 1)
− 1

}}
,

then we can define the adjacency matrices as B0, B1, B2 and B3. We know that these

are qn−1(qn−1)
(q−1)

× qn−1(qn−1)
(q−1)

matrices over C that have common (right) eigenspaces. If

we define these common (right) eigenspaces by V0, V1, V2 and V3, then we know that
CΦ1 = V0 ⊥ V1 ⊥ V2 ⊥ V3. Consider now the Bose-Mesner algebra A of the association
scheme ∆, which will be a 4-dimensional C-algebra. Then we know that A has a basis of
idempotents {Ei | 0 6 i 6 3}, such that every Ei is the orthogonal projection onto Vi.

4.1 Calculating the eigenvalue matrix and dual eigenvalue matrix of ∆

In order to find the eigenvalue matrix P and the dual eigenvalue matrix Q, we need to
define some other matrices known as the intersection matrices.

Definition 39. Consider a d-class association scheme with intersection numbers pkij. Then
we can define the following (d+ 1)× (d+ 1) matrices for i ∈ {0, . . . , d}

Pi = [pkij]k,j,

hence the (k, j)-entry is Pi(k, j) = pkij. These matrices are known as intersection matrices.

These intersection matrices for the association scheme of Construction 38 can be cal-
culated:

P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

P1 =


0 q

(
qn−1
q−1
− 1
)

0 0

1 (q − 1)2 +
(
qn−1
q−1
− 2
)

q − 1 (q − 1)
(
qn−1
q−1
− 1− q

)
0 q2 0 q

(
qn−1
q−1
− 1− q

)
0 q2 q q

(
qn−1
q−1
− 1− (q + 1)

)

 ,
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P2 =


0 0 qn−1 − 1 0
0 q − 1 0 qn−1 − q
1 0 qn−1 − 2 0
0 q 0 qn−1 − 1− q


and

P3 =


0 0 0 q2−(q+1)qn+q2n−1

q−1

0 −q2 + qn −q + qn−1 q3+q2−(2 q2+q−1)qn−1−q+q2n−1

q−1

0 − q3−qn+1

q−1
0 q3+q2−(2 q+1)qn+q2n−1

q−1

1 − q3+q2−q−qn+1

q−1
−q − 1 + qn−1 q3+3 q2−(2 q2+2 q−1)qn−1−2 q+q2n−1

q−1

 .

For these calculations we refer to [20, Chapter 4].

Lemma 40. [3, page 45, Lemma 2.2.1] Consider a d-class association scheme together
with the eigenvalue matrix P and the intersection matrices Pi, for i ∈ {0, . . . , d}. Then

P · Pi · P−1 =


P0i 0 0 . . . 0
0 P1i 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Pdi

 .

Consequently, Pi and the adjacency matrix Bi have the same eigenvalues.

This lemma implies that the intersection matrices can be diagonalized simultaneously.
In order to find P , we use the following theorem.

Theorem 41. [3, Proposition 2.2.2] Consider a d-class association scheme and let ui,
for i ∈ {0, . . . , d}, be the set of common left normalized (column) eigenvectors of the
intersection matrices. Here we mean with normalized, that (ui)0 = 1 for every i. Then
the rows of the eigenvalue matrix P are the elements (ui)

T .

This lemma together with the following left (normalized) eigenvectors of the intersec-
tion matrices above, will give us the eigenvalue matrix.

u0 =

(
1,−q +

qn+1 − 1

q − 1
− 1, qn−1 − 1, q + qn +

q2n−1 − 1

q − 1
− 2 (qn+1 − 1)

q − 1
+ 1

)T
,

u1 =

(
1,−q +

qn − 1

q − 1
− 1,−1, q − qn − 1

q − 1
+ 1

)T
,

u2 = (1,−q,−1, q)T ,

u3 =
(
1,−q, qn−1 − 1, q − qn−1

)T
.

the electronic journal of combinatorics 28(4) (2021), #P4.11 16



These left eigenvectors were calculated by using Sage [24]. From this together with
the lemma above, we can obtain the eigenvalue matrix P of the association scheme ∆,
see Construction 38. So we conclude that

P =


1 − q2−qn+1

q−1
qn−1 − 1 q2−(q+1)qn+q2n−1

q−1

1 − q2−qn
q−1

−1 q2−qn
q−1

1 −q −1 q
1 −q qn−1 − 1 q − qn−1

 (3)

and due to PQ = qn−1
(
qn−1
q−1

)
I4 = |Φ1|I4 = QP , we obtain that

Q =


1 qn − 1 −(q2+1)qn−q2−q2n

q2−q
qn−q
q−1

1
(q2+1)qn−q2−q2n

q2−qn+1 −(q2+1)qn−q2−q2n
q2−qn+1 −1

1 q−qn+1

qn−q
(q2+1)qn−q2−q2n

(q−1)qn−q2+q
qn−q
q−1

1 q−qn+1

qn−q
qn+1−q
qn−q −1

 . (4)

5 Cameron–Liebler line classes in AG(n, q)

In this section we will give an alternative proof for the following statement, which is a
special case of Theorem 30.

Theorem 42. Suppose that L is a set of lines in AG(n, q), n > 3, such that for every
line spread S it holds that

|L ∩ S| = x.

Then L is a Cameron–Liebler line class of parameter x.

To prove this theorem, we make use of the association scheme of Section 4. Let us
recall ∆ from Construction 38, then we first start with the concept of inner distributions.

5.1 Inner distribution

Definition 43. ([3, Section 2.5] and [21, Definition: Section 5, (10)]) Consider a d-
class association scheme (X,R) and let L be a subset of X, then we can consider its
characteristic vector χL. For this vector we can define its inner distribution as the row
vector u = (u0, u1, u2, . . . , ud) with elements in R, for which it holds that

ui =
1

|L|
|Ri ∩ (L × L)|.

Remark 44. Note that for the inner distribution u = (u0, u1, u2, . . . , ud) of a certain
characteristic vector χL, it holds that

ui =
1

|L|
χTL ·Bi · χL,

for 0 6 i 6 d.
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The following theorem will give us a way to observe in which eigenspaces of ∆ a
characteristic vector lies in.

Theorem 45. ([3, Lemma 2.5.1 and Proposition 2.5.2]) Consider a d-class association
scheme Γ = (X,R) and let A be its Bose-Mesner algebra. Denote the idempotent basis
of A by {Ei | 0 6 i 6 d}, with common eigenspaces V0, . . . , Vd. Then it follows for every
subset L of X, that its characteristic vector χL ∈ Rd can be written as follows

χL = a0v0 + a1v1 + · · ·+ advd,

with vi ∈ Vi and ai ∈ R for each 0 6 i 6 d. If u is the inner distribution of χL, then the
following properties are equivalent for fixed 0 6 i 6 d

1. (u ·Q)i = 0, with Q the dual eigenvalue matrix of Γ.

2. Ei · χL = 0.

This last property implies that the projection of χL onto the eigenspace Vi is zero, thus
ai = 0.

Now we mention the next very useful theorem stated in [7]. Our formulation is based
on unpublished notes by Klaus Metsch.

Theorem 46. [7, Theorem 6.8]Let Γ = (X,R) be a d-class association scheme, with
{Ei | 0 6 i 6 d} the idempotent basis of the Bose-Mesner algebra. Suppose G is a
subgroup of Aut(Γ) that acts transitively on X and whose orbits on X×X are the relations
R0, . . . ,Rd. Let χ and ψ be vectors of R|X|. Then the following two statements are
equivalent.

1. For all k > 1, we have Ek · χ = 0 or Ek · ψ = 0.

2. χ · ψg is constant for all g ∈ G.

Remark 47. We know that property (1) is equivalent with the fact that both vectors lie
in opposite (common) eigenspaces besides V0.

Remark 48. A second observation is that in the 3-class association scheme ∆, the group
AGL(n, q) acts indeed transitively on pairs of lines of the same type in AG(n, q). It is also
clear that elements of AGL(n, q) send line spreads of type I and type II to line spreads of
type I and type II respectively.

The same happens for line spreads of type III, we explicitly proved this fact. But first
we give a definition.

Definition 49. Let S be a line spread of type III, with the property that all the chosen
points pi in πn−2 are chosen differently. Then we call S a line spread of type III+.

Lemma 50. The affine collineation group AGL(n, q) sends spreads of type III to spreads
of type III. In particular, it sends spreads of type III+ to spreads of type III+.
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Proof. Consider S to be a line spread of type III, defined by an (n− 2)-space πn−2 ⊆ π∞,
the set of hyperplanes H = {πi | i ∈ {1, . . . , q}} and the q points pi ∈ πn−2. If we
now consider θ ∈ AGL(n, q), then πθn−2 ⊆ π∞ and all the hyperplanes of H = {πi | i ∈
{1, . . . , q}} are sent to different hyperplanes through πθn−2. Also all the points pi are
sent to points pθi ∈ πθn−2, which if they all are different points they shall remain so. We
conclude that

Sθ = {Kθ ∈ Φ1 | pi ∈ K ⊆ πi for some i} = {K ′ ∈ Φ1 | pθi ∈ K ′ ⊆ πθi for some i},

which is of the required form.

5.2 About the common eigenspaces

In this section we give a basis for V0 ⊥ V1 and V0 ⊥ V3, and give a spanning set for
V0 ⊥ V2 ⊥ V3 in the association scheme ∆ from Construction 38.

Definition 51. A point-pencil in PG(n, q) or AG(n, q) is the set of lines through a fixed
point in PG(n, q) or AG(n, q) respectively.

Theorem 52. ([6, Theorem 9.5]) The point-line incidence matrix of AG(n, q) and PG(n,
q) has full rank, which equals the number of points in AG(n, q) and PG(n, q) respectively.
Hence the rows of these incidence matrices, which correspond to points and give point-
pencils are linearly independent.

Lemma 53. [3, Lemma 2.2.1 (ii)] Consider the dual eigenvalue matrix Q in an associa-
tion scheme, then Q0i = dim(Vi).

We now prove the following theorem that characterizes the space V0 ⊥ V1.

Theorem 54. Consider the affine space AG(n, q) and the 3-class association scheme ∆
(see Construction 38). Then the point-pencils form a basis of the space V0 ⊥ V1.

Proof. Let us first find the inner distribution of a point-pencil. It can be seen that this is
equal to

u =

(
1,
qn − q
q − 1

, 0, 0

)
.

Thus we obtain that

u ·Q =

(
qn − 1

q − 1
, −(q + 1)qn−1 − 1− q2n−1

q − 1
, 0, 0

)
.

Hence these first two entries will never be zero for n > 1 and q a prime power. So Theorem
45 shows that all the point-pencils lie inside V0 ⊥ V1.

From Lemma 53 and the description of Q in Equation (4), we obtain that dim(V0 ⊥
V1) = 1+(qn − 1) = qn. This number is equal to the number of point-pencils in AG(n, q).
Together with Lemma 52, we have that the point-pencils form a basis for the space
V0 ⊥ V1.
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We now give a second result on these eigenspaces.

Lemma 55. In the affine space AG(n, q) with association scheme ∆ (see Construction
38), we have the following:

1. The line spreads of type II form a basis for the space V0 ⊥ V3.

2. The space V0 ⊥ V2 ⊥ V3 is spanned by line spreads of type III+ and for the charac-
teristic vector χS of such a line spread S, it holds that E2 · χS 6= 0 6= E3 · χS .

Proof.

1. This is done in a similar way as the previous lemma. The inner distribution of a
line spread S1 of type II is equal to

s1 =
(
1, 0, qn−1 − 1, 0

)
.

From this we obtain that

s1 ·Q =

(
qn−1, 0, 0,

q2n−1 − qn

q − 1

)
.

The first and last entry will never be zero for n > 1 and q a prime power. So from
Theorem 45, we obtain that χS1 ∈ V0 ⊥ V3. Note that these line spreads are in fact
subsets of point-pencils in the hyperplane at infinity in PG(n, q). But due to the
fact that no two subsets contain the same line, we know that these line spreads are
also linearly independent. From Lemma 53 and the description of Q in Equation
(4), we obtain that

dim(V0 ⊥ V3) = 1 +
qn − q
q − 1

=
qn − 1

q − 1
.

This dimension is equal to the number of spreads of type II, which proves that these
line spreads form a basis.

2. Analogously for a line spread S2 of type III+. The inner distribution is equal to

s2 =
(
1, 0, qn−2 − 1, qn−1 − qn−2

)
,

such that

s2 ·Q =

(
qn−1, 0, q2n−2 − qn−2, −(q2 − q + 1)qn−2 − q2n−2

q − 1

)
.

The first and third entry will never be zero for n > 1 and q a prime power. The
last entry needs some arguments. If (q2 − q + 1)qn−2 − q2n−2 = 0, then q = 0 or
q(q − 1) = qn − 1 and thus q = 0 or qn−1 + · · · + q2 + 1 = 0. This statement is
never true if n > 1 and q a prime power. Hence, using Theorem 45, we obtain that
χS2 ∈ V0 ⊥ V2 ⊥ V3 and especially we have that E2 · χS2 6= 0 6= E3 · χS2 .
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To show that V0 ⊥ V2 ⊥ V3 is spanned by line spreads of type III+, we use Theorem
46. Suppose that these line spreads would span V0 ⊥ W1, with V2 ⊥ V3 = W1 ⊥ U1,
then we want to show that W1 = V2 ⊥ V3. If there exists a ψ ∈ U1 \ {0}, then we
know that E2 · ψ 6= 0 or E3 · ψ 6= 0. Let us now consider a line spread S of type
III+, then we know that its characteristic vector χS ∈ V0 ⊥ W1 ⊆ V0 ⊥ V2 ⊥ V3.
Hence χS lies in the complementary space V0 ⊥ W1 of U1, thus χS · ψ = 0. Due to
Lemma 50, we have that for every θ ∈ AGL(n, q) it holds that χSθ ·ψ = 0. So from
Theorem 46, we obtain that E2 ·χS = 0 or E3 ·χS = 0. This is a contradiction with
the end of the preceding paragraph.

5.3 The proof of Theorem 42

Proof. Consider the association scheme ∆ from Construction 38 and let L be a line set
in AG(n, q) such that for every line spread S it holds that |L ∩ S| = x. Then our goal is
to prove that χL ∈ V0 ⊥ V1, since, from Theorem 54, it then follows that χL ∈ Im(ATn )
and hence L is a Cameron–Liebler line class of parameter x.

Consider S to be a line spread of type III+. Such a line spread exists if we can choose
q different points in πn−2. This is clearly the case if n > 3. If we denote the characteristic
vector of S by χS , we know by the definition of L that

χL · χS = x.

In combination with Lemma 50, we know that

χL · χSθ = x,

for all θ ∈ AGL(n, q). Hence, from Theorem 46 and Lemma 55 (Property (2)) which
states that E2 ·χS 6= 0 and that E3 ·χS 6= 0, we may conclude that E2 ·χL = 0 = E3 ·χL.
Thus using Theorem 45, we obtain that

χL ∈ V0 ⊥ V1.

This proves the theorem.

6 Classification results

In this section we will focus on some classification results of Cameron–Liebler k-sets in
AG(n, q) with certain parameters. From now on we will use all the equivalent definitions
of Theorem 30 to describe Cameron–Liebler k-sets. In order to obtain a classification
result, we will need the following result.

Theorem 56. [23, Theorem 3]
Let 0 6 t 6 k be positive integers. Let S be a set of k-spaces in PG(n, q), pairwise

intersecting in at least a t-space. If n > 2k + 1, then

|S| 6
[
n− t
k − t

]
q

.
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Equality holds if and only if S is the set of all k-spaces through a fixed t-space, or n = 2k+1
and S is the set of all k-spaces inside a fixed (2k − t)-space.

Before we give the classification results, the reader should keep Example 20 in mind,
where we gave some examples of Cameron–Liebler k-sets in PG(n, q). Note that by restric-
tion to AG(n, q) we actually obtain fewer examples or stronger conditions on Cameron–
Liebler k-sets. We first give the following lemma.

Lemma 57. A non-empty set of k-spaces contained in a hyperplane of AG(n, q), is not
a Cameron–Liebler k-set in AG(n, q).

Proof. Let L be a Cameron–Liebler k-set in AG(n, q), that consists out of a set of k-spaces
inside a hyperplane π. Pick a k-space K ∈ L, which we can consider in the projective
closure PG(n, q). Then we can define a type II k-spread S1 as the set of affine k-spaces
through K ∩ π∞. Analogously we can define S2 as the set of affine k-spaces through
another (k − 1)-space at infinity that does not lie in π. It is clear that

|L ∩ S1| 6= |L ∩ S2| = 0.

This is a contradiction with Lemma 14.

This lemma gives the following classification result.

Theorem 58. [13, Theorem 4.1] Let q ∈ {2, 3, 4, 5}. Then all Cameron–Liebler k-sets
in AG(n, q) consist out of all the k-spaces through a fixed point, if k + 1, n − k > 2 and
either (a) n > 5 or (b) n = 4 and q = 2.

Proof. Here we use the combination of Theorem 2, Theorem 21 and Lemma 57.

6.1 Cameron–Liebler k-sets with parameter x = 1 in AG(n, q)

Example 59. Consider L as the set of k-spaces through a fixed affine point in AG(n, q).
Then L is a Cameron–Liebler k-set in AG(n, q) of parameter x = 1. This can be seen
from Corollary 1 together with the fact that L also is a Cameron–Liebler k-set in PG(n, q)
of parameter x = 1.

Using Theorem 22, we know that for n > 2k + 1 this example is the only example of
a Cameron–Liebler k-set of parameter x = 1 in PG(n, q). If n = 2k + 1, the set of all
k-spaces in a hyperplane also gives an example of a Cameron–Liebler k-set with parameter
x = 1. This fact gives the following theorem. The following theorem also proves the first
part of Theorem 6 from the introduction.

Theorem 60. Consider the affine space AG(n, q) and let L be a Cameron–Liebler k-set
with parameter x = 1 in this affine space. If also n > 2k + 1, then L consists of all the
k-spaces through an affine point.

Proof. Using Theorem 2, we obtain that every Cameron–Liebler k-set in AG(n, q) is a
Cameron–Liebler k-set in PG(n, q). The latter will have the same parameter x = 1. From
Theorem 22 and Theorem 57, the assertion follows.

We also will be able to improve this result for n > k + 2, see Corollary 73.
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6.2 Cameron–Liebler line classes of parameter x = 2 in AG(n, q)

In this section, our goal will be to exclude the parameter x = 2 for Cameron–Liebler line
classes in AG(n, q), with n > 3. To do this, we will need the following lemma.

Lemma 61. Consider an affine Cameron–Liebler line class L with parameter x = 2 in
AG(n, q), with n > 4. Then for every two points p1 and p2 in π∞, there are two lines of
L through each of them. These 4 lines generate at most a 3-space.

Proof. Denote the lines of L through p1 by `1 and `2, and denote the lines of L through
p2 by r1 and r2. We start by considering 〈`1, `2, r1〉, then we know that dim(〈`1, `2, r1〉) ∈

π∞

ℓ1
ℓ2

r1
r2

τ

t1
p1

p2

Figure 1: Sketch for the proof of Lemma 61

{2, 3, 4}. Suppose now that dim(〈`1, `2, r1〉) = 4. If we now call the plane 〈`1, `2〉 = τ ,
then we know that dim(τ ∩ π∞) = 1. This intersection line we call t1, see Figure 1. Now
we can find a (n− 2)-space π̃ ⊆ π∞ such that

〈t1, p2〉 ⊆ π̃

and
〈`1, `2, r1〉 ∩ π∞ 6⊆ π̃.

This is possible, since first 〈`1, `2, r1〉 ∩ π∞ is a 3-dimensional space that contains 〈t1, p2〉
as a 2-dimensional subspace. And, secondly, since n > 4, we know that n− 2 > 2.

Thus with the identity of Grassmann, we obtain that

dim(〈π̃, τ〉) = n− 2 + 2− dim(π̃ ∩ τ) = n− 1,

dim(〈π̃, r1〉) = n− 2 + 1− dim(π̃ ∩ r1) = n− 1

and

dim(〈`1, `2, r1, π̃〉) = dim(〈`1, `2, r1〉) + dim(π̃)− dim(〈`1, `2, r1〉 ∩ π̃)

= dim(〈`1, `2, r1〉) + dim(π̃)− dim((〈`1, `2, r1〉 ∩ π∞) ∩ π̃)

= 4 + (n− 2)− 2 = n.
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Thus we can conclude that 〈π̃, `1, `2〉 6= 〈π̃, r1〉. So we can define a line spread S of
AG(n, q) (of type† III) that contains `1, `2 and r1, such that |L ∩ S| > 3, which is a
contradiction. Thus from this we can conclude that dim(〈`1, `2, r1〉) 6 3. Analogously, we
can obtain that 〈`1, `2, r2〉 and in general every space generated by three of these four lines
is at most a 3-dimensional space. To show that these four lines span at most a 3-space,
we need to consider some cases.

1. First if p2 6∈ t1, then 〈`1, `2, r2〉 intersects 〈`1, `2, r1〉 in at least the point p2 and the
plane τ . So, since p2 6∈ τ , both 3-spaces are the same. Hence, from now on, we
assume that p2 ∈ t1.

2. If r1 and/or r2 are contained in τ , we are done, since these four lines span a plane
or a 3-space.

3. If r1 and r2 are not contained in τ and 〈r1, r2〉 ∩ τ = t1, then again we can conclude
that all four lines lie in a 3-space.

4. If r1 and r2 are not contained in τ and 〈r1, r2〉 ∩ τ 6= t1. Then 〈r1, r2〉 ∩π∞ ∩ t1 = p2

and we analogously obtain from previous cases that 〈r1, r2, `2〉 and 〈r1, r2, `1〉 are
two 3-spaces that now contain p1 6∈ 〈r1, r2〉 and 〈r1, r2〉.

This proves the lemma.

Let us now state the following known theorem.

Theorem 62 (Folklore). Consider a set of k-spaces E in PG(n, q), 1 6 k 6 n− 1, such
that every two k-spaces intersect in a (k− 1)-space. Then E consists out of a subset of all
the k-spaces through a fixed (k − 1)-space or all the k-spaces inside a (k + 1)-space.

We are ready to state the main theorem. This theorem proves a second part of Theorem
6 in the introduction.

Theorem 63. There does not exist a Cameron–Liebler line class L of parameter x = 2
in AG(n, q), n > 3.

Proof. The case for n = 3 is proven in [9, Corollary 4.5], so we may suppose that n > 4.
Suppose there exists a Cameron–Liebler line class L of parameter x = 2. Then we can
define E as the set of planes, such that each plane is defined by a point at infinity and the
two corresponding lines of L through this point. Due to Lemma 61 we know that these
planes pairwise intersect in a line or coincide. Using Theorem 62, we can conclude that E
consists out of a subset of all the planes through a fixed line or all the planes in a 3-space
σ. If E would consist out of all the planes in a 3-space σ, then L is a set of lines inside
σ and thus inside a certain hyperplane. This is a contradiction with Lemma 57. So we
conclude that E consists out of planes through a fixed line `.

If ` would be a line at infinity then |L| = 2(q+ 1), since every point at infinity belongs
to two lines of L. Note that for n > 3 this number is strictly smaller than the size of a
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π∞

ℓ

s

Figure 2: The last possible option in AG(n, q).

Cameron–Liebler line class in AG(n, q) of parameter x = 2, which has size 2 q
n−1
q−1

. So the
line ` should be affine. See Figure 2.

Note that |E| = qn−1−1
q−1

, since every point at infinity will define exactly one plane in
E by definition. Hence this is also the number of all planes through a line, such that we
know that E consists out of all the planes through `. Let us denote s = ` ∩ π∞. Now
we can use Theorem 30, where we have shown that being an affine Cameron–Liebler line
class in AG(n, q) is equivalent with the following statement. For every affine line `1, the
number of affine lines in L disjoint to `1 in AG(n, q) is equal to(

q2 q
n−2 − 1

q − 1
+ 1

)
(x− χL(`1)). (5)

Consider now an affine line `′ through s that is contained in L and not equal to the
intersection line `. Note that this is always possible, since s belongs to exactly two lines
of L. Then all lines of L except those in the plane 〈`, `′〉, are disjoint to `′. Since every
other plane through ` has 2q lines of L skew to `′ and we also need to count the other
line of L through s, this number is equal to

(|E| − 1) · 2q + 1.

With some calculations, we find that this equals

2q2

(
qn−2 − 1

q − 1

)
+ 1.

This number should be equal to Equation (5). In this equation we fill in χL(`′) = 1,

and we obtain that there should be
(
q2 qn−2−1

q−1
+ 1
)

(2− 1) lines disjoint to `′ ∈ L. These

two numbers are not equal. So there does not exist Cameron–Liebler line classes with
parameter x = 2 in AG(n, q), n > 4 either.

†This exists due to n > 4.
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Remark 64. In contrast with the case for x = 1, we have proven the preceding theorem
without using Theorem 2. The reason for this choice was that we are not able to deduce
the preceding theorem from results in PG(n, q). Reducing to the projective case and using
Theorem 21, we observe that there do not exist Cameron–Liebler k-sets of parameter x = 2
in AG(n, q) if q ∈ {2, 3, 4, 5} together with n > 5 or n = 4, but q = 2.

While using Theorem 3, we obtain a non-existence result for n > 5 and q > 3.
Both statements combined are weaker than the preceding theorem. This seems a small
difference, but for general k the results are even stronger. This will be proven in Corollary
72.

6.3 Characterisation of parameter x of Cameron–Liebler k-sets in AG(n, q)

Our goal here is to prove that there do not exist Cameron–Liebler k-sets in AG(n, q) of
parameter x = 2, with n > k+ 2. As we already briefly discussed, we can not deduce this
result so far by using Theorem 2 and thus reducing to the projective case. If we would
reduce to PG(n, q) and use Theorem 21 and Theorem 3, we would obtain a non-existence
result for (1) n > 3k+2 and q > 3, (2) n > 5 with q ∈ {2, 3, 4, 5} and (3) n = 4 with q = 2.
Note that this statement is significantly weaker than the previous claim. In achieving this
goal we will also obtain a minor non-existence condition on the parameters of certain
Cameron–Liebler k-sets in AG(n, q). We will do so by connecting every Cameron–Liebler
k-set to a Cameron–Liebler line class of the same parameter. For this we will need the
following observation.

Lemma 65. Let L be a Cameron–Liebler k-set with parameter x in AG(n, q). Then the
number of elements of L through a fixed i-space at infinity, for −1 6 i 6 k − 2, is equal
to [

n− i− 1
k − i− 1

]
q

x.

Proof. Consider an i-space I at infinity. Then we can count all the elements of L through
I, by counting the number of (k− 1)-spaces through I inside π∞ and multiplying this by
the number of elements of L through each (k− 1)-space. Both numbers are known, since
through every (k − 1)-space at infinity there are, by Lemma 14, in total x elements of L.
The assertion follows

A remarkable observation is that
[
n−i−1
k−i−1

]
q
x equals the size of a Cameron–Liebler (k −

i− 1)-set in AG(n− i− 1, q). This observation will lead to the following construction.

Construction 66. Consider L to be a Cameron–Liebler k-set in AG(n, q) of parameter
x, and pick an i-space I at infinity, for 0 6 i 6 k − 2 and n > k + 2. Then, by Lemma
65, there are [

n− i− 1
k − i− 1

]
q

x

k-spaces of L that contain I. Pick now an (n − i − 1)-space π in PG(n, q) skew to I.
Then every k-space of L through I will intersect π in a (k − i− 1)-space in PG(n, q), see
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π∞

π

I

Figure 3: The red elements are k-spaces in L through I and we get the purple (k− i− 1)-
spaces after the projection onto the (n− i− 1)-space π.

Figure 5. We shall denote this set of (k − i− 1)-spaces by J . Remark that π is in fact a
projective space of dimension n− i− 1, which is an affine space πA (' AG(n− i− 1, q))
of the same dimension with hyperplane at infinity equal to π ∩ π∞.

We first give a result on k-spreads.

Lemma 67. Consider Construction 66. Then every (k − i − 1)-spread in πA can be
extended to an affine k-spread in AG(n, q), such that all the k-spaces in this k-spread
contain I.

Proof. Let S ′ be a (k − i− 1)-spread in πA, then

S := {〈I,N〉 | N ∈ S ′}

is a k-spread in AG(n, q).

Theorem 68. Suppose that n > 2k − i. Consider Construction 66. Then the set J is
a Cameron–Liebler (k − i − 1)-spaces in πA (' AG(n − i − 1, q)), which has the same
parameter x.

Proof. Consider L and J as in Construction 66, then we need to prove that J is a
Cameron–Liebler (k− i− 1)-set with the same parameter x in πA. We know that, due to
Lemma 67, every (k− i− 1)-spread S ′ in πA can be extended to a k-spread S in AG(n, q)
such that every element of S contains I. Since L is a Cameron–Liebler k-set in AG(n, q),
it holds that |L ∩ S| = x. But since every k-space of L ∩ S contains I, it projects to an
element of J ∩S ′ and vice versa. So we have that |J ∩S ′| = x. Using Theorem 30, which
gives the condition on n, we have proven the theorem.

Remark 69. Note that this construction cannot be done in a similar way for PG(n, q).

We now have found a way to reduce Cameron–Liebler k-sets to Cameron–Liebler line
classes of the same parameter x. Hence, this will lead to a transfer of non-existence
results.
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Theorem 70. Let L be a Cameron–Liebler k-set in AG(n, q), with n > k + 2. Suppose
now that L has parameter x, then x satisfies every condition which holds for Cameron–
Liebler line classes in AG(n− k + 1, q).

Proof. We can use Theorem 68 for i = k− 2, thus n > k+ 2, and obtain that there exists
a Cameron–Liebler line class in AG(n− (k − 2)− 1, q) with the same parameter x. This
proves the theorem.

This theorem has the following consequences.

Theorem 71. Suppose that L is a Cameron–Liebler (n − 2)-set with parameter x of
AG(n, q), then it holds that

x(x− 1)

2
≡ 0 mod (q + 1).

Proof. Use Theorem 70 for n− 2 = k and the modular equality from [9, Corollary 4.3] or
[15, Theorem 1.1].

The following corollary completes the proof of x = 2 in Theorem 6 in the introduction.

Corollary 72. There do not exist Cameron–Liebler k-sets in AG(n, q) with parameter
x = 2, with n > k + 2.

Proof. If there would exist a Cameron–Liebler k-set L of parameter x = 2 in AG(n, q),
we can use Theorem 70 and obtain that there exists a Cameron–Liebler line class in
AG(n− k + 1, q) with parameter x = 2. Since n− k + 1 > 3, we may use Theorem 63 to
obtain a contradiction.

We also have the following improvement of Theorem 60 To conclude Theorem 6.

Corollary 73. The only Cameron–Liebler k-set L of parameter x = 1 in AG(n, q), with
n > k + 2, consists of the set of k-spaces through a fixed point.

Proof. Again we use Theorem 70 to obtain a Cameron–Liebler line class L′ of parameter
x = 1 in AG(n−k+1, q). But combined this with Theorem 60 for k = 1 in AG(n−k+1, q),
we obtain that L′ consists out of all lines through a fixed point. Using Construction 66,
it is easy to see that L is the set of all k-spaces through a point.

7 Cameron–Liebler sets of hyperplanes in AG(n, q)

In this section we study Cameron–Liebler sets of hyperplanes in AG(n, q). We will be
able to give a complete classification. This will be done by giving a classification of affine
(n− 1)-spreads.

Lemma 74. The only (n− 1)-spreads in AG(n, q) are spreads of type II.
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Proof. Let S be an (n − 1)-spread, then we need to prove that L is of type II. Consider
now the projective closure PG(n, q), then we know that every two hyperplanes of S will
intersect in an (n − 2)-space. Due to the fact that S is an affine (n − 1)-spread, these
intersections must lie at infinity. But since every affine hyperplane only has an (n − 2)-
dimensional intersection with infinity, all these (n−2)-spaces need to be the same. Hence,
we have that S is of type II.

The fact that we are able to classify all (n−1)-spreads in AG(n, q), gives us information
how we can construct these Cameron–Liebler sets of hyperplanes in AG(n, q).

Theorem 75. Let L be a set of affine hyperplanes in AG(n, q) and consider the projective
closure PG(n, q). Then L is a Cameron–Liebler set of hyperplanes of parameter x if and
only if L is a set of hyperplanes such that through every (n− 2)-space at infinity we have
chosen x arbitrary hyperplanes.

Proof. The proof is similar as we have done for lines in Section 5. Hence, we find a 2-class
association scheme ∆ = (Φn−1,R), with R := {R0,R1,R2}. Here R0 is the identical
relation, while R1 is the relation that denotes that the two hyperplanes are disjoint and
thus intersect in an (n−2)-space at infinity andR2 is the relation that denotes intersection.
Using similar techniques as in Section 5, we obtain that

P =

1 q − 1 qn+1−1
q−1

1 q − 1 −1
1 −1 0

 and Q =

1 qn−q
q−1

qn − 1

1 qn−q
q−1

− qn−1
q−1

1 −1 0

 .

Due to Lemma 74, we have that the inner distribution of an (n − 2)-spread is equal to
the vector v = (1, q−1, 0). Also point-pencils have inner distribution w = (1, 0, q

n−1
q−1
−1).

Using Theorem 45, we know that the (n − 2)-spreads lie inside V0 ⊥ V1 and the point-
pencils lie inside V0 ⊥ V2, in fact both sets will span these spaces. Combining this
with Theorem 46, we find that a Cameron–Liebler (n − 2)-set can be characterized by
the constant intersection of (n − 2)-spreads. Hence, due to Lemma 74, the assertion
follows.

8 Future research

We want to end this paper with some suggestions for further research. One could also
attempt to classify more parameters of a Cameron–Liebler k-set in AG(n, q), since intu-
itively this will be less difficult than PG(n, q). We remind the reader of Theorem 2, which
states that Cameron–Liebler k-sets in AG(n, q) are special cases of Cameron–Liebler k-
sets in PG(n, q). Another interesting problem is to look for examples of Cameron–Liebler
k-sets in AG(n, q). Note that it would be enough to find a Cameron–Liebler k-set in
PG(n, q) that does not contain any k-spaces inside a hyperplane, see Theorem 1.
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