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Abstract

For fixed graphs F' and H, a graph G C F is H-saturated if there is no copy
of H in G, but for any edge e € E(F) \ E(G), there is a copy of H in G + e. The
saturation number of H in F', denoted sat(F, H), is the minimum number of edges
in an H-saturated subgraph of F'. In this paper, we study saturation numbers of
tK;;, in complete tripartite graph K, n,n,. For t > 1,1 > 1 and nq,n2 and ng
sufficiently large, we determine sat(Kp, nony, 657, ) exactly.

Mathematics Subject Classifications: 05C35

1 Introduction

In this paper, we only consider finite, simple and undirected graphs. Let G = (V, E) be
a graph, where V' is the vertex set and £ is the edge set of G. For a subset S of V', G[9]
is a subgraph of GG induced by S. Let H be a graph. We will use tH to denote t pairwise
disjoint copies of H. Let K, n,n, be a complete tripartite graph with n,; vertices in the
ith partite, where 1 < i < 3.

A graph G is said to be H-saturated if it does not contain H as a subgraph, but the
addition of any new edge from E(G) forms a copy of H, where G is the complement of G.
Let sat(n, H) denote the minimal size of an H-saturated n-vertex graph. Erdds, Hajnal
and Moon [5] initiated the study of saturation numbers by determining sat(n, K,) =
(k—2)n — (k_l). Since then, there are plentiful results in this field. Készonyi and Tuza

2
[6] gave a general upper bound for sat(n, H) and determined sat(n, Py), sat(n, K; ;) and
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sat(n, kPy). Cycle saturation numbers were studied in [17, 4, 10]. See Faudree, Faudree,
and Schmitt [8] for an abundant survey. Among these results, almost all of the considered
graphs are connected graphs; only a few unconnected graphs are considered, including
matchings [6] and vertex-disjoint cliques [7].

Generalizing further, a subgraph G of host graph F' is H-saturated relative to F if G
does not contain H as a subgraph but adding any edge of E(F)\ E(G) to G forms a copy of
H. The saturation number of F'in H is the minimum number of edges in an F-saturated
subgraph of H, and is denoted by sat(F, H). With this notation, sat(n, H) = sat(K,, H).
The first result on saturation numbers in host graphs that are not complete is from a re-
lated problem in bipartite graphs. Bollobas [2, 3] and Wessel [18, 19] independently deter-
mined the saturation number sat(K,;, K. q). Results about the saturation number when
the host graphs are not complete can be foud in [1], [11]-[15]. In [16], Sullivan and Wenger
studied saturation numbers in tripartite graphs and determined sat(Ky, nyngs K70). In
this paper, we generalize Sullivan and Wenger’s result and determine sat(K,, nyns, t5001)
exactly for ¢t > 1.

Throughout this paper, we assume n; > ny > ng and the partite sets of K, ,n, are
Vi, Vo and V3 with |V;| = n;. When G is a subgraph of K, ,, 14, let 6;(G) denote the
minimum degree of the vertices of V; in G. When the graph is clear we simply write 9;.
For a vertex v € V(G), we let N;(v) = N(v)NV;. Let S; C V(G) and Sy C V(G). Denote
[51,52] = {UU € E(G)|U € Sl,U S SQ} Then [51,52] = [52,51]. If Sl = {u}, we will
denote [{u}, Sa] by [u, Ss]. In the following sections, all subscripts are modulo 3.

2 The construction of tK;;;-saturated graph of K,

1,N2,13

In this Section, we construct a tK;;;-saturated graph of K, ,,n,. We use [k] to denote
the set {1,2,...,k}. We label the vertices in the partite sets V; of K, n,ns as V; =
{v} 2, ... } i€3. For 0<j<t—1landiel3],V/ aret pairwise disjoint subsets
of V; with |V”\ — 1. We label the vertices in V7 as {v7 ™ /%2 JH }. We begin our
construction of a tK;;;-saturated graph, denoted by H, of Knlm,n3

Construction Let ¢, [, ny, ny and ngz be positive integers such that n; > ny > ng >

t1+1. Let V(H) =V UV, UV; and

E(H) = (Ut “o ULy {uvlu € V] G Vzu}) \ {vivy, vavs, vivg}
U U3 _ {wlu € VP v e (Vigr UVigo) \ (Vi U VL) T

Obviously, H is a subgraph of K, ,, n, and |E(H )| = 2l(ny +ny+n3)—3+3(t—2)% Our
construction is illustrated in Figure 1. Let U = U'Z; (V;UVZUVY) and VO = VPUVLU VY.
About the properties of H, we have the following results.

Property 1 H is tK; -free.

Proof of Property 1 Suppose K7,..., K, are pairwise disjoint copies of K;;; in H.
If there is v € UﬁZIV(Ki) \ (U UV, say v € V(K;) NV, then N(v) = V3 U VP by
Construction. Since vjvi ¢ E(H), we have vi ¢ V(K,) or vi ¢ V(K;), a contradiction.
Hence U!_,V(K;) = U U V" Then v{ € V(Kj), say V(K;). Then vy, v} ¢ V(K;) by
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Figure 1: A tKj;;-saturated subgraph of K, »,ns. Solid lines denote complete joins
between sets, and dotted lines denote edges that have been removed.

vivy, vivl & E(H). So there are a € V3 and b € V3, say i = 1, such that a,b € V(K;).
By Construction, V(K;)NV; C VPU V! for i € [3]. Since v] € V(K;) N VY, there is
c € VE\V(K;). Assume ¢ € V(K3). Then V(Ky)NV; C VPU V! for i = 2,3. Thus
(V(K,)UV (K3))NV; = VOUV! for i = 2,3. Since vgvs ¢ E(H), V(Ky)N(VaUVs) # VRUVY
which implies (V(K;) UV (Ky))NV; = VLUV Thus V(K;) UV(K,) = VOU (UL, V).
Since vivy, vavi, vivy & E(H), we have a contradiction. I

Property 2 H is a tK;;;-saturated graph of Ky, nyns-

Proof of Property 2 Let wv € E(Kynyns) \ E(H). We will show that H + uv
contains tK;;; by considering the following four cases.

Case 1 uwv € {vjvl, vivi vivi}.

Assume, without loss of generality, that uv = v{vi. By Construction and ng > tl + 1,
there is w € V3'\ U;;%)ng such that zw € E(H) for all x € VYU VY. Now H[V{ U Vy U VY]
foralli e [t — 1] and H[VY U VR U (VP \ {vi}) U{w}] + v form tK;;; in H + uv.

Case 2 u,v € U.

Assume, without loss of generality, that u € V5! and v € VQj, where 2 < 7 <t — 1.
Then VUV UV U{vi P\ {u}, Vi UVF UV U{v3}\ {v} and VOU{u,v}\{v],v3} induce
three pairwise disjoint copies of K;;; in H +wuv, together with ¢ —3 pairwise disjoint copies
of Ky induced by UZL (Vi UVZU V) \ (V] UV UVY), we get tK;,; in H + uv.

Case 3ueUandv e V(H)\ (UUVY).

Assume, without loss of generality, that u € Vi and v € V5 \ (UUV?). Then V! UV, U
ViU {vf b\ {u} and VO U {u,v} \ {v],vs} induce two disjoint copies of Kj;; in H + uv.
Together with ¢ — 2 pairwise disjoint copies of Kj;; induced by U \ (V' U V3 U VS, we
get tKl,l,l in H + uv.

Case 4 u,v € V(H) \ (UUVY).
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Assume, without loss of generality, that u € V;\ (UUV?) and v € V5 \ (UUV?). Then
VOU {u,v}\ {v],v3} induces a K;;; in H 4+ uv. Together with the ¢ — 1 pairwise disjoint
copies of Kj;; induced by U, we get tK;;; in H + uv. ]

By Properties 1 and 2, we have our first main result in this Section.

Theorem 1. Letny >no >n3 >tl+ 1. Forallt > 1 andl > 1,

Sat(Knl,ng,n37 tKl,l,l) < 21(711 “+ ng + Tl3) -3 —+ 3(t — 2)12

3 The saturation number of tKj;; in tripartite graphs

In this Section, we prove our main result on saturation number in tripartite graphs.

Theorem 2. Let ny = ny > ng > 24013 + 4412 + 121+ 3(t — 1)I?. For allt > 1 and [ > 1,
sat(Knth,ng,tK”’l) = 2[(”1 + ng + n3> -3+ B(t — 2)[2

Since we already have Theorem 1, we just need to prove the lower bound. Before
that, we need some lemmas. The idea of the proofs of the following two lemmas comes
from [16]. Let

k= 2l(n1 + no —|—n3) -3+ 3(t - 2)[2

for short. In the following, we will show that if G is a tK;;;-saturated subgraph of
Koy nymss then |E(G)| > k. Note that if G is a tK;-saturated subgraph of K, 5y ns,
then there is a new Kj;; containing e in G + e, where e € E(K,,, nyns) \ E(G).

Lemma 3. Let i € [3] and assume that n; = (31 4+ 1)(0;41 + di2) + (3t — 3)I%. If G is a
t K i-saturated subgraph of Kp, n,ns Such that 6; > 21, then |E(G)| > k.

Proof. For each i € [3], let v; be a vertex of degree §; in V;, respectively. Since G+ e forms
a new Kj;; contained e for any edge € € E(Kp, nyns) \ E(G), |N(v;) N N(z)| > [ for any
x € Vi1 U Vi with zv; € E(G). Therefore there are at least I(n;41 + njio — §;) edges
joining V;y; and V5. Similarly there are at least I(n;11 — d;12) edges joining V;;; and
N;(vit2) and at least [(n; 1o — d;11) edges joining V;,o and N;(v;41). Finally, for the other
vertices in V;, there are at least d;(n; —0;41—0d;+2) edges incident to V;\ (NV;(vi41)UN; (vig2)).
Sum these edges, and we have

|E(G)| > l<2ni+1 + 2490 — 0ip1 — 5i+2) + 5z‘(ni — 0iy1 — Ojya — l)-
Note that n; > 0;11 + d;40 + . With §; > 2[, we have

|E(G)] 21(2ni41 + 20442 — Gip1 — Giva) + (2L + 1)(n; — i1 — di2 — 1)

Lemma 4. Let ny > ny = ng > 241° + 441 + 121 + (3t — 3)I%. If G is a tK -saturated
subgraph of Ky, nyns such that 6; > 21 for some i € {1,2,3}, then |E(G)| > k.
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Proof. Since G'is a t K ;-saturated subgraph of K,,, ,, n,, G+e forms a new K;;; contained
e for any edge e € E(K, nyns) \ E(G) which implies each vertex in V; has at least [
neighbors in both V41 and V; 5 or is completely joined to V;i; or V;io. Thus 6(G) > 21.
We distinguish two cases.

Case 1 n; < (41 + 1)na.

If & > 61+ 1, then |E(G)| = (60 + 1)ny > 2l(ny + ns + n3) +ny > k and we are done.
So we assume that §; < 61 + 1. If 63 > 8I* + 61 + 1, then |E(G)| = (81> + 61 + 1)ny >
21(ny + ny + n3) + ny > k and we are done, so we assume that o < 8% + 61 + 1. Since
ng = 2413 + 4417 + 121+ (3t — 3)12 > (31 +1)(6y + 02) + (3t — 3)I?, Lemma 3 implies that if
d3 > 2l, then |E(G)| > k and we are done, so we assume 03 = 2[. Lemma 3 implies that
if 07 > 2l or 09 > 2I, then |E(G)| = k.

Case 2 ny > (41 + 1)ns.

If 61 > 21, then |E(G)| = (214 1)ny = 2l(nq +na+n3) +ng > k, so we assume §; = 21.
Let R = {v € Vj|d(v) = 2I}. If [V} — R| = 2l(ny + n3) + (3t — 3){?, then |E(G)| > k, so
we assume |V; — R| < 2l(ny + n3) + (3t — 3)I%.

If v € R, then each vertex in Ny(v) is adjacent to every vertex in V3 '\ N3(v). Thus
each vertex in No(R) has at least ng — [ neighbors in V5. If |[Na(R)| > %, there are at
least (41 + 1)ng edges joining V5 and V3, then |E(G)| > k and we are done, so we assume
[No(R)| < .

There are at least d(ny — Y522 edges incident to Vo — Ny(R). There are at least

nsz—I

21(ny — 2I(ny + n3) — (3t — 3)I%) edges incident to R. When d§y > 812 + 81 + 1,

(41 + 1)ny 5 41 +1 5
L 1)(1- > 1).
(52 (ng n3—l n2(8l +8l+ ) 24l3+44l2—|—11l 7’L2(8l +6l+ )

Then we have

WV

|B(G)| =6, <n2 - M) + 2y — 2(ny + nz) — (3t — 3)17]

ng — l
> (812 + 61 + 1)ng + 2Ing — 41*(ng + ngz) — 2(3t — 3)1°
and we are done. So we assume Jy < 8[? + 8[. Since §; = 2l, J, < 8I*> + 8[, and
ng = 241% + 4412 + 121 + (3t — 3)1? > (31 4+ 1)(61 + &) + (3t — 3){?, Lemma 3 implies that

if 03 > 2I, then |E(G)| > k and we are done, so we assume that d3 = 2/. By Lemma 3 we
know if 0y > 21, then |E(G)| > k. O

Lemma 5. Let S C V(Ky;) and S = V(K ;)\ S. If |S],|S| = 1, then |[S,S]| = 2.

Proof. Let V(K =U,0U0,UUs, S; = SNU; and S; = SNU;. Let |S;| = a; for i € [3].
Then |S;| =1 — a;. Assume a; > as > az. Then

|[S, S]l = a1(2l — a9 — CL3) + a2(2l — a1 — (13) + CL3(2[ — Q] — CLQ)
= 2(&1[ + &Ql + &3l — a102 — Q23 — CL1613>
= 2((1,1(l — a9 — CL3> + CLQZ + CL3Z — agag).

ot
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When ay + a3 > [, the lower bound of |[S, S]| is decreases as a; increases. Since a; < I,
we have |[S, ]| = 2(I(I — ag — a3) + asl + asl — asas) = 2(1> — azas). Note that ag <1 —1.
Thus |[S, S]] = 2I.

Suppose ay + az < I. If ag = az = 0, then |[S, S]| = 2a1l > 2. If ay > 1, the lower
bound of |[S, S]| is increases as a; increases. So

1S, S]] = 2(2asl + asl — a3 — 2asas3)

(—(ag + (az —1))* + asl + (az — 1)?)
(—

(

WV

(]_ + (a3 — l))2 + a3l + (a3 — Z)Q)

2
2
22l — 14 az(1 —2)) >4l —2 > 2l O

Now we are going to prove Theorem 2. Let G be a tK;; ;-saturated graph of K, », ns-
We will show that |E(G)| = k = 2l(ny + na + n3) — 3+ 3(t — 2)I%. From Lemma 4, we
assume that 6; = 09 = 93 = 2.

For i € [3], let v; € V; such that d(v;) = 0; = 2. Thus |Njy1(v;)| = |[Nipa(v))| =1
and G contains all edges joining Ny 1(v;) to Viia \ Niro(v;) and all edges joining Ny o(v;)
to Viy1 \ Niz1(v;). Therefore, the vertices of degree 2/ in G form an independent set.
Let VD = N(Ul) U N(UQ) U N(Ug) and let ‘/iO = VO N ‘/z Since |N(UZ'+1) N N(UZ'+2)| =
[, we conclude that N;(viy1) = N(UZ+2) and therefore V. = N;(viy1) = N;(vie) and
V9 = L Denote Go = GIV), E; — [VO,Viga \ V] and B/ — [V, Vigs \ Vs for
i € [3]. Then |E;| = l(n;41 — 1) and ]E’\ = I(njy2 —1). Let B, = U3 (FE; U E!). Then
|E1| = 2l(ny + ny + ng) — 6[2. Since G + vz completes a copy of Kj;; containing v; for
any « € Viy1 \ N(v;), there is a complete bipartite graph joining [ — 1 vertices in V2| and
[ vertices in V;%,. Also there is a complete bipartite graph joining I — 1 vertices in V;%,
and [ vertices in V. Thus Gy is a complete tripartite graph minus at most three edges,
implying that |E(Gg)| > 31* — 3.

Proof of Theorem 2 (in the case I = 1) In this case, K;1; = K3 and k =
2(ny + ng + nz) + 3t — 9. Denote V° = {x;} for i € [3]. Let G’ = G[V \ {z1, 79, x3}] and
Ky, ..., K, be all pairwise disjoint copies of K3 in G'. Since GG contains t — 1 pairwise
disjoint copies of K3, t —4 < s <t — 1. Note that N(vy) = {xs, 23}, N(v2) = {z1, 23}
and N(v3) = {z1,72}. So vi,v9,v3 ¢ Ui V(K;). Then |Ei| = nipq — 1, |[El] = njpg — 1
and |E1| =2(ny +ny+n3) —6. If s =t — 1, then |E(G)| > |E1| +3(t — 1) = 2(ny +no +
n3) + 3t — 9 = k and we are done. If s =t — 4, G + vyvy contains at most ¢ — 1 pairwise
disjoint copies of K3, a contradiction with G being tK3-saturated. So we just consider
the following two cases.

Case 1 s=1t—3.

If there is ¢, say ¢ = 1, such that x29 ¢ E(G), then there are at most (¢ — 3) + 2
pairwise disjoint copies of K3 in G + xyz9, a contradiction. Hence |E(Gy)| = 3 and
then |E(G)| > |Ei| + |E(Go)| + 3(t —3) = k — 3. Since there are t pairwise disjoint
copies of K3 in G + vyvs, we can assume there are uy, v} € Vi \ (UZ3V(K;) U {z1})
with u; # ), uy € Vo \ (UZ3V(K;) U {xp}) and uz € V3 \ (UIZ2V(K;) U {x3}) such
that zoui, zous, uwyug € FE(G) and zzu}, xsug,ujus € E(G). So |E(G)| > k — 1. If
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|E(G)| = k — 1, then G + vyv3 contains at most ¢ — 1 pairwise disjoint copies of K3, a
contradiction.

Case 2 s=1t— 2.
In this case, we have

|E(G)| = [Er]+|E(Go)| +3(t - 2)
= 2(ny +no +13) — 6+ [E(Go)| +3(t — 2) = k + | B(Go)| — 3.

So we can assume |E(Gy)| < 2. Denote Ey = U'Z7E(K;) and V' = U/ZIV(K;). Then
|[V'| = 3t — 6. We first consider the case |F(Gy)| = 2. Then |E(G)| > k — 1. Assume
r1Ta, 1123 € E(G). If |[E(G)| =k — 1, then

E(G) = El U EQ U {l‘lfL'Q,Ill'g}.

But G + vyv3 contains at most t — 1 pairwise disjoint copies of K3, a contradiction.
Suppose |E(Go)| = 1, say 2122 € E(G). Then |E(G)| > k—2. Suppose |E(G)| = k—2.
Let G' = G+xy23. Then |E(G')| = k—1. By the discussion above, G’ contains at most t—1
pairwise disjoint copies of K3, a contradiction. Hence |E(G)| > k — 1. Suppose |E(G)| =
k—1. Then thereis e ¢ E1UE,U{x175} such that E(G) = E\UE,U{z129,¢}. Let e = uv.
Suppose {u,v} C V’. Since G is a tK3-saturated graph, there are t pairwise disjoint
copies of K3, say K™, ..., K% in G + vjvs. Denote VU1 = UZJV(K**). Then
Vs C VU {xy, xe, 23,01, v3} which implies |V"1%3| < 3t — 1, a contradiction. Suppose
ueV'andv € V\ (V'U{xy, 29, x3,v1,09,v3}). Then N(v) C {xy, z9, x3, u} which implies
G +vyv3 (resp. G+wyv3) contains at most ¢t — 1 pairwise disjoint copies of K3 if v € V;UV;
(resp. v € V), a contradiction. Suppose u,v € V' \ (V' U {x1,x2,23,v1,02,0v3}). Then
N(u)UN(w) C {u,v,x1, 29, 23}. If u,v ¢ V3, then zyzovszy, uzsvu, Ky, ..., K; 5 form
tK3 of G, a contradiction. So we assume u € V3. Then G +vjvs3 (resp. G + v9v3) contains
at most t — 1 pairwise disjoint copies of K3 if v € Vj (resp. v € V,), a contradiction.
Suppose |E(Gy)| = 0. Then |E(G)| > k—3. If |E(G)| = k —3, then G+ x125 contains

at most ¢ — 1 pairwise disjoint copies of K3, a contradiction. Suppose |[E(G)| = k — 2.
Then there is e ¢ £, U E5 such that E(G) = E; U Ey U {e}. Let e = uv. Since there are
t pairwise disjoint copies of K3 in G + x122, by the discussion in the case |E(Go)| = 1,

we have u,v € V' \ (V' U{xy, z9, 23,01, 09,v3}) and u, v € V3. Assume u € V4 and v € V4.
Since ng > 3(t — 1) + 80, there is a vertex w € V3 \ (V' U{z3,v3}). But G+ uw contains at
most ¢ — 1 pairwise disjoint copies of K3, a contradiction. Hence |F(G)| > k— 1. Suppose
|E(G)| = k — 1. Then there are e;,e; ¢ E; U Ey such that E(G) = E; U By U {eg, ea}.
Let e; = w;w;, i = 1,2. Suppose uy,w; € V', say uy € V(K;) and wy; € V(K,). Then
there are ¢; € V(K1) and ¢o € V(K3) such that ¢1q2 ¢ E(G). Thus, there are t pairwise
disjoint copies of K3, say K&'®,..., K%, in G + q1qa. Denote V1% = UV (K!%).
Then V@2 C V' U {xy, x9, 23, uz, we} which implies |V7%| < 3t — 1, a contradiction. So
we can assume wy,we € V' \ (V' U {x1, 9, x3,v1,v9,v3}). Suppose uj,us € V'. Then
G + z125 contains at most ¢t — 1 pairwise disjoint copies of K3 by N(w;) C {w;, x1, z2, 3}
for i = 1,2, a contradiction. Suppose uj,us € V' \ (V' U {x1, z2, x3,v1, v, v3}). Assume
that uy,us € Vi. If wy,we € V;, then ¢ # 1 and G + vyv; contains at most ¢t — 1 pairwise
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disjoint copies of K3, a contradiction. Now we assume that w; € V5 and wy € V3. In
this case, we claim that u; = ug; otherwise wyujx3wy, wotsxows, Ky, ..., K;_o form tK3
of GG, a contradiction. When u; = us, G + wiwsy contains at most ¢ — 1 pairwise disjoint
copies of K3, a contradiction. Suppose u; € V' \ (V' U {x1, z9, x3,v1,v9,v3}) and ug € V7,
say us € V(Ky). Let V(K1) = {q1,¢,¢s}, where ¢; € V; for i € [3]. Assume that
u; € Vi and wy € Vo. Then N(up) = {wy,x2, x5} and N(wy) = {uy, zq1,23}. I ug = g3
(resp. us € {q1,q2} and wy € Vi N Vy), then N(q1) N N(g2) N V(Go) = {z3} (resp.
N(u2) " N(w2) NV (Go) = {x3}). In these cases, G + x;x5 contains at most ¢ — 1 pairwise
disjoint copies of K3, a contradiction. If uy € {q1,¢2} and wy € V3, say uy = ¢y, then
UgWoTolso, UT W L3UT, §2G3T1G2, Ko, ..., K;_o form tK3 of G, a contradiction. O

Proof of Theorem 2 (in the case I > 2) Now we are going to prove Theorem 2
where [ > 2. Recall that for ¢ € [3], d(v;) = &; = 2I, where v; € V;. Denote V° = N(v;) U
N(v)UN(v3), Vi = VNV, Go = GV, E; = [V?, Vi \ V4] and B} = [V, Via \ Vi,
for i € [3]. Then |E;| = I(niy1 — 1) and |E| = [(nj 12 —1). Let B, = U, (E; U E). Then
|E1| = 2(ny + ng + n3) — 612 and |E(Gy)| > 312 — 3. We first have the following claim.

Claim 1 Let z;,y; € V0 fori € [3] such that x1x9,yoy3, 31 & FE(Gy). Then there is
i € [3] such that z; = y; and ;11 = yii1.

Proof of Claim 1 Suppose x; # y; and 2 # y». Then there is no copy of Kj;
in G + v1v, containing vv,, a contradiction with G being a tK;;;-saturated graph of
K, noms- Now we suppose 1 = yi, but xy # y2 and x5 # ys. Then there is no copy of
K, in G+ vyus containing vevs, a contradiction. [ ]

Since G'is a t K ;-saturated graph and v;v;1 € E(G) for all i € [3], there are ¢ pairwise
disjoint copies of K;;; in G + v;v;4; and one of them, denote by K;****, contains v;v; 1.
Since V? = N;(vis1) = Ni(visa) for i € [3], V(K"™) = (VOU{v;, vis1 D\ {Zvivas Yoswirs
where 2y, € VP and yu,p,,, € V2. Let K™ Ky 0 K70 be the other ¢ — 1
copies of Ky in G+ vwi1. Then (UZ)V (K] ) NVO C {Zy0,,15 Yo, b In each case,
we choose K™ K™ K such that (U2 V(E™) N {200 Yoo, H s as
small as possible. If there is 4, say @ = 1, such that |(U§;11V(K;-’1”2)) N A{Zyy09s Yoo | = 0,
then

[E(G)| = |Ei| +|E(Go)l + X1y [B(K™)]
> 2l(ny +ng+n3) =32 =3+3(t—1I*=k,

and we are done. So we will assume that [(UZ}V(K™) N {2y, Yo, | = 1 for all
i€ 3]

In the following, we will denote V¥t = U'ZV(K™) \ {001 Yo 1> 0 € [3].
Let u € V. Denote N;*""'(u) = (N(u) NV (K;"*)\ V° and 7,7 (u) = [u, N;""* (u)],
where ¢ € [3] and j € [t — 1]. Let & denote the disjoint union of sets. We consider the
following three cases.

Case 1 There is 4, say i = 1, such that [(UZ}V (K5)) 0 {2y, 09, Yores } = 1.

Assume, without loss of generality, that x,,,, € V(K{'"). Set K, = G[V(K{**) \
{ZTuy0p}]- Then |E(K;)| = 312 — 2l. Since zy,, € V(K{*?) NV and V C V(K;**)
in G + vpug, |[VU12 N Vi| < |[V*% N V4| which implies there is u € Vi \ V such that
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w € Ve \ Vo Then [N (u) \ VO] > 21— 2. If [E(Go)| > 312 — 1, then

[B(G)| = [Er|+ [B(Go)| + |[E(Ky)| + X5 [E(K)| + [N (u) \ VY
> 2l(ny +ng+mn3)—602+312—1+3(t— 1)1 -2+ (20 — 2)
2 2l(n1—|—n2—|—n3)—3l2—3+3(t—1)l2:k,

and we are done. If |[N(u) \ V9 > 2, then

E(@)] = [E]+|E(Go)| + [B(Ky)| + > [E(K™)| + 21
2 2l(n1+n2+n3)—3l2—3+3(t—1)l2:k,

and we are done. So we will assume 3/2—3 < |E(Gy)| < 312—2,21—2 < [N(u)\V°| < 21-1
and consider the following two subcases.
Case 1.1 |E(Gg)| = 31> — 2.
In this case, if |[N(u) \ V°| = 2] — 1, then
[E(G)] = [Ei|+|B(Go)| + [B(K)| + i, [E(G)| + [N(u) \ V')
> 2(ny +ny+nz) — 612+ |E(Go)| +3(t— 1) =21+ (21 — 1)
= 2[(77,1 + Nno —|—n3) — 312 -3+ 3(t - 1)[2 = k,

and we are done. So we assume |N(u) \ V°| = 2l — 2 and v € V(K{?***). Since V°\
{@pvss Yogus } C V(K2?) and |N(u) \ V0| = 21 — 2, we have Ty, Yupos € V (K72%). Now
we have

[B(G)| = |Ed+|E(Go)| + |E(E)| + X, |E()| + (20 - 2)
= 21(n1+n2—|—n3)—3l2—4+3(t—1)l2:kz—1.

If |[E(G)| = k — 1, then all inequalities given above are tight. So N(u)\ V° = N/*"(u) =
VIET?)\ (Vi U{Zus05, Yoz, }) and

E(G) = E1 W E(Gy) W E(K,) W (W3 B(K™)) W 172" (u),

which implies &Ji;;E(Kivws) WET)N (72 (W) U2 (Zag0s ) U1 (Yusws) U{ Ty Yugus })
C B(K))WW!l 3 E(K). Thus V(K2")\ {t, Tyyus, Yoyes + € V(K1). Since I > 2, there are
bQ, b3 € V(Kl)\V”2”3 such that bg € ‘/2 and bg < ‘/3 Then G[(V(K82U3)U{bg, bg})\{Ug, Ug}]
and K;?% for 1 <i<t—1form tK;;; in G, a contradiction.

Case 1.2 |E(Gy)| = 31* — 3.

By Claim 1, we assume there are z, 2/, y, 2 € V° such that zy, 7'z, yz ¢ E(G) (possibly
r=2a). If x,2’ € V, then z,,,, =y and y,,,, = 2, where we assume y € V) and z € V3.
Assume u € V(K7?*). Since yz ¢ E(G) and 20 —2 < |N(u) \ V°| < 20 — 1, we can assume
y € V(K{?") but z ¢ V(K{?"). Thus we have

|E(G)| [B1| + | E(Go)| + |E(KL)| + Y20y [E(KG™)| + [Ny (u)]
2l(n1 4+ ng + ng) — 61> + |E(Go)| +3(t — 1)I* — 21 4 (21 — 1)

I\
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If |[E(G)| = k — 1, then all inequalities given above are tight. So N(u)\ V? = N{2%(u) =
VEP)\ (Vi U{y}) and

E(G) = E W E(Gy) W E(K,) WW.IE(K*?) W 72" (u).

By the same argument as above, we have V (K7?"*)\{u,y} C V(K;). Sincel > 2, there are
by € (V(K)NVo)\V(K2) and by € V(K)NVINV (K72%). But G[(VoU{b, b2})\{y, 2},
GI(V(KP®)u{a'}) \ {b1}] and K;*** for 2 < i <t —1 form tK;;; in G, a contradiction.

Now we will assume z,2' € V) U VY, say z,2/ € V). Suppose y € V3 and z € V.
Then z,,,, = 2’ and y,,,, = y. As the discussion above, we assume |N7?"(u)| = 21 — 2
and u, 2’y € V(K{?"). Then

|E(G) [B1l +B(Go)| + | E(K1)| + Y20y [E(K™)| + [Ny (u)]

2l(ny +ng +ngz) — 612 + |E(Go)| +3(t — 1)1 — 21 + (21 — 2)
21(n1+n2—|—n3) —312 —5—|—3(t— 1)[2 =k -2

[IA\VAR\Y/

If there is v/ € V¥2% \ V"% and u # «/, then |N(u/) \ V° > 20l — 2. So |E(G)| >
k—2+ (2l —2) > k and we are done. If there is no j (1 < 7 < t — 1) such that
VKP")\{u, o', y} C V(K'™), then |E(G)| = k—2+(20—2) > k by Lemma 5 and we are
done. So we assume there is j (1 < j <t —1) such that V/(K{***)\ {u,2',y} C V(K;"").
By the same argument, there is j; (1 < j; <t — 1) such that V(K**) C V(K'") for
all 2 < i < t—1. Since [ > 2, we have V(K7?*) \ {u,2',y} C V(K;). Then there are
by, b3 € V(K1) \ V(K{?*) such that by € V5 and by € V3. Thus G[(VO U {by, b3}) \ {7, y}],
K{?% and K'" for 2 <i <t —1 form tK;;; in G, a contradiction.

By Case 1, we assume that [(USZ)V (K1) 0 {Zv0,0 Yoo, | = 2 for all i € [3].

Case 2 There is i, say i = 1, such that Toyvys Yorvn € V(KG?), where 1 < j <t — 1.

Assume that j = 1, that is Torvgs Yorve, € V(K('?). Recall that z,,, € V. and
Yooy € Vi Since V¥ C V(Ky™"*") in G + vipqvi40 for ¢ = 1,2, there is wy,, v, €
Vi \ V¥ such that w,,,,y,,, € VU102 \ V2 If 4y, € E(G), then G[(V(Kg™"?) U
{Uppvss Upgoy }) \ {v1,02}] and K™ for 1 < i <t —1 form tK;;; in G, a contradiction.
Thus UyypsUvge, ¢ E(G). In the followmg, We assuIme Uy,, v,,, € V(KU”“””) for i =1,2.
Let Ky = GV (K{™)\ {Zuysy, Yo ). Then [B()| = 37— (41— 1). T [N ()| = 21
or [NY*"! (tuye, )| = 21, say [NY** (o, )| = 21, then

[E@G)| = [Eil +|E(Go)| + | E(Ky)| + Z [E (K] 4+ INT2™ (togus )| = [N7 (togo,)]
> 2(ny +ng 4 ng) — 61> + |E(Go)| +3(t—1)2— (4l — 1) + 20+ (21 — 2)
> 2(n;+ng+n3)—32-3+3t—-1)F=k—1.

If |[E(G)] = k — 1, then all inequalities given above are tight. So N(uy,) \ V° =
NP2% (Uyyy) = V(K(2*) \ Vi which implies 4,0, ¢ V(K2™). Also N(ty,) \ VO =
NP (Uogey) = VET) \ (V2 U{Zug015 Yogen }) and

E(G) = E1 W E(Gy) W E(K;) W] E(K™) W72 (Uyyes ) W 715" (g, )-
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Hence there is ig, 1 < ip < t — 1 such that V(K{*") \ {uye,} S V(K;"). Since
Yorvs € V(K]™?) but yy,0, & V(K]?), 19 # 1, say ig = 2. Thus there is u € V(K35'"*)NV;
and u ¢ V2% Since N3'"*(u) = V(K3'"*)\ Vi and 2,,,, € (V(K{™2)NVO)\UIZIV (K?%),
we have a contradiction with U/Z) E(K;?") C ULZ; E(K{""). So we have [{Zu,vs, Yugvs } N
V(K2?)| = 1 and {Zvs0;, Yoz, f OV (K7?)| = 1. We first have the following claim.
Claim 2 For any i € {2,3}, Tuu,01s Yo, € V(K.
Proof of Claim 2 Suppose |{Zyyuss Yvgus } N V(K%)= 1. Then

[E(G))] |Er] + |E(Go)| + | E(Kq) + Z [ECKT)] + [N (e )| N7 (U, )|

=
> 2Z(n1+n2+n3)—612+|E(GO)!+3(t—1)12 (4l —1)+20—1+20—2

If there is u' € V2" \ (VU2 U {Uyyig, Upgw, }), then |[E(G)| =k —2+ (20 —2) > k and we
are done. If there is no j (1 < j <t —1) such that V(K?") \ {t@uyvs, Togvss Yugvs s Uvswy | C
V(K;'"?) for some i € [t — 1], then [E(G)| > k — 2+ (2l —2) > k by Lemma 5 and
we are done. So we assume that there is j; (1 < j; < t — 1) such that V(K7?%) \
{Uosvss Tugug, Yoous } S V(EG™) and V(K*™) \ {U’Usvl?xvzvsvyvzvf,} C V(K;'™) for 2 <
i < t—1. Hence j; = 1, which implies T, € V(K{*®) by Yp0, € V(K”1”2). Let
K| = GIV(K1)U{Uyvss Yoy, }]. Then K1, K32, ..., K/*? are t—1 pairwise disjoint copies
of K in G+wvyvy such that \(V(K{)UUE;%V(K;””))ﬂ{xvm, Yoyog 1| < \(U;;llV(KJ’.””?))ﬂ
{109 Yorvs } |, & contradiction. n

By Claim 2, we have that v, Yoesp, € V(E]") for i € [3].

Claim 3 ]E(GO)] > 312 — 2.

Proof of Claim 3 Recall that |E(Gy)| > 31> — 3. Suppose |E(Gy)| = 31> — 3. By
Claim 1, there are x,2',y,2 € V° such that zy,2'2,yz ¢ FE(G). Assume, without loss of
generality, that y € V3) and 2z € V). Then ,,,, = y and y,,.,, = 2. Since yz ¢ E(G),
H{ vguss Yugus + NV (K2?)| < 1, a contradiction. ]

By Claim 3 and [ > 2, we easily have the following claim.

Claim 4 For any i € [3], there are a; € V and a;41 € V% such that a;a;41 € E(G)

and G[VO\ {a;,a;11}] is a complete tripartite graph.
Note that [Ny (wy,e,,,)] = 20 — 2 for i = 2,3. So we have

Vi41

[E@G)| = [Ei| +|E(Go)| + |E(Ky)| + Z | E(E2)] 4+ INT2™ (togus )| = [N7 (togo,)]
= 2l(ny 4+ ng +ng) — 61> + |E(Go)| +3(t—1)2— (4l —1)+2(20 —2)
= k+|E(Gy)| — 312 (%)

If |E(Gp)| = 32, then we have |E(G)| > k and we are done. So we assume |E(Gy)| < 31°—
1 and then 31°—2 < |E(Gy)| < 31°—1 by Claim 3. If there is u € VY"1 \{ty,p,, 1 Uiy |
for some i € {2,3} such that u ¢ V"2, then |E(G)| > k — 2+ 2l — 2 > k and we are
done. So we assume

ViVi41 VU2 A
[ \ {uvivi+17uvi+1vi+2} g Vv for 1 = 2, 3.
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Vi Vi1
By Lemma 5 and the same argument as above, we have V(K I\ Uosvs4 15 Tovsr1s Yorvips }

C V(K,)fori=23. Since V(K{*"?)NVY = @ and |V (K2*)NVY| =1 (resp. |V (K{*")N
V2| = 1), there is a unique vertex b € V(K;) N V3 (resp. ¥ € V(K;) N V3) such that
b ¢ V(K?) (resp. b ¢ V(K{®™)). If wy,b € E(G) (resp. Uy, b’ € E(G)), then
IV ET)\ {0, }) U {thyg ] (resp. GIV (BT )\ {Yo,0, ) U {tingo, ), K302, K
would be a contradiction with the choice of K7'*?, K32 ..., K/*{?. So we have t,,,,b ¢
E(G) and uy,,,, b ¢ E(G).

Suppose b # V. By Claim 4, there are a; € V°, a3 € V2 and aja3 € E(G) such
that G[V°\ {a1,as}] is a complete tripartite graph. But G[(V°\ {a1, a3}) U {tu,w,, b},
GI(V(EKTY"?) \ {Zorvs Yorwes V' }) U{an, ag, wyge, ], K32, ..o, K172 form tK);; in G, a con-
tradiction. Hence we have b =10'.

Now we complete the proof of Case 2. Note that Ny (uy,.,) = V(K1) \ (V1 U {b})
and Ny (Uyq, ) = V(K1) \ (Vo U {b}). Denote

E' = E\ W E(Go) W E(K) W_) BE(K"™).

Suppose |E(Gy)| = 31> — 1. Then |E(G)| = k — 1 by (*). If |E(G)| = k — 1, then
E(G) = E'W 72" (Uyyus) W 772 (Ugny ). So N(w) \ Vo = 0 for any w € V' \ (V12 U
VO U {tpyuy, Unge, })- Since |E(Gg)| = 31* — 1, there are ¢; € V;? and ¢, € V%, such that
@12 ¢ E(G) for some i € [3]. Since G is a tK;;-saturated graph, there are ¢ pairwise
disjoint copies of K, say K{'%,...,K{'"?, in G + q1q2. Assume q1qo € E(KJ'?). 1If
there is w € V \ (V2 U VO U {Uyyuy, Upge, }) Such that w € V(K®), then we have
Vy CV(KE?) or V C V(K#*). Thus there are at most ¢ — 1 pairwise disjoint copies
of Kj; in G+ qiga by btiyye,, Dy, ¢ E(G), a contradiction. Thus UiV (K%)=
(USZgV(K™2) \ {1, v2}) U {tlyyey, Unye, }- But there are at most ¢ — 1 pairwise disjoint
copies of of Kj;; in G 4 q1q2 DY UpyvsUngvy s Upyws b, Dllygw, & E(G), a contradiction.

Suppose |E(Gp)| = 31> — 2. Then |E(G)| > k — 2 by (*). By the same argument as
above, we can assume |E(G)| > k — 1.

Suppose |E(G)| = k — 1. Then there is e ¢ E' & 772" (Uyyps ) B 72" (Uyge, ) sSuch that
e € E(G). Let e = uv. Then {u,v} N V% =10.

Claim 5 {u,v} N V12 £ ().

Proof of Claim 5 Suppose {u,v} NV"" = (). Assume u € V; and v € V1, and a is
the vertex in {wy,u,, Upge,, b} such that a € Viio, i € [3]. By Claim 4, there are a; € V°,
ai+1 € VS, and a;a;41 € E(G) such that G[V°\ {a;, a;11}] is a complete tripartite graph.
Then G[(V(Kq"*) U{Zvy, Yorv, w, v1) \ {01, 02, a3, aipa 3], GIV(EL) \ {b}) U{a, ai, aigr}]
and K;”’Q for 2<j<t—1form tK;;; in G, a contradiction. n

By Claim 5, we assume u € V"%, If 4 = b, then v € {Uyypy, Uvg, } and we claim
that v € V1“2, Otherwise, assume v € V;. Since | > 2, there is z, € VZ such that
TpTyyvy € E(G) Then G[(Vo U {b> U}) \ {:Uba 5171)11)2}], G[(V<Kf1v2) \ {yvlv27 b}) U {uvzsvuxb}]
and K'" (2<i<t—1) form tK;,;,; in G, a contradiction.

Since |E(Go)| = 31* — 2, there are ¢; € V and ¢, € V%, such that q1¢» ¢ E(G) for
some i € [3]. Since G is a tK), -saturated graph, there are ¢ pairwise disjoint copies of
Ky, in G + q1g2 and one of them, denote by KJ'®, contains q1qs. If e ¢ E(K{'%) or
e € E(K§®) but v € VU U {Uyypy, Upgw, }» then there are at most ¢ — 1 copies of Kj
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in G+ q1q2 DY Upyus Unsvy s Uvyoy 0y by, & E(G), a contradiction. Suppose e € E(K{'?)
and v & V%2 U {Uyypq, Upge, f- Then N(v) \ Vo = {u} and u # b. If u € V3 or v € V5,
say u € V3, then V C V(K{#*®) when v € V3 (resp. V) C V(K{#?®) when v € V). Thus
there are at most ¢ — 1 copies of K;;; in G + q1ga by Uyyusb ¢ E(G) when v € Vi (resp.
by, ¢ E(G) when v € Vi), a contradiction. Now we consider the case u € Vj and v € V4
oru € Vo and v € V, say u € V; and v € Vo. Then (V(KI?)NV;)\ VP = {u} and
Ve C V(K{#%). Thus there are at most t — 1 copies of K;;; in G+ q1q2 by Uu,e,b & E(G),
a contradiction.

Uivi-o-l)‘

Case 3 For any ¢ € [3], we can assume Z,,,,, € V(K{"""") and yy,0,,, € V (K,

By the same argument as that of Case 2, there is uy,, ., € Vi\V;" such that u,,, ., €
Vvirivit2 \ YUz for ¢ = 1,2 and UyypsUpge, € E(G). Then |N(ty,) \ Vo| = 20 — 1 and
[V (g, ) \ Vol = 20 = 1. Let Ky = GV(K7") \ {#u,0, }] and Ky = GIV(ES) \ {Yor, }]-
Then |E(K,)| = |E(Ky)| = 31> — 2l. If |E(Gy)| = 31> — 1, then

E@)] > [Bal+ B(Go)l + |B(KY)| + |E(K)] + z B 4 [N (t) \ Vol

+|N(uv3v1)\VO|
2l(ny +ny +mng) — 31> =3+ 3(t — 1> =k,

VWV

and we are done. So we assume 31 — 3 < |F(Gp)| < 312 — 2. If |N(tpps) \ Vo| = 21
and | N (tyg,) \ Vo| = 21, then we have |E(G)| > k and we are done. So we assume that
Upgey, € V(KP) U V(KS*). Suppose |N(tyyps) \ Vo| = 20. Assume, without loss of
generality, that w,,,, € V(K7*") and uy,,, € V(K5*"). Then

[E(G)] = [Br]+ [E(Go)l + |E(K1)| + | E(K)| + Yig |EC )] + [N (tger) \ Vol
+|N(u’0203>\‘/0|
> 2l(ny +ny 4 ng) — 61> + |E(Go)| +3(t — 1)I* — 4l 4 (21 — 1) + 2

If |[E(G)] = k — 1, then all inequalities given above are tight. So N(uy,) \ V° =
NP (Uggoy) = VIETP)\ (VaULZugor 1)y N(tagey) \VO = N3** (y0,) = V(EK3*™) \ V1 and

E(G) = E1W E(Go) W E(K1) W B(Ky) Wiy E(K™) W1 (tg0,) W 757 (tay0,),

which implies V(K352%) \ {tpyws} € V(K7). Let K| = G[V(K1) U {tyy,}]. Then K]
and K[*" for 2 < i < t—1 aret — 1 copies of K;;; in G + vyvy such that |(V(K;) U
ULV (ED)) N {Zor09s Yoros H < (UZIV(EG2)) N {@0,05, Yoy00 1|, @ contradiction. Hence
we can assume Uy,,, € V(K*") U V(K3*"). Now we have

[E(@)] = [E\|+ |E(Go)| + |E(Ky)| + |E(K2)| + > iZg [E)] + [N (tye) \ Vol
N (tog,) \ Vol

20(ny + ng + ng) — 602 + |E(Go)| + 3(t — 1)12 — 4l + (20 — 1) + (21 — 1)
2l(n1+n2—|—n3)—3l2—5—|—3(t—1)l2:k:—2.

VWV
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By the same argument as that of Case 2, we can assume that V2% \ {wy,p,, Uyge, } S V12,
and V (K{*% ) \{Uuvgs Tuguy } © V(K1) if tyyey € V(KT*™) (vesp. V(K52 )\ {tusvg, Yooy }
V(KY) if wyy, € V(E3??)).

Assume without loss of generality that w,,,, € V(K7?"). Then V(K7?")\{tvyvs, Togus }
C V(Ky). Since tpypsthpge, & E(G), Uy, ¢ V(K1) Since 9y, € V(K3?) N VY and
ULV (E)\ {Yogugs thuge, b © UV (KG?), we have uy,,, € USZGV(K2%). If tyy,, ¢
V(K32), say Uy, € V(K32"), then V(K52")\ {tys, } € V(K3). Thus K72, G|V (K3)U
{Upgo, }], - - -, K12 would contradict with the choice of K[*"?, 1 < i < t—1. Hence we have
Uy, € V(K32™) and then V(K52%) \ {Uuso; , Yoyus }  V(K3). Since Ty, € V(K{2?)NVY
(T€SP. Yupus € V(K52) N VY) and | > 2, there is a unique vertex ag € V(K;) N Vy (resp.
az € V(K3) NV3) such that ay ¢ V(K7??) (resp. az ¢ V(K32™)). If uypae € E(G),
then G[V (K1) U{tyyus }], K3*2, ..., K21 will be a contradiction with the choice of K2,
1 <i<t—1. Hence uy,pao ¢ E(G). Similarly, w,,., a3 ¢ E(G).

Now we have Ny (wy,p,) = V(K7)\ (ViIU{az2}) and N3 (wygy, ) = V(K2)\ (VaU{as}).
Let

E' = E1WE(Gy) W E(K)) W E(Ky) W2t E(K™) W 772" (Uyyey) © 752" (Ugo, )-

Then |E(G)| > |E'| = k — 31> + 1 + |E(G)|.

We will complete the proof by considering the following two subcases.

Case 3.1 |E(Gy)| = 31* — 2.

In this case, we have |E(G)| > k — 1. Suppose |E(G)| = k — 1. Then E(G) = E'.
If GV U VY| is a complete bipartite graph, then we can choose ky, ks € V3 such that
G[VO\{k1, k2 }] is a complete tripartite graph. By ny > 2413 +441? +12]+3(t —1)I?, we can
choose wy,wy € Vo \ (V%2 U VP U {0, }). But G[Vo U {wy, wo} \ {k1, k2}], G[(V(K;) U
(ks Ungos ) \ {a2}], G[V(K3) U {ky}] and U'Z3 K" form tK;;; in G, a contradiction.
Hence there are ¢; € V)Y and ¢} € V3 such that q1¢} ¢ E(G). Since |E(Gy)| = 31* — 2, we
can assume there is go € V) and g3 € V3 such that ¢q3 ¢ E(G).

Since G is a tKj; ;-saturated graph, there are ¢ pairwise disjoint copies of Kj;;, say
K§®, ..., KPY, in G+ gags. If there is v € (VN V(KP))\ (VY72 U VO U {Uyyys, g, })
for some i € [3] and 0 < j <t —1, then V%, V5, C V(K**) and then there are at most
t — 1 pairwise disjoint K;;; in G+ gaqs by Upyps @2, Uy, a3 € E(G), a contradiction. Hence
UILZSVI(KEE) = Vo2 U VO U {tyyes, Unse, - Assume gaqs € E(KP®). Note that there is
uw € V(KP%#)\ VO such that o € ViU V3 by qiqs ¢ E(G). Since ty,y, € Va, U # Uyyy, . If
' € VU2 say v € V(K'™?), then V(KE®) NV, C VR UV(K"?). Thus G + g2g3 has at
most ¢ — 1 pairwise disjoint copies of Kj;; by y,p,a02, Uy, a3 ¢ E(G), a contradiction. If
U = Upyyy, then V(KE®)NV, C VPUV(K,) and V(KEP)NV3 C VRUV(KY). So G+ qaqs
has at most ¢ — 1 pairwise disjoint copies of Kj;; by wy., a3 ¢ E(G), a contradiction.

Case 3.2 |E(Gy)| = 31> — 3.

In this case, we have |E(G)| > k — 2. If |[E(G)| =k —2, let G = G + q1¢2, where
q € V0, ¢ € VP with qiqo ¢ E(Gy). Then |E(G')] = k — 1. By Case 3.1, G’ has at
most ¢ — 1 pairwise disjoint copies of Kj,;, a contradiction. So |E(G)| > k — 1. Suppose
|E(G)| = k — 1. Then there is e = uv € E(G) but e ¢ E’, that is E(G) = E'U{e}. Then
{u,v} NV? = (. By Claim 1, we easily have the following claim.
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Claim 6 For any i € 3], there are b; € V; and biy1 € V2, such that G[VO\ {b;, b1}
1s a complete tripartite graph.

Let VI = V(K}) U{tlyyey }, V2= V(K3) U{tlys, } and Vi = V(K1"?) for 3<i <t —1
for short. Denote V; = V'NVj, where i € [t—1] and j € [3]. We have the following claim.

Claim 7 {u,v} N (U1 V) # 0.

Proof of Claim 7 Suppose {u, v} N(UZ;V?) = (. We first consider the case u, v ¢ Vj,
say u € Vo and v € V3. By Claim 6, there are by € V3 and b3 € V3 such that G[V°\{bs, b3}]
is a complete tripartite graph. Then G[(V® U {u,v}) \ {b2,b3}], G[(VI U {ba}) \ {aa}],
G[(V2U{bs}) \ {as}] and K*** for 3 < i <t —1 form tK;,; in G, a contradiction. Now
we assume u € V. By Claim 6, there are by € V{? and by € V) if v € V, (resp. b3 € V3 if
v € V3) such that G[VO\ {b1,b2}] (resp. G[V°\ {by,b3}]) is a complete tripartite graph.
Then G[(V®U{u,v})\ {b1,b2}] (resp. G[(V°U{u, v}) \{b1, bs}]), GIV U{b1}) \ {tuns }],
Gl(V2U {ba}) \ {toge, }] (resp. G[(V2U{bs}) \ {a3z}]) and K;*** for 3 < i <t — 1 form
tK;;; in G, a contradiction. [

By Claim 7 and {u,v} N V° = (), we assume u € U!Z}V?. Since |E(Gy)| = 3I> — 3,
there are ¢; € V? and qu € V7 such that 1o ¢ E(G). Since G is a tK;;;-saturated
graph, there are ¢ pairwise disjoint copies of K, say Ki'®, ..., KI'"? in G + q1q2. By
Case 3.1, we know there are at most ¢ — 1 pairwise disjoint K;;; in G 4+ q1¢2 — uv. So
wv € UMt E(K3%).

Claim 8 U/Z)V(KT%®) C U'Z;Vi U {v}.

Proof of Claim 8 Suppose there is w € U'ZjV(K%) \ (U'Z;V? U {v}), say w €
VinV(K*), where i € [3] and 0 < j < t—1. Then d(w) = 21, which implies V% ,UV}%, C
V(K'%®). Since |E(Go)| = 31* =3 and ¢ € V, ¢o € V3, we have i = 3 and then
Uima VB )\ (UiZgVIU{o})] < L. Since w02 ¢ E(G), (Vi UV )N(UZV (K1) = 0.
Then

| Uiz VIK!®)] < [(UiZVEU o) \ (VP UV + [UZg VET ™)\ (UZVE U {v})]
< 3t—1+1,

a contradiction with | UlZ V/(K%)| = 3tl and [ > 2. n

Claim 9 e # asas and e # Uy, as3.

Proof of Claim 9 Suppose e = asaz. By Claim 6, there are by € V) and b3 € V3 such
that G[V°\ {b, b3}] is a complete tripartite graph. But G[(V°\{bs, bs})U{as, az}], G[(V'\
{as}) U {bo}], G[(VZ\ {as}) U{bs}], ..., K*}? form ¢K;;; in G, a contradiction.

Suppose € = Uy, az. By Claim 6, there are by € V) and b3 € V3 such that G[V°\
{by,b3}] is a complete tripartite graph. But G[(V°\ {b1,b3}) U {thyes, az}], G[(VIU{b1})\
{tpus }, GIV2U{bs}) \ {as}], ..., K/ form tK;;; in G, a contradiction. I

Claim 10 v ¢ U'Z]VE.

Proof of Claim 10 Suppose v € U:ZIV?. By Claim 8, U'Z{V(K1®) = UZIVY.
Assume wv € E(K{'™), u € V" and v € V", where iy, iy € [t—1], ju, ju € [3], iu # iv and
Ju # Ju- Let j = {1,2,3}\ {ju, Ju}. Then V C V(K{'*). By ULZEVI(KB®) = U2V, we
can assume there are u; € V;* NV(K{'®) and v; € V" NV (K$'®). Then UL,V (K{'®) =
Vie U Vi U VY. Since gy, o, Uy, a3 & E(G), we have {iy,i,} = {1,2}. Then there is
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i € {0,1,2} such that [{ag, as, Upyps, Uvge, } O V(KM = 2. Since Uy, thnge, € E(G), we
have uv = asag or u,,,,a3, a contradiction with Claim 9. [

By Claims 8 and 10, we have Ul_jV (K%) C U!/Z{Vi U {v}. Assume uwv € E(K{'®),
u € V;Zu“ and v € V; , where i, € [t —1], ju, j, € [3] and j, # j,. Let 7 = {1,2,3}\ {Ju, ju}-
Since N(v) = VO U {u}, we have V(K§'*)NV; = VO, (V;, N V(K§*)) \ {v} C V2 UV
and V(K§'*) NV, = (V) U{u})\ {w;,}, where w;, € V. Since U_jV(K!?*) C
UZgV' U {v}, there is uy € V" NV(K'®) for some i # 0, say i = 1. Then V(K{*) N
Vi, = (Vi U fwy, 1)\ {u, VIKP™) 1V = Vi and VKP™) 0V, € V2 UV So
(V(KF?)UV(KF2)\ {v} CVOUV™. SInce Uy, s, Uy, a3 ¢ E(G), we have i, € {1,2}
and there is a unique vertex w;, € V) such that w;, € U}V (K!*).

Claim 11 V(K{'*) NV} # 0.

Proof of Claim 11 Suppose V(K{"*) NV = . Then V(K{'*) N V" = {w;,} and
V(K$®) = (VO U {u,v}) \ {wj,,w;,}. By Claim 6, there are b;, € V) and b;, € V}
such that G[V°\ {b;,,b;, }] is a complete tripartite graph. But G[(V (K{'*®)U{w;,,w;,})\
b}, GUVOIEE®)\ {uy,}) U by, }] and GOZVK®) \ {wy, }) U {by,}] form ¢
pairwise disjoint K ;s in GG, a contradiction. [

By Claim 11, we assume wj, € V(K{'*)NV}. Since E(G,) = 31> =3, by Claim 1, there
are x,2',y,z € V° such that zy,yz, 20° ¢ E(G) (possibly x = 2'). If z = 2/, say = € Vﬁ
and y € V2, then GI(V(K2%) U {uy,, w5, 1) \ {2, 93], GUV(KD®) \ {u;,}) U {}] and
GUIV(KP2)\ {w;, })U{y}] form t pairwise disjoint Kj ;s in G, a contradiction. So we
have x # o/, If z, 2" € V}v, assume y € Vj,, then G[(V (K§'®)U{w;,, ) ,w;, })\{z, 2, y}],
GIVET ™)\ {wj,, wj,}) Uy, @'} and GIUZV(KP™)\ {w;,}) U {a}] form ¢ pairwise
disjoint Kj;;s in G, a contradiction. If = Vj, assume y € V;, and z € Vj, then
GV (EP™) U {uwy,w, )\ 9. 2}, GIVIED™)\ {wy,}) U {y}] and GIUZIV(KD®) \

{w;, }) U {z}] form ¢ pairwise disjoint K;,;;s in G, a contradiction. Now we consider the
case z,x € Vj,. Assume y € Vj,. If y # wj,, then G[(V (KI%) U {w) ,w;, 1)\ {2, y}],
G[(V(qu)\{wju, - Hu{r, y}] and G[U!Z3V (K %)) form t pairwise dlsJ01nt K, 8in G,
a contradiction. If y = w;,, then G[(V(K§*)U{w;,}) \{z'}], G[(V (quqz)\{wju}) U{z'}]
and G[U!Z;V (K*%)] form t pairwise disjoint K;;;s in G, our final contradiction. O

Remark In [9], Ferrara, Jacobson, Pfender and Wenger determined sat(K}, K3) for
k > 3 and n > 100, where K’ is the complete balanced k-partite graph with partite sets
of size n. Our result in the case [ = 1 generalizes their conclusion if £ = 3.
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