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Abstract

For n > 5, we prove that every n× n matrix M = (ai,j) with entries in {−1, 1}
and absolute discrepancy |disc(M)| = |

∑
ai,j | 6 n contains a zero-sum square

except for the split matrices (up to symmetries). Here, a square is a 2 × 2 sub-
matrix of M with entries ai,j , ai+s,s, ai,j+s, ai+s,j+s for some s > 1, and a split
matrix is a matrix with all entries above the diagonal equal to −1 and all remaining
entries equal to 1. In particular, we show that for n > 5 every zero-sum n×n matrix
with entries in {−1, 1} contains a zero-sum square.

Mathematics Subject Classifications: 05D10, 05B20

1 Introduction

An Erickson matrix is a square binary matrix that contains no squares (defined below)
with constant entries. In [7], Erickson asked for the maximum value of n for which there
exists an n × n Erickson matrix. In [1] Axenovich and Manske gave an upper bound of

∗Supported by CONACyT project 282280 and PAPIIT project IN116519.
†Supported by CONACyT project 282280.
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around 2240 . This gargantuan bound was later improved by Bacher and Eliahou in [2]
using computational means to the optimal value of 15.

This paper is devoted to studying a zero-sum analogue of Erickson matrices considering
matrices with entries in {−1, 1}. For this purpose, of course, we need to take into account
the discrepancy or deviation of the matrix.

Discrepancy theory is an important branch in combinatorics with deep connections
to many other areas in mathematics (see [5] for a good general reference on this topic).
In particular, one important result is Tao’s recent proof of the Erdős discrepancy con-
jecture, [10], which states that any sequence of the form f : N → {−1, 1} satisfies

supn,d

∣∣∣∑n
j=1 f(jd)

∣∣∣ =∞.

In recent years, we have witnessed the study of zero-sum structures becoming increas-
ingly popular. Some examples related to our work are the following. Caro et al. proved
in [6] that for any finite sequence f : [1, n]→ {−1, 1} satisfying that |

∑n
i=1 f(i)| is small,

there is a set of consecutive numbers B ⊂ [1, n] for which
∣∣∑

i∈B f(i)
∣∣ is also small (in

particular, small can mean zero-sum). Another interesting work is [4], where Buttkewitz
and Elsholtz proved the existence of zero-sum arithmetic progressions with four terms in
certain sequences f : N→ {−1, 1}. Balister et al. studied matrices where, for some fixed
integer p, the sum of each row and each column is a multiple of p [3]; they showed that
these matrices appear in any large enough integer square matrix.

Throughout this paper a matrix with entries in {−1, 1} will be called a binary matrix.
Given an n × m binary matrix M = (ai,j), the discrepancy of M is the sum of all its
entries, that is

disc(M) =
∑
16i6n
16j6m

ai,j. (1)

Note that if a+ is the number of entries in M equal to 1 and a− is the number of
entries in M equal to −1 then

disc(M) = a+ − a− = 2a+ − nm = nm− 2a−. (2)

We define a zero-sum matrix M as a binary matrix with disc(M) = 0.
A square S in M = (ai,j) is a 2× 2 sub-matrix of M of the form

S =

(
ai,j ai,j+s

ai+s,j ai+s,j+s

)
for some positive integer s. A zero-sum square is a square S with disc(S) = 0. Note that
a square in M is not zero-sum if and only if it has at least 3 equal entries.

We are interested in studying matricesM which do not contain zero-sum squares, we
call these matrices zero-sum-square-free.

Note that this may also be seen as a 2-coloring of an n×m rectangular grid. In this
case, zero-sum is the same as balanced.

An n×m binary matrix M = (ai,j) is called t-split if for some 0 6 t < n + m,

ai,j =

{
−1 if i + j 6 t + 1,

1 otherwise.
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If either M, its negative, or its horizontal or vertical reflections are t-split for some t, we
say that M is split. This is relevant since split matrices are always zero-sum-square-free.
We are also interested in the possible discrepancies they can have.

Observation 1. For an n×m t-split matrix M with n 6 m,

disc(M) =


nm− t(t + 1) if t 6 n,

nm + n(n− 1)− 2nt if n < t 6 m,

(n + m− t− 1)(n + m− t)− nm if m < t.

From this we may conclude the following.

Corollary 2. Let M be a t-split binary matrix such that |disc(M)| 6 n. If M is of size
n×n, then t ∈ {n− 1, n} and |disc(M)| = n. If M is of size n× (n+ 1), then t = n and
disc(M) = 0.

In particular, the discrepancy of a square split matrix never vanishes.
Now we are ready to state our main theorem.

Theorem 3. Let n > 5. Every n × n non-split binary matrix M with |disc(M)| 6 n
contains a zero-sum square. In particular, every n × n zero-sum matrix M contains a
zero-sum square.

Theorem 3 and Corollary 2 immediately yield the following.

Corollary 4. Let M be an n × n binary matrix. If n > 5 and |disc(M)| 6 n − 1, then
M contains a zero-sum square.

Our proof method suggests that a stronger result may hold.

Conjecture 5. For every C > 0, there is an integer N with the following property: For
all n > N , every n × n non-split binary matrix M with |disc(M)| 6 Cn contains a
zero-sum square.

There is a more general question. Let f : N → N be the function associating to each
n ∈ N the largest possible integer f(n) such that every n× n non-split binary matrix M
satisfying |disc(M)| 6 f(n) contains a zero-sum square. Obviously f(n) < n2. In fact,
we have that f(n) 6 n2

2
+ o(n2), as shown by the n× n matrix M = (ai,j) defined by

ai,j =

{
−1 if i, j are both even,

1 otherwise.

This is a zero-sum-square-free matrix and its discrepancy is about n2

2
. Theorem 3 implies

f(n) > n if n > 5. It would be very interesting to determine whether f(n) is linear or
quadratic in n.

This paper is organized as follows. Section 2 is devoted to particular cases, which
were analyzed by computer. In Section 3 we give a stronger version of Theorem 3 and its
proof. Finally, Section 4 contains our conclusions and some open questions.
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2 Small cases

Since the proof of Theorem 3 uses induction, we must analyze some of the smaller cases
to obtain our induction basis. It is possible to do this by hand but the amount of work is
quite large, so we aid ourselves with a computer program.

Our program takes three positive parameters as input: n, m and d, which should
satisfy n 6 m and d 6 nm. The output is a list of all n ×m binary matrices which are
zero-sum-square-free and satisfy disc(M) = d. To do this we use a standard backtracking
algorithm that explores all binary matrices with the desired properties. The code is
written in C++ and is available at

https://github.com/edyrol/ZeroSumSquares.

We are mainly interested in two types of zero-sum-square-free matrices: square ma-
trices (with m = n) and almost-square matrices (with m = n + 1). These are the sizes of
matrices we need to understand in order to prove Theorem 3.

Recall that split matrices are zero-sum-square-free, so we always find these examples.

Lemma 6. Let M be a zero-sum-square-free binary matrix with |disc(M)| 6 2n. If M
is of size n × (n + 1) and 4 6 n 6 11, then M is either a split matrix or it is one of 28
exceptional 4 × 5 matrices. If M is of size n × n and 5 6 n 6 11, then M is either a
split matrix or it is one of 32 exceptional 5× 5 matrices.

Although Lemma 6 mentions 60 exceptional matrices, there are essentially only 11.
The rest can be obtained by taking the symmetries of these 11 (generated by reflections
and rotations, and their negatives). These 11 matrices are shown in Figure 1.

Figure 1: Non-split zero-sum-square-free binary matrices.

The computer program does not take too long to run. Using a home computer with an
i7-3770 3.40GHz processor and compiling the program with GCC 8.1.0, it takes less than
a second to analyze a 9× 9 matrix with fixed discrepancy. For the larger matrices, it can
take a couple of minutes. For example, depending on the discrepancy, it takes between
30 and 50 seconds to analyze an 11 × 11 binary matrix and between 1.5 and 3 minutes
for an 11× 12 binary matrix.
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3 Proof

Our proof of Theorem 3 uses an induction argument. The main idea in the induction
step is to split a large zero-sum-square-free matrix M into four square (with equal side-
lengths) or almost-square (with side-lengths differing by 1) sub-matrices. Since it is not
always possible to only use squares, we are forced to understand the behavior of both
square and almost-square zero-sum-square-free matrices. For the induction to work, we
prove the following stronger statement.

Theorem 7. Let n > 5 and m ∈ {n, n + 1}. Every n × m non-split binary matrix M
with |disc(M)| 6 n contains a zero-sum square.

The basis of the induction is given by the computer analysis described in Section 2.
It is not indispensable to use a computer to prove Lemma 6, although doing it by hand
would require either substantial case analysis or a clever argument that has eluded us.

For the rest of the proof we proceed as follows: assuming that the discrepancy of M
is not too large, we find a relatively large sub-matrix N of M with small discrepancy.
By the induction hypothesis, if we assume that M is a zero-sum-square-free matrix, we
conclude that N must be split. It turns out that having a relatively large split sub-matrix
N determines the value of many other entries of M. From those values we find that,
either M is itself split as desired, or we can estimate disc(M) and find that it is larger
than n which contradicts the hypothesis of Theorem 7.

For integers h, j, k, l satisfying 1 6 h < k 6 n and 1 6 j < l 6 m, we define a block of
M as the (k − h + 1)× (l − j + 1) sub-matrix

M[h, k; j, l] =


ah,j ah,j+1 . . . ah,l−1 ah,l
ah+1,j ah+1,j+1 . . . ah+1,l−1 ah+1,l

...
...

. . .
...

...
ak−1,j ak−1,j+1 . . . ak−1,l−1 ak−1,l
ak,j ak,j+1 . . . ak,l−1 ak,l

 .

The next lemma shows that a blockM′ in a zero-sum-square-free matrixM is split if
a certain sub-block ofM′ is also split. It is divided into four instances. Parts (a) and (b)
refer to blocks obtained by removing the first row and the first column ofM′, respectively.
Parts (c) and (d) refer to blocks obtained by removing the last row and the last column
of M′, respectively.

Lemma 8. LetM be a zero-sum-square-free n×m matrix with n > 5. Let 1 6 h < k 6 n
and 1 6 j < l 6 m be integers such that k − h = l − j = b > 2. Consider the block
M′ =M[h, k; j, l] of size (b + 1)× (b + 1).

(a) If M[h + 1, k; j, l] is b-split then M′ is (b + 1)-split.

(b) If M[h, k; j + 1, l] is b-split then M′ is (b + 1)-split.

(c) If M[h, k − 1; j, l] is b-split then M′ is b-split.

(d) If M[h, k; j, l − 1] is b-split then M′ is b-split.
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Proof. If M[h + 1, k; j, l] (respectively M[h, k; j + 1, l]) is b-split, we need to prove that
all entries in the top row (respectively in the leftmost column) of M′ are equal to −1. If
M[h, k; j, l−1] (respectivelyM[h, k−1; j, l]) is b-split, we need to prove that all entries in
the rightest column (respectively bottom row) ofM′ are equal to 1. Since the arguments
are analogous for each case, we only show the first one. Assume that M[h + 1, k; j, l] is
b-split then, for every 1 6 i 6 b,

ah+i,l−i = −1 and ah+i,l = 1. (3)

Consider now the square

S =

(
ah,l−i ah,l
ah+i,l−i ah+i,l

)
and recall that, since M′ is a zero-sum-square-free matrix, any square S in M′ has at
least 3 equal entries. Thus, (3) implies that ah,l−i = ah,l for every 1 6 i 6 b. Therefore,
the elements in the first row ofM′, ah,j, . . . , ah,l, are all equal. Finally, since ah,j = ah,j+1

and ah+1,j = ah+1,j+1 = −1, the same argument for the square

S =

(
ah,j ah,j+1

ah+1,j ah+1,j+1

)
implies that ah,j = ah,j+1 = −1, so all entries in the top row ofM′ are equal to −1. This
shows that M′ is indeed (b + 1)-split.

Once we have a t-split blockM′, we can also deduce the values of other entries which
are not necessarily adjacent to M′.

Lemma 9. Let M be a zero-sum-square-free n ×m matrix, where M′ =M [1, k; 1, l] is
t-split with t < k < n and t < l < m.

If l < r 6 min(t + l − 1, n), then the entries ar,i have the same value for

i ∈ [1, b(t + l − r + 1)/2c] ∪ [r − t + 1, l].

Analogously, if k < c 6 min(t + k − 1,m), then the entries ai,c have the same value
for

i ∈ [1, b(t + k − c + 1)/2c] ∪ [c− t + 1, k].

Proof. Assume 1 6 i 6 (t + l − r + 1)/2 and consider the square

S =

(
ar−l+i,i ar−l+i,l

ar,i ar,l

)
.

Note that, since M′ is t-split and r − l + 2i 6 t + 1, it follows that ar−l+i,i = −1 and
ar−l+i,l = 1. So two entries of S have opposite values and therefore ar,i = ar,l.

If r − t + 1 6 i 6 l, consider the square

S =

(
ar+1−i,1 ar+1−i,i
ar,1 ar,i

)
.
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Since M′ is t-split and r + 1 − i 6 t, it follows that ar+1−i,1 = −1. Furthermore, since
i 6 l, we have that ar+1−i,i = 1. So two entries of S have opposite values and therefore
ar,1 = ar,i.

In conclusion, since ar,i = ar,l for any i ∈ [1, (t+ l− r + 1)/2], we have that ar,1 = ar,l.
If i ∈ [r − t + 1, l] then ar,i = ar,1. Therefore, all of these values are equal. The proof for
columns is analogous.

Proof of Theorem 7. By Lemma 6 we know the theorem holds for any n 6 11 and m ∈
{n, n + 1}. Let M = (ai,j) be a n ×m binary matrix with n > 12, m ∈ {n, n + 1} and
|disc(M)| 6 n. We need to prove that eitherM is split or it contains a zero-sum square,
so we assume henceforth that M is zero-sum-square-free.

As stated before, we use induction on n, so we may assume that the theorem holds
true for all square and almost-square binary matrices with smaller dimensions than those
of M.

We consider the four blocks of M formed by splitting M vertically and horizontally
as evenly as possible. To be precise, let

M1 =M
[
1,
⌊n

2

⌋
; 1,

⌊m
2

⌋ ]
,

M2 =M
[ ⌊n

2

⌋
+ 1, n; 1,

⌊m
2

⌋ ]
,

M3 =M
[
1,
⌊n

2

⌋
;

⌊m
2

⌋
+ 1,m

]
and

M4 =M
[ ⌊n

2

⌋
+ 1, n;

⌊m
2

⌋
+ 1,m

]
.

Note that, for 1 6 i 6 4, each block Mi is either a square or an almost-square matrix.
Also, the smallest side of any Mi is

⌊
n
2

⌋
and the largest is m −

⌊
m
2

⌋
=
⌈
m
2

⌉
6
⌈
n+1
2

⌉
6⌊

n
2

⌋
+ 1. Therefore, the side-lengths of each Mi are in the set {

⌊
n
2

⌋
,
⌊
n
2

⌋
+ 1}.

Claim 10. Either one of the four matricesMi satisfies |disc (Mi)| <
⌊
n
2

⌋
or two of these

four matrices have discrepancies with opposite signs.

Proof. If this is not the case and that the four matrices satisfy disc (Mi) >
⌊
n
2

⌋
, then

n > disc(M) =
∑

disc(Mi) > 4
⌊
n
2

⌋
which is a contradiction. If the four matrices satisfy

disc (Mi) 6 −
⌊
n
2

⌋
we obtain a contradiction in the same way. Therefore two of the Mi

have discrepancies with opposite signs.

What we actually wish to find is a relatively large block ofM with small discrepancy.
By an interpolation argument this is easily achievable.

Claim 11. By exchanging 1 and −1 if necessary, we may assume that there is an almost-
square

⌊
n
2

⌋
-split block N with side-lengths in the set {

⌊
n
2

⌋
,
⌊
n
2

⌋
+ 1} such that |disc(N )| <⌊

n
2

⌋
.

Proof. Claim 10 either provides the block we want or it gives us two blocks N+ and N−
from the set {M1,M2,M3,M4} with disc(N+) > 0 and disc(N−) < 0.

We can construct a sequence N− = N1,N2, . . . ,Nk = N+ of blocks of M with the
following properties:
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• The side-lengths of every Ni are in {
⌊
n
2

⌋
,
⌊
n
2

⌋
+ 1}.

• For each 1 6 i < k, one of Ni and Ni+1 can be obtained from the other by removing
one row or one column.

In other words, we start with N1 = N− and start moving towards N+. In each step we
add or remove a row or column to Ni taking care to always leave Ni+1 with side-lengths
in the set {

⌊
n
2

⌋
,
⌊
n
2

⌋
+ 1}. Note that in each step we switch from square to almost-square

and vice-versa.
At some point the discrepancy changes from negative to positive, so assume that

disc(Ni) < 0 and disc(Ni+1) > 0 for some 1 6 i < k. Since, at each step the discrepancy
changes by at most

⌊
n
2

⌋
+ 1, we conclude that either Ni or Ni+1 must have absolute

discrepancy at most (
⌊
n
2

⌋
+ 1)/2 <

⌊
n
2

⌋
. Let N be this block.

Now we can use our induction hypothesis on N . Since |disc(N )| <
⌊
n
2

⌋
, either N

contains a zero-sum square, or it must necessarily be split. Furthermore, by Corollary 2,
if N is zero-sum-square-free, then it must be an almost-square block and have discrepancy
exactly 0.

In the following Claim we prove that several entries of M are forced. Note that, if
N = M[p, r; q, s], the

⌊
n
2

⌋
-th diagonal of N is contained in the (p + q +

⌊
n
2

⌋
− 2)-th

diagonal of M. So, to simplify things, we define

t = p + q +
⌊n

2

⌋
− 2 >

⌊n
2

⌋
. (4)

Claim 12. By relabeling the entries ofM and exchanging 1 and −1 if necessary, we may
assume that the block M0 =M [1, t + 1; 1, t + 1] is t-split.

Proof. We start with the block N = M[p, r; q, s] described in Claim 11. We repeatedly
apply Lemma 8 to obtain a sequence of split matrices N = N1, . . . ,Nk in the following
way. Assume that Ni = M[h, k; j, l] is a b-split block. The block Ni is either square
or almost-square and b differs from the side-lengths of Ni by at most 1. There are four
possibilities.

• If b = k − h + 1 = j − l, then it follows from parts (a) and (c) of Lemma 8 that
M[h− 1, k; j, l] is (b + 1)-split (if h > 1) and M[h, k + 1; j, l] is b-split (if k < n).

• If b = k−h = j−l+1, then parts (b) and (d) of Lemma 8 imply thatM[h, k; j−1, l]
is (b + 1)-split (if j > 1) and M[h, k; j, l + 1] is b-split (if l < m).

• If b = k − h = j − l then we can remove the last row or column from N and
apply parts (c) and (d) of Lemma 8 to show that M[h − 1, k; j, l] (if h > 1) and
M[h, k; j − 1, l] (if j > 1) are b-split.

• If b = k−h+ 1 = j− l+ 1 then we can remove the first row or column from N and
apply parts (a) and (b) of Lemma 8 to show that M[h, k + 1; j, l] (if k < n) and
M[h, k; j, l + 1] (if l < m) are b-split.
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In any case, let Ni+1 be any of the larger split blocks described above, whenever possible.
The process can only stop at Nk =M[h, k; j, l] if either Nk =M or Nk is square with

(h, j) = (1, 1) or (k, l) = (n,m). If (h, j) = (1, 1), we are done. If (k, l) = (n,m) then
we may relabel the entries ofM, exchanging (1, 1) and (n,m) and exchange 1 and −1 to
obtain the desired result.

Claim 13. The block

M1 =M
[
1,min

(
n,

⌊
3t

2

⌋)
; 1,min

(
m,

⌊
3t

2

⌋)]
is t-split.

Proof. We start with the block M0 =M [1, t + 1; 1, t + 1] from Claim 12 and repeatedly
apply Lemma 9 in the following way.

If M′ =M[1, k; 1, k] is t-split with t + 1 6 k < m, apply Lemma 9 for columns with
l = k and c = k + 1. The values ai,c are all equal for i ∈ [1, k] whenever

(c− t + 1)− 1 6 (t + k − c + 1)/2,

which is equivalent to k + 1 = c 6 3t/2. If this is the case, consider the square(
ak−1,k ak−1,k+1

ak,k ak,k+1

)
.

Since ak−1,k = ak,k = 1 and ak−1,k+1 = ak,k+1, then ak,k+1 and therefore every ai,k+1 with
i ∈ [1, k] is 1. Thus, the block M[1, k; 1, k + 1] is t-split as long as k + 1 6 b3t/2c.

Now, starting with M[1, k; 1, k + 1], apply Lemma 9 for rows with l = k + 1 and
r = k + 1. The values ar,i are all equal for i ∈ [1, l] whenever

(r − t + 1)− 1 6 (t + l − r + 1)/2,

which is equivalent to k+1 = r 6 3t/2+1/2. In the same way as before, we may conclude
that ai,k+1 = 1 if i ∈ [1, k + 1]. Thus, the block M[1, k + 1; 1, k + 1] is t-split whenever
k + 1 6 b3t/2c.

This process stops when either r or c exceeds b3t/2c or the corresponding dimension
of M.

In view of the previous Claim we may assume that m >
⌊
3t
2

⌋
+ 1, otherwiseM =M1

is a split matrix. Since m 6 n + 1, this implies that

t 6
2n + 1

3
, (5)

which will be relevant later. In the case in which M1 does not cover M, we may infer
the values of additional entries ofM. This is done in a similar way to Claim 13, although
we are no longer able to obtain a t-split matrix. Instead, we obtain five regions outside
of M1 for which ai,j = 1. These are illustrated in Figure 2.
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t b t
2
c t− 2

Figure 2: The regions described in Claims 12, 13 and 14. The colors yellow and blue
represent values of −1 and 1, respectively. The matrixM is not actually large enough to
contain all of the marked squares.

The first region has a triangular shape bounded by the first column outside of M1,
the first row of M and a certain line of slope 1

2
. The second region is bounded by by the

first column outside of M1, the last row of M1 and a line of slope −1. Of course, there
are corresponding regions to these below M1. Lastly, the entries of the diagonal of M
which are outside ofM1 must also have value 1. This is formalized in the following claim.

Claim 14. Let T =
⌊
3t
2

⌋
, then ai,j = 1 and aj,i = 1 whenever T < j and any of the

following hold:

(a) i 6
⌊
T+t+1−j

2

⌋
,

(b) j − t < i 6 T , or

(c) i = j.

Proof. We start with the t-split block M1 =M [1, T ; 1, T ] from Claim 13.
We inductively deduce the values in column j starting with j = T + 1 and increasing

j one by one. Take k = l = T and c = j in Lemma 9 for columns.
Note that (4) implies that j 6 T + t− 2, so two things happen; the values ai,j are all

equal for
i ∈ [1, b(t + T − j + 1)/2c] ∪ [j − t + 1, T ]

and the interval [j − t + 1, T ] contains at least two elements. By considering the square(
aT−1,j−1 aT−1,j
aT,j−1 aT,j

)
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and using the fact that the elements aT−1,j−1 and aT,j−1 from the previous column have
value 1, we conclude that all the ai,j described above are equal to 1.

Analogously, using Lemma 9 for rows, we can say the same for aj,i.
Condition i ∈ [1, b(t + T − j + 1)/2c] is equivalent to i 6 b(T + t + 1− j)/2c which

proves part (a) of the claim, while i ∈ [j − t + 1, T ] is equivalent to j − t + 1 6 i 6 T
which proves part (b).

To prove part (c), for T < i = j 6 T + t− 2, consider the square(
a1,1 a1,i
ai,1 ai,i

)
.

Since a1,1 = −1 and ai,1 = a1,i = 1, we must have that ai,i = 1.

Now we can bound the discrepancy of M. Recall from (2) that it is enough to know
the number of positive entries a+ ofM in order to compute disc(M). Since 2a+− nm =
disc(M) 6 n, we have that

a+ 6
n + nm

2
. (6)

If this inequality is violated, it means thatM is not larger thanM1. So, all that remains
is to bound from below the number of positive entries a+ of M.

Let R = n− T and define

a0 =
t(t− 1)

2
+

⌊
t

2

⌋2
+ 2t

⌊
t

2

⌋
,

a1 = 2
n∑

j=T+1

⌊
T + t + 1− j

2

⌋

= 2
R∑

k=1

⌊
t + 1− k

2

⌋
,

a2 = 2
n∑

j=T+1

(T − j + t)

= 2
R∑

k=1

(t− k) and

a3 = R.

A simple calculation gives the following claim.

Claim 15.
a+ > a0 + a1 + a2 + a3.

Proof. The number of positive entries in M1, described in Claim 13, is a0.
If m = n, then a1, a2 and a3 equal the number of positive entries described in parts

(a), (b) and (c) of Claim 14, respectively.
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If m = n+ 1, by ignoring the positive entries in the last column ofM, we obtain that
a1, a2 and a3 are lower bounds for the number of positive entries described in parts (a),
(b) and (c) of Claim 14, respectively.

Recall that we are currently dealing with n > 12 and, from (4) and (5),⌊n
2

⌋
6 t 6

⌊
2n + 1

3

⌋
. (7)

Before simplifying this lower bound, we can check that (6) cannot be satisfied for small
values of n. The following claim can be easily verified with aid from a computer.

Claim 16. For 12 6 n 6 15 and
⌊
n
2

⌋
6 t 6

⌊
2n+1

3

⌋
, we have that

a0 + a1 + a2 + a3 >
(n2 + 2n)

2
>

(n + nm)

2
.

Therefore, we may assume that n > 16. What follows is a series of algebraic manipu-
lations to obtain a simpler lower bound for a+ which can be analyzed analytically.

Claim 17. For n > 16 and
⌊
n
2

⌋
6 t 6

⌊
2n+1

3

⌋
, we have that

a0 + a1 + a2 + a3 >
23n2 − 70n− 77

32
.

Proof. We can remove the integer parts in a0 + a1 + a2 + a3 by using that, for any integer
x, the inequalities x−1

2
6
⌊
x
2

⌋
6 x

2
are satisfied. It is convenient to do this in two parts,

first we apply these inequalities but leave the variable r as it is. This gives

a0 + a1 + a2 + a3 =
t(t− 1)

2
+

⌊
t

2

⌋2
+ 2t

⌊
t

2

⌋
+ 2

R∑
k=1

(⌊
t + 1− k

2

⌋)

+ 2
R∑

k=1

(t− k) + R

>
t(t− 1)

2
+

(
t− 1

2

)2

+ t(t− 1) + 2
R∑

k=1

(
t− k

2

)

+ 2
R∑

k=1

(t− k) + R

=
7t2

4
− 2t +

1

4
+ 3Rt− 3

2
R2 − 1

2
R.

Since R = n−
⌊
3t
2

⌋
we have that n− 3t

2
6 R 6 n− 3t−1

2
, using this on the last expression
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we obtain

a0 + a1 + a2 + a3 >
7t2

4
− 2t +

1

4
+ 3

(
n− 3t

2

)
t

− 3

2

(
n− 3t− 1

2

)2

− 1

2

(
n− 3t− 1

2

)
= −49t2

8
+

15nt

2
+ t− 3n2

2
− 2n− 3

8
.

To minimize this last expression think of n as fixed and consider it as a function of t. Then
this is an upside-down parabola and, from (7), the relevant values for t are contained in
the interval

[
n−1
2
, 2n+1

3

]
. Therefore the parabola is bounded from below by the minimum

between the values at t = n−1
2

and t = 2n+1
3

. These are, respectively,

23n2 − 70n− 77

32
and

14n4 − 28n− 13

18
.

The former gives the smallest value.

To conclude the proof, notice that the parabolas 1
32

(23n2 − 70n− 77) and 1
2
(n2 + 2n)

intersect twice, once in the interval (−1, 0) and a second time in the interval (15, 16).
Since n > 16, we have

a+ > a0 + a1 + a2 + a3 >
23n2 − 70n− 77

32
>

n2 + 2n

2
.

This contradicts (6), so M =M1 and therefore M is a split matrix.

4 Conclusions and further work

We were able to give an elemental proof of Theorem 3, but we are sure that there is a
deeper result in the direction of Conjecture 5. It is also likely that something can be said
for non-square matrices. The fact that the final bound given for a+ is significantly smaller
than n2 suggests that a much stronger theorem should hold. It is possible to strengthen
our proof to obtain a stronger version of Theorem 7 with something like |disc(M)| 6 2n
instead of |disc(M)| 6 n, however significantly more work is required to establish this
and it is probably not worth the effort.

In [9] Erickson matrices were generalized to 3-squares. A k-square in a matrix M is
a k × k sub-matrix of M contained in k rows of M of the form i, i + s, . . . , i + (k − 1)s
and k columns ofM of the form j, j + s, . . . , j + (k− 1)s. We could ask about zero-sum-
k-square-free binary matrices but this does not make sense when k is odd. However, the
case when k is even seems interesting. For odd k we can ask about binary matrices which
do not have k-squares of sum ±1.

Lastly, we should point out that with the aid of Claims 12 and 14, or with stronger
versions of this claim, zero-sum-square-free matrices of much larger sizes may be analyzed
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by a computer. This might be useful for generalizing our results. However, a different
type of computer search might likely be much more useful. SAT-solvers have been used
for finding lower bounds in Ramsey-like problems (see e.g. [8]) but it is not obvious how to
include the discrepancy condition here. Perhaps linear integer programming could work.
Since we did not need to analyze anything larger than an 11×12 matrix, we did not work
much on making our program efficient.
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